1
|
Isaïa J, Baur M, Wassef J, Monod S, Glaizot O, Christe P, Pigeault R. Impact of the intensity of infection in birds on Plasmodium development within Culex pipiens mosquitoes. Parasit Vectors 2025; 18:54. [PMID: 39953558 PMCID: PMC11827324 DOI: 10.1186/s13071-024-06652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/27/2024] [Indexed: 02/17/2025] Open
Abstract
BACKGROUND In vector-borne diseases, invertebrate hosts are exposed to highly variable quantities of parasites during their blood meal. This heterogeneity may partly explain the overdispersed distribution of parasites within the vector population and the variability in the extrinsic incubation period (EIP) of the parasite. Indeed, the quantity of parasites ingested is often considered as a good predictor of the quantity of parasites that will develop within the vectors, as well as the speed at which they will develop (i.e. EIP). However, density-dependent processes can influence the relationship between parasite burden in the vertebrate host and in vectors, making this relationship unclear at times. METHODS Here, we used an avian malaria system to investigate whether the proportion of red blood cells infected by sexual and/or asexual stages of Plasmodium relictum influences the intensity of infection and the EIP within vectors. For this purpose, we experimentally infected 12 birds in order to generate a range of infection intensity. More than 1000 mosquitoes took a blood meal on these hosts, and the development of Plasmodium within the vectors was followed for more than 20 days. RESULTS Our study reveals a negative relationship between the intensity of infection in birds and the time until 10% of mosquitoes become infectious (EIP10). A period of only 4 days was sufficient to detect sporozoites in at least 10% of mosquitoes fed on the most infected hosts. However, the number of sporozoites did not vary significantly according to the vertebrate host intensity of infection, but was positively correlated to the oocyst burden (parasitic stage preceding the sporozoite stage). CONCLUSIONS While the quantity of ingested parasites had no impact on oocyst and sporozoite burden in infectious mosquitoes, the EIP10 was affected. Studies have demonstrated that small changes in the EIP can have a significant effect on the number of mosquitoes living long enough to transmit parasites. Here, we observed a difference of 4-6 days in the detection of the first sporozoites, depending on the intensity of infection of the bitten vertebrate host. Considering that a gonotrophic cycle lasts 3-4 days, the shortened EIP may have significant effects on Plasmodium transmission.
Collapse
Affiliation(s)
- Julie Isaïa
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Molly Baur
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Jérôme Wassef
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Sarah Monod
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
| | - Olivier Glaizot
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Department of Zoology, State Museum of Natural Sciences, Lausanne, Switzerland
| | - Philippe Christe
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland.
| | - Romain Pigeault
- Ecologie & Biologie Des Interactions (UMR 7267), EBI, Université de Poitiers, Poitiers, France
| |
Collapse
|
2
|
Soares da Veiga GT, Donassolo RA, Forcellini S, Ferraboli JW, Kujbida Junior MA, Nisimura LM, Bassai LW, Kessler RL, Serpeloni M, Bittencourt NC, Salazar YEAR, Guimarães LFF, Louzada J, Barros DKADS, Lopes SCP, Carvalho LH, Nóbrega de Sousa T, Kano FS, Costa FTM, Fanini Wowk P, Albrecht L. Exploring the naturally acquired response to Pvs47 gametocyte antigen. Front Immunol 2024; 15:1455454. [PMID: 39450180 PMCID: PMC11499161 DOI: 10.3389/fimmu.2024.1455454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/05/2024] [Indexed: 10/26/2024] Open
Abstract
Malaria represents a challenging global public health task, with Plasmodium vivax being the predominant parasite in Brazil and the most widely distributed species throughout the world. Developing a vaccine against P. vivax malaria demands innovative strategies, and targeting gametocyte antigens shows promise for blocking transmission prevention. Among these antigens, Pvs47, expressed in gametocytes, has shown remarkable efficacy in transmission blocking. However, remains underexplored in vaccine formulations. This study employed in silico methods to comprehensively characterize the physicochemical properties, structural attributes, epitope presence, and conservation profile of Pvs47. Additionally, we assessed its antigenicity in individuals exposed to malaria in endemic Brazilian regions. Recombinant protein expression occurred in a eukaryotic system, and antigenicity was evaluated using immunoenzymatic assays. The responses of naturally acquired IgM, total IgG, and IgG subclasses were analyzed in three groups of samples from Amazon region. Notably, all samples exhibited anti-Pvs47 IgM and IgG antibodies, with IgG3 predominating. Asymptomatic patients demonstrated stronger IgG responses and more diverse subclass responses. Anti-Pvs47 IgM and IgG responses in symptomatic individuals decrease over time. Furthermore, we observed a negative correlation between anti-Pvs47 IgM response and gametocytemia in samples of symptomatic patients, indicating a gametocyte-specific response. Additionally, negative correlation was observed among anti-Pvs47 antibody response and hematocrit levels. Furthermore, comparative analysis with widely characterized blood antigens, PvAMA1 and PvMSP119, revealed that Pvs47 was equally or more recognized than both proteins. In addition, there is positive correlation between P. vivax blood asexual and sexual stage immune responses. In summary, our study unveils a significant prevalence of anti-Pvs47 antibodies in diverse Amazonian samples and the importance of IgM response for gametocytes depuration. These findings regarding the in silico characterization and antigenicity of Pvs47 provide crucial insights for potential integration into P. vivax vaccine formulations.
Collapse
Affiliation(s)
| | - Rafael Amaral Donassolo
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Sofia Forcellini
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Julia Weber Ferraboli
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Mario Antonio Kujbida Junior
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Líndice Mitie Nisimura
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | | | | | | | - Najara Carneiro Bittencourt
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Yanka Evellyn Alves R. Salazar
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Luiz Felipe Ferreira Guimarães
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Jaime Louzada
- Laboratório de Parasitologia e Monitoramento de Artrópodes Vetores na Amazônia, Centro de Ciências da Saúde, Universidade Federal de Roraima (UFRR), Boa Vista, Brazil
| | | | - Stefanie Costa Pinto Lopes
- Fundação de Medicina Tropical Doutor Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Instituto Leônidas & Maria Deane, Fundação Oswaldo Cruz (Fiocruz), Manaus, Brazil
| | - Luzia Helena Carvalho
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Tais Nóbrega de Sousa
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
- Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Solna, Sweden
| | - Flora Satiko Kano
- Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Fabio Trindade Maranhão Costa
- Laboratório de Doenças Tropicais Prof. Dr. Luiz Jacintho da Silva, Departamento de Genética, Evolução, Microbiologia e Imunologia, Universidade de Campinas - UNICAMP, Campinas, Brazil
| | - Pryscilla Fanini Wowk
- Grupo de Imunologia Celular e Molecular, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| | - Letusa Albrecht
- Laboratório de Pesquisa em Apicomplexa, Instituto Carlos Chagas, Fundação Oswaldo Cruz (Fiocruz), Curitiba, PR, Brazil
| |
Collapse
|
3
|
Chaumeau V, Wasisakun P, Watson JA, Oo T, Aryalamloed S, Sue MP, Htoo GN, Tha NM, Archusuksan L, Sawasdichai S, Gornsawun G, Mehra S, White NJ, Nosten FH. Transmission-blocking activities of artesunate, chloroquine, and methylene blue on Plasmodium vivax gametocytes. Antimicrob Agents Chemother 2024; 68:e0085324. [PMID: 39058023 PMCID: PMC11382624 DOI: 10.1128/aac.00853-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Plasmodium vivax is now the main cause of malaria outside Africa. The gametocytocidal effects of antimalarial drugs are important to reduce malaria transmissibility, particularly in low-transmission settings, but they are not well characterized for P. vivax. The transmission-blocking effects of chloroquine, artesunate, and methylene blue on P. vivax gametocytes were assessed. Blood specimens were collected from patients presenting with vivax malaria, incubated with or without the tested drugs, and then fed to mosquitos from a laboratory-adapted colony of Anopheles dirus (a major malaria vector in Southeast Asia). The effects on oocyst and sporozoite development were analyzed under a multi-level Bayesian model accounting for assay variability and the heterogeneity of mosquito Plasmodium infection. Artesunate and methylene blue, but not chloroquine, exhibited potent transmission-blocking effects. Gametocyte exposures to artesunate and methylene blue reduced the mean oocyst count 469-fold (95% CI: 345 to 650) and 1,438-fold (95% CI: 970 to 2,064), respectively. The corresponding estimates for the sporozoite stage were a 148-fold reduction (95% CI: 61 to 470) and a 536-fold reduction (95% CI: 246 to 1,311) in the mean counts, respectively. In contrast, high chloroquine exposures reduced the mean oocyst count only 1.40-fold (95% CI: 1.20 to 1.64) and the mean sporozoite count 1.34-fold (95% CI: 1.12 to 1.66). This suggests that patients with vivax malaria often remain infectious to anopheline mosquitos after treatment with chloroquine. Use of artemisinin combination therapies or immediate initiation of primaquine radical cure should reduce the transmissibility of P. vivax infections.
Collapse
Affiliation(s)
- Victor Chaumeau
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| | - Praphan Wasisakun
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - James A Watson
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Thidar Oo
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Sarang Aryalamloed
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Mu Phang Sue
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Gay Nay Htoo
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Naw Moo Tha
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Laypaw Archusuksan
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Sunisa Sawasdichai
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Gornpan Gornsawun
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
| | - Somya Mehra
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Nicholas J White
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François H Nosten
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Ramat, Tak, Thailand
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, England, United Kingdom
| |
Collapse
|
4
|
Hazzard B, Sá JM, Bogale HN, Pascini TV, Ellis AC, Amin S, Armistead JS, Adams JH, Wellems TE, Serre D. Single-cell analyses of polyclonal Plasmodium vivax infections and their consequences on parasite transmission. Nat Commun 2024; 15:7625. [PMID: 39223117 PMCID: PMC11369214 DOI: 10.1038/s41467-024-51949-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
Most Plasmodium vivax infections contain genetically distinct parasites, but the consequences of this polyclonality on the development of asexual parasites, their sexual differentiation, and their transmission remain unknown. We describe infections of Saimiri monkeys with two strains of P. vivax and the analyses of 80,024 parasites characterized by single cell RNA sequencing and individually genotyped. In our model, consecutive inoculations fail to establish polyclonal infections. By contrast, simultaneous inoculations of two strains lead to sustained polyclonal infections, although without detectable differences in parasite regulation or sexual commitment. Analyses of sporozoites dissected from mosquitoes fed on coinfected monkeys show that all genotypes are successfully transmitted to mosquitoes. However, after sporozoite inoculation, not all genotypes contribute to the subsequent blood infections, highlighting an important bottleneck during pre-erythrocytic development. Overall, these studies provide new insights on the mechanisms regulating the establishment of polyclonal P. vivax infections and their consequences for disease transmission.
Collapse
Affiliation(s)
- Brittany Hazzard
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Juliana M Sá
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haikel N Bogale
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Tales V Pascini
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Angela C Ellis
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shuchi Amin
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jennifer S Armistead
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, USA
| | - John H Adams
- Center for Global Health and Inter-Disciplinary Research, College of Public Health, University of South Florida, Tampa, USA
| | - Thomas E Wellems
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious, Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David Serre
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA.
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
5
|
Anstey NM, Tham WH, Shanks GD, Poespoprodjo JR, Russell BM, Kho S. The biology and pathogenesis of vivax malaria. Trends Parasitol 2024; 40:573-590. [PMID: 38749866 DOI: 10.1016/j.pt.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 07/06/2024]
Abstract
Plasmodium vivax contributes significantly to global malaria morbidity. Key advances include the discovery of pathways facilitating invasion by P. vivax merozoites of nascent reticulocytes, crucial for vaccine development. Humanized mouse models and hepatocyte culture systems have enhanced understanding of hypnozoite biology. The spleen has emerged as a major reservoir for asexual vivax parasites, replicating in an endosplenic life cycle, and contributing to recurrent and chronic infections, systemic inflammation, and anemia. Splenic accumulation of uninfected red cells is the predominant cause of anemia. Recurring and chronic infections cause progressive anemia, malnutrition, and death in young children in high-transmission regions. Endothelial activation likely contributes to vivax-associated organ dysfunction. The many recent advances in vivax pathobiology should help guide new approaches to prevention and management.
Collapse
Affiliation(s)
- Nicholas M Anstey
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia.
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia; Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - G Dennis Shanks
- School of Public Health, University of Queensland, Brisbane, Queensland, Australia
| | - Jeanne R Poespoprodjo
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Centre for Child Health and Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia; Mimika District Hospital and District Health Authority, Timika, Central Papua, Indonesia
| | - Bruce M Russell
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Steven Kho
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, Northern Territory, Australia; Timika Malaria Research Facility, Papuan Health and Community Development Foundation, Timika, Central Papua, Indonesia
| |
Collapse
|
6
|
Bansal GP, Araujo MDS, Cao Y, Shaffer E, Araujo JE, Medeiros JF, Hayashi C, Vinetz J, Kumar N. Transmission-reducing and -enhancing monoclonal antibodies against Plasmodium vivax gamete surface protein Pvs48/45. Infect Immun 2024; 92:e0037423. [PMID: 38289124 PMCID: PMC10929423 DOI: 10.1128/iai.00374-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/21/2023] [Indexed: 02/01/2024] Open
Abstract
Gamete surface protein P48/45 has been shown to be important for male gamete fertility and a strong candidate for the development of a malaria transmission-blocking vaccine (TBV). However, TBV development for Plasmodium vivax homolog Pvs48/45 has been slow because of a number of challenges: availability of conformationally suitable recombinant protein; the lack of an in vivo challenge model; and the inability to produce P. vivax gametocytes in culture to test transmission-blocking activity of antibodies. To support ongoing efforts to develop Pvs48/45 as a potential vaccine candidate, we initiated efforts to develop much needed reagents to move the field forward. We generated monoclonal antibodies (mAbs) directed against Pvs48/45 and characterized putative functional domains in Pvs48/45 using recombinant fragments corresponding to domains D1-D3 and their biological functionality through ex vivo direct membrane feeding assays (DMFAs) using P. vivax parasites from patients in a field setting in Brazil. While some mAbs partially blocked oocyst development in the DMFA, one mAb caused a significant enhancement of the infectivity of gametocytes in the mosquitoes. Individual mAbs exhibiting blocking and enhancing activities recognized non-overlapping epitopes in Pvs48/45. Further characterization of precise epitopes recognized by transmission-reducing and -enhancing antibodies will be crucial to design an effective immunogen with optimum transmission-reducing potential.
Collapse
Affiliation(s)
- Geetha P. Bansal
- Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Maisa da Silva Araujo
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Yi Cao
- Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Global Health, George Washington University, Washington, DC, USA
| | - Emily Shaffer
- Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jessica Evangelista Araujo
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Jansen Fernandes Medeiros
- Plataforma de Produção e Infecção de Vetores da Malária, Laboratório de Entomologia - Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
- Programa de Pós-Graduação em Biologia Experimental, Fundação Universidade Federal de Rondônia, Fiocruz Rondônia, Porto Velho, Rondônia, Brazil
| | - Clifford Hayashi
- Department of Global Health, George Washington University, Washington, DC, USA
| | - Joseph Vinetz
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Nirbhay Kumar
- Department of Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
- Department of Global Health, George Washington University, Washington, DC, USA
| |
Collapse
|
7
|
Obaldía N, Da Silva Filho JL, Núñez M, Glass KA, Oulton T, Achcar F, Wirjanata G, Duraisingh M, Felgner P, Tetteh KK, Bozdech Z, Otto TD, Marti M. Sterile protection against P. vivax malaria by repeated blood stage infection in the Aotus monkey model. Life Sci Alliance 2024; 7:e202302524. [PMID: 38158220 PMCID: PMC10756917 DOI: 10.26508/lsa.202302524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024] Open
Abstract
The malaria parasite Plasmodium vivax remains a major global public health challenge, and no vaccine is approved for use in humans. Here, we assessed whether P. vivax strain-transcendent immunity can be achieved by repeated infection in Aotus monkeys. Sterile immunity was achieved after two homologous infections, whereas subsequent heterologous challenge provided only partial protection. IgG levels based on P. vivax lysate ELISA and protein microarray increased with repeated infections and correlated with the level of homologous protection. Parasite transcriptional profiles provided no evidence of major antigenic switching upon homologous or heterologous challenge. However, we observed significant sequence diversity and transcriptional differences in the P. vivax core gene repertoire between the two strains used in the study, suggesting that partial protection upon heterologous challenge is due to molecular differences between strains rather than immune evasion by antigenic switching. Our study demonstrates that sterile immunity against P. vivax can be achieved by repeated homologous blood stage infection in Aotus monkeys, thus providing a benchmark to test the efficacy of candidate blood stage P. vivax malaria vaccines.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Departamento de Investigaciones en Parasitologia, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panamá
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Joao Luiz Da Silva Filho
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Marlon Núñez
- Departamento de Investigaciones en Parasitologia, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Republic of Panamá
| | - Katherine A Glass
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Tate Oulton
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Fiona Achcar
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| | - Grennady Wirjanata
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Manoj Duraisingh
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Philip Felgner
- Institute for Immunology, University of California, Irvine, CA, USA
| | - Kevin Ka Tetteh
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Zbynek Bozdech
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas D Otto
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Harvard University, Boston, MA, USA
- Wellcome Centre for Integrative Parasitology, School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
- Institute of Parasitology, Vetsuisse and Medical Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
8
|
Sy Thau N, Nguyen TK, Truong NV, Chu TTH, Na SH, Moon RW, Lau YL, Nyunt MH, Park WS, Chun WJ, Lu F, Lee SK, Han JH, Han ET. Characterization of merozoite-specific thrombospondin-related anonymous protein (MTRAP) in Plasmodium vivax and P. knowlesi parasites. Front Cell Infect Microbiol 2024; 14:1354880. [PMID: 38465236 PMCID: PMC10920329 DOI: 10.3389/fcimb.2024.1354880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/08/2024] [Indexed: 03/12/2024] Open
Abstract
Plasmodium vivax, the most widespread human malaria parasite, and P. knowlesi, an emerging Plasmodium that infects humans, are the phylogenetically closest malarial species that infect humans, which may induce cross-species reactivity across most co-endemic areas in Southeast Asia. The thrombospondin-related anonymous protein (TRAP) family is indispensable for motility and host cell invasion in the growth and development of Plasmodium parasites. The merozoite-specific TRAP (MTRAP), expressed in blood-stage merozoites, is supposed to be essential for human erythrocyte invasion. We aimed to characterize MTRAPs in blood-stage P. vivax and P. knowlesi parasites and ascertain their cross-species immunoreactivity. Recombinant P. vivax and P. knowlesi MTRAPs of full-length ectodomains were expressed in a mammalian expression system. The MTRAP-specific immunoglobulin G, obtained from immune animals, was used in an immunofluorescence assay for subcellular localization and invasion inhibitory activity in blood-stage parasites was determined. The cross-species humoral immune responses were analyzed in the sera of patients with P. vivax or P. knowlesi infections. The MTRAPs of P. vivax (PvMTRAP) and P. knowlesi (PkMTRAP) were localized on the rhoptry body of merozoites in blood-stage parasites. Both anti-PvMTRAP and anti-PkMTRAP antibodies inhibited erythrocyte invasion of blood-stage P. knowlesi parasites. The humoral immune response to PvMTRAP showed high immunogenicity, longevity, and cross-species immunoreactivity with P. knowlesi. MTRAPs are promising candidates for development of vaccines and therapeutics against vivax and knowlesi malaria.
Collapse
Affiliation(s)
- Nguyen Sy Thau
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Tuyet-Kha Nguyen
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Nguyen Van Truong
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Thi-Thanh Hang Chu
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Sung-Hun Na
- Department of Obstetrics and Gynecology, Kangwon National University School of Medicine, Chuncheon, Gangwon-d, Republic of Korea
| | - Robert W. Moon
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | | | - Won-Sun Park
- Department of Physiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Wan-Joo Chun
- Department of Pharmacology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
| | - Feng Lu
- Department of Pathogen Biology and Immunology, School of Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Seong-Kyun Lee
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Jin-Hee Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| | - Eun-Taek Han
- Department of Medical Environmental Biology and Tropical Medicine, Kangwon National University School of Medicine, Chuncheon, Gangwon-do, Republic of Korea
| |
Collapse
|
9
|
Zeleke G, Duchateau L, Yewhalaw D, Suleman S, Devreese M. In-vitro susceptibility and ex-vivo evaluation of macrocyclic lactone endectocides sub-lethal concentrations against Plasmodium vivax oocyst development in Anopheles arabiensis. Malar J 2024; 23:26. [PMID: 38238768 PMCID: PMC10797976 DOI: 10.1186/s12936-024-04845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Asymptomatic malaria transmission has become a public health concern across malaria-endemic Africa including Ethiopia. Specifically, Plasmodium vivax is more efficient at transmitting earlier in the infection and at lower densities than Plasmodium falciparum. Consequently, a greater proportion of individuals infected with P. vivax can transmit without detectable gametocytaemia. Mass treatment of livestock with macrocyclic lactones (MLs), e.g., ivermectin and doramectin, was suggested as a complementary malaria vector tool because of their insecticidal effects. However, the effects of MLs on P. vivax in Anopheles arabiensis has not yet been fully explored. Hence, comparative in-vitro susceptibility and ex-vivo studies were conducted to evaluate the effects of ivermectin, doramectin and moxidectin sub-lethal concentrations on P. vivax oocyst development in An. arabiensis. METHODS The 7-day sub-lethal concentrations of 25% (LC25) and 5% (LC5) were determined from in-vitro susceptibility tests on female An. arabiensis in Hemotek® membrane feeding assay. Next, an ex-vivo study was conducted using P. vivax gametocytes infected patient's blood spiked with the LC25 and LC5 of the MLs. At 7-days post-feeding, each mosquito was dissected under a dissection stereo microscope, stained with 0.5% (w/v) mercurochrome solution, and examined for the presence of P. vivax oocysts. Statistical analysis was based on a generalized mixed model with binomially distributed error terms. RESULTS A 7-day lethal concentration of 25% (LC25, in ng/mL) of 7.1 (95% CI: [6.3;8.0]), 20.0 (95%CI:[17.8;22.5]) and 794.3 (95%CI:[716.4;1516.3]) were obtained for ivermectin, doramectin and moxidectin, respectively. Similarly, a lethal concentration of 5% (LC5, in ng/mL) of 0.6 (95% CI: [0.5;0.7]), 1.8 (95% CI:[1.6;2.0]) and 53.7 (95% CI:[ 48.4;102.5]) were obtained respectively for ivermectin, doramectin and moxidectin. The oocyst prevalence in treatment and control groups did not differ significantly (p > 0.05) from each other. Therefore, no direct effect of ML endectocides on P. vivax infection in An. arabiensis mosquitoes was observed at the sub-lethal concentration (LC25 and LC5). CONCLUSIONS The effects of ivermectin and doramectin on malaria parasite is more likely via indirect effects, particularly by reducing the vectors lifespan and causing mortality before completing the parasite's sporogony cycle or reducing their vector capacity as it affects the locomotor activity of the mosquito.
Collapse
Affiliation(s)
- Gemechu Zeleke
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
- Jimma University Laboratory of Drug Quality (JuLaDQ), and School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Luc Duchateau
- Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Sultan Suleman
- Jimma University Laboratory of Drug Quality (JuLaDQ), and School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium.
| |
Collapse
|
10
|
Kunkeaw N, Nguitragool W, Takashima E, Kangwanrangsan N, Muramatsu H, Tachibana M, Ishino T, Lin PJC, Tam YK, Pichyangkul S, Tsuboi T, Pardi N, Sattabongkot J. A Pvs25 mRNA vaccine induces complete and durable transmission-blocking immunity to Plasmodium vivax. NPJ Vaccines 2023; 8:187. [PMID: 38092803 PMCID: PMC10719277 DOI: 10.1038/s41541-023-00786-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/09/2023] [Indexed: 12/17/2023] Open
Abstract
Plasmodium vivax (P. vivax) is the major malaria parasite outside of Africa and no vaccine is available against it. A vaccine that interrupts parasite transmission (transmission-blocking vaccine, TBV) is considered highly desirable to reduce the spread of P. vivax and to accelerate its elimination. However, the development of a TBV against this pathogen has been hampered by the inability to culture the parasite as well as the low immunogenicity of the vaccines developed to date. Pvs25 is the most advanced TBV antigen candidate for P. vivax. However, in previous phase I clinical trials, TBV vaccines based on Pvs25 yielded low antibody responses or had unacceptable safety profiles. As the nucleoside-modified mRNA-lipid nanoparticle (mRNA-LNP) vaccine platform proved to be safe and effective in humans, we generated and tested mRNA-LNP vaccines encoding several versions of Pvs25 in mice. We found that in a prime-boost vaccination schedule, all Pvs25 mRNA-LNP vaccines elicited robust antigen-specific antibody responses. Furthermore, when compared with a Pvs25 recombinant protein vaccine formulated with Montanide ISA-51 adjuvant, the full-length Pvs25 mRNA-LNP vaccine induced a stronger and longer-lasting functional immunity. Seven months after the second vaccination, vaccine-induced antibodies retained the ability to fully block P. vivax transmission in direct membrane feeding assays, whereas the blocking activity induced by the protein/ISA-51 vaccine dropped significantly. Taken together, we report on mRNA vaccines targeting P. vivax and demonstrate that Pvs25 mRNA-LNP outperformed an adjuvanted Pvs25 protein vaccine suggesting that it is a promising candidate for further testing in non-human primates.
Collapse
Affiliation(s)
- Nawapol Kunkeaw
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Niwat Kangwanrangsan
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mayumi Tachibana
- Division of Molecular Parasitology, Proteo-Science Center, Ehime University, Toon, Japan
| | - Tomoko Ishino
- Department of Parasitology and Tropical Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Paulo J C Lin
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Ying K Tam
- Acuitas Therapeutics, Vancouver, BC, V6T 1Z3, Canada
| | - Sathit Pichyangkul
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
11
|
Little E, Shenkutie TT, Negash MT, Abagero BR, Abebe A, Popovici J, Mekasha S, Lo E. Prevalence and characteristics of Plasmodium vivax Gametocytes in Duffy-positive and Duffy-negative populations across Ethiopia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.12.10.23299780. [PMID: 38168152 PMCID: PMC10760292 DOI: 10.1101/2023.12.10.23299780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Plasmodium parasites replicate asexually in the human host. The proportion of infections that carries gametocytes is a proxy for human-to-mosquito transmissibility. It is unclear what proportion of P. vivax infections in Duffy-negatives carries gametocytes. This study aims to determine the prevalence of P. vivax in Duffy-negatives across broad regions of Ethiopia and characterize parasite stages. Finger-prick blood samples were collected for microscopic and molecular screening of Plasmodium parasites and Duffy status of individuals. Molecular screening of plasmodium species and Duffy blood group genotyping was done using SYBR green and Taqman qPCR method. Among the total 447 samples, 414 (92.6%) were P. vivax confirmed and, 16 (3.9%) of them were from Duffy-negatives. Of these, 5/16 (31.3%) Duffy-negative P. vivax-infected samples were detected with gametocytes. Of the 398 Duffy-positive P. vivax-infected samples, 150 (37.7%) were detected with gametocytes, slightly higher than that in Duffy-negatives. This study highlights the presence of P. vivax gametocytes in Duffy-negative infections, suggestive of human-to-mosquito transmissibility. Although P. vivax infections in Duffy-negatives are commonly associated with low parasitemia, some of these infections were shown with relatively high parasitemia and may represent better erythrocyte invasion capability of P. vivax and hidden reservoirs that can contribute to transmission. A better understanding of P. vivax transmission biology and gametocyte function particularly in Duffy-negative populations would aid future treatment and management of vivax malaria in Africa.
Collapse
Affiliation(s)
- Ebony Little
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina, USA
| | - Tassew T. Shenkutie
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, USA
- Department of Medical Laboratory Sciences, Debre Brehan University, Debre Brehan, Ethiopia
| | | | - Beka R. Abagero
- Department of Molecular and Cellular Biology and Genetics, Drexel University, College of Medicine, Philadelphia, PA, USA
| | - Abnet Abebe
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | - Sindew Mekasha
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina at Charlotte, North Carolina, USA
- Department of Microbiology and Immunology, Drexel University, College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
12
|
do Nascimento Martinez L, Silva DC, Brilhante-da-Silva N, da Silva Rodrigues FL, de Lima AA, Tada MS, Costa JDN. Monitoring the density of Plasmodium spp. gametocytes in isolates from patient samples in the region of Porto Velho, Rondônia. 3 Biotech 2023; 13:405. [PMID: 37987025 PMCID: PMC10657340 DOI: 10.1007/s13205-023-03822-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/06/2023] [Indexed: 11/22/2023] Open
Abstract
Gametocytes are the forms of the malaria parasite that are essential for the continuation of the transmission cycle to the vector Anopheles. This study aimed to evaluate the parasite density of Plasmodium spp gametocytes in samples from patients in the region of Porto Velho, Rondônia. Slides containing patient samples were selected from users who sought out care at the Center for Research in Tropical Medicine (CEPEM) during the period from January to December 2016. Samples of Plasmodium vivax and Plasmodium falciparum were selected for analysis of their respective gametocytes. In parallel, monitoring was performed in cultures of NF54 strain P. falciparum gametocytes. Of 248 thick smear slides (EG) evaluated in double blind, 142 (57.2%) were detected with P. vivax, of this total 47 (18.9%) had gametocytes, 1 (0.4%) with LVC negative diagnosis for gametocytes and 1 (0.4%) Pv + Pf (mixed malaria). Regarding P. falciparum, the total number of samples analyzed was 106 (42.7%), of which 20 (8.0%) had gametocytes detected, 6 (2.4%) LVC negative for gametocyte forms, and 3 (1.2%) Pv + Pf (mixed malaria), Plasmodium malariae species was not detected among the samples. The results showed that P. vivax gametocytes were present in the first days of symptoms, with a higher prevalence in patients with two crosses, a fact that was also observed in patients with P. falciparum regarding the prevalence of gametocytes. Faced with this problem, it is necessary to monitor the fluctuation of gametocytes, since these forms are responsible for continuing the malaria cycle within the mosquito vector.
Collapse
Affiliation(s)
- Leandro do Nascimento Martinez
- Plataforma de Bioensaios em Malária e Leishmaniose (PBML)-Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO Brazil
- Programa de Pós-Graduação em Biologia Experimental (Pgbioexp), Centro Universitário São Lucas-PVH/ Afya, Porto Velho, RO Brazil
| | | | - Nairo Brilhante-da-Silva
- Laboratório de Engenharia de Anticorpos (LEA)-Fundação Oswaldo Cruz, Fiocruz, Unidade Rondônia, Porto Velho, RO Brazil
- Programa de Pós-Graduação em Biologia Celular E Molecular, Instituto Oswaldo Cruz, IOC, Rio de Janeiro, Brazil
| | | | | | - Mauro Shugiro Tada
- Centro de Pesquisa em Medicina Tropical–CEPEM, Instituto de Pesquisa em Patologias Tropicais, Porto Velho, Rondônia Brazil
| | - Joana D.‘Arc Neves Costa
- Laboratório de Epidemiologia de Malária, Centro de Pesquisa em Medicina Tropical-CEPEM, Instituto de Pesquisa em Patologias Tropicais, Porto Velho, RO Brasil
| |
Collapse
|
13
|
Voorberg-van der Wel A, Zeeman AM, Kocken CHM. Transfection Models to Investigate Plasmodium vivax-Type Dormant Liver Stage Parasites. Pathogens 2023; 12:1070. [PMID: 37764878 PMCID: PMC10534883 DOI: 10.3390/pathogens12091070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Plasmodium vivax causes the second highest number of malaria morbidity and mortality cases in humans. Several biological traits of this parasite species, including the formation of dormant stages (hypnozoites) that persist inside the liver for prolonged periods of time, present an obstacle for intervention measures and create a barrier for the elimination of malaria. Research into the biology of hypnozoites requires efficient systems for parasite transmission, liver stage cultivation and genetic modification. However, P. vivax research is hampered by the lack of an in vitro blood stage culture system, rendering it reliant on in vivo-derived, mainly patient, material for transmission and liver stage culture. This has also resulted in limited capability for genetic modification, creating a bottleneck in investigations into the mechanisms underlying the persistence of the parasite inside the liver. This bottleneck can be overcome through optimal use of the closely related and experimentally more amenable nonhuman primate (NHP) parasite, Plasmodium cynomolgi, as a model system. In this review, we discuss the genetic modification tools and liver stage cultivation platforms available for studying P. vivax persistent stages and highlight how their combined use may advance our understanding of hypnozoite biology.
Collapse
Affiliation(s)
- Annemarie Voorberg-van der Wel
- Department of Parasitology, Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands; (A.-M.Z.); (C.H.M.K.)
| | | | | |
Collapse
|
14
|
Quaye IK, Aleksenko L, Paganotti GM, Peloewetse E, Haiyambo DH, Ntebela D, Oeuvray C, Greco B, the PAVON Consortium. Malaria Elimination in Africa: Rethinking Strategies for Plasmodium vivax and Lessons from Botswana. Trop Med Infect Dis 2023; 8:392. [PMID: 37624330 PMCID: PMC10458071 DOI: 10.3390/tropicalmed8080392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/26/2023] Open
Abstract
The global malaria community has picked up the theme of malaria elimination in more than 90% of the world's population in the next decade. Recent reports of Plasmodium vivax (P. vivax) in sub-Saharan Africa, including in Duffy-negative individuals, threaten the efforts aimed at achieving elimination. This is not only in view of strategies that are tailored only to P. falciparum elimination but also due to currently revealed biological characteristics of P. vivax concerning the relapse patterns of hypnozoites and conservation of large biomasses in cryptic sites in the bone marrow and spleen. A typical scenario was observed in Botswana between 2008 and 2018, which palpably projects how P. vivax could endanger malaria elimination efforts where the two parasites co-exist. The need for the global malaria community, national malaria programs (NMPs), funding agencies and relevant stakeholders to engage in a forum to discuss and recommend clear pathways for elimination of malaria, including P. vivax, in sub-Saharan Africa is warranted.
Collapse
Affiliation(s)
- Isaac K. Quaye
- Pan African Vivax and Ovale Network, Faculty of Engineering Computer and Allied Sciences, Regent University College of Science and Technology, #1 Regent Ave, McCarthy Hill, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| | - Larysa Aleksenko
- Department of Health Sciences, School of Public Health, College of Health, Medicine and Life Sciences, Brunel University, Kingston Lane, Uxbridge, Middlesex, London UB8 3PH, UK;
| | - Giacomo M. Paganotti
- Botswana-University of Pennsylvania Partnership, Riverwalk, Gaborone P.O. Box 45498, Botswana;
- Division of Infectious Diseases, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elias Peloewetse
- Department of Biological Sciences, Faculty of Sciences, University of Botswana, Gaborone Private Bag 00704, Botswana;
| | - Daniel H. Haiyambo
- Department of Human, Biological and Translational Medical Sciences, Faculty of Health Sciences and Veterinary Medicine, University of Namibia School of Medicine, Hage Geingob Campus, Windhoek Private Bag 13301, Namibia;
| | - Davies Ntebela
- National Malaria Program, Ministry of Health, Gaborone Private Bag 0038, Botswana;
| | - Claude Oeuvray
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - Beatrice Greco
- Global Health Institute of Merck, Terre Bonne Building Z0, Route de Crassier 1, Eysin, 1266 Geneva, Switzerland; (C.O.); (B.G.)
| | - the PAVON Consortium
- PAVON, Regent University College of Science and Technology, #1 Regent Avenue, McCarthy Hiil, Mendskrom, Dansoman, Accra P.O. Box DS1636, Ghana
| |
Collapse
|
15
|
Abebe A, Menard D, Dugassa S, Assefa A, Juliano JJ, Lo E, Golassa L. Significant number of Plasmodium vivax mono-infections by PCR misidentified as mixed infections (P. vivax/P. falciparum) by microscopy and rapid diagnostic tests: malaria diagnostic challenges in Ethiopia. Malar J 2023; 22:201. [PMID: 37393257 PMCID: PMC10314452 DOI: 10.1186/s12936-023-04635-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/24/2023] [Indexed: 07/03/2023] Open
Abstract
BACKGROUND Plasmodium vivax malaria is now recognized as a cause of severe morbidity and mortality, resulting in a substantial negative effect on health especially in endemic countries. Accurate and prompt diagnosis and treatment of P. vivax malaria is vital for the control and elimination of the disease. METHODS A cross-sectional study was conducted from February 2021 to September 2022 at five malaria endemic sites in Ethiopia including Aribaminch, Shewarobit, Metehara, Gambella, and Dubti. A total of 365 samples that were diagnosed positive for P. vivax (mono and mixed infection) using RDT, site level microscopists and expert microscopists were selected for PCR. Statistical analyses were performed to calculate the proportions, agreement (k), frequencies, and ranges among different diagnostic methods. Fisher's exact tests and correlation test were used to detect associations and relationship between different variables. RESULTS Of the 365 samples, 324 (88.8%), 37(10.1%), 2 (0.5%), and 2 (0.5%) were P. vivax (mono), P. vivax/Plasmodium falciparum (mixed), P. falciparum (mono) and negative by PCR, respectively. The overall agreement of rapid diagnostic test (RDT), site level microscopy and expert microscopists result with PCR was 90.41% (k: 0.49), 90.96% (k: 0.53), and 80.27% (k: 0.24). The overall prevalence of sexual (gametocyte) stage P. vivax in the study population was 215/361 (59.6%). The majority of these 215 samples (180; 83.7%) had below 1000 parasites/µl, with only four samples (1.9%) had ≥ 5000 parasites/µl. The gametocyte density was found to be weakly positive but statically significant with asexual parasitaemia (r = 0.31; p < 0.001). CONCLUSION Both microscopy and RDT showed moderate agreement with PCR in the detection and identification of P. vivax (mono) and P. vivax/P. falciparum (mixed) infections. Therefore, to achieve malaria elimination goals, strengthening routine malaria diagnostic methods by implementing diagnostic tools with a good performance in detecting and accurately identifying malaria species in clinical settings is recommended.
Collapse
Affiliation(s)
- Abnet Abebe
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Didier Menard
- Laboratory of Parasitology and Mycology, University of Strasbourg, Strasbourg, France
| | - Sisay Dugassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
- Division of Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Jonathan J Juliano
- Division of Infectious Disease, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Eugenia Lo
- Department of Biological Sciences, Bioinformatics Research Center, University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
16
|
Motta FC, McGoff K, Moseley RC, Cho CY, Kelliher CM, Smith LM, Ortiz MS, Leman AR, Campione SA, Devos N, Chaorattanakawee S, Uthaimongkol N, Kuntawunginn W, Thongpiam C, Thamnurak C, Arsanok M, Wojnarski M, Vanchayangkul P, Boonyalai N, Smith PL, Spring MD, Jongsakul K, Chuang I, Harer J, Haase SB. The parasite intraerythrocytic cycle and human circadian cycle are coupled during malaria infection. Proc Natl Acad Sci U S A 2023; 120:e2216522120. [PMID: 37279274 PMCID: PMC10268210 DOI: 10.1073/pnas.2216522120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 05/09/2023] [Indexed: 06/08/2023] Open
Abstract
During infections with the malaria parasites Plasmodium vivax, patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In other Plasmodium species that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreiraet al., Science 368, 746-753 (2020); Smith et al., Science 368, 754-759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, because Plasmodium cycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected with P. vivax to examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host-parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling.
Collapse
Affiliation(s)
- Francis C. Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL33431
| | - Kevin McGoff
- Department of Mathematics and Statistics, University of North Carolina, Charlotte, NC28223
| | | | - Chun-Yi Cho
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA94143
| | - Christina M. Kelliher
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH03755
| | | | | | | | | | | | - Suwanna Chaorattanakawee
- Department of Parasitology and Entomology, Faculty of Public Health, Mahidol University, Bangkok10400, Thailand
| | | | | | - Chadin Thongpiam
- US-Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | | | - Montri Arsanok
- US-Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | | | | | - Nonlawat Boonyalai
- US-Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Philip L. Smith
- U.S. Military HIV Research Program Walter Reed Army Institute of Research, Bethesda, MD20817
| | - Michele D. Spring
- US-Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Krisada Jongsakul
- US-Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - Ilin Chuang
- US Naval Medical Research Center-Asia in Singapore, Assigned to Armed Forces Research Institute of Medical Sciences, Bangkok10400, Thailand
| | - John Harer
- Geometric Data Analytics, Durham, NC27701
| | - Steven B. Haase
- Department of Biology, Duke University, Durham, NC27708
- Department of Medicine Duke University, Durham, NC27710
| |
Collapse
|
17
|
Amaral LC, Salazar YEAR, de Alvarenga DAM, de Pina-Costa A, Nunes AJD, de Souza Junior JC, Gonçalves GHP, Hirano ZMB, Moreira SB, Pissinatti A, Daniel-Ribeiro CT, de Sousa TN, Alves de Brito CF. Detection of Plasmodium simium gametocytes in non-human primates from the Brazilian Atlantic Forest. Malar J 2023; 22:170. [PMID: 37268984 DOI: 10.1186/s12936-023-04601-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Plasmodium species of non-human primates (NHP) are of great interest because they can naturally infect humans. Plasmodium simium, a parasite restricted to the Brazilian Atlantic Forest, was recently shown to cause a zoonotic outbreak in the state of Rio de Janeiro. The potential of NHP to act as reservoirs of Plasmodium infection presents a challenge for malaria elimination, as NHP will contribute to the persistence of the parasite. The aim of the current study was to identify and quantify gametocytes in NHP naturally-infected by P. simium. METHODS Whole blood samples from 35 NHP were used in quantitative reverse transcription PCR (RT-qPCR) assays targeting 18S rRNA, Pss25 and Pss48/45 malaria parasite transcripts. Absolute quantification was performed in positive samples for 18S rRNA and Pss25 targets. Linear regression was used to compare the quantification cycle (Cq) and the Spearman's rank correlation coefficient was used to assess the correlation between the copy numbers of 18S rRNA and Pss25 transcripts. The number of gametocytes/µL was calculated by applying a conversion factor of 4.17 Pss25 transcript copies per gametocyte. RESULTS Overall, 87.5% of the 26 samples, previously diagnosed as P. simium, were positive for 18S rRNA transcript amplification, of which 13 samples (62%) were positive for Pss25 transcript amplification and 7 samples (54%) were also positive for Pss48/45 transcript. A strong positive correlation was identified between the Cq of the 18S rRNA and Pss25 and between the Pss25 and Pss48/45 transcripts. The 18S rRNA and Pss25 transcripts had an average of 1665.88 and 3.07 copies/µL, respectively. A positive correlation was observed between the copy number of Pss25 and 18S rRNA transcripts. Almost all gametocyte carriers exhibited low numbers of gametocytes (< 1/µL), with only one howler monkey having 5.8 gametocytes/µL. CONCLUSIONS For the first time, a molecular detection of P. simium gametocytes in the blood of naturally-infected brown howler monkeys (Alouatta guariba clamitans) was reported here, providing evidence that they are likely to be infectious and transmit P. simium infection, and, therefore, may act as a reservoir of malaria infection for humans in the Brazilian Atlantic Forest.
Collapse
Affiliation(s)
- Lara Cotta Amaral
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | | | - Denise Anete Madureira de Alvarenga
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Anielle de Pina-Costa
- Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas, Fiocruz, Rio de Janeiro, Brazil
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
- Departamento de Doenças Infecciosas e Parasitárias, Escola de Enfermagem Aurora de Afonso Costa, Universidade Federal Fluminense, Niterói, Brazil
| | - Ana Júlia Dutra Nunes
- Programa de Conservação do Bugio Ruivo, Joinville, Brazil
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Universidade Regional de Blumenau - FURB, Blumenau, Brazil
| | - Júlio Cesar de Souza Junior
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Universidade Regional de Blumenau - FURB, Blumenau, Brazil
| | | | - Zelinda Maria Braga Hirano
- Centro de Pesquisas Biológicas de Indaial, Indaial, Brazil
- Universidade Regional de Blumenau - FURB, Blumenau, Brazil
| | | | - Alcides Pissinatti
- Centro de Primatologia do Rio de Janeiro/INEA, Guapimirim, Brazil
- Centro Universitário Serra dos Órgãos, Teresópolis, Brazil
| | - Cláudio Tadeu Daniel-Ribeiro
- Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Fiocruz, Rio de Janeiro, Brazil
- Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, Brazil
| | - Taís Nóbrega de Sousa
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil
| | - Cristiana Ferreira Alves de Brito
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou, Fundação Oswaldo Cruz (Fiocruz), Belo Horizonte, Brazil.
| |
Collapse
|
18
|
Surit T, Sripoorote P, Kumpitak C, Suansomjit C, Maneechai N, Cui L, Sattabongkot J, Roobsoong W, Nguitragool W. Transmission efficiency of Plasmodium vivax at low parasitaemia. Malar J 2023; 22:22. [PMID: 36658583 PMCID: PMC9854148 DOI: 10.1186/s12936-022-04435-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Plasmodium vivax is responsible for much of malaria outside Africa. Although most P. vivax infections in endemic areas are asymptomatic and have low parasite densities, they are considered a potentially important source of transmission. Several studies have demonstrated that asymptomatic P. vivax carriers can transmit the parasite to mosquitoes, but the efficiency has not been well quantified. The aim of this study is to determine the relationship between parasite density and mosquito infectivity, particularly at low parasitaemia. METHODS Membrane feeding assays were performed using serial dilutions of P. vivax-infected blood to define the relationship between parasitaemia and mosquito infectivity. RESULTS The infection rate (oocyst prevalence) and intensity (oocyst load) were positively correlated with the parasite density in the blood. There was a broad case-to-case variation in parasite infectivity. The geometric mean parasite density yielding a 10% mosquito infection rate was 33 (CI 95 9-120) parasites/µl or 4 (CI 95 1-17) gametocytes/µl. The geometric mean parasite density yielding a 50% mosquito infection rate was 146 (CI 95 36-586) parasites/µl or 13 (CI 95 3-49) gametocytes/µl. CONCLUSION This study quantified the ability of P. vivax to infect Anopheles dirus at over a broad range of parasite densities. It provides important information about parasite infectivity at low parasitaemia common among asymptomatic P. vivax carriers.
Collapse
Affiliation(s)
- Thitiporn Surit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Piyarat Sripoorote
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Chalermpon Kumpitak
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Chayanut Suansomjit
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Nongnuj Maneechai
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Liwang Cui
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand
| | - Wanlapa Roobsoong
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand.
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Rd, Ratchathewi, Bangkok, 10400, Thailand.
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
19
|
Habtamu K, Petros B, Yan G. Plasmodium vivax: the potential obstacles it presents to malaria elimination and eradication. Trop Dis Travel Med Vaccines 2022; 8:27. [PMID: 36522671 PMCID: PMC9753897 DOI: 10.1186/s40794-022-00185-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Initiatives to eradicate malaria have a good impact on P. falciparum malaria worldwide. P. vivax, however, still presents significant difficulties. This is due to its unique biological traits, which, in comparison to P. falciparum, pose serious challenges for malaria elimination approaches. P. vivax's numerous distinctive characteristics and its ability to live for weeks to years in liver cells in its hypnozoite form, which may elude the human immune system and blood-stage therapy and offer protection during mosquito-free seasons. Many malaria patients are not fully treated because of contraindications to primaquine use in pregnant and nursing women and are still vulnerable to P. vivax relapses, although there are medications that could radical cure P. vivax. Additionally, due to CYP2D6's highly variable genetic polymorphism, the pharmacokinetics of primaquine may be impacted. Due to their inability to metabolize PQ, some CYP2D6 polymorphism alleles can cause patients to not respond to treatment. Tafenoquine offers a radical treatment in a single dose that overcomes the potentially serious problem of poor adherence to daily primaquine. Despite this benefit, hemolysis of the early erythrocytes continues in individuals with G6PD deficiency until all susceptible cells have been eliminated. Field techniques such as microscopy or rapid diagnostic tests (RDTs) miss the large number of submicroscopic and/or asymptomatic infections brought on by reticulocyte tropism and the low parasitemia levels that accompany it. Moreover, P. vivax gametocytes grow more quickly and are much more prevalent in the bloodstream. P. vivax populations also have a great deal of genetic variation throughout their genome, which ensures evolutionary fitness and boosts adaptation potential. Furthermore, P. vivax fully develops in the mosquito faster than P. falciparum. These characteristics contribute to parasite reservoirs in the human population and facilitate faster transmission. Overall, no genuine chance of eradication is predicted in the next few years unless new tools for lowering malaria transmission are developed (i.e., malaria elimination and eradication). The challenging characteristics of P. vivax that impede the elimination and eradication of malaria are thus discussed in this article.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
- Menelik II Medical & Health Science College, Addis Ababa, Ethiopia
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA 92697 USA
| |
Collapse
|
20
|
Tsuboi T, del Portillo HA, Mueller I. Editorial on the special issue on Plasmodium vivax: Current situation and challenges towards elimination. Parasitol Int 2022; 89:102594. [DOI: 10.1016/j.parint.2022.102594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
|
21
|
Obaldía N, Barahona I, Lasso J, Avila M, Quijada M, Nuñez M, Marti M. Comparison of PvLAP5 and Pvs25 qRT-PCR assays for the detection of Plasmodium vivax gametocytes in field samples preserved at ambient temperature from remote malaria endemic regions of Panama. PLoS Negl Trop Dis 2022; 16:e0010327. [PMID: 35394999 PMCID: PMC9020738 DOI: 10.1371/journal.pntd.0010327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/20/2022] [Accepted: 03/14/2022] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND As the elimination of malaria in Mesoamerica progresses, detection of Plasmodium vivax using light microscopy (LM) becomes more difficult. Highly sensitive molecular tools have been developed to help determine the hidden reservoir of malaria transmission in low transmission settings. In this study we compare the performance of PvLAP5 and Pvs25 qRT-PCR assays to LM for the detection of Plasmodium vivax gametocytes in field samples preserved at ambient temperature from malaria endemic regions of Panama. METHODS For this purpose, we collected a total of 83 malaria field samples during 2017-2020 preserved in RNAprotect (RNAp) of which 63 (76%) were confirmed P. vivax by LM and selected for further analysis. Additionally, 16 blood samples from local healthy malaria smear negative volunteers, as well as, from 15 malaria naïve lab-bred Aotus monkeys were used as controls. To optimize the assays, we first determined the minimum blood volume sufficient for detection of PvLAP5 and Pv18SrRNA using P. vivax infected Aotus blood that was preserved in RNAp and kept either at ambient temperature for up to 8 days before freezing or was snap-frozen at -80° Celsius at the time of bleeding. We then compared the mean differences in gametocyte detection rates of both qRT-PCR assays to LM and performed a multivariate correlation analysis of study variables. Finally, we determined the sensitivity (Se) and specificity (Sp) of the assays at detecting gametocytes compared to LM. RESULTS Blood volume optimization indicated that a blood volume of at least 60 μL was sufficient for detection of PvLAP5 and Pv18SrRNA and no significant differences were found between RNA storage conditions. Both PvLAP5 and Pvs25 qRT-PCR assays showed a 37-39% increase in gametocyte detection rate compared to LM respectively. Strong positive correlations were found between gametocytemia and parasitemia and both PvLAP5 and Pvs25 gametocyte markers. However, no significant differences were detected in the Se and Sp of the Pvs25 and PvLAP5 qRT-PCR assays, even though data from control samples suggested Pvs25 to be more abundant than PvLAP5. CONCLUSIONS This study shows that the PvLAP5 qRT-PCR assay is as Se and Sp as the gold standard Pvs25 assay and is at least 37% more sensitive than LM at detecting P. vivax gametocytes in field samples preserved in RNAp at ambient temperature from malaria endemic regions of Panama. AUTHOR SUMMARY Plasmodium vivax is one of the five species of malaria (P. falciparum, P. malariae, P. ovale and P. knowlesi) that are transmitted to man by the bite of female anopheles mosquitoes. It causes ~14.3 million cases mainly in Southeast Asia, India, the Western Pacific and the Americas annually. In the Americas, malaria remains a major problem in underdeveloped areas and indigenous communities in the Amazon region and eastern Panama, where it is endemic and difficult to eliminate. As malaria elimination progresses, detection of P. vivax by light microscopy (LM) becomes more difficult. Therefore, highly sensitive molecular tools have been developed that use genetic markers for the parasite to help determine the hidden reservoir of malaria transmission. This study compares the performance of two molecular assays based on the genetic markers of mature gametocytes PvLAP5 and Pvs25 with LM. The study shows that the PvLAP5 qRT-PCR assay is as sensitive and specific as the gold standard Pvs25 assay and is at least 37% more sensitive than LM at detecting P. vivax gametocytes. These data suggest that the PvLAP5 qRT-PCR assay can be a useful tool to help determine the hidden reservoir of transmission in endemic foci approaching elimination.
Collapse
Affiliation(s)
- Nicanor Obaldía
- Departamento de Investigaciones en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Panamá, Republic of Panamá
- Department of Immunology and Infectious Diseases, Harvard T.H. CHAN School of Public Health, Boston, Massachusetts, United States of America
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Itza Barahona
- Departamento de Control de Vectores, Dirección General de Salud Pública, Ministerio de Salud de Panamá, Panamá, Republic of Panamá
| | - José Lasso
- Departamento de Control de Vectores, Dirección General de Salud Pública, Ministerio de Salud de Panamá, Panamá, Republic of Panamá
| | - Mario Avila
- Departamento de Control de Vectores, Dirección General de Salud Pública, Ministerio de Salud de Panamá, Panamá, Republic of Panamá
| | - Mario Quijada
- Departamento de Investigaciones en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Panamá, Republic of Panamá
| | - Marlon Nuñez
- Departamento de Investigaciones en Parasitología, Instituto Conmemorativo Gorgas de Estudios de la Salud, Panamá City, Panamá, Republic of Panamá
| | - Matthias Marti
- Department of Immunology and Infectious Diseases, Harvard T.H. CHAN School of Public Health, Boston, Massachusetts, United States of America
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|