1
|
Nicholas J, Kolli SK, Subramani PA, De SL, Ogbondah MM, Barnes SJ, Ntumngia FB, Adams JH. Comparative analyses of functional antibody-mediated inhibition with anti-circumsporozoite monoclonal antibodies against transgenic Plasmodium berghei. Malar J 2023; 22:335. [PMID: 37936181 PMCID: PMC10629016 DOI: 10.1186/s12936-023-04765-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/24/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Acquired functional inhibitory antibodies are one of several humoral immune mechanisms used to neutralize foreign pathogens. In vitro bioassays are useful tools for quantifying antibody-mediated inhibition and evaluating anti-parasite immune antibodies. However, a gap remains in understanding of how antibody-mediated inhibition in vitro translates to inhibition in vivo. In this study, two well-characterized transgenic Plasmodium berghei parasite lines, PbmCh-luc and Pb-PfCSP(r), and murine monoclonal antibodies (mAbs) specific to P. berghei and Plasmodium falciparum circumsporozoite protein (CSP), 3D11 and 2A10, respectively, were used to evaluate antibody-mediated inhibition of parasite development in both in vitro and in vivo functional assays. METHODS IC50 values of mAbs were determined using an established inhibition of liver-stage development assay (ILSDA). For the in vivo inhibition assay, mice were passively immunized by transfer of the mAbs and subsequently challenged with 5.0 × 103 sporozoites via tail vein injection. The infection burden in both assays was quantified by luminescence and qRT-PCR of P. berghei 18S rRNA normalized to host GAPDH. RESULTS The IC50 values quantified by relative luminescence of mAbs 3D11 and 2A10 were 0.396 µg/ml and 0.093 µg/ml, respectively, against transgenic lines in vitro. Using the highest (> 90%) inhibitory antibody concentrations in a passive transfer, an IC50 of 233.8 µg/ml and 181.5 µg/ml for mAbs 3D11 and 2A10, respectively, was observed in vivo. At 25 µg (250 µg/ml), the 2A10 antibody significantly inhibited liver burden in mice compared to control. Additionally, qRT-PCR of P. berghei 18S rRNA served as a secondary validation of liver burden quantification. CONCLUSIONS Results from both experimental models, ILSDA and in vivo challenge, demonstrated that increased concentrations of the homologous anti-CSP repeat mAbs increased parasite inhibition. However, differences in antibody IC50 values between parasite lines did not allow a direct correlation between the inhibition of sporozoite invasion in vitro by ILSDA and the inhibition of mouse liver stage burden. Further studies are needed to establish the conditions for confident predictions for the in vitro ILSDA to be a predictor of in vivo outcomes using this model system.
Collapse
Affiliation(s)
- Justin Nicholas
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Surendra Kumar Kolli
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Pradeep Annamalai Subramani
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Sai Lata De
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
- Department of Infectious Disease & Immunology, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Madison M Ogbondah
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Samantha J Barnes
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - Francis Babila Ntumngia
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA
| | - John H Adams
- Center for Global Health and Interdisciplinary Research, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Tampa, FL, 33612, USA.
| |
Collapse
|
2
|
Samayoa-Reyes G, Flaherty SM, Wickham KS, Viera-Morilla S, Strauch PM, Roth A, Padrón L, Jackson CM, Meireles P, Calvo D, Roobsoong W, Kangwanrangsan N, Sattabongkot J, Reichard G, Lafuente-Monasterio MJ, Rochford R. Development of an ectopic huLiver model for Plasmodium liver stage infection. PLoS One 2023; 18:e0279144. [PMID: 36928885 PMCID: PMC10019673 DOI: 10.1371/journal.pone.0279144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/02/2023] [Indexed: 03/18/2023] Open
Abstract
Early Plasmodium falciparum and P. vivax infection requires parasite replication within host hepatocytes, referred to as liver stage (LS). However, limited understanding of infection dynamics in human LS exists due to species-specificity challenges. Reported here is a reproducible, easy-to-manipulate, and moderate-cost in vivo model to study human Plasmodium LS in mice; the ectopic huLiver model. Ectopic huLiver tumors were generated through subcutaneous injection of the HC-04 cell line and shown to be infectible by both freshly dissected sporozoites and through the bite of infected mosquitoes. Evidence for complete LS development was supported by the transition to blood-stage infection in mice engrafted with human erythrocytes. Additionally, this model was successfully evaluated for its utility in testing antimalarial therapeutics, as supported by primaquine acting as a causal prophylactic against P. falciparum. Presented here is a new platform for the study of human Plasmodium infection with the potential to aid in drug discovery.
Collapse
Affiliation(s)
- Gabriela Samayoa-Reyes
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Siobhan M. Flaherty
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Kristina S. Wickham
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Sara Viera-Morilla
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Pamela M. Strauch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Laura Padrón
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Conner M. Jackson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Patricia Meireles
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - David Calvo
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Wanlapa Roobsoong
- Faculty of Tropical Medicine, Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Niwat Kangwanrangsan
- Faculty of Science, Pathobiology Department, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Faculty of Tropical Medicine, Mahidol Vivax Research Unit, Mahidol University, Bangkok, Thailand
| | - Gregory Reichard
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Maria José Lafuente-Monasterio
- Diseases of the Developing World, Infectious Diseases-Centre for Excellence in Drug Discovery (ID CEDD), GlaxoSmithKline, Tres Cantos, Madrid, Spain
| | - Rosemary Rochford
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| |
Collapse
|
3
|
Valenciano AL, Gomez-Lorenzo MG, Vega-Rodríguez J, Adams JH, Roth A. In vitro models for human malaria: targeting the liver stage. Trends Parasitol 2022; 38:758-774. [PMID: 35780012 PMCID: PMC9378454 DOI: 10.1016/j.pt.2022.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/27/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
The Plasmodium liver stage represents a vulnerable therapeutic target to prevent disease progression as the parasite resides in the liver before clinical representation caused by intraerythrocytic development. However, most antimalarial drugs target the blood stage of the parasite's life cycle, and the few drugs that target the liver stage are lethal to patients with a glucose-6-phosphate dehydrogenase deficiency. Furthermore, implementation of in vitro liver models to study and develop novel therapeutics against the liver stage of human Plasmodium species remains challenging. In this review, we focus on the progression of in vitro liver models developed for human Plasmodium spp. parasites, provide a brief review on important assay requirements, and lastly present recommendations to improve models to enhance the discovery process of novel preclinical therapeutics.
Collapse
Affiliation(s)
- Ana Lisa Valenciano
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA; Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Maria G Gomez-Lorenzo
- Global Health Medicines R&D, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Joel Vega-Rodríguez
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - Alison Roth
- Department of Drug Discovery, Experimental Therapeutics Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| |
Collapse
|
4
|
Blight J, Sala KA, Atcheson E, Kramer H, El-Turabi A, Real E, Dahalan FA, Bettencourt P, Dickinson-Craig E, Alves E, Salman AM, Janse CJ, Ashcroft FM, Hill AV, Reyes-Sandoval A, Blagborough AM, Baum J. Dissection-independent production of Plasmodium sporozoites from whole mosquitoes. Life Sci Alliance 2021; 4:e202101094. [PMID: 34135099 PMCID: PMC8321652 DOI: 10.26508/lsa.202101094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 01/05/2023] Open
Abstract
Progress towards a protective vaccine against malaria remains slow. To date, only limited protection has been routinely achieved following immunisation with either whole-parasite (sporozoite) or subunit-based vaccines. One major roadblock to vaccine progress, and to pre-erythrocytic parasite biology in general, is the continued reliance on manual salivary gland dissection for sporozoite isolation from infected mosquitoes. Here, we report development of a multi-step method, based on batch processing of homogenised whole mosquitoes, slurry, and density-gradient filtration, which combined with free-flow electrophoresis rapidly produces a pure, infective sporozoite inoculum. Human-infective Plasmodium falciparum and rodent-infective Plasmodium berghei sporozoites produced in this way are two- to threefold more infective than salivary gland dissection sporozoites in in vitro hepatocyte infection assays. In an in vivo rodent malaria model, the same P. berghei sporozoites confer sterile protection from mosquito-bite challenge when immunisation is delivered intravenously or 60-70% protection when delivered intramuscularly. By improving purity, infectivity, and immunogenicity, this method represents a key advancement in capacity to produce research-grade sporozoites, which should impact delivery of a whole-parasite based malaria vaccine at scale in the future.
Collapse
Affiliation(s)
- Joshua Blight
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Katarzyna A Sala
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Erwan Atcheson
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Holger Kramer
- Department of Physiology, Anatomy and Genetics, Henry Wellcome Building for Gene Function, University of Oxford, Oxford, UK
- Medical Research Council London Institute of Medical Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Aadil El-Turabi
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Eliana Real
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Farah A Dahalan
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| | - Paulo Bettencourt
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Emma Dickinson-Craig
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Eduardo Alves
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Ahmed M Salman
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Chris J Janse
- Department of Parasitology, Leiden Malaria Research Group, Center of Infectious Diseases, Leiden University Medical Center, (LUMC, L4-Q), Leiden, The Netherlands
| | - Frances M Ashcroft
- Department of Physiology, Anatomy and Genetics, Henry Wellcome Building for Gene Function, University of Oxford, Oxford, UK
| | - Adrian Vs Hill
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
| | - Arturo Reyes-Sandoval
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Oxford, UK
- Instituto Politécnico Nacional, Mexico City, Mexico
| | - Andrew M Blagborough
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jake Baum
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London, UK
| |
Collapse
|
5
|
Maher SP, Conway AJ, Roth A, Adapa SR, Cualing P, Andolina C, Hsiao J, Turgeon J, Chaumeau V, Johnson M, Palmiotti C, Singh N, Barnes SJ, Patel R, Van Grod V, Carter R, Sun HCS, Sattabongkot J, Campo B, Nosten F, Saadi WM, Adams JH, Jiang RHY, Kyle DE. An adaptable soft-mold embossing process for fabricating optically-accessible, microfeature-based culture systems and application toward liver stage antimalarial compound testing. LAB ON A CHIP 2020; 20:1124-1139. [PMID: 32055808 DOI: 10.1039/c9lc00921c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Advanced cell culture methods for modeling organ-level structure have been demonstrated to replicate in vivo conditions more accurately than traditional in vitro cell culture. Given that the liver is particularly important to human health, several advanced culture methods have been developed to experiment with liver disease states, including infection with Plasmodium parasites, the causative agent of malaria. These models have demonstrated that intrahepatic parasites require functionally stable hepatocytes to thrive and robust characterization of the parasite populations' response to investigational therapies is dependent on high-content and high-resolution imaging (HC/RI). We previously reported abiotic confinement extends the functional longevity of primary hepatocytes in a microfluidic platform and set out to instill confinement in a microtiter plate platform while maintaining optical accessibility for HC/RI; with an end-goal of producing an improved P. vivax liver stage culture model. We developed a novel fabrication process in which a PDMS soft mold embosses hepatocyte-confining microfeatures into polystyrene, resulting in microfeature-based hepatocyte confinement (μHEP) slides and plates. Our process was optimized to form both microfeatures and culture wells in a single embossing step, resulting in a 100 μm-thick bottom ideal for HC/RI, and was found inexpensively amendable to microfeature design changes. Microfeatures improved intrahepatic parasite infection rates and μHEP systems were used to reconfirm the activity of reference antimalarials in phenotypic dose-response assays. RNAseq of hepatocytes in μHEP systems demonstrated microfeatures sustain hepatic differentiation and function, suggesting broader utility for preclinical hepatic assays; while our tailorable embossing process could be repurposed for developing additional organ models.
Collapse
Affiliation(s)
- Steven P Maher
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA. and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| | - Amy J Conway
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Alison Roth
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Swamy R Adapa
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Phillip Cualing
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Chiara Andolina
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand & Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Hsiao
- Charles Stark Draper Laboratory, Cambridge, MA, USA
| | - Jessica Turgeon
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand & Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Myles Johnson
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | | | - Naresh Singh
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Samantha J Barnes
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Raahil Patel
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | | | - Robert Carter
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | | | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Brice Campo
- Medicines for Malaria Venture, Geneva, Switzerland
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand & Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - Dennis E Kyle
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, Florida, USA. and Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
| |
Collapse
|
6
|
Kristan M, Thorburn SG, Hafalla JC, Sutherland CJ, Oguike MC. Mosquito and human hepatocyte infections with Plasmodium ovale curtisi and Plasmodium ovale wallikeri. Trans R Soc Trop Med Hyg 2019; 113:617-622. [PMID: 31162595 DOI: 10.1093/trstmh/trz048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/03/2019] [Accepted: 05/15/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Human ovale malaria is caused by the two closely related species, Plasmodium ovale curtisi and P. ovale wallikeri. Both species are known to relapse from quiescent hepatic forms months or years after the primary infection occurred. Although some studies have succeeded in establishing mosquito transmission for ovale malaria, none have specifically described transmission and human hepatocyte infection of both sibling species. METHODS Here we describe a simplified protocol for successful transmission of both P. ovale curtisi and P. ovale wallikeri to Anopheles coluzzii mosquitoes and streamlined monitoring of infection using sensitive parasite DNA detection, by loop-activated amplification, in blood-fed mosquitoes. RESULTS In one experimental infection with P. ovale curtisi and one with P. ovale wallikeri, viable sporozoites were isolated from mosquito salivary glands and used to successfully infect cultured human hepatocytes. CONCLUSIONS This protocol provides a method for the utilisation of pretreatment clinical blood samples from ovale malaria patients, collected in EDTA, for mosquito infection studies and generation of the hepatic life cycle stages of P. ovale curtisi and P. ovale wallikeri. We also demonstrate the utility of loop-activated amplification as a rapid and sensitive alternative to dissection for estimating the prevalence of infection in Anopheles mosquitoes fed with Plasmodium-infected blood.
Collapse
Affiliation(s)
- Mojca Kristan
- Department of Disease Control, London School of Hygiene & Tropical Medicine (LSHTM), Keppel Street, London, UK
| | | | - Julius C Hafalla
- Immunology & Infection Department, LSHTM, Keppel Street, London, UK
| | - Colin J Sutherland
- Immunology & Infection Department, LSHTM, Keppel Street, London, UK.,Public Health England Malaria Reference Laboratory, LSHTM, Keppel Street, London, UK
| | - Mary C Oguike
- Immunology & Infection Department, LSHTM, Keppel Street, London, UK
| |
Collapse
|
7
|
Tweedell RE, Tao D, Hamerly T, Robinson TM, Larsen S, Grønning AGB, Norris AM, King JG, Law HCH, Baumbach J, Bergmann-Leitner ES, Dinglasan RR. The Selection of a Hepatocyte Cell Line Susceptible to Plasmodium falciparum Sporozoite Invasion That Is Associated With Expression of Glypican-3. Front Microbiol 2019; 10:127. [PMID: 30891005 PMCID: PMC6413710 DOI: 10.3389/fmicb.2019.00127] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Accepted: 01/21/2019] [Indexed: 01/09/2023] Open
Abstract
In vitro studies of liver stage (LS) development of the human malaria parasite Plasmodium falciparum are technically challenging; therefore, fundamental questions about hepatocyte receptors for invasion that can be targeted to prevent infection remain unanswered. To identify novel receptors and to further understand human hepatocyte susceptibility to P. falciparum sporozoite invasion, we created an optimized in vitro system by mimicking in vivo liver conditions and using the subcloned HC-04.J7 cell line that supports mean infection rates of 3-5% and early development of P. falciparum exoerythrocytic forms-a 3- to 5-fold improvement on current in vitro hepatocarcinoma models for P. falciparum invasion. We juxtaposed this invasion-susceptible cell line with an invasion-resistant cell line (HepG2) and performed comparative proteomics and RNA-seq analyses to identify host cell surface molecules and pathways important for sporozoite invasion of host cells. We identified and investigated a hepatocyte cell surface heparan sulfate proteoglycan, glypican-3, as a putative mediator of sporozoite invasion. We also noted the involvement of pathways that implicate the importance of the metabolic state of the hepatocyte in supporting LS development. Our study highlights important features of hepatocyte biology, and specifically the potential role of glypican-3, in mediating P. falciparum sporozoite invasion. Additionally, it establishes a simple in vitro system to study the LS with improved invasion efficiency. This work paves the way for the greater malaria and liver biology communities to explore fundamental questions of hepatocyte-pathogen interactions and extend the system to other human malaria parasite species, like P. vivax.
Collapse
Affiliation(s)
- Rebecca E Tweedell
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Dingyin Tao
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Timothy Hamerly
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Tanisha M Robinson
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Simon Larsen
- Computational BioMedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Alexander G B Grønning
- Computational BioMedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| | - Alessandra M Norris
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jonas G King
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.,Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Henry Chun Hin Law
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Jan Baumbach
- Computational BioMedicine Lab, Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark.,Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany
| | - Elke S Bergmann-Leitner
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rhoel R Dinglasan
- Department of Infectious Diseases and Immunology, Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| |
Collapse
|
8
|
Antonova-Koch Y, Meister S, Abraham M, Luth MR, Ottilie S, Lukens AK, Sakata-Kato T, Vanaerschot M, Owen E, Jado JC, Maher SP, Calla J, Plouffe D, Zhong Y, Chen K, Chaumeau V, Conway AJ, McNamara CW, Ibanez M, Gagaring K, Serrano FN, Eribez K, Taggard CM, Cheung AL, Lincoln C, Ambachew B, Rouillier M, Siegel D, Nosten F, Kyle DE, Gamo FJ, Zhou Y, Llinás M, Fidock DA, Wirth DF, Burrows J, Campo B, Winzeler EA. Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science 2019; 362:362/6419/eaat9446. [PMID: 30523084 PMCID: PMC6516198 DOI: 10.1126/science.aat9446] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 10/18/2018] [Indexed: 11/19/2022]
Abstract
To discover leads for next-generation chemoprotective antimalarial drugs,we tested more than 500,000 compounds for their ability to inhibit liver-stage development of luciferase-expressing Plasmodium spp. parasites (681 compounds showed a half-maximal inhibitory concentration of less than 1micromolar).Cluster analysis identified potent and previously unreported scaffold families as well as other series previously associated with chemoprophylaxis. Further testing through multiple phenotypic assays that predict stage-specific and multispecies antimalarial activity distinguished compound classes that are likely to provide symptomatic relief by reducing asexual blood-stage parasitemia from those which are likely to only prevent malaria. Target identification by using functional assays, in vitro evolution, or metabolic profiling revealed 58 mitochondrial inhibitors but also many chemotypes possibly with previously unidentified mechanisms of action.
Collapse
Affiliation(s)
- Yevgeniya Antonova-Koch
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Stephan Meister
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Matthew Abraham
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Madeline R Luth
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Sabine Ottilie
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Amanda K Lukens
- Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.,The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | | | - Manu Vanaerschot
- Division of Infectious Diseases, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Edward Owen
- Department of Biochemistry and Molecular Biology and Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA
| | - Juan Carlos Jado
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Steven P Maher
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D. W. Brooks Drive, Athens, GA 30602, USA.,Department of Global Health, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Jaeson Calla
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - David Plouffe
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Yang Zhong
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Kaisheng Chen
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Amy J Conway
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D. W. Brooks Drive, Athens, GA 30602, USA.,Department of Global Health, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Case W McNamara
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Maureen Ibanez
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Kerstin Gagaring
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Fernando Neria Serrano
- Tres Cantos Medicines Development Campus, Malaria DPU, GlaxoSmithKline, Severo Ochoa 2, Tres Cantos 28760, Madrid, Spain
| | - Korina Eribez
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Cullin McLean Taggard
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Andrea L Cheung
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Christie Lincoln
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Biniam Ambachew
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA
| | - Melanie Rouillier
- Medicines for Malaria Venture, Post Office Box 1826, 20 Route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA 92093, USA
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Dennis E Kyle
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 D. W. Brooks Drive, Athens, GA 30602, USA.,Department of Global Health, University of South Florida, 3720 Spectrum Boulevard, Tampa, FL 33612, USA
| | - Francisco-Javier Gamo
- Medicines for Malaria Venture, Post Office Box 1826, 20 Route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Yingyao Zhou
- The Genomics Institute of the Novartis Research Foundation, 10675 John J Hopkins Drive, San Diego, CA 92121, USA
| | - Manuel Llinás
- Department of Biochemistry and Molecular Biology and Center for Malaria Research, Pennsylvania State University, University Park, PA 16802, USA.,Department of Chemistry and Center for Infectious Diseases Dynamics, Pennsylvania State University, University Park, PA 16802, USA
| | - David A Fidock
- Division of Infectious Diseases, Department of Microbiology and Immunology, Columbia University Medical Center, New York, NY 10032, USA
| | - Dyann F Wirth
- Harvard T. H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA.,The Broad Institute, 415 Main Street, Cambridge, MA 02142, USA
| | - Jeremy Burrows
- Medicines for Malaria Venture, Post Office Box 1826, 20 Route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Brice Campo
- Medicines for Malaria Venture, Post Office Box 1826, 20 Route de Pre-Bois, 1215 Geneva 15, Switzerland
| | - Elizabeth A Winzeler
- School of Medicine, University of California, San Diego, 9500 Gilman Drive 0760, La Jolla, CA 92093, USA. .,Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive 0741, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Roth A, Adapa SR, Zhang M, Liao X, Saxena V, Goffe R, Li S, Ubalee R, Saggu GS, Pala ZR, Garg S, Davidson S, Jiang RHY, Adams JH. Unraveling the Plasmodium vivax sporozoite transcriptional journey from mosquito vector to human host. Sci Rep 2018; 8:12183. [PMID: 30111801 PMCID: PMC6093925 DOI: 10.1038/s41598-018-30713-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023] Open
Abstract
Malaria parasites transmitted by mosquito bite are remarkably efficient in establishing human infections. The infection process requires roughly 30 minutes and is highly complex as quiescent sporozoites injected with mosquito saliva must be rapidly activated in the skin, migrate through the body, and infect the liver. This process is poorly understood for Plasmodium vivax due to low infectivity in the in vitro models. To study this skin-to-liver-stage of malaria, we used quantitative bioassays coupled with transcriptomics to evaluate parasite changes linked with mammalian microenvironmental factors. Our in vitro phenotyping and RNA-seq analyses revealed key microenvironmental relationships with distinct biological functions. Most notable, preservation of sporozoite quiescence by exposure to insect-like factors coupled with strategic activation limits untimely activation of invasion-associated genes to dramatically increase hepatocyte invasion rates. We also report the first transcriptomic analysis of the P. vivax sporozoite interaction in salivary glands identifying 118 infection-related differentially-regulated Anopheles dirus genes. These results provide important new insights in malaria parasite biology and identify priority targets for antimalarial therapeutic interventions to block P. vivax infection.
Collapse
Affiliation(s)
- Alison Roth
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Swamy R Adapa
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Min Zhang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Xiangyun Liao
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Vishal Saxena
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Raaven Goffe
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Suzanne Li
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Gagandeep S Saggu
- Laboratory of Malaria and Vector Research, National Institute of Allergic and Infectious Diseases, National Institute of Health, Rockville, Maryland, USA
| | - Zarna R Pala
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Shilpi Garg
- Molecular Parasitology and System Biology Lab, Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Rajasthan, India
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Rays H Y Jiang
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, College of Public Health, University of South Florida, Tampa, Florida, USA.
| |
Collapse
|
10
|
Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V, Andolina C, Kaba SA, Vantaux A, Bakowski MA, Thomson-Luque R, Adapa SR, Singh N, Barnes SJ, Cooper CA, Rouillier M, McNamara CW, Mikolajczak SA, Sather N, Witkowski B, Campo B, Kappe SHI, Lanar DE, Nosten F, Davidson S, Jiang RHY, Kyle DE, Adams JH. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat Commun 2018; 9:1837. [PMID: 29743474 PMCID: PMC5943321 DOI: 10.1038/s41467-018-04221-9] [Citation(s) in RCA: 114] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Malaria liver stages represent an ideal therapeutic target with a bottleneck in parasite load and reduced clinical symptoms; however, current in vitro pre-erythrocytic (PE) models for Plasmodium vivax and P. falciparum lack the efficiency necessary for rapid identification and effective evaluation of new vaccines and drugs, especially targeting late liver-stage development and hypnozoites. Herein we report the development of a 384-well plate culture system using commercially available materials, including cryopreserved primary human hepatocytes. Hepatocyte physiology is maintained for at least 30 days and supports development of P. vivax hypnozoites and complete maturation of P. vivax and P. falciparum schizonts. Our multimodal analysis in antimalarial therapeutic research identifies important PE inhibition mechanisms: immune antibodies against sporozoite surface proteins functionally inhibit liver stage development and ion homeostasis is essential for schizont and hypnozoite viability. This model can be implemented in laboratories in disease-endemic areas to accelerate vaccine and drug discovery research.
Collapse
Affiliation(s)
- Alison Roth
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Steven P Maher
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Amy J Conway
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), 315/6 Rajvithi Rd, Bangkok, 10400, Thailand
| | - Victor Chaumeau
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd, Mae Sot, Tak, 63110, Thailand
| | - Chiara Andolina
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd, Mae Sot, Tak, 63110, Thailand
| | - Stephen A Kaba
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong-PO Box 983, Phnom Penh, 12 201, Cambodia
| | - Malina A Bakowski
- California Institute for Biomedical Research (Calibr), 11119N. Torrey Pines Rd, Suite 100, La Jolla, CA, 92037, USA
| | - Richard Thomson-Luque
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Swamy Rakesh Adapa
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Naresh Singh
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Samantha J Barnes
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Mélanie Rouillier
- Medicines for Malaria Venture, Pré-Bois Rd 20, Meyrin, 1215, Switzerland
| | - Case W McNamara
- California Institute for Biomedical Research (Calibr), 11119N. Torrey Pines Rd, Suite 100, La Jolla, CA, 92037, USA
| | - Sebastian A Mikolajczak
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Noah Sather
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Benoît Witkowski
- California Institute for Biomedical Research (Calibr), 11119N. Torrey Pines Rd, Suite 100, La Jolla, CA, 92037, USA
| | - Brice Campo
- Medicines for Malaria Venture, Pré-Bois Rd 20, Meyrin, 1215, Switzerland
| | - Stefan H I Kappe
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - David E Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd, Mae Sot, Tak, 63110, Thailand
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), 315/6 Rajvithi Rd, Bangkok, 10400, Thailand
| | - Rays H Y Jiang
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Dennis E Kyle
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - John H Adams
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA.
| |
Collapse
|
11
|
Pewkliang Y, Rungin S, Lerdpanyangam K, Duangmanee A, Kanjanasirirat P, Suthivanich P, Sa-Ngiamsuntorn K, Borwornpinyo S, Sattabongkot J, Patrapuvich R, Hongeng S. A novel immortalized hepatocyte-like cell line (imHC) supports in vitro liver stage development of the human malarial parasite Plasmodium vivax. Malar J 2018; 17:50. [PMID: 29370800 PMCID: PMC5785895 DOI: 10.1186/s12936-018-2198-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 01/19/2018] [Indexed: 12/31/2022] Open
Abstract
Background Eradication of malaria is difficult because of the ability of hypnozoite, the dormant liver-stage form of Plasmodium vivax, to cause relapse in patients. Research efforts to better understand the biology of P. vivax hypnozoite and design relapse prevention strategies have been hampered by the lack of a robust and reliable model for in vitro culture of liver-stage parasites. Although the HC-04 hepatoma cell line is used for culturing liver-stage forms of Plasmodium, these cells proliferate unrestrictedly and detach from the culture dish after several days, which limits their usefulness in a long-term hypnozoite assay. Methods A novel immortalized hepatocyte-like cell line (imHC) was evaluated for the capability to support P. vivax sporozoite infection. First, expression of basic hepatocyte markers and all major malaria sporozoite-associated host receptors in imHC was investigated. Next, in vitro hepatocyte infectivity and intracellular development of sporozoites in imHC were determined using an indirect immunofluorescence assay. Cytochrome P450 isotype activity was also measured to determine the ability of imHC to metabolize drugs. Finally, the anti-liver-stage agent primaquine was used to test this model for a drug sensitivity assay. Results imHCs maintained major hepatic functions and expressed the essential factors CD81, SR-BI and EphA2, which are required for host entry and development of the parasite in the liver. imHCs could be maintained long-term in a monolayer without overgrowth and thus served as a good, supportive substrate for the invasion and growth of P. vivax liver stages, including hypnozoites. The observed high drug metabolism activity and potent responses in liver-stage parasites to primaquine highlight the potential use of this imHC model for antimalarial drug screening. Conclusions imHCs, which maintain a hepatocyte phenotype and drug-metabolizing enzyme expression, constitute an alternative host for in vitro Plasmodium liver-stage studies, particularly those addressing the biology of P. vivax hypnozoite. They potentially offer a novel, robust model for screening drugs against liver-stage parasites. Electronic supplementary material The online version of this article (10.1186/s12936-018-2198-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongyut Pewkliang
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Siriwan Rungin
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Siriraj Initiative in System Pharmacology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kaewta Lerdpanyangam
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Apisak Duangmanee
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Phongthon Kanjanasirirat
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Phichaya Suthivanich
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Suparerk Borwornpinyo
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand.,Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rapatbhorn Patrapuvich
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand. .,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Bangkok, Thailand. .,Drug Research Unit for Malaria, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Suradej Hongeng
- Excellent Center for Drug Discovery (ECDD), Faculty of Science, Mahidol University, Bangkok, Thailand. .,Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
12
|
Armistead JS, Adams JH. Advancing Research Models and Technologies to Overcome Biological Barriers to Plasmodium vivax Control. Trends Parasitol 2017; 34:114-126. [PMID: 29153587 DOI: 10.1016/j.pt.2017.10.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 02/06/2023]
Abstract
Malaria prevalence has declined in the past 10 years, especially outside of sub-Saharan Africa. However, the proportion of cases due to Plasmodium vivax is increasing, accounting for up to 90-100% of the malaria burden in endemic regions. Nonetheless, investments in malaria research and control still prioritize Plasmodium falciparum while largely neglecting P. vivax. Specific biological features of P. vivax, particularly invasion of reticulocytes, occurrence of dormant liver forms of the parasite, and the potential for transmission of sexual-stage parasites prior to onset of clinical illness, promote its persistence and hinder development of research tools and interventions. This review discusses recent advances in P. vivax research, current knowledge of its unique biology, and proposes priorities for P. vivax research and control efforts.
Collapse
Affiliation(s)
- Jennifer S Armistead
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA
| | - John H Adams
- Center for Global Health and Infectious Diseases Research, Department of Global Health, College of Public Health, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
13
|
Muthinja MJ, Ripp J, Hellmann JK, Haraszti T, Dahan N, Lemgruber L, Battista A, Schütz L, Fackler OT, Schwarz US, Spatz JP, Frischknecht F. Microstructured Blood Vessel Surrogates Reveal Structural Tropism of Motile Malaria Parasites. Adv Healthc Mater 2017; 6. [PMID: 28117558 DOI: 10.1002/adhm.201601178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/17/2016] [Indexed: 11/09/2022]
Abstract
Plasmodium sporozoites, the highly motile forms of the malaria parasite, are transmitted naturally by mosquitoes and traverse the skin to find, associate with, and enter blood capillaries. Research aimed at understanding how sporozoites select blood vessels is hampered by the lack of a suitable experimental system. Arrays of uniform cylindrical pillars can be used to study small cells moving in controlled environments. Here, an array system displaying a variety of pillars with different diameters and shapes is developed in order to investigate how Plasmodium sporozoites associate to the pillars as blood vessel surrogates. Investigating the association of sporozoites to pillars in arrays displaying pillars of different diameters reveals that the crescent-shaped parasites prefer to associate with and migrate around pillars with a similar curvature. This suggests that after transmission by a mosquito, malaria parasites may use a structural tropism to recognize blood capillaries in the dermis in order to gain access to the blood stream.
Collapse
Affiliation(s)
- Mendi J. Muthinja
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Johanna Ripp
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Janina K. Hellmann
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Tamas Haraszti
- DWI Leibniz Institute for Interactive Materials; Forkenbeckstrasse 50 Aachen 52056 Germany
- Department of Cellular Biophysics; Max Planck Institute for Medical Research; Department of Biophysical Chemistry; Heidelberg University; Jahnstrasse 29 69120 Heidelberg Germany
| | - Noa Dahan
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Leandro Lemgruber
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Anna Battista
- Theoretical Physics and BioQuant; Heidelberg University; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Lucas Schütz
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Oliver T. Fackler
- Integrative Virology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| | - Ulrich S. Schwarz
- Theoretical Physics and BioQuant; Heidelberg University; Im Neuenheimer Feld 267 69120 Heidelberg Germany
| | - Joachim P. Spatz
- Department of Cellular Biophysics; Max Planck Institute for Medical Research; Department of Biophysical Chemistry; Heidelberg University; Jahnstrasse 29 69120 Heidelberg Germany
| | - Friedrich Frischknecht
- Integrative Parasitology; Center for Infectious Diseases; Heidelberg University Hospital; Im Neuenheimer Feld 324 69120 Heidelberg Germany
| |
Collapse
|
14
|
Singh N, Barnes SJ, Jenwithisuk R, Sattabongkot J, Adams JH. A simple and efficient method for cryopreservation and recovery of viable Plasmodium vivax and P. falciparum sporozoites. Parasitol Int 2015; 65:552-557. [PMID: 26680158 DOI: 10.1016/j.parint.2015.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/12/2015] [Accepted: 12/06/2015] [Indexed: 11/16/2022]
Abstract
Plasmodium falciparum and Plasmodium vivax sporozoites are the crucial stages of malaria parasites that initiate infection in humans. However, studies to develop new vaccines and drugs targeting these infective stages remain insufficient due to limited availability of sporozoites for research. This is a consequence of relatively few facilities that are established to produce sporozoites of human malaria parasites, sporozoites remaining viable for only a few days, and infected mosquitoes being a biohazard, making them difficult to transport. Cryopreservation of sporozoites offers the potential to alleviate these limitations and enhance sporozoite availability. These experiments were performed to evaluate methods for cryopreservation of P. vivax and P. falciparum sporozoites. Sporozoites, isolated in sterile buffer from infected mosquitoes by manual dissection of salivary glands, were cryopreserved using several types of commercially available serum-free cryoprotective solutions. The efficiency of cryopreservation was validated by a standard in vitro gliding motility assay as a measure of sporozoite activity. Viability of infective sporozoites was defined as percent gliding of sporozoites attached to the coverslip. Significant differences were observed among the cryopreservation media and protocols evaluated, with CryoStor CS2 giving the best results for both P. falciparum and P. vivax, whereas Hestar 200 worked efficiently only for P. vivax sporozoites. Further improvement in recovery of viable sporozoites would be anticipated using automated controlled-rate freezing equipment. Our results demonstrate that cryopreservation provides an alternative for experimental studies that currently rely on fresh P. falciparum and P. vivax sporozoites.
Collapse
Affiliation(s)
- Naresh Singh
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Samantha J Barnes
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA
| | - Rachaneeporn Jenwithisuk
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - John H Adams
- Department of Global Health, College of Public Health, University of South Florida, Tampa, FL, USA.
| |
Collapse
|