1
|
Xu J, Hörner M, Nagel M, Perhat P, Korneck M, Noß M, Hauser S, Schoels L, Admard J, Casadei N, Schuele R. Unravelling axonal transcriptional landscapes: insights from induced pluripotent stem cell-derived cortical neurons and implications for motor neuron degeneration. Open Biol 2025; 15:250101. [PMID: 40495808 PMCID: PMC12152748 DOI: 10.1098/rsob.250101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 06/18/2025] Open
Abstract
Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment-specific analysis. In this study, we employ a robust RNA-sequencing approach, using microfluidic devices, to generate high-quality axonal transcriptomes from induced pluripotent stem cells-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins, mitochondrial-encoded RNAs and long non-coding RNAs. Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analysed kinesin family member 1C (KIF1C)-knockout (KO) CNs, modelling hereditary spastic paraplegia, a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment-specific disease mechanisms.
Collapse
Affiliation(s)
- Jishu Xu
- Eberhard Karls University Tübingen Hertie Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- Division of Neurodegenerative Diseases and Movement Disorders, Department of Neurology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
| | - Michaela Hörner
- Division of Neurodegenerative Diseases and Movement Disorders, Department of Neurology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
| | - Maike Nagel
- Eberhard Karls University Tübingen Hertie Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany
| | - Perwin Perhat
- Division of Neurodegenerative Diseases and Movement Disorders, Department of Neurology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
| | - Milena Korneck
- Eberhard Karls University Tübingen Hertie Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany
- Graduate School of Cellular and Molecular Neuroscience, University of Tübingen, Tübingen, Baden-Württemberg, Germany
- German Centre for Neurodegenerative Diseases, Tübingen, Baden-Württemberg, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Marvin Noß
- Eberhard Karls University Tübingen Hertie Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany
| | - Stefan Hauser
- Eberhard Karls University Tübingen Hertie Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany
- German Centre for Neurodegenerative Diseases, Tübingen, Baden-Württemberg, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Ludger Schoels
- Eberhard Karls University Tübingen Hertie Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany
- German Centre for Neurodegenerative Diseases, Tübingen, Baden-Württemberg, Germany
- Department of Neurology, University Hospital Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Jakob Admard
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Nicolas Casadei
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Baden-Württemberg, Germany
| | - Rebecca Schuele
- Eberhard Karls University Tübingen Hertie Institute for Clinical Brain Research, Tübingen, Baden-Württemberg, Germany
- Division of Neurodegenerative Diseases and Movement Disorders, Department of Neurology, Heidelberg University Hospital, Heidelberg, Baden-Württemberg, Germany
| |
Collapse
|
2
|
Korpás KL, Mokánszki A, Beke L, Méhes G, Chang Chien YC. Pediatric Cutaneous Anaplastic Lymphoma Kinase-Positive Histiocytosis with DCTN1::ALK Fusion: A Case Report and Literature Search. Diagnostics (Basel) 2025; 15:1057. [PMID: 40361876 PMCID: PMC12072010 DOI: 10.3390/diagnostics15091057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 04/16/2025] [Accepted: 04/18/2025] [Indexed: 05/15/2025] Open
Abstract
Background and Clinical Significance: Anaplastic lymphoma kinase (ALK)-positive histiocytosis is a relatively novel entity, affecting single or multiple organ systems; it is characterized by aggregates of neoplastic cells of the histiocytic lineage, harboring molecular alterations in the ALK gene and exhibiting excellent response to systemic tyrosine kinase inhibitors. Case presentation: Herein, we present a pediatric case with cutaneous-only involvement: the 6-month-old male patient presented with an elevated, tan-colored lesion on his left forearm. Following surgical excision, histopathological evaluation reported spindle cells with wide eosinophilic cytoplasm and Touton-type giant cells. The tumor cells were positive for CD163, ALK, phosphorylated ERK, and cyclin D1. Fluorescent in situ hybridization revealed ALK rearrangement, whereas, upon next-generation sequencing, a DCTN1::ALK fusion was identified. Conclusion: Our case serves as a great addition to the limited number of cases reported in the literature, and it represents the first published pediatric case with the rare DCTN1::ALK fusion. The novelty of this genetic alteration and the lack of knowledge about its potential effects on the clinical aspects of ALK-positive histiocytosis highlight the importance of ancillary molecular testing, when available.
Collapse
|
3
|
Sobral AF, Costa I, Teixeira V, Silva R, Barbosa DJ. Molecular Motors in Blood-Brain Barrier Maintenance by Astrocytes. Brain Sci 2025; 15:279. [PMID: 40149801 PMCID: PMC11940747 DOI: 10.3390/brainsci15030279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/26/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
The blood-brain barrier (BBB) comprises distinct cell types, including endothelial cells, pericytes, and astrocytes, and is essential for central nervous system (CNS) homeostasis by selectively regulating molecular transport and maintaining integrity. In particular, astrocytes are essential for BBB function, as they maintain BBB integrity through their end-feet, which form a physical and biochemical interface that enhances endothelial cell function and barrier selectivity. Moreover, they secrete growth factors like vascular endothelial growth factor (VEGF) and transforming growth factor-beta (TGF-β), which regulate tight junction (TJ) proteins (e.g., claudins and occludins) crucial for limiting paracellular permeability. Molecular motors like kinesins, dynein, and myosins are essential for these astrocyte functions. By facilitating vesicular trafficking and protein transport, they are essential for various functions, including trafficking of junctional proteins to support BBB integrity, the proper mitochondria localization within astrocyte processes for efficient energy supply, the polarized distribution of aquaporin (AQP)-4 at astrocyte end-feet for regulating water homeostasis across the BBB, and the modulation of neuroinflammatory responses. Moreover, myosin motors modulate actomyosin dynamics to regulate astrocyte process outgrowth, adhesion, migration, and morphology, facilitating their functional roles. Thus, motor protein dysregulation in astrocytes can compromise BBB function and integrity, increasing the risk of neurodegeneration. This review explores the complex interplay between astrocytes and molecular motors in regulating BBB homeostasis, which represents an attractive but poorly explored area of research.
Collapse
Affiliation(s)
- Ana Filipa Sobral
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Toxicologic Pathology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| | - Inês Costa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.C.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Vanessa Teixeira
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - Renata Silva
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; (I.C.); (R.S.)
- UCIBIO—Applied Molecular Biosciences Unit, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, Porto University, 4050-313 Porto, Portugal
| | - Daniel José Barbosa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
| |
Collapse
|
4
|
Neisch AL, Pengo T, Avery AW, Li MG, Hays TS. Dynein-driven regulation of postsynaptic membrane architecture and synaptic function. J Cell Sci 2025; 138:JCS263844. [PMID: 39865922 PMCID: PMC11959486 DOI: 10.1242/jcs.263844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/18/2025] [Indexed: 01/28/2025] Open
Abstract
Cytoplasmic dynein is essential in motor neurons for retrograde cargo transport that sustains neuronal connectivity. Little, however, is known about dynein function on the postsynaptic side of the circuit. Here, we report distinct postsynaptic roles for dynein at neuromuscular junctions in Drosophila. Intriguingly, we show that dynein puncta accumulate postsynaptically at glutamatergic synaptic terminals. Moreover, Skittles (Sktl), a phosphatidylinositol 4-phosphate 5-kinase that produces phosphatidylinositol 4,5-bisphosphate (PIP2) to organize the spectrin cytoskeleton, also localizes specifically to glutamatergic synaptic terminals. Depletion of postsynaptic dynein disrupted the accumulation of Skittles and the PIP2 phospholipid, and organization of the spectrin cytoskeleton at the postsynaptic membrane. Coincidental with dynein depletion, we observed an increase in the size of ionotropic glutamate receptor (iGluR) fields and an increase in the amplitude and frequency of miniature excitatory junctional potentials. PIP2 levels did not affect iGluR clustering, nor did dynein affect the levels of iGluR subunits at the neuromuscular junction. Our observations suggest a separate, transport-independent function for dynein in iGluR cluster organization. Based on the close apposition of dynein puncta to the iGluR fields, we speculate that dynein at the postsynaptic membrane contributes to the organization of the receptor fields, hence ensuring proper synaptic transmission.
Collapse
Affiliation(s)
- Amanda L. Neisch
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas Pengo
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | - Adam W. Avery
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Min-Gang Li
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Thomas S. Hays
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Omoluabi T, Hasan Z, Piche JE, Flynn ARS, Doré JJE, Walling SG, Weeks ACW, Benoukraf T, Yuan Q. Locus coeruleus vulnerability to tau hyperphosphorylation in a rat model. Aging Cell 2025; 24:e14405. [PMID: 39520141 PMCID: PMC11896524 DOI: 10.1111/acel.14405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/29/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Post-mortem investigations indicate that the locus coeruleus (LC) is the initial site of hyperphosphorylated pretangle tau, a precursor to neurofibrillary tangles (NFTs) found in Alzheimer's disease (AD). The presence of pretangle tau and NFTs correlates with AD progression and symptomatology. LC neuron integrity and quantity are linked to cognitive performance, with degeneration strongly associated with AD. Despite their importance, the mechanisms of pretangle tau-induced LC degeneration are unclear. This study examined the transcriptomic and mitochondrial profiles of LC noradrenergic neurons after transduction with pseudophosphorylated human tau. Tau hyperphosphorylation increased the somatic expression of the L-type calcium channel (LTCC), impaired mitochondrial health, and led to deficits in spatial and olfactory learning. Sex-dependent alterations in gene expression were observed in rats transduced with pretangle tau. Chronic LTCC blockade prevented behavioral deficits and altered mitochondrial mRNA expression, suggesting a potential link between LTCC hyperactivity and mitochondrial dysfunction. Our research provides insights into the consequences of tau pathology in the originating structure of AD.
Collapse
Affiliation(s)
- Tamunotonye Omoluabi
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Zia Hasan
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Jessie E. Piche
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Abeni R. S. Flynn
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Jules J. E. Doré
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Susan G. Walling
- Department of Psychology, Faculty of ScienceMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Andrew C. W. Weeks
- Department of Psychology, Faculty of Arts & ScienceNipissing UniversityNorth BayOntarioCanada
| | - Touati Benoukraf
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| | - Qi Yuan
- Biomedical Sciences, Faculty of MedicineMemorial University of NewfoundlandSt. John'sNewfoundlandCanada
| |
Collapse
|
6
|
Pasutharnchat N, Taychargumpoo C, Amornvit J, Sombuntham P, Sirichana W. Clinical and neurophysiological characterization of p.Gly59Ser mutation in DCTN1: a study in a Thai family and a brief review. Neurol Sci 2025; 46:935-941. [PMID: 39395070 DOI: 10.1007/s10072-024-07801-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
INTRODUCTION Mutations in the Dynactin 1 (DCTN1) gene lead to various neurodegenerative disorders. The p.Gly59Ser mutation, the first pathogenic mutation identified in DCTN1, was initially reported in a family with distal hereditary motor neuropathy and early vocal cord paralysis. Since its discovery in 2003, this mutation has been documented in only three families worldwide, to the best of our knowledge. METHODS This study examines six patients from a Thai family carrying the p.Gly59Ser mutation in DCTN1 and includes a literature review. RESULTS Five of the patients were female. The mean age of onset was 32.6 ± 1.9 years. Thai patients showed early involvement of intrinsic hand, facial, and bulbar muscles, with vocal cord impairment manifesting later in the disease course. Tongue fasciculations, not previously reported with this mutation, were observed in most Thai patients. Bilateral split-hands were consistently noted. Arytenoidectomy and cordotomy have proven beneficial in relieving upper airway obstruction and preventing life-threatening upper airway complications from vocal cord paralysis. CONCLUSIONS The p.Gly59Ser mutation in DCTN1 presents with autosomal-dominant, adult-onset, lower motor neuronopathy/neuropathy. Compared to earlier reports, Thai patients exhibited more widespread involvement, including facial, bulbar, tongue, vocal cord, and limb muscles. In addition to vocal cord paralysis, the split-hand phenomenon emerges as another clinical hallmark of this condition.
Collapse
Affiliation(s)
- Nath Pasutharnchat
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Division of Neurology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Chamaiporn Taychargumpoo
- Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jakkrit Amornvit
- Division of Neurology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Division of Neurology, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Premsuda Sombuntham
- Department of Otolaryngology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Worawan Sirichana
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| |
Collapse
|
7
|
Rajan R, Holla VV, Kamble N, Yadav R, Pal PK. Genetic heterogeneity of early onset Parkinson disease: The dilemma of clinico-genetic correlation. Parkinsonism Relat Disord 2024; 129:107146. [PMID: 39313403 DOI: 10.1016/j.parkreldis.2024.107146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/05/2024] [Accepted: 09/08/2024] [Indexed: 09/25/2024]
Abstract
With advances in genetic testing increasing proportion of early onset Parkinson disease (EOPD) are being identified to have an underlying genetic aetiology. This is can be in the form of either highly penetrant genes associated with phenotypes with monogenic or mendelian inheritance patterns or those genes known as risk factor genes which confer an increased risk of PD in an individual. Both of them can modify the phenotypic manifestation in a patient with PD. This improved knowledge has helped in deciphering the intricate role of various cellular pathways in the pathophysiology of PD including both early and late and even sporadic PD. However, the phenotypic and genotypic heterogeneity is a major challenge. Different deleterious alterations in a same gene can result in a spectrum of presentation spanning from juvenile to late onset and typical to atypical parkinsonism manifestation. Similarly, a single phenotype can occur due to abnormality in two or more different genes. This conundrum poses a dilemma in the clinical approach and in understanding the clinico-genetic correlation. Understanding the clinico-genetic correlation carries even more importance especially when genetic testing is either not accessible or affordable or in many regions both. In this narrative review, we aim to discuss briefly the approach to various PARK gene related EOPD and describe in detail the clinico-genetic correlation of individual type of PARK gene related genetic EOPD with respect to their classical clinical presentation, pathophysiology, investigation findings and treatment response to medication and surgery.
Collapse
Affiliation(s)
- Roopa Rajan
- Department of Neurology, All India Institute of Medical Sciences, New Delhi, India
| | - Vikram V Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Nitish Kamble
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences, Bengaluru, India.
| |
Collapse
|
8
|
You N, Liu C, Gu Y, Wang R, Jia H, Zhang T, Jiang S, Shi J, Chen M, Guan MX, Sun S, Pei S, Liu Z, Shen N. SpliceTransformer predicts tissue-specific splicing linked to human diseases. Nat Commun 2024; 15:9129. [PMID: 39443442 PMCID: PMC11500173 DOI: 10.1038/s41467-024-53088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 10/25/2024] Open
Abstract
We present SpliceTransformer (SpTransformer), a deep-learning framework that predicts tissue-specific RNA splicing alterations linked to human diseases based on genomic sequence. SpTransformer outperforms all previous methods on splicing prediction. Application to approximately 1.3 million genetic variants in the ClinVar database reveals that splicing alterations account for 60% of intronic and synonymous pathogenic mutations, and occur at different frequencies across tissue types. Importantly, tissue-specific splicing alterations match their clinical manifestations independent of gene expression variation. We validate the enrichment in three brain disease datasets involving over 164,000 individuals. Additionally, we identify single nucleotide variations that cause brain-specific splicing alterations, and find disease-associated genes harboring these single nucleotide variations with distinct expression patterns involved in diverse biological processes. Finally, SpTransformer analysis of whole exon sequencing data from blood samples of patients with diabetic nephropathy predicts kidney-specific RNA splicing alterations with 83% accuracy, demonstrating the potential to infer disease-causing tissue-specific splicing events. SpTransformer provides a powerful tool to guide biological and clinical interpretations of human diseases.
Collapse
Affiliation(s)
- Ningyuan You
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Chang Liu
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxin Gu
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Rong Wang
- Department of Hematology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanying Jia
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyun Zhang
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Song Jiang
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Jinsong Shi
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Ming Chen
- Department of Bioinformatics, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Min-Xin Guan
- Institute of Genetics, Zhejiang University School of Medicine, Hangzhou, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai, China
| | - Shanshan Pei
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhihong Liu
- National Clinical Research Center for Kidney Diseases, Jinling Hospital, Nanjing University School of Medicine, Nanjing, China.
| | - Ning Shen
- Department of Obstetrics and Gynecology of Sir Run Run Shaw Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
9
|
Mubeen H, Masood A, Zafar A, Khan ZQ, Khan MQ, Nisa AU. Insights into AlphaFold's breakthrough in neurodegenerative diseases. Ir J Med Sci 2024; 193:2577-2588. [PMID: 38833116 DOI: 10.1007/s11845-024-03721-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/19/2024] [Indexed: 06/06/2024]
Abstract
Neurodegenerative diseases (ND) are disorders of the central nervous system (CNS) characterized by impairment in neurons' functions, and complete loss, leading to memory loss, and difficulty in learning, language, and movement processes. The most common among these NDs are Alzheimer's disease (AD) and Parkinson's disease (PD), although several other disorders also exist. These are frontotemporal dementia (FTD), amyotrophic lateral syndrome (ALS), Huntington's disease (HD), and others; the major pathological hallmark of NDs is the proteinopathies, either of amyloid-β (Aβ), tauopathies, or synucleinopathies. Aggregation of proteins that do not undergo normal configuration, either due to mutations or through some disturbance in cellular pathway contributes to the diseases. Artificial Intelligence (AI) and deep learning (DL) have proven to be successful in the diagnosis and treatment of various congenital diseases. DL approaches like AlphaFold (AF) are a major leap towards success in CNS disorders. This 3D protein geometry modeling algorithm developed by DeepMind has the potential to revolutionize biology. AF has the potential to predict 3D-protein confirmation at an accuracy level comparable to experimentally predicted one, with the additional advantage of precisely estimating protein interactions. This breakthrough will be beneficial to identify diseases' advancement and the disturbance of signaling pathways stimulating impaired functions of proteins. Though AlphaFold has solved a major problem in structural biology, it cannot predict membrane proteins-a beneficial approach for drug designing.
Collapse
Affiliation(s)
- Hira Mubeen
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan.
| | - Ammara Masood
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Asma Zafar
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Zohaira Qayyum Khan
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Muneeza Qayyum Khan
- Department of Biotechnology, Faculty of Science & Technology, University of Central Punjab, Lahore, Pakistan
| | - Alim Un Nisa
- Pakistan Council of Scientific and Industrial Research, Lahore, Pakistan
| |
Collapse
|
10
|
Xu J, Hörner M, Nagel M, Perhat P, Korneck M, Noß M, Hauser S, Schöls L, Admard J, Casadei N, Schüle R. Unraveling Axonal Transcriptional Landscapes: Insights from iPSC-Derived Cortical Neurons and Implications for Motor Neuron Degeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586780. [PMID: 38585749 PMCID: PMC10996649 DOI: 10.1101/2024.03.26.586780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neuronal function and pathology are deeply influenced by the distinct molecular profiles of the axon and soma. Traditional studies have often overlooked these differences due to the technical challenges of compartment specific analysis. In this study, we employ a robust RNA-sequencing (RNA-seq) approach, using microfluidic devices, to generate high-quality axonal transcriptomes from iPSC-derived cortical neurons (CNs). We achieve high specificity of axonal fractions, ensuring sample purity without contamination. Comparative analysis revealed a unique and specific transcriptional landscape in axonal compartments, characterized by diverse transcript types, including protein-coding mRNAs, RNAs encoding ribosomal proteins (RPs), mitochondrial-encoded RNAs, and long non-coding RNAs (lncRNAs). Previous works have reported the existence of transcription factors (TFs) in the axon. Here, we detect a set of TFs specific to the axon and indicative of their active participation in transcriptional regulation. To investigate transcripts and pathways essential for central motor neuron (MN) degeneration and maintenance we analyzed KIF1C-knockout (KO) CNs, modeling hereditary spastic paraplegia (HSP), a disorder associated with prominent length-dependent degeneration of central MN axons. We found that several key factors crucial for survival and health were absent in KIF1C-KO axons, highlighting a possible role of these also in other neurodegenerative diseases. Taken together, this study underscores the utility of microfluidic devices in studying compartment-specific transcriptomics in human neuronal models and reveals complex molecular dynamics of axonal biology. The impact of KIF1C on the axonal transcriptome not only deepens our understanding of MN diseases but also presents a promising avenue for exploration of compartment specific disease mechanisms.
Collapse
|
11
|
Flores-Lagunes L, Del Pozo-Yauner L, Carrillo-Sánchez K, Molina-Garay C, Jiménez-Olivares M, Garcia-Solorio J, Rodríguez Corona U, Herrera GA, Ricardez-Marcial E, Alaez-Verson C. First family with Perry syndrome from Mexico. Biomed Rep 2024; 21:120. [PMID: 38978535 PMCID: PMC11229396 DOI: 10.3892/br.2024.1808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 07/10/2024] Open
Abstract
Perry syndrome (PS) is a rare autosomal dominant disease characterized by parkinsonism, central hypoventilation, weight loss and depression and is caused by pathogenic mutations in the dynactin subunit 1 (DCTN1) gene (encoding p150glued protein). To date, only two cases have been reported in Latin America, specifically in Colombia and Argentina. The present study, to the best of our knowledge, reports the first recorded Mexican family with PS. The clinical features of the proband and a family history of early parkinsonism led to the suspicion of PS. The pathogenic variant NM_004082:c.212G>A, causing a (p.Gly71Glu) mutation in the p150glued protein, was identified in exon 2 of the DCTN1 gene by exome sequencing, confirming the diagnosis of PS. (p.Gly71Glu) has been previously identified in at least 4 cases of PS from different ethnic backgrounds. Genetic counseling was provided to the available family members. To clarify the impact of the (p.Gly71Glu) variant on the structure and function of the cytoskeleton-associated protein Gly rich (CAP-Gly) domain of p150glued, Glu71 mutated CAP-Gly domains were modeled and compared with the wild-type. It was hypothesized that the larger and more charged side chain of Glu may induce conformational and electrostatic changes, imposing a conformational restriction on the peptide backbone that would affect interaction with the p150glued protein partners, causing dysfunction in the dynactin protein complex.
Collapse
Affiliation(s)
- Leonardo Flores-Lagunes
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Luis Del Pozo-Yauner
- Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama 36617, USA
| | - Karol Carrillo-Sánchez
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Carolina Molina-Garay
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Marco Jiménez-Olivares
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Joaquin Garcia-Solorio
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| | - Ulises Rodríguez Corona
- Montreal Clinical Research Institute Ribonucleoprotein Biochemistry Research Unit, Montréal, Quebec H2W1R7, Canada
| | - Guillermo A. Herrera
- Frederick P. Whiddon College of Medicine, University of South Alabama, Mobile, Alabama 36617, USA
| | - Edgar Ricardez-Marcial
- Department of Medical Genetics, La Raza National Medical Center, Mexican Social Security Institute, Mexico City 02990, Mexico
| | - Carmen Alaez-Verson
- Laboratory of Genomic Diagnostics, National Institute of Genomic Medicine, Mexico City 14610, Mexico
| |
Collapse
|
12
|
Date Y, Sasazawa Y, Kitagawa M, Gejima K, Suzuki A, Saya H, Kida Y, Imoto M, Itakura E, Hattori N, Saiki S. Novel autophagy inducers by accelerating lysosomal clustering against Parkinson's disease. eLife 2024; 13:e98649. [PMID: 38899618 PMCID: PMC11221835 DOI: 10.7554/elife.98649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024] Open
Abstract
The autophagy-lysosome pathway plays an indispensable role in the protein quality control by degrading abnormal organelles and proteins including α-synuclein (αSyn) associated with the pathogenesis of Parkinson's disease (PD). However, the activation of this pathway is mainly by targeting lysosomal enzymic activity. Here, we focused on the autophagosome-lysosome fusion process around the microtubule-organizing center (MTOC) regulated by lysosomal positioning. Through high-throughput chemical screening, we identified 6 out of 1200 clinically approved drugs enabling the lysosomes to accumulate around the MTOC with autophagy flux enhancement. We further demonstrated that these compounds induce the lysosomal clustering through a JIP4-TRPML1-dependent mechanism. Among them, the lysosomal-clustering compound albendazole promoted the autophagy-dependent degradation of Triton-X-insoluble, proteasome inhibitor-induced aggregates. In a cellular PD model, albendazole boosted insoluble αSyn degradation. Our results revealed that lysosomal clustering can facilitate the breakdown of protein aggregates, suggesting that lysosome-clustering compounds may offer a promising therapeutic strategy against neurodegenerative diseases characterized by the presence of aggregate-prone proteins.
Collapse
Affiliation(s)
- Yuki Date
- Department of Biology, Graduate School of Science and Engineering, Chiba University, Inage-kuChibaJapan
- Department of Neurology, Juntendo University Faculty of MedicineTokyoJapan
| | - Yukiko Sasazawa
- Department of Neurology, Juntendo University Faculty of MedicineTokyoJapan
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of MedicineTokyoJapan
- Division for Development of Autophagy Modulating Drugs, Juntendo University Faculty of MedicineTokyoJapan
| | - Mitsuhiro Kitagawa
- Department of Neurology, Juntendo University Faculty of MedicineTokyoJapan
| | - Kentaro Gejima
- Department of Neurology, Juntendo University Faculty of MedicineTokyoJapan
| | - Ayami Suzuki
- Department of Neurology, Juntendo University Faculty of MedicineTokyoJapan
| | - Hideyuki Saya
- Division of Gene Regulation, Institute for Advanced Medical Research, School of Medicine, Keio UniversityTokyoJapan
- Division of Gene Regulation, Cancer Center, Fujita Health UniversityToyoakeJapan
| | - Yasuyuki Kida
- Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan
| | - Masaya Imoto
- Division for Development of Autophagy Modulating Drugs, Juntendo University Faculty of MedicineTokyoJapan
| | - Eisuke Itakura
- Department of Biology, Graduate School of Science, Chiba University, Inage-kuChibaJapan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of MedicineTokyoJapan
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of MedicineTokyoJapan
- Division for Development of Autophagy Modulating Drugs, Juntendo University Faculty of MedicineTokyoJapan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain ScienceSaitamaJapan
| | - Shinji Saiki
- Department of Neurology, Juntendo University Faculty of MedicineTokyoJapan
- Division for Development of Autophagy Modulating Drugs, Juntendo University Faculty of MedicineTokyoJapan
- Department of Neurology, Institute of Medicine, University of TsukubaIbarakiJapan
| |
Collapse
|
13
|
Wu R, Chen WT, Dou WK, Zhou HM, Shi M. Whole-exome sequencing in a cohort of Chinese patients with isolated cervical dystonia. Heliyon 2024; 10:e31885. [PMID: 38845987 PMCID: PMC11153233 DOI: 10.1016/j.heliyon.2024.e31885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 06/09/2024] Open
Abstract
Background Dystonia is a kind of movement disorder but its pathophysiological mechanisms are still largely unknown. Recent evidence reveals that genetical defects may play important roles in the pathogenesis of dystonia. Objectives and Methods -To explore possible causative genes in Chinese dystonia patients, DNA samples from 42 sporadic patients with isolated cervical dystonia were subjected to whole-exome sequencing. Rare deleterious variants associated with dystonia phenotype were screened out and then classified according to the American College of Medical Genetics and Genomics (ACMG) criteria. Phenolyzer was used for analyzing the most probable candidates correlated with dystonia phenotype, and SWISS-MODEL server was for predicting the 3D structures of variant proteins. Results Among 42 patients (17 male and 25 female) recruited, a total of 36 potentially deleterious variants of dystonia-associated genes were found in 30 patients (30/42, 71.4 %). Four disease-causing variants including a pathogenic variant in PLA2G6 (c.797G > C) and three likely pathogenic variants in DCTN1 (c.73C > T), SPR (c.1A > C) and TH (c.56C > G) were found in four patients separately. Other 32 variants were classified as uncertain significance in 26 patients. Phenolyzer prioritized genes TH, PLA2G6 and DCTN1 as the most probable candidates correlated with dystonia phenotype. Although 3D prediction of DCTN1 and PLA2G6 variant proteins detected no obvious structural alterations, the mutation in DCTN1 (c.73C > T:p.Arg25Trp) was closely adjacent to its key functional domain. Conclusion Our whole-exome sequencing results identified a novel variant in DCTN1 in sporadic Chinese patients with isolated cervical dystonia, which however, needs our further study on its exact role in dystonia pathogenesis.
Collapse
Affiliation(s)
- Rui Wu
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
- Department of Neurology, Xi'an People's Hospital (Xi'an Fourth Hospital), Xi'an, 710004, Shaanxi Province, China
| | - Wen-Tian Chen
- Laboratory for Functional Glycomics, College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Wei-Kang Dou
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Hui-Min Zhou
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| | - Ming Shi
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi Province, China
| |
Collapse
|
14
|
Tian W, Yao L, Shi G, Dai R, Cao L. A novel DCTN1 mutation causing perry syndrome leads to abnormal splicing of mRNA: genetic and functional analyses. Acta Neurol Belg 2024; 124:661-663. [PMID: 37668947 DOI: 10.1007/s13760-023-02368-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 08/21/2023] [Indexed: 09/06/2023]
Affiliation(s)
- Wotu Tian
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Li Yao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Suzhou Hospital of Anhui Medical University, Suzhou, 234000, China
| | - Guochao Shi
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ranran Dai
- Department of Respiratory and Critical Care Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Li Cao
- Department of Neurology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
15
|
Mishima T, Yuasa-Kawada J, Fujioka S, Tsuboi Y. Perry Disease: Bench to Bedside Circulation and a Team Approach. Biomedicines 2024; 12:113. [PMID: 38255218 PMCID: PMC10813069 DOI: 10.3390/biomedicines12010113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/28/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
With technological applications, especially in genetic testing, new diseases have been discovered and new disease concepts have been proposed in recent years; however, the pathogenesis and treatment of these rare diseases are not as well established as those of common diseases. To demonstrate the importance of rare disease research, in this paper we focus on our research topic, Perry disease (Perry syndrome). Perry disease is a rare autosomal dominant neurodegenerative disorder clinically characterized by parkinsonism, depression/apathy, weight loss, and respiratory symptoms including central hypoventilation and central sleep apnea. The pathological classification of Perry disease falls under TAR DNA-binding protein 43 (TDP-43) proteinopathies. Patients with Perry disease exhibit DCTN1 mutations, which is the causative gene for the disease; they also show relatively uniform pathological and clinical features. This review summarizes recent findings regarding Perry disease from both basic and clinical perspectives. In addition, we describe technological innovations and outline future challenges and treatment prospects. We discuss the expansion of research from rare diseases to common diseases and the importance of collaboration between clinicians and researchers. Here, we highlight the importance of researching rare diseases as it contributes to a deeper understanding of more common diseases, thereby opening up new avenues for scientific exploration.
Collapse
Affiliation(s)
| | | | | | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University, Fukuoka 814-0180, Japan; (T.M.); (J.Y.-K.); (S.F.)
| |
Collapse
|
16
|
Fukui Y, Shirakawa H, Kaneko S, Nagayasu K. Wild-Type DCTN1 Suppresses the Aggregation of DCTN1 Mutants Associated with Perry Disease. Biol Pharm Bull 2024; 47:253-258. [PMID: 38267040 DOI: 10.1248/bpb.b23-00828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Perry disease, a rare autosomal dominant neurodegenerative disorder, is characterized by parkinsonism, depression or apathy, unexpected weight loss, and central hypoventilation. Genetic analyses have revealed a strong association between point mutations in the dynactin I gene (DCTN1) coding p150glued and Perry disease. Although previous reports have suggested a critical role of p150glued aggregation in Perry disease pathology, whether and how p150glued mutations affect protein aggregation is not fully understood. In this study, we comprehensively investigated the intracellular distribution of the p150glued mutants in HEK293T cells. We further assessed the effect of co-overexpression of the wild-type p150glued protein with mutants on the formation of mutant aggregates. Notably, overexpression of p150glued mutants identified in healthy controls, which is also associated with amyotrophic lateral sclerosis, showed a thread-like cytoplasmic distribution, similar to the wild-type p150glued. In contrast, p150glued mutants in Perry disease and motor neuron disease caused aggregation. In addition, the co-overexpression of the wild-type protein with p150glued mutants in Perry disease suppressed aggregate formation. In contrast, the p150glued aggregation of motor neuron disease mutants was less affected by the wild-type p150glued. Further investigation of the mechanism of aggregate formation, contents of the aggregates, and biological mechanisms of Perry disease could help develop novel therapeutics.
Collapse
Affiliation(s)
- Yuto Fukui
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hisashi Shirakawa
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Shuji Kaneko
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Kazuki Nagayasu
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
17
|
Necpál J, Borsek M, Jeleňová B. PSP-Richardson syndrome mimics: An overview and pragmatic approach. Rev Neurol (Paris) 2024; 180:12-23. [PMID: 37543508 DOI: 10.1016/j.neurol.2023.02.070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/09/2023] [Accepted: 02/03/2023] [Indexed: 08/07/2023]
Abstract
Progressive supranuclear palsy-Richardson syndrome (PSP-RS) is a sporadic atypical parkinsonian syndrome with levodopa-unresponsive axial-predominant parkinsonism, early postural instability, vertical supranuclear gaze palsy, dysarthria, executive dysfunction and behavioural changes. PSP-RS can be mimicked by numbers of other disorders, generally known as PSP mimics, or PSP-like syndromes. Their aetiological spectrum includes neurodegenerative (mostly genetic), vascular, infectious and drug-induced illnesses as well as other causes. Based on the available data, we have tried to create a definition of PSP-RS mimics: a syndrome resembling PSP-RS with at least one of the following red flags: 1) positive family history; 2) onset before 45 years of age; 3) rapid or stepwise progression; 4) acute or subacute onset; 5) atypical symptoms and/or signs; 6) normal or atypical brain MRI; 7) history of HIV or untreated syphilis, aortal surgery or recent therapy with dopamine-blocking agents. We have suggested a short diagnostic algorithm leading to the identification of PSP-RS mimics and the recommended diagnostic work-up. The key point of the diagnostic process is the early identification and treatment of potentially treatable PSP-RS mimics.
Collapse
Affiliation(s)
- J Necpál
- 2nd Department of Neurology, Faculty of Medicine, Comenius University, Bratislava, Slovakia; Department of Neurology, Zvolen Hospital, Kuzmányho nábrežie, 28, 960 01 Zvolen, Slovakia.
| | - M Borsek
- Department of Neurology, Zvolen Hospital, Kuzmányho nábrežie, 28, 960 01 Zvolen, Slovakia
| | - B Jeleňová
- Department of Neurology, Zvolen Hospital, Kuzmányho nábrežie, 28, 960 01 Zvolen, Slovakia
| |
Collapse
|
18
|
Sasazawa Y, Hattori N, Saiki S. JNK-interacting protein 4 is a central molecule for lysosomal retrograde trafficking. Bioessays 2023; 45:e2300052. [PMID: 37559169 DOI: 10.1002/bies.202300052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/31/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Lysosomal positioning is an important factor in regulating cellular responses, including autophagy. Because proteins encoded by disease-responsible genes are involved in lysosomal trafficking, proper intracellular lysosomal trafficking is thought to be essential for cellular homeostasis. In the past few years, the mechanisms of lysosomal trafficking have been elucidated with a focus on adapter proteins linking motor proteins to lysosomes. Here, we outline recent findings on the mechanisms of lysosomal trafficking by focusing on adapter protein c-Jun NH2 -terminal kinase-interacting protein (JIP) 4, which plays a central role in this process, and other JIP4 functions and JIP family proteins. Additionally, we discuss neuronal diseases associated with aberrance in the JIP family protein. Accumulating evidence suggests that chemical manipulation of lysosomal positioning may be a therapeutic approach for these neuronal diseases.
Collapse
Affiliation(s)
- Yukiko Sasazawa
- Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Shinji Saiki
- Department of Neurology, Juntendo University Faculty of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
19
|
Bodin A, Greibill L, Gouju J, Letournel F, Pozzi S, Julien JP, Renaud L, Bohl D, Millecamps S, Verny C, Cassereau J, Lenaers G, Chevrollier A, Tassin AM, Codron P. Transactive response DNA-binding protein 43 is enriched at the centrosome in human cells. Brain 2023; 146:3624-3633. [PMID: 37410912 PMCID: PMC10473568 DOI: 10.1093/brain/awad228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 07/08/2023] Open
Abstract
The centrosome, as the main microtubule organizing centre, plays key roles in cell polarity, genome stability and ciliogenesis. The recent identification of ribosomes, RNA-binding proteins and transcripts at the centrosome suggests local protein synthesis. In this context, we hypothesized that TDP-43, a highly conserved RNA binding protein involved in the pathophysiology of amyotrophic lateral sclerosis and frontotemporal lobar degeneration, could be enriched at this organelle. Using dedicated high magnification sub-diffraction microscopy on human cells, we discovered a novel localization of TDP-43 at the centrosome during all phases of the cell cycle. These results were confirmed on purified centrosomes by western blot and immunofluorescence microscopy. In addition, the co-localization of TDP-43 and pericentrin suggested a pericentriolar enrichment of the protein, leading us to hypothesize that TDP-43 might interact with local mRNAs and proteins. Supporting this hypothesis, we found four conserved centrosomal mRNAs and 16 centrosomal proteins identified as direct TDP-43 interactors. More strikingly, all the 16 proteins are implicated in the pathophysiology of TDP-43 proteinopathies, suggesting that TDP-43 dysfunction in this organelle contributes to neurodegeneration. This first description of TDP-43 centrosomal enrichment paves the way for a more comprehensive understanding of TDP-43 physiology and pathology.
Collapse
Affiliation(s)
- Alexia Bodin
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Logan Greibill
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Julien Gouju
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Franck Letournel
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
| | - Silvia Pozzi
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Jean-Pierre Julien
- Department of Psychiatry and Neuroscience, University of Laval, Québec City, Qc G1V 0A6, Canada
- CERVO Brain Research Centre, Québec, Qc G1E 1T2, Canada
| | - Laurence Renaud
- Département de Neurosciences, Université de Montréal, Montréal, Qc H3C 3J7, Canada
- Groupe de recherche sur le système nerveux central, Université de Montréal, Montréal, Qc H3C 3J7, Canada
| | - Delphine Bohl
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Stéphanie Millecamps
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, 75013 Paris, France
| | - Christophe Verny
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Julien Cassereau
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Guy Lenaers
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| | - Arnaud Chevrollier
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
| | - Anne-Marie Tassin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ. Paris Sud, Université Paris-Saclay, 91190 Gif sur Yvette, France
| | - Philippe Codron
- Univ Angers, Equipe MitoLab, Unité MitoVasc, Inserm U1083, CNRS 6015, SFR ICAT, 49100 Angers, France
- Neurobiology and neuropathology, University-Hospital of Angers, 49933 Angers, France
- Department of Neurology, Amyotrophic Lateral Sclerosis Center, University-Hospital of Angers, 49933 Angers, France
| |
Collapse
|
20
|
Elizaldi SR, Hawes CE, Verma A, Dinasarapu AR, Lakshmanappa YS, Schlegel BT, Rajasundaram D, Li J, Durbin-Johnson BP, Ma ZM, Beckman D, Ott S, Lifson J, Morrison JH, Iyer SS. CCR7+ CD4 T Cell Immunosurveillance Disrupted in Chronic SIV-Induced Neuroinflammation in Rhesus Brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555037. [PMID: 37693567 PMCID: PMC10491118 DOI: 10.1101/2023.08.28.555037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
CD4 T cells survey and maintain immune homeostasis in the brain, yet their differentiation states and functional capabilities remain unclear. Our approach, combining single-cell transcriptomic analysis, ATAC-seq, spatial transcriptomics, and flow cytometry, revealed a distinct subset of CCR7+ CD4 T cells resembling lymph node central memory (T CM ) cells. We observed chromatin accessibility at the CCR7, CD28, and BCL-6 loci, defining molecular features of T CM . Brain CCR7+ CD4 T cells exhibited recall proliferation and interleukin-2 production ex vivo, showcasing their functional competence. We identified the skull bone marrow as a local niche for these cells alongside other CNS border tissues. Sequestering T CM cells in lymph nodes using FTY720 led to reduced CCR7+ CD4 T cell frequencies in the cerebrospinal fluid, accompanied by increased monocyte levels and soluble markers indicating immune activation. In macaques chronically infected with SIVCL57 and experiencing viral rebound due to cessation of antiretroviral therapy, a decrease in brain CCR7+ CD4 T cells was observed, along with increased microglial activation and initiation of neurodegenerative pathways. Our findings highlight a role for CCR7+ CD4 T cells in CNS immune surveillance and their decline during chronic SIV-induced neuroinflammation highlights their responsiveness to neuroinflammatory processes. GRAPHICAL ABSTRACT In Brief Utilizing single-cell and spatial transcriptomics on adult rhesus brain, we uncover a unique CCR7+ CD4 T cell subset resembling central memory T cells (T CM ) within brain and border tissues, including skull bone marrow. Our findings show decreased frequencies of this subset during SIV- induced chronic neuroinflammation, emphasizing responsiveness of CCR7+ CD4 T cells to CNS disruptions. Highlights CCR7+ CD4 T cells survey border and parenchymal CNS compartments during homeostasis; reduced presence of CCR7+ CD4 T cells in cerebrospinal fluid leads to immune activation, implying a role in neuroimmune homeostasis. CNS CCR7+ CD4 T cells exhibit phenotypic and functional features of central memory T cells (T CM ) including production of interleukin 2 and the capacity for rapid recall proliferation. Furthermore, CCR7+ CD4 T cells reside in the skull bone marrow. CCR7+ CD4 T cells are markedly decreased within the brain parenchyma during chronic viral neuroinflammation.
Collapse
|
21
|
Dulski J, Koga S, Liberski PP, Sitek EJ, Butala AA, Sławek J, Dickson DW, Wszolek ZK. Perry Disease: Expanding the Genetic Basis. Mov Disord Clin Pract 2023; 10:1136-1142. [PMID: 37476320 PMCID: PMC10354621 DOI: 10.1002/mdc3.13764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/19/2023] [Accepted: 04/28/2023] [Indexed: 07/22/2023] Open
Abstract
Background Perry disease (or Perry syndrome [PS]) is a hereditary neurodegenerative disorder inevitably leading to death within few years from onset. All previous cases with pathological confirmation were caused by mutations within the cytoskeleton-associated protein glycine-rich (CAP-Gly) domain of the DCTN1 gene. Objectives This paper presents the first clinicopathological report of PS due to a novel DCTN1 mutation outside the CAP-Gly domain. Methods Clinical and pathological features of the new variant carrier are compared with another recently deceased PS case with a well-known pathogenic DCTN1 mutation and other reported cases. Results and Conclusions We report a novel DCTN1 mutation outside the CAP-Gly domain that we demonstrated to be pathogenic based on clinical and autopsy findings.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
- Division of Neurological and Psychiatric NursingFaculty of Health Sciences, Medical University of GdanskGdanskPoland
- Neurology DepartmentSt Adalbert Hospital, Copernicus PLGdanskPoland
| | - Shunsuke Koga
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Paweł P. Liberski
- Department of Molecular Pathology and NeuropathologyMedical University of LodzŁódźPoland
- Faculty of Health Science, The Mazovian State University in PłockPłockPoland
| | - Emilia J. Sitek
- Neurology DepartmentSt Adalbert Hospital, Copernicus PLGdanskPoland
- Laboratory of Clinical Neuropsychology, Neurolinguistics and Neuropsychotherapy, Division of Neurological and Psychiatric NursingFaculty of Health Sciences, Medical University of GdanskGdanskPoland
| | - Ankur A. Butala
- Neurology, Psychiatry and Behavioral SciencesJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Jarosław Sławek
- Division of Neurological and Psychiatric NursingFaculty of Health Sciences, Medical University of GdanskGdanskPoland
- Neurology DepartmentSt Adalbert Hospital, Copernicus PLGdanskPoland
| | | | | |
Collapse
|
22
|
Silvaieh S, König T, Wurm R, Parvizi T, Berger-Sieczkowski E, Goeschl S, Hotzy C, Wagner M, Berutti R, Sammler E, Stögmann E, Zimprich A. Comprehensive genetic screening of early-onset dementia patients in an Austrian cohort-suggesting new disease-contributing genes. Hum Genomics 2023; 17:55. [PMID: 37330543 PMCID: PMC10276391 DOI: 10.1186/s40246-023-00499-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/19/2023] Open
Abstract
Early-onset dementia (EOD), with symptom onset before age 65, has a strong genetic burden. Due to genetic and clinical overlaps between different types of dementia, whole-exome sequencing (WES) has emerged as an appropriate screening method for diagnostic testing and novel gene-finding approaches. We performed WES and C9orf72 repeat testing in 60 well-defined Austrian EOD patients. Seven patients (12%) carried likely disease-causing variants in monogenic genes, PSEN1, MAPT, APP, and GRN. Five patients (8%) were APOE4 homozygote carriers. Definite and possible risk variants were detected in the genes TREM2, SORL1, ABCA7 and TBK1. In an explorative approach, we cross-checked rare gene variants in our cohort with a curated neurodegeneration candidate gene list and identified DCTN1, MAPK8IP3, LRRK2, VPS13C and BACE1 as promising candidate genes. Conclusively, 12 cases (20%) carried variants relevant to patient counseling, comparable to previously reported studies, and can thus be considered genetically resolved. Reduced penetrance, oligogenic inheritance and not yet identified high-risk genes might explain the high number of unresolved cases. To address this issue, we provide complete genetic and phenotypic information (uploaded to the European Genome-phenome Archive), enabling other researchers to cross-check variants. Thereby, we hope to increase the chance of independently finding the same gene/variant-hit in other well-defined EOD patient cohorts, thus confirming new genetic risk variants or variant combinations.
Collapse
Affiliation(s)
- Sara Silvaieh
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Theresa König
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Raphael Wurm
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Tandis Parvizi
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Evelyn Berger-Sieczkowski
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Stella Goeschl
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Christoph Hotzy
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| | - Matias Wagner
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Neurogenomics, Helmholtz Centrum, Munich, Germany
| | - Riccardo Berutti
- Institute of Human Genetics, School of Medicine, Technical University of Munich, Munich, Germany
| | - Esther Sammler
- Molecular and Clinical Medicine, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Elisabeth Stögmann
- Department of Neurology, Medical University of Vienna, Vienna, Austria.
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria.
| | - Alexander Zimprich
- Department of Neurology, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
23
|
Abstract
Neurons are markedly compartmentalized, which makes them reliant on axonal transport to maintain their health. Axonal transport is important for anterograde delivery of newly synthesized macromolecules and organelles from the cell body to the synapse and for the retrograde delivery of signaling endosomes and autophagosomes for degradation. Dysregulation of axonal transport occurs early in neurodegenerative diseases and plays a key role in axonal degeneration. Here, we provide an overview of mechanisms for regulation of axonal transport; discuss how these mechanisms are disrupted in neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, hereditary spastic paraplegia, amyotrophic lateral sclerosis, and Charcot-Marie-Tooth disease; and discuss therapeutic approaches targeting axonal transport.
Collapse
|
24
|
Pan X, Hong Q, Lu X, Li Z, Wang L, Chen W, Pan S. A Chinese pedigree with Perry disease caused by the p.Y78H mutation in DCTN1: A 6-year clinical follow-up. Behav Brain Res 2023; 441:114284. [PMID: 36608707 DOI: 10.1016/j.bbr.2023.114284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/02/2023] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
PURPOSE Perry disease is a rare autosomal dominant neurodegenerative disorder with core features of parkinsonism, depression, apathy, weight loss, and central hyperventilation. To date, few cases of Perry disease have been reported worldwide, and they are all due to mutations in the DCTN1 gene. We report a case of a Chinese pedigree. METHODS Clinical information was collected from a Chinese pedigree. Brain magnetic resonance imaging, pulmonary function tests, and arterial blood gas analysis were performed on both the proband and his youngest aunt. Genomic DNA from the proband's aunt was analyzed using whole-exome sequencing to detect genetic mutations. RESULTS The family displayed an autosomal dominant mode of inheritance, and we identified a p.Y78H mutation in DCTN1. After 6 years of follow-up, the proband exhibited mood-related "on-off" phenomena, weight gain, and used a CPAP ventilator at night. The proband's aunt presented with weight loss and respiratory failure four years after disease onset. CONCLUSION This study reports a Chinese family with Perry disease. The mutation of DCTN1 in this family is p.Y78H. We share the findings in this family, hoping to increase our understanding of Perry disease in clinical work. DATA AVAILABILITY STATEMENT The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.
Collapse
Affiliation(s)
- Xingyuan Pan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qian Hong
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xucong Lu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Zhengzheng Li
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weian Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Sipei Pan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
25
|
Genetics of Multiple System Atrophy and Progressive Supranuclear Palsy: A Systemized Review of the Literature. Int J Mol Sci 2023; 24:ijms24065281. [PMID: 36982356 PMCID: PMC10048872 DOI: 10.3390/ijms24065281] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Multiple system atrophy (MSA) and progressive supranuclear palsy (PSP) are uncommon multifactorial atypical Parkinsonian syndromes, expressed by various clinical features. MSA and PSP are commonly considered sporadic neurodegenerative disorders; however, our understanding is improving of their genetic framework. The purpose of this study was to critically review the genetics of MSA and PSP and their involvement in the pathogenesis. A systemized literature search of PubMed and MEDLINE was performed up to 1 January 2023. Narrative synthesis of the results was undertaken. In total, 43 studies were analyzed. Although familial MSA cases have been reported, the hereditary nature could not be demonstrated. COQ2 mutations were involved in familial and sporadic MSA, without being reproduced in various clinical populations. In terms of the genetics of the cohort, synuclein alpha (SNCA) polymorphisms were correlated with an elevated likelihood of manifesting MSA in Caucasians, but a causal effect relationship could not be demonstrated. Fifteen MAPT mutations were linked with PSP. Leucine-rich repeat kinase 2 (LRRK2) is an infrequent monogenic mutation of PSP. Dynactin subunit 1 (DCTN1) mutations may imitate the PSP phenotype. GWAS have noted many risk loci of PSP (STX6 and EIF2AK3), suggesting pathogenetic mechanisms related to PSP. Despite the limited evidence, it seems that genetics influence the susceptibility to MSA and PSP. MAPT mutations result in the MSA and PSP pathologies. Further studies are crucial to elucidate the pathogeneses of MSA and PSP, which will support efforts to develop novel drug options.
Collapse
|
26
|
Yu J, Yang X, Zheng J, Sgobio C, Sun L, Cai H. Deficiency of Perry syndrome-associated p150 Glued in midbrain dopaminergic neurons leads to progressive neurodegeneration and endoplasmic reticulum abnormalities. NPJ Parkinsons Dis 2023; 9:35. [PMID: 36879021 PMCID: PMC9988887 DOI: 10.1038/s41531-023-00478-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Multiple missense mutations in p150Glued are linked to Perry syndrome (PS), a rare neurodegenerative disease pathologically characterized by loss of nigral dopaminergic (DAergic) neurons. Here we generated p150Glued conditional knockout (cKO) mice by deleting p150Glued in midbrain DAergic neurons. The young cKO mice displayed impaired motor coordination, dystrophic DAergic dendrites, swollen axon terminals, reduced striatal dopamine transporter (DAT), and dysregulated dopamine transmission. The aged cKO mice showed loss of DAergic neurons and axons, somatic accumulation of α-synuclein, and astrogliosis. Further mechanistic studies revealed that p150Glued deficiency in DAergic neurons led to the reorganization of endoplasmic reticulum (ER) in dystrophic dendrites, upregulation of ER tubule-shaping protein reticulon 3, accumulation of DAT in reorganized ERs, dysfunction of COPII-mediated ER export, activation of unfolded protein response, and exacerbation of ER stress-induced cell death. Our findings demonstrate the importance of p150Glued in controlling the structure and function of ER, which is critical for the survival and function of midbrain DAergic neurons in PS.
Collapse
Affiliation(s)
- Jia Yu
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China.
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Xuan Yang
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Jiayin Zheng
- Basic Research Center, Institute for Geriatrics and Rehabilitation, Beijing Geriatric Hospital, Beijing, 100095, China
| | - Carmelo Sgobio
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
- Center for Neuropathology and Prion Research, Ludwig-Maximilians University Munich, Munich, 81377, Germany
| | - Lixin Sun
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Huaibin Cai
- Transgenics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
27
|
Karapetyan L, Gooding W, Li A, Yang X, Knight A, Abushukair HM, Vargas De Stefano D, Sander C, Karunamurthy A, Panelli M, Storkus WJ, Tarhini AA, Kirkwood JM. Sentinel Lymph Node Gene Expression Signature Predicts Recurrence-Free Survival in Cutaneous Melanoma. Cancers (Basel) 2022; 14:4973. [PMID: 36291758 PMCID: PMC9599365 DOI: 10.3390/cancers14204973] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/16/2022] Open
Abstract
We sought to develop a sentinel lymph node gene expression signature score predictive of disease recurrence in patients with cutaneous melanoma. Gene expression profiling was performed on SLN biopsies using U133A 2.0 Affymetrix gene chips. The top 25 genes associated with recurrence-free survival (RFS) were selected and a penalized regression function was used to select 12 genes with a non-zero coefficient. A proportional hazards regression model was used to evaluate the association between clinical covariates, gene signature score, and RFS. Among the 45 patients evaluated, 23 (51%) had a positive SLN. Twenty-one (46.7%) patients developed disease recurrence. For the top 25 differentially expressed genes (DEG), 12 non-zero penalized coefficients were estimated (CLGN, C1QTNF3, ADORA3, ARHGAP8, DCTN1, ASPSCR1, CHRFAM7A, ZNF223, PDE6G, CXCL3, HEXIM1, HLA-DRB). This 12-gene signature score was significantly associated with RFS (p < 0.0001) and produced a bootstrap C index of 0.888. In univariate analysis, Breslow thickness, presence of primary tumor ulceration, SLN positivity were each significantly associated with RFS. After simultaneously adjusting for these prognostic factors in relation to the gene signature, the 12-gene score remained a significant independent predictor for RFS (p < 0.0001). This SLN 12-gene signature risk score is associated with melanoma recurrence regardless of SLN status and may be used as a prognostic factor for RFS.
Collapse
Affiliation(s)
- Lilit Karapetyan
- Department of Cutaneous Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - William Gooding
- Hillman Cancer Center, Biostatistics Facility, Pittsburgh, PA 15213, USA
| | - Aofei Li
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xi Yang
- Department of Medicine, Brigham and Women’s Hospital and Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Andrew Knight
- Department of Medicine, Division of General Internal Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hassan M. Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Danielle Vargas De Stefano
- Department of Pathology, Division of Pediatric Pathology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Cindy Sander
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Arivarasan Karunamurthy
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
- Departments of Dermatology and Pathology, Divisions of Dermatopathology and Molecular Genetic Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | | | - Walter J. Storkus
- Departments of Dermatology, Immunology, Pathology and Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Ahmad A. Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - John M. Kirkwood
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Medicine, Division of Hematology/Oncology; University of Pittsburgh Medical Center, Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
28
|
Stoker TB, Dostal V, Cochius J, Williams-Gray CH, Scherzer CR, Wang J, Liu G, Coyle-Gilchrist I. DCTN1 mutation associated parkinsonism: case series of three new families with perry syndrome. J Neurol 2022; 269:6667-6672. [PMID: 35895135 DOI: 10.1007/s00415-022-11308-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Thomas B Stoker
- Department of Neurology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK.
| | - Vaclav Dostal
- Department of Neurology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK
| | - Jeffrey Cochius
- Department of Neurology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK
| | - Caroline H Williams-Gray
- John Van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Clemens R Scherzer
- ADPA Center for Advanced Parkinson Research, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA.,Precision Neurology Program, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Junhao Wang
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ganqiang Liu
- Neurobiology Research Center, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, 518107, Guangdong, China
| | - Ian Coyle-Gilchrist
- Department of Neurology, Norfolk and Norwich University Hospital, Colney Lane, Norwich, UK
| |
Collapse
|
29
|
Tábuas-Pereira M, Santana I, Gibbons E, Paquette K, Almeida MR, Baldeiras I, Bras J, Guerreiro R. Exome Sequencing of a Portuguese Cohort of Frontotemporal Dementia Patients: Looking Into the ALS-FTD Continuum. Front Neurol 2022; 13:886379. [PMID: 35873773 PMCID: PMC9300853 DOI: 10.3389/fneur.2022.886379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/31/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction Frontotemporal dementia (FTD) is considered to be part of a continuum with amyotrophic lateral sclerosis (ALS). Many genes are associated with both ALS and FTD. Yet, many genes associated with ALS have not been shown to cause FTD. We aimed to study a Portuguese cohort of FTD patients, searching for variants in genes associated with both FTD and/or ALS. Methods We included 57 thoroughly characterized index FTD patients from our memory clinic, who were not carriers of pathogenic variants in GRN, MAPT or C9orf72. We performed exome sequencing and 1) prioritized potential FTD and ALS causing variants by using Exomiser to annotate and filter results; and 2) looked specifically at rare variability in genes associated with FTD (excluding GRN, MAPT and C9ORF72) and/or ALS. Results We identified 13 rare missense variants in 10 patients (three patients had two variants) in the following genes: FUS, OPTN, CCNF, DCTN1, TREM2, ERBB4, ANG, CHRNA4, CHRNB4 and SETX. We found an additional frameshift variant on GLT8D1 in one patient. One variant (ERBB4 p.Arg1112His) gathered enough evidence to be classified as likely pathogenic by the ACMG criteria. Discussion We report, for the first time, an expanded study of genes known to cause FTD-ALS, in the Portuguese population. Potentially pathogenic variants in ERBB4, FUS, SETX, ANG, CHRNA4 and CHRNB4 were identified in FTD patients. These findings provide additional evidence for the potential role of rare variability in ALS-associated genes in FTD, expanding the genetic spectrum between the two diseases.
Collapse
Affiliation(s)
- Miguel Tábuas-Pereira
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- *Correspondence: Miguel Tábuas-Pereira
| | - Isabel Santana
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Department of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Elizabeth Gibbons
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Kimberly Paquette
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
| | - Maria Rosário Almeida
- Department of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Inês Baldeiras
- Neurology Department, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal
- Department of Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, Coimbra, Portugal
- Department of Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Jose Bras
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - Rita Guerreiro
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, United States
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
30
|
Degenerative dementias: a question of syndrome or disease? NEUROLOGÍA (ENGLISH EDITION) 2022; 37:480-491. [DOI: 10.1016/j.nrleng.2019.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/07/2019] [Indexed: 11/20/2022] Open
|
31
|
Robles Bayón A. Degenerative dementias: A question of syndrome or disease? Neurologia 2022; 37:480-491. [PMID: 31331676 DOI: 10.1016/j.nrl.2019.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/07/2019] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Neurologists refer to numerous "syndromes,‿ consisting of specific combinations of clinical manifestations, following a specific progression pattern, and with the support of blood analysis (without genomic-proteomic parameters) and neuroimaging findings (MRI, CT, perfusion SPECT, or 18F-FDG-PET scans). Neurodegenerative "diseases,‿ on the other hand, are defined by specific combinations of clinical signs and histopathological findings; these must be confirmed by a clinical examination and a histology study or evidence of markers of a specific disorder for the diagnosis to be made. However, we currently know that most genetic and histopathological alterations can result in diverse syndromes. The genetic or histopathological aetiology of each syndrome is also heterogeneous, and we may encounter situations with pathophysiological alterations characterising more than one neurodegenerative disease. Sometimes, specific biomarkers are detected in the preclinical stage. DEVELOPMENT We performed a literature review to identify patients whose histopathological or genetic disorder was discordant with that expected for the clinical syndrome observed, as well as patients presenting multiple neurodegenerative diseases, confirming the heterogeneity and overlap between syndromes and diseases. We also observed that the treatments currently prescribed to patients with neurodegenerative diseases are symptomatic. CONCLUSIONS Our findings show that the search for disease biomarkers should be restricted to research centres, given the lack of disease-modifying drugs or treatments improving survival. Moreover, syndromes and specific molecular or histopathological alterations should be managed independently of one another, and new "diseases‿ should be defined and adapted to current knowledge and practice.
Collapse
Affiliation(s)
- A Robles Bayón
- Unidad de Neurología Cognitiva, Hospital HM Rosaleda, Santiago de Compostela, La Coruña, España.
| |
Collapse
|
32
|
Predicting Parkinson disease related genes based on PyFeat and gradient boosted decision tree. Sci Rep 2022; 12:10004. [PMID: 35705654 PMCID: PMC9200794 DOI: 10.1038/s41598-022-14127-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Identifying genes related to Parkinson’s disease (PD) is an active research topic in biomedical analysis, which plays a critical role in diagnosis and treatment. Recently, many studies have proposed different techniques for predicting disease-related genes. However, a few of these techniques are designed or developed for PD gene prediction. Most of these PD techniques are developed to identify only protein genes and discard long noncoding (lncRNA) genes, which play an essential role in biological processes and the transformation and development of diseases. This paper proposes a novel prediction system to identify protein and lncRNA genes related to PD that can aid in an early diagnosis. First, we preprocessed the genes into DNA FASTA sequences from the University of California Santa Cruz (UCSC) genome browser and removed the redundancies. Second, we extracted some significant features of DNA FASTA sequences using the PyFeat method with the AdaBoost as feature selection. These selected features achieved promising results compared with extracted features from some state-of-the-art feature extraction techniques. Finally, the features were fed to the gradient-boosted decision tree (GBDT) to diagnose different tested cases. Seven performance metrics were used to evaluate the performance of the proposed system. The proposed system achieved an average accuracy of 78.6%, the area under the curve equals 84.5%, the area under precision-recall (AUPR) equals 85.3%, F1-score equals 78.3%, Matthews correlation coefficient (MCC) equals 0.575, sensitivity (SEN) equals 77.1%, and specificity (SPC) equals 80.2%. The experiments demonstrate promising results compared with other systems. The predicted top-rank protein and lncRNA genes are verified based on a literature review.
Collapse
|
33
|
Ruiz-Barrio I, Horta-Barba A, Illán-Gala I, Kulisevsky J, Pagonabarraga J. Genotype-Phenotype Correlation in Progressive Supranuclear Palsy Syndromes: Clinical and Radiological Similarities and Specificities. Front Neurol 2022; 13:861585. [PMID: 35557621 PMCID: PMC9087829 DOI: 10.3389/fneur.2022.861585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/23/2022] [Indexed: 11/24/2022] Open
Abstract
The progressive supranuclear palsy (PSP) syndrome encompasses different entities. PSP disease of sporadic origin is the most frequent presentation, but different genetic mutations can lead either to monogenic variants of PSP disease, or to other conditions with a different pathophysiology that eventually may result in PSP phenotype. PSP syndrome of monogenic origin is poorly understood due to the low prevalence and variable expressivity of some mutations. Through this review, we describe how early age of onset, family history of early dementia, parkinsonism, dystonia, or motor neuron disease among other clinical features, as well as some neuroimaging signatures, may be the important clues to suspect PSP syndrome of monogenic origin. In addition, a diagnostic algorithm is proposed that may be useful to guide the genetic diagnosis once there is clinical suspicion of a monogenic PSP syndrome.
Collapse
Affiliation(s)
- Iñigo Ruiz-Barrio
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ignacio Illán-Gala
- Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Sant Pau Memory Unit, Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain.,Sant Pau Biomedical Research Institute (IIB-Sant Pau), Barcelona, Spain.,Centro de Investigación en Red - Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
34
|
Lange LM, Gonzalez-Latapi P, Rajalingam R, Tijssen MAJ, Ebrahimi-Fakhari D, Gabbert C, Ganos C, Ghosh R, Kumar KR, Lang AE, Rossi M, van der Veen S, van de Warrenburg B, Warner T, Lohmann K, Klein C, Marras C. Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force - An Update. Mov Disord 2022; 37:905-935. [PMID: 35481685 DOI: 10.1002/mds.28982] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/28/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022] Open
Abstract
In 2016, the Movement Disorder Society Task Force for the Nomenclature of Genetic Movement Disorders presented a new system for naming genetically determined movement disorders and provided a criterion-based list of confirmed monogenic movement disorders. Since then, a substantial number of novel disease-causing genes have been described, which warrant classification using this system. In addition, with this update, we further refined the system and propose dissolving the imaging-based categories of Primary Familial Brain Calcification and Neurodegeneration with Brain Iron Accumulation and reclassifying these genetic conditions according to their predominant phenotype. We also introduce the novel category of Mixed Movement Disorders (MxMD), which includes conditions linked to multiple equally prominent movement disorder phenotypes. In this article, we present updated lists of newly confirmed monogenic causes of movement disorders. We found a total of 89 different newly identified genes that warrant a prefix based on our criteria; 6 genes for parkinsonism, 21 for dystonia, 38 for dominant and recessive ataxia, 5 for chorea, 7 for myoclonus, 13 for spastic paraplegia, 3 for paroxysmal movement disorders, and 6 for mixed movement disorder phenotypes; 10 genes were linked to combined phenotypes and have been assigned two new prefixes. The updated lists represent a resource for clinicians and researchers alike and they have also been published on the website of the Task Force for the Nomenclature of Genetic Movement Disorders on the homepage of the International Parkinson and Movement Disorder Society (https://www.movementdisorders.org/MDS/About/Committees--Other-Groups/MDS-Task-Forces/Task-Force-on-Nomenclature-in-Movement-Disorders.htm). © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lara M Lange
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Paulina Gonzalez-Latapi
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada.,Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rajasumi Rajalingam
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Marina A J Tijssen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Darius Ebrahimi-Fakhari
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christos Ganos
- Department of Neurology, Charité University Hospital Berlin, Berlin, Germany
| | - Rhia Ghosh
- Huntington's Disease Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kishore R Kumar
- Molecular Medicine Laboratory and Department of Neurology, Concord Repatriation General Hospital, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Anthony E Lang
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | - Malco Rossi
- Movement Disorders Section, Neuroscience Department, Raul Carrea Institute for Neurological Research (FLENI), Buenos Aires, Argentina
| | - Sterre van der Veen
- UMCG Expertise Centre Movement Disorders, Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Center of Expertise for Parkinson and Movement Disorders, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tom Warner
- Department of Clinical & Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Katja Lohmann
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Connie Marras
- The Edmond J. Safra Program in Parkinson's Disease and The Morton and Gloria Shulman Movement Disorder Clinic, Toronto Western Hospital, University of Toronto, Toronto, Canada
| | | |
Collapse
|
35
|
Marchese S, Cancelmo L, Diab O, Cahn L, Aaronson C, Daskalakis NP, Schaffer J, Horn SR, Johnson JS, Schechter C, Desarnaud F, Bierer LM, Makotkine I, Flory JD, Crane M, Moline JM, Udasin IG, Harrison DJ, Roussos P, Charney DS, Koenen KC, Southwick SM, Yehuda R, Pietrzak RH, Huckins LM, Feder A. Altered gene expression and PTSD symptom dimensions in World Trade Center responders. Mol Psychiatry 2022; 27:2225-2246. [PMID: 35177824 DOI: 10.1038/s41380-022-01457-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 11/16/2021] [Accepted: 01/18/2022] [Indexed: 11/09/2022]
Abstract
Despite experiencing a significant trauma, only a subset of World Trade Center (WTC) rescue and recovery workers developed posttraumatic stress disorder (PTSD). Identification of biomarkers is critical to the development of targeted interventions for treating disaster responders and potentially preventing the development of PTSD in this population. Analysis of gene expression from these individuals can help in identifying biomarkers of PTSD. We established a well-phenotyped sample of 371 WTC responders, recruited from a longitudinal WTC responder cohort using stratified random sampling, by obtaining blood, self-reported and clinical interview data. Using bulk RNA-sequencing from whole blood, we examined the association between gene expression and WTC-related PTSD symptom severity on (i) highest lifetime Clinician-Administered PTSD Scale (CAPS) score, (ii) past-month CAPS score, and (iii) PTSD symptom dimensions using a 5-factor model of re-experiencing, avoidance, emotional numbing, dysphoric arousal and anxious arousal symptoms. We corrected for sex, age, genotype-derived principal components and surrogate variables. Finally, we performed a meta-analysis with existing PTSD studies (total N = 1016), using case/control status as the predictor and correcting for these variables. We identified 66 genes significantly associated with total highest lifetime CAPS score (FDR-corrected p < 0.05), and 31 genes associated with total past-month CAPS score. Our more granular analyses of PTSD symptom dimensions identified additional genes that did not reach statistical significance in our analyses with total CAPS scores. In particular, we identified 82 genes significantly associated with lifetime anxious arousal symptoms. Several genes significantly associated with multiple PTSD symptom dimensions and total lifetime CAPS score (SERPINA1, RPS6KA1, and STAT3) have been previously associated with PTSD. Geneset enrichment of these findings has identified pathways significant in metabolism, immune signaling, other psychiatric disorders, neurological signaling, and cellular structure. Our meta-analysis revealed 10 genes that reached genome-wide significance, all of which were downregulated in cases compared to controls (CIRBP, TMSB10, FCGRT, CLIC1, RPS6KB2, HNRNPUL1, ALDOA, NACA, ZNF429 and COPE). Additionally, cellular deconvolution highlighted an enrichment in CD4 T cells and eosinophils in responders with PTSD compared to controls. The distinction in significant genes between total lifetime CAPS score and the anxious arousal symptom dimension of PTSD highlights a potential biological difference in the mechanism underlying the heterogeneity of the PTSD phenotype. Future studies should be clear about methods used to analyze PTSD status, as phenotypes based on PTSD symptom dimensions may yield different gene sets than combined CAPS score analysis. Potential biomarkers implicated from our meta-analysis may help improve therapeutic target development for PTSD.
Collapse
Affiliation(s)
- Shelby Marchese
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leo Cancelmo
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Olivia Diab
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leah Cahn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Cindy Aaronson
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Nikolaos P Daskalakis
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - Jamie Schaffer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Sarah R Horn
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jessica S Johnson
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Clyde Schechter
- Department of Family and Social Medicine, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Frank Desarnaud
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Linda M Bierer
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Iouri Makotkine
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Janine D Flory
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Michael Crane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jacqueline M Moline
- Department of Occupational Medicine, Epidemiology and Prevention, Zucker School of Medicine at Hofstra/Northwell, Great Neck, NY, USA
| | - Iris G Udasin
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Denise J Harrison
- Department of Medicine, Division of Pulmonary Critical Care and Sleep Medicine, NYU School of Medicine, New York, NY, USA
| | - Panos Roussos
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 14068, USA
| | - Dennis S Charney
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Karestan C Koenen
- Massachusetts General Hospital, Psychiatric and Neurodevelopmental Genetics Unit (PNGU), Boston, MA, USA
- Broad Institute of MIT and Harvard, Stanley Center for Psychiatric Research, Cambridge, MA, USA
- Harvard School of Public Health, Department of Epidemiology, Boston, MA, USA
| | - Steven M Southwick
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Rachel Yehuda
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Psychiatry, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA
| | - Robert H Pietrzak
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Department of Veterans Affairs National Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT, USA
| | - Laura M Huckins
- Pamela Sklar Division of Psychiatric Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
- Mental Illness Research, Education and Clinical Centers, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY, 14068, USA.
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Adriana Feder
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
36
|
Mehta S, Goel A, Singh D, Ray S, Tigari B, Takkar A, Lal V. Dystonia and Optic Neuropathy: Expanded Phenotype of Dynactin 1 Related Neurodegeneration. Mov Disord Clin Pract 2022; 9:535-539. [PMID: 35586532 PMCID: PMC9092729 DOI: 10.1002/mdc3.13424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/21/2022] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Affiliation(s)
- Sahil Mehta
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Abeer Goel
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Deependra Singh
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Sucharita Ray
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Basavaraj Tigari
- Department of OphthalmologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Aastha Takkar
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| | - Vivek Lal
- Department of NeurologyPost Graduate Institute of Medical Education and ResearchChandigarhIndia
| |
Collapse
|
37
|
Jellinger KA. Pallidal degenerations and related disorders: an update. J Neural Transm (Vienna) 2021; 129:521-543. [PMID: 34363531 DOI: 10.1007/s00702-021-02392-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/22/2021] [Indexed: 11/26/2022]
Abstract
Neurodegenerative disorders involving preferentially the globus pallidus, its efferet and afferent circuits and/or related neuronal systems are rare. They include a variety of both familial and sporadic progressive movement disorders, clinically manifesting as choreoathetosis, dystonia, Parkinsonism, akinesia or myoclonus, often associated with seizures, mental impairment and motor or cerebellar symptoms. Based on the involved neuronal systems, this heterogenous group has been classified into several subgroups: "pure" pallidal atrophy (PPA) and extended forms, pallidonigral and pallidonigrospinal degeneration (PND, PNSD), pallidopyramidal syndrome (PPS), a highly debatable group, pallidopontonigral (PPND), nigrostriatal-pallidal-pyramidal degeneration (NSPPD) (Kufor-Rakeb syndrome /KRS), pallidoluysian degeneration (PLD), pallidoluysionigral degeneration (PLND), pallidoluysiodentate atrophy (PLDA), the more frequent dentatorubral-pallidoluysian atrophy (DRPLA), and other hereditary multisystem disorders affecting these systems, e.g., neuroferritinopathy (NF). Some of these syndromes are sporadic, others show autosomal recessive or dominant heredity, and for some specific gene mutations have been detected, e.g., ATP13A2/PARK9 (KRS), FTL1 or ATP13A2 (neuroferritinopathy), CAG triple expansions in gene ATN1 (DRPLA) or pA152T variant in MAPT gene (PNLD). One of the latter, and both PPND and DRPLA are particular subcortical 4-R tauopathies, related to progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and frontotemporal lobe degeneration-17 (FTLD-17), while others show additional 3-R and 4-R tauopathies or TDP-43 pathologies. The differential diagnosis includes a large variety of neurodegenerations ranging from Huntington and Joseph-Machado disease, tauopathies (PSP), torsion dystonia, multiple system atrophy, neurodegeneration with brain iron accumulation (NBIA), and other extrapyramidal disorders. Neuroimaging data and biological markers have been published for only few syndromes. In the presence of positive family histories, an early genetic counseling may be effective. The etiology of most phenotypes is unknown, and only for some pathogenic mechanisms, like polyglutamine-induced oxidative stress and autophagy in DRPLA, mitochondrial dysfunction induced by oxidative stress in KRS or ferrostasis/toxicity and protein aggregation in NF, have been discussed. Currently no disease-modifying therapy is available, and symptomatic treatment of hypo-, hyperkinetic, spastic or other symptoms may be helpful.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
38
|
Dulski J, Cerquera-Cleves C, Milanowski L, Kidd A, Sitek EJ, Strongosky A, Vanegas Monroy AM, Dickson DW, Ross OA, Pentela-Nowicka J, Sławek J, Wszolek ZK. Clinical, pathological and genetic characteristics of Perry disease-new cases and literature review. Eur J Neurol 2021; 28:4010-4021. [PMID: 34342072 DOI: 10.1111/ene.15048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 07/25/2021] [Accepted: 07/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND AND PURPOSE Perry disease (or Perry syndrome) is an autosomal dominant neurodegenerative disorder characterized by parkinsonism, neuropsychiatric symptoms, central hypoventilation, weight loss and distinct TDP-43 pathology. It is caused by mutations of the DCTN1 gene encoding an essential component of axonal transport. The objectives were to provide the current state of knowledge on clinical, pathological and genetic aspects of Perry disease, as well as practical suggestions for the management of the disease. METHODS Data on new patients from New Zealand, Poland and Colombia were collected, including autopsy report. Also all of the published papers since the original work by Perry in 1975 were gathered and analyzed. RESULTS Parkinsonism was symmetrical, progressed rapidly and was poorly responsive to L-Dopa; nonetheless, a trial with high doses of L-Dopa is warranted. Depression was severe, associated with suicidal ideations, and benefited from antidepressants and L-Dopa. Respiratory symptoms were the leading cause of death, and artificial ventilation or a diaphragm pacemaker prolonged survival. Weight loss occurred in most patients and was of multifactorial etiology. Autonomic dysfunction was frequent but underdiagnosed. There was a clinical overlap with other neurodegenerative disorders. An autopsy showed distinctive pallidonigral degeneration with TDP-43 pathology. Genetic testing provided evidence of a common founder for two families. There was striking phenotypic variability in DCTN1-related disorders. It is hypothesized that oligogenic or polygenic inheritance is at play. CONCLUSIONS Perry disease and other DCTN1-related diseases are increasingly diagnosed worldwide. Relatively effective symptomatic treatments are available. Further studies are needed to pave the way toward curative/gene therapy.
Collapse
Affiliation(s)
- Jarosław Dulski
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.,Neurology Department, St Adalbert Hospital, Copernicus PL, Gdansk, Poland
| | - Catalina Cerquera-Cleves
- Neurology Unit, Pontificia Universidad Javeriana, San Ignacio Hospital, Bogotá, Colombia.,Movement Disorders Clinic, Clínica Universitaria Colombia, Bogotá, Colombia
| | - Lukasz Milanowski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.,Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA.,Department of Neurology, Faculty of Health Science, Medical University of Warsaw, Warsaw, Poland
| | - Alexa Kidd
- Clinical Genetics NZ Ltd, Christchurch, New Zealand
| | - Emilia J Sitek
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.,Neurology Department, St Adalbert Hospital, Copernicus PL, Gdansk, Poland
| | | | | | | | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Jarosław Sławek
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland.,Neurology Department, St Adalbert Hospital, Copernicus PL, Gdansk, Poland
| | | |
Collapse
|
39
|
Pikatza-Menoio O, Elicegui A, Bengoetxea X, Naldaiz-Gastesi N, López de Munain A, Gerenu G, Gil-Bea FJ, Alonso-Martín S. The Skeletal Muscle Emerges as a New Disease Target in Amyotrophic Lateral Sclerosis. J Pers Med 2021; 11:671. [PMID: 34357138 PMCID: PMC8307751 DOI: 10.3390/jpm11070671] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 01/02/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder that leads to progressive degeneration of motor neurons (MNs) and severe muscle atrophy without effective treatment. Most research on ALS has been focused on the study of MNs and supporting cells of the central nervous system. Strikingly, the recent observations of pathological changes in muscle occurring before disease onset and independent from MN degeneration have bolstered the interest for the study of muscle tissue as a potential target for delivery of therapies for ALS. Skeletal muscle has just been described as a tissue with an important secretory function that is toxic to MNs in the context of ALS. Moreover, a fine-tuning balance between biosynthetic and atrophic pathways is necessary to induce myogenesis for muscle tissue repair. Compromising this response due to primary metabolic abnormalities in the muscle could trigger defective muscle regeneration and neuromuscular junction restoration, with deleterious consequences for MNs and thereby hastening the development of ALS. However, it remains puzzling how backward signaling from the muscle could impinge on MN death. This review provides a comprehensive analysis on the current state-of-the-art of the role of the skeletal muscle in ALS, highlighting its contribution to the neurodegeneration in ALS through backward-signaling processes as a newly uncovered mechanism for a peripheral etiopathogenesis of the disease.
Collapse
Affiliation(s)
- Oihane Pikatza-Menoio
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Amaia Elicegui
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Xabier Bengoetxea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Gorka Gerenu
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
- Department of Physiology, University of the Basque Country UPV-EHU, 48940 Leioa, Spain
| | - Francisco Javier Gil-Bea
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| | - Sonia Alonso-Martín
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain; (O.P.-M.); (A.E.); (X.B.); (N.N.-G.); (A.L.d.M.); (G.G.); (F.J.G.-B.)
- CIBERNED, Carlos III Institute, Spanish Ministry of Economy & Competitiveness, 28031 Madrid, Spain
| |
Collapse
|
40
|
Kim DD, Alghefari H, Jenkins M, Ang LC, Pasternak SH. Neuropathology of Perry Syndrome: Evidence of Medullary and Hypothalamic Involvement. Mov Disord Clin Pract 2021; 8:713-716. [PMID: 34307744 DOI: 10.1002/mdc3.13235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 11/11/2022] Open
Abstract
Background Perry syndrome is a rare genetic parkinsonian disorder with TAR DNA binding protein 43 (TDP-43) pathology clinically presenting with parkinsonism, neuropsychiatric features, weight loss, and central hypoventilation. As respiratory complications are often the cause of death, studies likely show the early stage of the neurodegenerative process. Because of the rarity of this condition, few studies exist, and each case provides insight into pathological findings in this neurodegenerative condition. Objective To study the clinical and pathological correlations of an autopsy case of Perry syndrome. Methods The patient was a woman in her 50s with Perry syndrome and a DCTN1 gene mutation. Between October 2016 and July 2019, she underwent postmortem and pathological examination at University Hospital in London, Ontario, Canada. Data were obtained through clinical pathological examination. Results Microscopy showed significant neuronal loss with pigmentary incontinence and gliosis in the substantia nigra. There was no atrophy elsewhere, including the frontal and cingulate cortex. Intraneuronal cytoplasmic TDP-43 inclusions and neurites were noticed in a moderate number in the substantia nigra and midbrain and were sparsely noticed in the basal ganglia, thalamus, thoracic motor neuron, posterior nucleus of the hypothalamus, and rostral ventral medulla. β-Amyloid, Lewy body, and tau pathologies were absent. Rare axonal swelling was identified at the rostral ventrolateral medulla. Conclusions and Relevance This study confirms that Perry syndrome is characterized by TDP-43 pathology with absent Lewy bodies or tau pathology. These findings support the hypothesis of dysfunctional neurons in the medulla and hypothalamus, which may respectively correlate to the clinical symptoms of hypoventilation and weight loss in Perry syndrome.
Collapse
Affiliation(s)
- David Dongkyung Kim
- Department of Clinical Neurological Sciences Western University London Ontario Canada
| | - Huda Alghefari
- Department of Pathology and Laboratory Medicine Western University London Ontario Canada
| | - Mary Jenkins
- Department of Clinical Neurological Sciences Western University London Ontario Canada
| | - Lee-Cyn Ang
- Department of Clinical Neurological Sciences Western University London Ontario Canada.,Department of Pathology and Laboratory Medicine Western University London Ontario Canada
| | - Stephen H Pasternak
- Department of Clinical Neurological Sciences Western University London Ontario Canada.,Molecular Brain Research Group, Robarts Research Institute Western University London Ontario Canada
| |
Collapse
|
41
|
Koziorowski D, Figura M, Milanowski ŁM, Szlufik S, Alster P, Madetko N, Friedman A. Mechanisms of Neurodegeneration in Various Forms of Parkinsonism-Similarities and Differences. Cells 2021; 10:656. [PMID: 33809527 PMCID: PMC7999195 DOI: 10.3390/cells10030656] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson's disease (PD), dementia with Lewy body (DLB), progressive supranuclear palsy (PSP), corticobasal degeneration (CBD) and multiple system atrophy (MSA) belong to a group of neurodegenerative diseases called parkinsonian syndromes. They share several clinical, neuropathological and genetic features. Neurodegenerative diseases are characterized by the progressive dysfunction of specific populations of neurons, determining clinical presentation. Neuronal loss is associated with extra- and intracellular accumulation of misfolded proteins. The parkinsonian diseases affect distinct areas of the brain. PD and MSA belong to a group of synucleinopathies that are characterized by the presence of fibrillary aggregates of α-synuclein protein in the cytoplasm of selected populations of neurons and glial cells. PSP is a tauopathy associated with the pathological aggregation of the microtubule associated tau protein. Although PD is common in the world's aging population and has been extensively studied, the exact mechanisms of the neurodegeneration are still not fully understood. Growing evidence indicates that parkinsonian disorders to some extent share a genetic background, with two key components identified so far: the microtubule associated tau protein gene (MAPT) and the α-synuclein gene (SNCA). The main pathways of parkinsonian neurodegeneration described in the literature are the protein and mitochondrial pathways. The factors that lead to neurodegeneration are primarily environmental toxins, inflammatory factors, oxidative stress and traumatic brain injury.
Collapse
Affiliation(s)
- Dariusz Koziorowski
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Monika Figura
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Łukasz M. Milanowski
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
- Department of Neurology, Mayo Clinic, Jacksonville, FL 32224, USA
- Department of Neuroscience, Mayo Clinic Florida, Jacksonville, FL 32224, USA
| | - Stanisław Szlufik
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Piotr Alster
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Natalia Madetko
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| | - Andrzej Friedman
- Department of Neurology, Faculty of Heath Science, Medical University of Warsaw, 03-285 Warsaw, Poland; (M.F.); (Ł.M.M.); (S.S.); (P.A.); (N.M.); (A.F.)
| |
Collapse
|
42
|
Hori A, Ai T, Isshiki M, Motoi Y, Yano K, Tabe Y, Hattori N, Miida T. Novel Variants in the CLCN1, RYR2, and DCTN1 Found in Elderly Japanese Dementia Patients: A Case Series. Geriatrics (Basel) 2021; 6:geriatrics6010014. [PMID: 33562224 PMCID: PMC7931039 DOI: 10.3390/geriatrics6010014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Dementia has an enormous impact on medical and financial resources in aging societies like Japan. Diagnosis of dementia can be made by physical and mental examinations, imaging tests, and findings of high abnormal proteins in cerebrospinal fluids. In addition, genetic tests can be performed in neurodegenerative diseases such as Alzheimer’s disease (AD), frontotemporal dementia (FTD), and Parkinson’s disease (PD). In this case series, we presented three cases of dementia with unknown causes who carry novel variants in the genes associated with neurodegenerative diseases. Three patients (Patients 1, 2, and 6) were found by screening 18 dementia patients using a gene panel including 63 genes. The age of onset for Patient 1 was 74 years old, and his father had PD and mother had AD. The age of onset for Patient 2 was 75 years old, and her mother had AD. The age of onset for Patient 6 was 83 years old, and her father, two sisters, and daughter had dementia. The Mini-Mental State Examination produced results of 20, 15, and 22, respectively. The suspected diagnosis by neurological examinations and imaging studies for Patients 1 and 2 was AD, and for Patient 6 was FTD. Patient 1 was treated with donepezil; Patient 2 was treated with donepezil and memantine; and Patient 6 was treated with donepezil, galantamine, and rivastigmine. The three rare variants identified were: CLCN1, encoding a chloride channel, c.2848G>A:p.Glu950Lys (Patient 1); RYR2, encoding a calcium releasing ryanodine receptor, c.13175A>G:p.Lys4392Arg (Patient 2); and DCTN1, encoding a subunit of dynactin, c. 3209G>A:p.Arg1070Gln (Patient 6). The detected variants were interpreted according to the American College of Medical Genetics (ACMG) guidelines. The minor allele frequency for each variant was 0.025%, 0.023%, and 0.0004% in East Asians, respectively. The DCTN1 variant found in Patient 6 might be associated with FTD. Although none of them were previously reported in dementia patients, all variants were classified as variants of unknown significance (VUS). Our report suggests that results of genetic tests in elderly patients with dementia need to be carefully interpreted. Further data accumulation of genotype–phenotype relationships and development of appropriate functional models are warranted.
Collapse
Affiliation(s)
- Atsushi Hori
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (A.H.); (K.Y.)
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
| | - Tomohiko Ai
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
- Krannert Institute of Cardiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: or
| | - Miwa Isshiki
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
| | - Yumiko Motoi
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (Y.M.); (N.H.)
| | - Kouji Yano
- Center for Genomic and Regenerative Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (A.H.); (K.Y.)
| | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (Y.M.); (N.H.)
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Juntendo University Graduate School of Medicine, Tokyo 113-8424, Japan; (M.I.); (Y.T.); (T.M.)
| |
Collapse
|
43
|
Zhang J, Wang H, Liu W, Wang J, Zhang J, Chang X, Huang S, Pang X, Guo J, Wang Q, Zhang W. A novel Q93H missense mutation in DCTN1 caused distal hereditary motor neuropathy type 7B and Perry syndrome from a Chinese family. Neurol Sci 2021; 42:3695-3705. [DOI: 10.1007/s10072-020-04962-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/03/2020] [Indexed: 01/20/2023]
|
44
|
Tsuboi Y, Mishima T, Fujioka S. Perry Disease: Concept of a New Disease and Clinical Diagnostic Criteria. J Mov Disord 2021; 14:1-9. [PMID: 32942840 PMCID: PMC7840237 DOI: 10.14802/jmd.20060] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/16/2020] [Indexed: 12/12/2022] Open
Abstract
Perry disease is a hereditary neurodegenerative disease with autosomal dominant inheritance. It is characterized by parkinsonism, psychiatric symptoms, unexpected weight loss, central hypoventilation, and transactive-response DNA-binding protein of 43kD (TDP-43) aggregation in the brain. In 2009, Perry disease was found to be caused by dynactin I gene (DCTN1), which encodes dynactin subunit p150 on chromosome 2p, in patients with the disease. The dynactin complex is a motor protein that is associated with axonal transport. Presently, at least 8 mutations and 22 families have been reported; other than the "classic" syndrome, distinct phenotypes are recognized. The neuropathology of Perry disease reveals severe degeneration in the substantia nigra and TDP-43 inclusions in the basal ganglia and brain stem. How dysfunction of the dynactin molecule is related to TDP-43 pathology in Perry disease is important to elucidate the pathological mechanism and develop new treatment.
Collapse
Affiliation(s)
- Yoshio Tsuboi
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Takayasu Mishima
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shinsuke Fujioka
- Department of Neurology, School of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
45
|
Wen Y, Zhou Y, Jiao B, Shen L. Genetics of Progressive Supranuclear Palsy: A Review. JOURNAL OF PARKINSON'S DISEASE 2021; 11:93-105. [PMID: 33104043 PMCID: PMC7990399 DOI: 10.3233/jpd-202302] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/26/2020] [Indexed: 02/06/2023]
Abstract
Progressive supranuclear palsy (PSP) is an atypical parkinsonism with prominent 4R-tau neuropathology, and the classical clinical phenotype is characterized by vertical supranuclear gaze palsy, unprovoked falls, akinetic-rigid syndrome and cognitive decline. Though PSP is generally regarded as sporadic, there is increasing evidence suggesting that a series of common and rare genetic variants impact on sporadic and familial forms of PSP. To date, more than 10 genes have been reported to show a potential association with PSP. Among these genes, the microtubule-associated protein tau (MAPT) is the risk locus with the strongest effect size on sporadic PSP in the case-control genome-wide association studies (GWAS). Additionally, MAPT mutations are the most common cause of familial PSP while the leucine-rich repeat kinase 2 (LRRK2) is a rare monogenic cause of PSP, and several other gene mutations may mimic the PSP phenotype, like the dynactin subunit 1 (DCTN1). In total, 15 MAPT mutations have been identified in cases with PSP, and the mean age at onset is much earlier than in cases carrying LRRK2 or DCTN1 mutations. GWAS have further identified several risk loci of PSP, proposing molecular pathways related to PSP. The present review focused on genetic studies on PSP and summarized genetic factors of PSP, which may help to elucidate the underlying pathogenesis and provide new perspectives for therapeutic strategies.
Collapse
Affiliation(s)
- Yafei Wen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yafang Zhou
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, PR China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, PR China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan, PR China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, PR China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, Hunan, PR China
| |
Collapse
|
46
|
Ganguly J, Jog M. Tauopathy and Movement Disorders-Unveiling the Chameleons and Mimics. Front Neurol 2020; 11:599384. [PMID: 33250855 PMCID: PMC7674803 DOI: 10.3389/fneur.2020.599384] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 09/30/2020] [Indexed: 12/11/2022] Open
Abstract
The spectrum of tauopathy encompasses heterogenous group of neurodegenerative disorders characterized by neural or glial deposition of pathological protein tau. Clinically they can present as cognitive syndromes, movement disorders, motor neuron disease, or mixed. The heterogeneity in clinical presentation, genetic background, and underlying pathology make it difficult to classify and clinically approach tauopathy. In the literature, tauopathies are thus mostly highlighted from pathological perspective. From clinical standpoint, cognitive syndromes are often been focussed while reviewing tauopathies. However, the spectrum of tauopathy has also evolved significantly in the domain of movement disorders and has transgressed beyond the domain of primary tauopathies. Secondary tauopathies from neuroinflammation or autoimmune insults and some other "novel" tauopathies are increasingly being reported in the current literature, while some of them are geographically isolated. Because of the overlapping clinical phenotypes, it often becomes difficult for the clinician to diagnose them clinically and have to wait for the pathological confirmation by autopsy. However, each of these tauopathies has some clinical and radiological signatures those can help in clinical diagnosis and targeted genetic testing. In this review, we have exposed the heterogeneity of tauopathy from a movement disorder perspective and have provided a clinical approach to diagnose them ante mortem before confirmatory autopsy. Additionally, phenotypic variability of these disorders (chameleons) and the look-alikes (mimics) have been discussed with potential clinical pointers for each of them. The review provides a framework within which new and as yet undiscovered entities can be classified in the future.
Collapse
Affiliation(s)
| | - Mandar Jog
- Movement Disorder Centre, London Health Sciences Centre, University of Western Ontario, London, ON, Canada
| |
Collapse
|
47
|
Kapitansky O, Karmon G, Sragovich S, Hadar A, Shahoha M, Jaljuli I, Bikovski L, Giladi E, Palovics R, Iram T, Gozes I. Single Cell ADNP Predictive of Human Muscle Disorders: Mouse Knockdown Results in Muscle Wasting. Cells 2020; 9:E2320. [PMID: 33086621 PMCID: PMC7603382 DOI: 10.3390/cells9102320] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/28/2022] Open
Abstract
Activity-dependent neuroprotective protein (ADNP) mutations are linked with cognitive dysfunctions characterizing the autistic-like ADNP syndrome patients, who also suffer from delayed motor maturation. We thus hypothesized that ADNP is deregulated in versatile myopathies and that local ADNP muscle deficiency results in myopathy, treatable by the ADNP fragment NAP. Here, single-cell transcriptomics identified ADNP as a major constituent of the developing human muscle. ADNP transcript concentrations further predicted multiple human muscle diseases, with concentrations negatively correlated with the ADNP target interacting protein, microtubule end protein 1 (EB1). Reverting back to modeling at the single-cell level of the male mouse transcriptome, Adnp mRNA concentrations age-dependently correlated with motor disease as well as with sexual maturation gene transcripts, while Adnp expressing limb muscle cells significantly decreased with aging. Mouse Adnp heterozygous deficiency exhibited muscle microtubule reduction and myosin light chain (Myl2) deregulation coupled with motor dysfunction. CRISPR knockdown of adult gastrocnemius muscle Adnp in a Cas9 mouse resulted in treadmill (male) and gait (female) dysfunctions that were specifically ameliorated by treatment with the ADNP snippet, microtubule interacting, Myl2-regulating, NAP (CP201). Taken together, our studies provide new hope for personalized diagnosis/therapeutics in versatile myopathies.
Collapse
Affiliation(s)
- Oxana Kapitansky
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Gidon Karmon
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Shlomo Sragovich
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Adva Hadar
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Meishar Shahoha
- Intradepartmental Viral Infection Unit, Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Iman Jaljuli
- Department of Statistics and Operations Research, School of Mathematical Sciences, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Lior Bikovski
- The Myers Neuro-Behavioral Core Facility, Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel;
| | - Eliezer Giladi
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| | - Robert Palovics
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 95343, USA; (R.P.); (T.I.)
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 95343, USA
| | - Tal Iram
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 95343, USA; (R.P.); (T.I.)
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 95343, USA
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Sagol School of Neuroscience and Adams Super Center for Brain Studies, Tel Aviv University, Tel Aviv 6997801, Israel; (O.K.); (G.K.); (S.S.); (A.H.); (E.G.)
| |
Collapse
|
48
|
Koga S, Dickson DW, Wszolek ZK. Letter to the editor, "Movement disorders rounds: A case of missing pathology in a patient with LRRK2 Parkinson's disease". Parkinsonism Relat Disord 2020; 79:130. [PMID: 32921567 DOI: 10.1016/j.parkreldis.2020.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/28/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | |
Collapse
|
49
|
Neumann M, Mackenzie IRA. Review: Neuropathology of non-tau frontotemporal lobar degeneration. Neuropathol Appl Neurobiol 2020; 45:19-40. [PMID: 30357887 DOI: 10.1111/nan.12526] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/29/2018] [Indexed: 12/12/2022]
Abstract
Frontotemporal dementia (FTD) is a heterogeneous clinical syndrome associated with frontotemporal lobar degeneration (FTLD) as a relatively consistent neuropathological hallmark feature. However, the discoveries in the past decade of many of the relevant pathological proteins aggregating in human FTD brains in addition to several new FTD causing gene mutations underlined that FTD is a diverse condition on the neuropathological and genetic basis. This resulted in a novel molecular classification of these conditions based on the predominant protein abnormality and allows most cases of FTD to be placed now into one of three broad molecular subgroups; FTLD with tau, TAR DNA-binding protein 43 or FET protein accumulation (FTLD-tau, FTLD-TDP and FTLD-FET respectively). This review will provide an overview of the molecular neuropathology of non-tau FTLD, insights into disease mechanisms gained from the study of human post mortem tissue as well as discussion of current controversies in the field.
Collapse
Affiliation(s)
- M Neumann
- Department of Neuropathology, University Hospital of Tübingen, Tübingen, Germany.,Molecular Neuropathology of Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - I R A Mackenzie
- Department of Pathology, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
50
|
Cognitive and behavioral profile of Perry syndrome in two families. Parkinsonism Relat Disord 2020; 77:114-120. [DOI: 10.1016/j.parkreldis.2020.05.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/09/2020] [Accepted: 05/16/2020] [Indexed: 11/18/2022]
|