1
|
Troisi M, Fabbrini M, Stazzoni S, Viviani V, Carboni F, Abbiento V, Fontana LE, Tomei S, Audagnotto M, Santini L, Spagnuolo A, Antonelli G, Paciello I, Vacca F, Cardamone D, Marini E, Mokhtary P, Finetti F, Giusti F, Bodini M, Torricelli G, Limongi C, Del Vecchio M, Favaron S, Tavarini S, Sammicheli C, Rossi A, Mandelli AP, Fortini P, Caffarelli C, Gonnelli S, Nuti R, Efron A, Baldari CT, Sala C, Tagliabue A, Savino S, Brunelli B, Norais N, Frigimelica E, Bardelli M, Pizza M, Margarit I, Delany I, Finco O, Andreano E, Rappuoli R. Human monoclonal antibodies targeting subdominant meningococcal antigens confer cross-protection against gonococcus. Sci Transl Med 2025; 17:eadv0969. [PMID: 40397716 DOI: 10.1126/scitranslmed.adv0969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/01/2025] [Indexed: 05/23/2025]
Abstract
Gonococcus, a bacterium resistant to most antibiotics, causes more than 80 million cases of gonorrhea annually and is considered a high-priority pathogen by the World Health Organization. Recently, vaccine development prospects were boosted by reports that licensed meningococcus serogroup B (MenB) vaccines provided partial protection against gonococcal infection. To determine antigens responsible for cross-protection, memory B cells isolated from 4CMenB-vaccinated volunteers were single cell-sorted to identify antibodies that kill gonococcus in a bactericidal assay. Nine different antibodies, all deriving from the IGHV4-34 germline and carrying an unusually long heavy-chain complementarity-determining region 3, recognized the PorB protein; four others recognized the lipooligosaccharide; and another four had unknown specificity. One of the PorB-specific antibodies provided protection in a mouse model of gonococcus infection. The identification of PorB and lipooligosaccharide as key antigens of gonococcal and meningococcal immunity provides a mechanistic explanation of the cross-protection observed in the clinic and shows that isolating human monoclonal antibodies from vaccinees can be instrumental for bacterial antigen discovery.
Collapse
Affiliation(s)
- Marco Troisi
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | - Samuele Stazzoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | - Valentina Abbiento
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | | | | | | | - Giada Antonelli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Fabiola Vacca
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Dario Cardamone
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
- University of Turin, Turin, Italy
| | - Eleonora Marini
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Pardis Mokhtary
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | | | | | | | | | | | | | - Sara Favaron
- GSK, Siena, Italy
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milan, Italy
| | | | | | | | | | - Pietro Fortini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Carla Caffarelli
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Stefano Gonnelli
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Ranuccio Nuti
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Adriana Efron
- Instituto Nacional de Enfermedades Infecciosas-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Argentina
| | | | - Claudia Sala
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Aldo Tagliabue
- Institute Biomedical Technologies, National Research Council, Segrate, Milan, Italy
| | | | | | | | | | | | - Mariagrazia Pizza
- GSK, Siena, Italy
- Imperial College London, South Kensington Campus, London, UK
| | | | | | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena, Italy
| | - Rino Rappuoli
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
- Fondazione Biotecnopolo di Siena, Siena, Italy
| |
Collapse
|
2
|
Wang X, Zhang T, Liu G, Cui Z, Zeng Z, Long C, Zheng W, Yang J. LightRoseTTA: High-Efficient and Accurate Protein Structure Prediction Using a Light-Weight Deep Graph Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2309051. [PMID: 40134034 DOI: 10.1002/advs.202309051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/17/2024] [Indexed: 03/27/2025]
Abstract
Accurately predicting protein structure, from sequences to 3D structures, is of great significance in biological research. To tackle this issue, a representative deep big model, RoseTTAFold, is proposed with promising success. Here, "a light-weight deep graph network, named LightRoseTTA," is reported to achieve accurate and highly efficient prediction for proteins. Notably, three highlights are possessed by LightRoseTTA: i) high-accurate structure prediction for proteins, being "competitive with RoseTTAFold" on multiple popular datasets including CASP14 and CAMEO; ii) high-efficient training and inference with a light-weight model, costing "only 1 week on one single NVIDIA 3090 GPU for model-training" (vs 30 days on 8 NVIDIA V100 GPUs for RoseTTAFold) and containing "only 1.4M parameters" (vs 130M in RoseTTAFold); iii) low dependency on multi-sequence alignment (MSA), achieving the best performance on three MSA-insufficient datasets: Orphan, De novo, and Orphan25. Besides, LightRoseTTA is "transferable" from general proteins to antibody data, as verified in the experiments. The time and resource costs of LightRoseTTA and RoseTTAFold are further discussed to demonstrate the feasibility of light-weight models for protein structure prediction, which may be crucial in resource-limited research for universities and academic institutions. The code and model are released to speed biological research (https://github.com/psp3dcg/LightRoseTTA).
Collapse
Affiliation(s)
- Xudong Wang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Tong Zhang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guangbu Liu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhen Cui
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zhiyong Zeng
- School of Automation, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Cheng Long
- School of Computer Engineering, Nanyang Technological University, No. 50, Nanyang Avenue, Singapore, 639798, Singapore
| | - Wenming Zheng
- School of Biological Science & Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jian Yang
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
3
|
Vezzani G, Viviani V, Audagnotto M, Rossi A, Cinelli P, Pacchiani N, Limongi C, Santini L, Giusti F, Tomei S, Torricelli G, Faenzi E, Sammicheli C, Tavarini S, Efron A, Biolchi A, Finco O, Delany I, Frigimelica E. Isolation of human monoclonal antibodies from 4CMenB vaccinees reveals PorB and LOS as the main OMV components inducing cross-strain protection. Front Immunol 2025; 16:1565862. [PMID: 40308602 PMCID: PMC12040683 DOI: 10.3389/fimmu.2025.1565862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/24/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction The 4CMenB vaccine licensed against serogroup B Neisseria meningitidis (MenB) contains three recombinant proteins and Outer Membrane Vesicles (OMV) from a New Zealand epidemic strain. The protective response mediated on differentmeningococcal strains has been historically ascribed to one of the four main vaccine antigens fHbp, NHBA, NadA, and PorA nominated as the immunodominant antigen of the OMV component. It is however accepted that the extensive cross-protection observed after vaccination may be attributed to other proteins in the OMV. Here we interrogate the B cell responses elicited in humans to the OMV component after 4CMenB vaccination to elucidate the contribution of additional OMV antigens to meningococcal cross-protection. Methods Following the isolation of plasmablasts from vaccinees, the OMV-specific human monoclonal antibodies (HumAbs) were recombinantly expressed and characterized for their binding and functional activity on a panel of MenB strains. Their target specificity was assessed through a tailor-made protein array and Western blot. Results We found that 18 HumAbs showing bactericidal activity were PorB-specific, 1 was LOS-specific and 4 functional HumAbs remain with unknown targets. We identified three functional classes within the PorB HumAbs, through binding and in silico docking experiments, likely to be elicited from distinct epitopes on PorB and highlighting this antigen as a multi-epitope immunogenic OMV component responsible for distinct cross-protection across multiple MenB strains. Interestingly three of the PorB HumAbs and the LOS-specific HumAb showed bactericidal activity also against gonococcus. Discussion We identified PorB and LOS as antigens on the OMV that may be implicated in the real-world observations of moderate protection against gonorrhea infection after OMV-based vaccinations.
Collapse
Affiliation(s)
- Giacomo Vezzani
- GSK Vaccines, Siena, Italy
- Department of Pharmacy and Biotechnology (FABIT), University of Bologna, Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Adriana Efron
- Departamento de Bacteriología, Instituto Nacional de Enfermedades Infecciosas-ANLIS “Dr. Carlos G. Malbrán”, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
4
|
Khalaf WS, Morgan RN, Elkhatib WF. Clinical microbiology and artificial intelligence: Different applications, challenges, and future prospects. J Microbiol Methods 2025; 232-234:107125. [PMID: 40188989 DOI: 10.1016/j.mimet.2025.107125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Conventional clinical microbiological techniques are enhanced by the introduction of artificial intelligence (AI). Comprehensive data processing and analysis enabled the development of curated datasets that has been effectively used in training different AI algorithms. Recently, a number of machine learning (ML) and deep learning (DL) algorithms are developed and evaluated using diverse microbiological datasets. These datasets included spectral analysis (Raman and MALDI-TOF spectroscopy), microscopic images (Gram and acid fast stains), and genomic and protein sequences (whole genome sequencing (WGS) and protein data banks (PDBs)). The primary objective of these algorithms is to minimize the time, effort, and expenses linked to conventional analytical methods. Furthermore, AI algorithms are incorporated with quantitative structure-activity relationship (QSAR) models to predict novel antimicrobial agents that address the continuing surge of antimicrobial resistance. During the COVID-19 pandemic, AI algorithms played a crucial role in vaccine developments and the discovery of new antiviral agents, and introduced potential drug candidates via drug repurposing. However, despite their significant benefits, the implementation of AI encounters various challenges, including ethical considerations, the potential for bias, and errors related to data training. This review seeks to provide an overview of the most recent applications of artificial intelligence in clinical microbiology, with the intention of educating a wider audience of clinical practitioners regarding the current uses of machine learning algorithms and encouraging their implementation. Furthermore, it will discuss the challenges related to the incorporation of AI into clinical microbiology laboratories and examine future opportunities for AI within the realm of infectious disease epidemiology.
Collapse
Affiliation(s)
- Wafaa S Khalaf
- Department of Microbiology and Immunology, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr city, Cairo 11751, Egypt.
| | - Radwa N Morgan
- National Centre for Radiation Research and Technology (NCRRT), Drug Radiation Research Department, Egyptian Atomic Energy Authority (EAEA), Cairo 11787, Egypt.
| | - Walid F Elkhatib
- Department of Microbiology & Immunology, Faculty of Pharmacy, Galala University, New Galala City, Suez, Egypt; Microbiology and Immunology Department, Faculty of Pharmacy, Ain Shams University, African Union Organization St., Abbassia, Cairo 11566, Egypt.
| |
Collapse
|
5
|
Dewaker V, Morya VK, Kim YH, Park ST, Kim HS, Koh YH. Revolutionizing oncology: the role of Artificial Intelligence (AI) as an antibody design, and optimization tools. Biomark Res 2025; 13:52. [PMID: 40155973 PMCID: PMC11954232 DOI: 10.1186/s40364-025-00764-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
Antibodies play a crucial role in defending the human body against diseases, including life-threatening conditions like cancer. They mediate immune responses against foreign antigens and, in some cases, self-antigens. Over time, antibody-based technologies have evolved from monoclonal antibodies (mAbs) to chimeric antigen receptor T cells (CAR-T cells), significantly impacting biotechnology, diagnostics, and therapeutics. Although these advancements have enhanced therapeutic interventions, the integration of artificial intelligence (AI) is revolutionizing antibody design and optimization. This review explores recent AI advancements, including large language models (LLMs), diffusion models, and generative AI-based applications, which have transformed antibody discovery by accelerating de novo generation, enhancing immune response precision, and optimizing therapeutic efficacy. Through advanced data analysis, AI enables the prediction and design of antibody sequences, 3D structures, complementarity-determining regions (CDRs), paratopes, epitopes, and antigen-antibody interactions. These AI-powered innovations address longstanding challenges in antibody development, significantly improving speed, specificity, and accuracy in therapeutic design. By integrating computational advancements with biomedical applications, AI is driving next-generation cancer therapies, transforming precision medicine, and enhancing patient outcomes.
Collapse
Affiliation(s)
- Varun Dewaker
- Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea
| | - Vivek Kumar Morya
- Department of Orthopedic Surgery, Hallym University Dongtan Sacred Hospital, Hwaseong-Si, 18450, Republic of Korea
| | - Yoo Hee Kim
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Seoul, 07247, Republic of Korea
| | - Sung Taek Park
- Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea
- Department of Obstetrics and Gynecology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, 07441, Republic of Korea
- EIONCELL Inc, Chuncheon-Si, 24252, Republic of Korea
| | - Hyeong Su Kim
- Institute of New Frontier Research Team, Hallym University, Chuncheon-Si, Gangwon-Do, 24252, Republic of Korea.
- Department of Internal Medicine, Division of Hemato-Oncology, Kangnam Sacred-Heart Hospital, Hallym University Medical Center, Hallym University College of Medicine, Seoul, 07441, Republic of Korea.
- EIONCELL Inc, Chuncheon-Si, 24252, Republic of Korea.
| | - Young Ho Koh
- Department of Biomedical Gerontology, Ilsong Institute of Life Science, Hallym University, Seoul, 07247, Republic of Korea.
| |
Collapse
|
6
|
Rosignoli S, Pacelli M, Manganiello F, Paiardini A. An outlook on structural biology after AlphaFold: tools, limits and perspectives. FEBS Open Bio 2025; 15:202-222. [PMID: 39313455 PMCID: PMC11788754 DOI: 10.1002/2211-5463.13902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/19/2024] [Accepted: 09/13/2024] [Indexed: 09/25/2024] Open
Abstract
AlphaFold and similar groundbreaking, AI-based tools, have revolutionized the field of structural bioinformatics, with their remarkable accuracy in ab-initio protein structure prediction. This success has catalyzed the development of new software and pipelines aimed at incorporating AlphaFold's predictions, often focusing on addressing the algorithm's remaining challenges. Here, we present the current landscape of structural bioinformatics shaped by AlphaFold, and discuss how the field is dynamically responding to this revolution, with new software, methods, and pipelines. While the excitement around AI-based tools led to their widespread application, it is essential to acknowledge that their practical success hinges on their integration into established protocols within structural bioinformatics, often neglected in the context of AI-driven advancements. Indeed, user-driven intervention is still as pivotal in the structure prediction process as in complementing state-of-the-art algorithms with functional and biological knowledge.
Collapse
Affiliation(s)
- Serena Rosignoli
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| | - Maddalena Pacelli
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| | - Francesca Manganiello
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| | - Alessandro Paiardini
- Department of Biochemical sciences “A. Rossi Fanelli”Sapienza Università di RomaItaly
| |
Collapse
|
7
|
Gallo E. Revolutionizing Synthetic Antibody Design: Harnessing Artificial Intelligence and Deep Sequencing Big Data for Unprecedented Advances. Mol Biotechnol 2025; 67:410-424. [PMID: 38308755 DOI: 10.1007/s12033-024-01064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
Synthetic antibodies (Abs) represent a category of engineered proteins meticulously crafted to replicate the functions of their natural counterparts. Such Abs are generated in vitro, enabling advanced molecular alterations associated with antigen recognition, paratope site engineering, and biochemical refinements. In a parallel realm, deep sequencing has brought about a paradigm shift in molecular biology. It facilitates the prompt and cost-effective high-throughput sequencing of DNA and RNA molecules, enabling the comprehensive big data analysis of Ab transcriptomes, including specific regions of interest. Significantly, the integration of artificial intelligence (AI), based on machine- and deep- learning approaches, has fundamentally transformed our capacity to discern patterns hidden within deep sequencing big data, including distinctive Ab features and protein folding free energy landscapes. Ultimately, current AI advances can generate approximations of the most stable Ab structural configurations, enabling the prediction of de novo synthetic Abs. As a result, this manuscript comprehensively examines the latest and relevant literature concerning the intersection of deep sequencing big data and AI methodologies for the design and development of synthetic Abs. Together, these advancements have accelerated the exploration of antibody repertoires, contributing to the refinement of synthetic Ab engineering and optimizations, and facilitating advancements in the lead identification process.
Collapse
Affiliation(s)
- Eugenio Gallo
- Avance Biologicals, Department of Medicinal Chemistry, 950 Dupont Street, Toronto, ON, M6H 1Z2, Canada.
- RevivAb, Department of Protein Engineering, Av. Ipiranga, 6681, Partenon, Porto Alegre, RS, 90619-900, Brazil.
| |
Collapse
|
8
|
Yadav AJ, Bhagat K, Sharma A, Padhi AK. Navigating the landscape: A comprehensive overview of computational approaches in therapeutic antibody design and analysis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2025; 144:33-76. [PMID: 39978970 DOI: 10.1016/bs.apcsb.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Immunotherapy, harnessing components like antibodies, cells, and cytokines, has become a cornerstone in treating diseases such as cancer and autoimmune disorders. Therapeutic antibodies, in particular, have transformed modern medicine, providing a targeted approach that destroys disease-causing cells while sparing healthy tissues, thereby reducing the side effects commonly associated with chemotherapy. Beyond oncology, these antibodies also hold promise in addressing chronic infections where conventional therapeutics may fall short. However, antibodies identified through in vivo or in vitro methods often require extensive engineering to enhance their therapeutic potential. This optimization process, aimed at improving affinity, specificity, and reducing immunogenicity, is both challenging and costly, often involving trade-offs between critical properties. Traditional methods of antibody development, such as hybridoma technology and display techniques, are resource-intensive and time-consuming. In contrast, computational approaches offer a faster, more efficient alternative, enabling the precise design and analysis of therapeutic antibodies. These methods include sequence and structural bioinformatics approaches, next-generation sequencing-based data mining, machine learning algorithms, systems biology, immuno-informatics, and integrative approaches. These approaches are advancing the field by providing new insights and enhancing the accuracy of antibody design and analysis. In conclusion, computational approaches are essential in the development of therapeutic antibodies, significantly improving the precision and speed of discovery, optimization, and validation. Integrating these methods with experimental approaches accelerates therapeutic antibody development, paving the way for innovative strategies and treatments for various diseases ranging from cancers to autoimmune and infectious diseases.
Collapse
Affiliation(s)
- Amar Jeet Yadav
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Khushboo Bhagat
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Akshit Sharma
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India
| | - Aditya K Padhi
- Laboratory for Computational Biology & Biomolecular Design, School of Biochemical Engineering, Indian Institute of Technology (BHU) Varanasi, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
9
|
Mateu-Borrás M, Dublin SR, Kang J, Monroe HL, Sen-Kilic E, Miller SJ, Witt WT, Chapman JA, Pyles GM, Nallar SC, Huckaby AB, Yang E, Rocuskie-Marker C, Grund ME, Amin MS, Lukomski S, Snyder GA, Ray K, Lewis GK, Ricke DO, Damron FH, Barbier M. Novel broadly reactive monoclonal antibody protects against Pseudomonas aeruginosa infection. Infect Immun 2025; 93:e0033024. [PMID: 39670709 PMCID: PMC11784295 DOI: 10.1128/iai.00330-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/23/2024] [Indexed: 12/14/2024] Open
Abstract
The incidence of infections attributed to antimicrobial-resistant (AMR) pathogens has increased exponentially over the recent decades reaching 1.27 million deaths worldwide in 2019. Without intervention, these infections are predicted to cause up to 10 million deaths a year and incur costs of up to 100 trillion US dollars globally by 2050. The emergence of AMR bacteria such as the ESKAPEE pathogens, and in particular Pseudomonas aeruginosa and species from the genus Burkholderia, underscores an urgent need for new therapeutic strategies. Monoclonal antibody (mAb) therapy offers a promising alternative to treat and prevent bacterial infections. In this study, we used peptides from highly conserved areas of the bacterial flagellin to generate monoclonal antibodies capable of broad binding to flagellated Gram-negative bacteria. We generated a broadly reactive IgG2bĸ mAb (WVDC-2109) that recognizes P. aeruginosa, Burkholderia sp., and other Gram-negative pathogens of interest. Characterization of the therapeutic potential of this antibody was determined using P. aeruginosa as model. In vitro characterization of WVDC-2109 demonstrated complement-mediated bactericidal activity and enhanced opsonophagocytosis of P. aeruginosa. Prophylactic administration of WVDC-2109 markedly improved survival and outcome in a lethal sepsis model and a sub-lethal murine pneumonia model of P. aeruginosa infection, reducing bacterial burden and inflammation. These findings suggest that WVDC-2109 and similar FliC-targeting antibodies could be valuable in preventing or treating diseases caused by P. aeruginosa as well as other life-threatening diseases of concern.IMPORTANCEAntimicrobial resistance (AMR) costs hundreds of thousands of lives and billions of dollars annually. To protect the population against these infections, it is imperative to develop new medical countermeasures targeting AMR pathogens like P. aeruginosa and Burkholderia sp. The administration of broadly reactive monoclonal antibodies can represent an alternative to treat and prevent infections caused by multi-drug-resistant bacteria. Unlike vaccines, antibodies can provide protection regardless of the immune status of the infected host. In this study, we generated an antibody capable of recognizing flagellin from P. aeruginosa and B. pseudomallei along with other Gram-negative pathogens of concern. Our findings demonstrate that the administration of the monoclonal antibody WVDC-2109 enhances survival rates and outcomes in different murine models of P. aeruginosa infection. These results carry significant implications in the field given that there are no available vaccines for P. aeruginosa.
Collapse
Affiliation(s)
- Margalida Mateu-Borrás
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Spencer R. Dublin
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Jason Kang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Hunter L. Monroe
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Sarah J. Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - William T. Witt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Joshua A. Chapman
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Shreeram C. Nallar
- School of Medicine, Division of Vaccine Research, Institute of Human Virology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Evita Yang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Carleena Rocuskie-Marker
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Megan E. Grund
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Md Shahrier Amin
- Department of Pathology, Anatomy, and Laboratory Medicine, West Virginia University, Morgantown, West Virginia, USA
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Greg A. Snyder
- School of Medicine, Division of Vaccine Research, Institute of Human Virology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - Krishanu Ray
- School of Medicine, Division of Vaccine Research, Institute of Human Virology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | - George K. Lewis
- School of Medicine, Division of Vaccine Research, Institute of Human Virology, University of Maryland Baltimore, Baltimore, Maryland, USA
| | | | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
10
|
Ovchinnikov V, Karplus M. Phenomenological Modeling of Antibody Response from Vaccine Strain Composition. Antibodies (Basel) 2025; 14:6. [PMID: 39846614 PMCID: PMC11755667 DOI: 10.3390/antib14010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/24/2025] Open
Abstract
The elicitation of broadly neutralizing antibodies (bnAbs) is a major goal of vaccine design for highly mutable pathogens, such as influenza, HIV, and coronavirus. Although many rational vaccine design strategies for eliciting bnAbs have been devised, their efficacies need to be evaluated in preclinical animal models and in clinical trials. To improve outcomes for such vaccines, it would be useful to develop methods that can predict vaccine efficacies against arbitrary pathogen variants. As a step in this direction, here, we describe a simple biologically motivated model of antibody reactivity elicited by nanoparticle-based vaccines using only antigen amino acid sequences, parametrized with a small sample of experimental antibody binding data from influenza or SARS-CoV-2 nanoparticle vaccinations. Results: The model is able to recapitulate the experimental data to within experimental uncertainty, is relatively insensitive to the choice of the parametrization/training set, and provides qualitative predictions about the antigenic epitopes exploited by the vaccine, which are testable by experiment. For the mosaic nanoparticle vaccines considered here, model results suggest indirectly that the sera obtained from vaccinated mice contain bnAbs, rather than simply different strain-specific Abs. Although the present model was motivated by nanoparticle vaccines, we also apply it to a mutlivalent mRNA flu vaccination study, and demonstrate good recapitulation of experimental results. This suggests that the model formalism is, in principle, sufficiently flexible to accommodate different vaccination strategies. Finally, we show how the model could be used to rank the efficacies of vaccines with different antigen compositions. Conclusions: Overall, this study suggests that simple models of vaccine efficacy parametrized with modest amounts of experimental data could be used to compare the effectiveness of designed vaccines.
Collapse
Affiliation(s)
- Victor Ovchinnikov
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Martin Karplus
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
- Laboratoire de Chimie Biophysique, ISIS, Université de Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
11
|
DeRoo J, Terry JS, Zhao N, Stasevich TJ, Snow CD, Geiss BJ. PAbFold: Linear Antibody Epitope Prediction using AlphaFold2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.19.590298. [PMID: 38659833 PMCID: PMC11042291 DOI: 10.1101/2024.04.19.590298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Defining the binding epitopes of antibodies is essential for understanding how they bind to their antigens and perform their molecular functions. However, while determining linear epitopes of monoclonal antibodies can be accomplished utilizing well-established empirical procedures, these approaches are generally labor- and time-intensive and costly. To take advantage of the recent advances in protein structure prediction algorithms available to the scientific community, we developed a calculation pipeline based on the localColabFold implementation of AlphaFold2 that can predict linear antibody epitopes by predicting the structure of the complex between antibody heavy and light chains and target peptide sequences derived from antigens. We found that this AlphaFold2 pipeline, which we call PAbFold, was able to accurately flag known epitope sequences for several well-known antibody targets (HA / Myc) when the target sequence was broken into small overlapping linear peptides and antibody complementarity determining regions (CDRs) were grafted onto several different antibody framework regions in the single-chain antibody fragment (scFv) format. To determine if this pipeline was able to identify the epitope of a novel antibody with no structural information publicly available, we determined the epitope of a novel anti-SARS-CoV-2 nucleocapsid targeted antibody using our method and then experimentally validated our computational results using peptide competition ELISA assays. These results indicate that the AlphaFold2-based PAbFold pipeline we developed is capable of accurately identifying linear antibody epitopes in a short time using just antibody and target protein sequences. This emergent capability of the method is sensitive to methodological details such as peptide length, AlphaFold2 neural network versions, and multiple-sequence alignment database. PAbFold is available at https://github.com/jbderoo/PAbFold.
Collapse
Affiliation(s)
- Jacob DeRoo
- School of Biomedical Engineering, Colorado State University, Fort Collins CO USA
| | - James S. Terry
- Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins CO USA
| | - Ning Zhao
- Department of Biochemistry and Molecular Genetics, University of Colorado-Anschutz Medical Campus, Aurora, CO USA
| | - Timothy J. Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins CO USA
| | - Christopher D. Snow
- School of Biomedical Engineering, Colorado State University, Fort Collins CO USA
- Department of Chemical & Biological Engineering, Colorado State University, Fort Collins CO USA
| | - Brian J. Geiss
- School of Biomedical Engineering, Colorado State University, Fort Collins CO USA
- Department of Microbiology, Immunology, & Pathology, Colorado State University, Fort Collins CO USA
| |
Collapse
|
12
|
Rossmueller G, Mirkina I, Thiele M, Puchol Tarazona A, Rueker F, Kerschbaumer RJ, Schinagl A. Integrating In Silico and In Vitro Tools for Optimized Antibody Development-Design of Therapeutic Anti-oxMIF Antibodies. Antibodies (Basel) 2024; 13:104. [PMID: 39727487 DOI: 10.3390/antib13040104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Rigorous assessment of antibody developability is crucial for optimizing lead candidates before progressing to clinical studies. Recent advances in predictive tools for protein structures, surface properties, stability, and immunogenicity have streamlined the development of new biologics. However, accurate prediction of the impact of single amino acid substitutions on antibody structures remains challenging, due to the diversity of complementarity-determining regions (CDRs), particularly CDR3s. METHODS In this study, we combined in silico tools with in vitro assessments to engineer improved antibodies against the oxidized isoform of the macrophage migration inhibitory factor (oxMIF), building on the first generation anti-oxMIF antibody imalumab. RESULTS We identified hydrophobic hotspots conferring increased self-interaction and aggregation propensity on imalumab, which unravels its unusually short half-life in humans. By introducing mutations into the variable regions, we addressed these liabilities. Structural prediction tools and molecular dynamics simulations guided the selection of mutations, which were then experimentally validated. The lead candidate antibody, C0083, demonstrated reduced hydrophobicity and self-interaction due to the restructuring of its heavy chain CDR3 loop. Despite these structural changes, C0083 retained target specificity and binding affinity to oxMIF. CONCLUSIONS Altogether, this study shows that a small number of well-selected mutations was sufficient to substantially improve the biophysicochemical properties of imalumab.
Collapse
Affiliation(s)
- Gregor Rossmueller
- OncoOne Research & Development GmbH, Karl-Farkas-Gasse 22, A-1030 Vienna, Austria
| | - Irina Mirkina
- OncoOne Research & Development GmbH, Karl-Farkas-Gasse 22, A-1030 Vienna, Austria
| | - Michael Thiele
- OncoOne Research & Development GmbH, Karl-Farkas-Gasse 22, A-1030 Vienna, Austria
| | | | - Florian Rueker
- Department of Biotechnology, Institute of Molecular Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria
| | | | - Alexander Schinagl
- OncoOne Research & Development GmbH, Karl-Farkas-Gasse 22, A-1030 Vienna, Austria
| |
Collapse
|
13
|
Michalewicz K, Barahona M, Bravi B. ANTIPASTI: Interpretable prediction of antibody binding affinity exploiting normal modes and deep learning. Structure 2024; 32:2422-2434.e5. [PMID: 39461331 DOI: 10.1016/j.str.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/30/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
The high binding affinity of antibodies toward their cognate targets is key to eliciting effective immune responses, as well as to the use of antibodies as research and therapeutic tools. Here, we propose ANTIPASTI, a convolutional neural network model that achieves state-of-the-art performance in the prediction of antibody binding affinity using as input a representation of antibody-antigen structures in terms of normal mode correlation maps derived from elastic network models. This representation captures not only structural features but energetic patterns of local and global residue fluctuations. The learnt representations are interpretable: they reveal similarities of binding patterns among antibodies targeting the same antigen type, and can be used to quantify the importance of antibody regions contributing to binding affinity. Our results show the importance of the antigen imprint in the normal mode landscape, and the dominance of cooperative effects and long-range correlations between antibody regions to determine binding affinity.
Collapse
Affiliation(s)
- Kevin Michalewicz
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
| | - Mauricio Barahona
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK
| | - Barbara Bravi
- Department of Mathematics, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
14
|
Cecil AJ, Sogues A, Gurumurthi M, Lane KS, Remaut H, Pak AJ. Molecular dynamics and machine learning stratify motion-dependent activity profiles of S-layer destabilizing nanobodies. PNAS NEXUS 2024; 3:pgae538. [PMID: 39660065 PMCID: PMC11631148 DOI: 10.1093/pnasnexus/pgae538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
Nanobody (Nb)-induced disassembly of surface array protein (Sap) S-layers, a two-dimensional paracrystalline protein lattice from Bacillus anthracis, has been presented as a therapeutic intervention for lethal anthrax infections. However, only a subset of existing Nbs with affinity to Sap exhibit depolymerization activity, suggesting that affinity and epitope recognition are not enough to explain inhibitory activity. In this study, we performed all-atom molecular dynamics simulations of each Nb bound to the Sap binding site and trained a collection of machine learning classifiers to predict whether each Nb induces depolymerization. We used feature importance analysis to filter out unnecessary features and engineered remaining features to regularize the feature landscape and encourage learning of the depolymerization mechanism. We find that, while not enforced in training, a gradient-boosting decision tree is able to reproduce the experimental activities of inhibitory Nbs while maintaining high classification accuracy, whereas neural networks were only able to discriminate between classes. Further feature analysis revealed that inhibitory Nbs restrain Sap motions toward an inhibitory conformational state described by domain-domain clamping and induced twisting of domains normal to the lattice plane. We believe these motions drive Sap lattice depolymerization and can be used as design targets for improved Sap-inhibitory Nbs. Finally, we expect our method of study to apply to S-layers that serve as virulence factors in other pathogens, paving the way forward for Nb therapeutics that target depolymerization mechanisms.
Collapse
Affiliation(s)
- Adam J Cecil
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Adrià Sogues
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Mukund Gurumurthi
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
| | - Kaylee S Lane
- Computer Science and Software Engineering, Rose-Hulman Institute of Technology, Terre Haute, IN 47803, USA
| | - Han Remaut
- Structural and Molecular Microbiology, VIB-VUB Center for Structural Biology, Pleinlaan 2, 1050 Brussels, Belgium
- Structural Biology, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Alexander J Pak
- Department of Chemical and Biological Engineering, Colorado School of Mines, Golden, CO 80401, USA
- Quantitative Biosciences and Engineering Program, Colorado School of Mines, Golden, CO 80401, USA
- Materials Science Program, Colorado School of Mines, Golden, CO 80401, USA
| |
Collapse
|
15
|
Kalejaye L, Wu IE, Terry T, Lai PK. DeepSP: Deep learning-based spatial properties to predict monoclonal antibody stability. Comput Struct Biotechnol J 2024; 23:2220-2229. [PMID: 38827232 PMCID: PMC11140563 DOI: 10.1016/j.csbj.2024.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Therapeutic antibody development faces challenges due to high viscosities and aggregation tendencies. The spatial charge map (SCM) and spatial aggregation propensity (SAP) are computational techniques that aid in predicting viscosity and aggregation, respectively. These methods rely on structural data derived from molecular dynamics (MD) simulations, which are computationally demanding. DeepSCM, a deep learning surrogate model based on sequence information to predict SCM, was recently developed to screen high-concentration antibody viscosity. This study further utilized a dataset of 20,530 antibody sequences to train a convolutional neural network deep learning surrogate model called Deep Spatial Properties (DeepSP). DeepSP directly predicts SAP and SCM scores in different domains of antibody variable regions based solely on their sequences without performing MD simulations. The linear correlation coefficient between DeepSP scores and MD-derived scores for 30 properties achieved values between 0.76 and 0.96 with an average of 0.87. DeepSP descriptors were employed as features to build machine learning models to predict the aggregation rate of 21 antibodies, and the performance is similar to the results obtained from the previous study using MD simulations. This result demonstrates that the DeepSP approach significantly reduces the computational time required compared to MD simulations. The DeepSP model enables the rapid generation of 30 structural properties that can also be used as features in other research to train machine learning models for predicting various antibody stability using sequences only. DeepSP is freely available as an online tool via https://deepspwebapp.onrender.com and the codes and parameters are freely available at https://github.com/Lailabcode/DeepSP.
Collapse
Affiliation(s)
- Lateefat Kalejaye
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| | - I-En Wu
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| | - Taylor Terry
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| | - Pin-Kuang Lai
- Department of Chemical Engineering and Materials Science, Stevens Institute of Technology, Hoboken 07030, NJ, United States
| |
Collapse
|
16
|
Meng F, Zhou N, Hu G, Liu R, Zhang Y, Jing M, Hou Q. A comprehensive overview of recent advances in generative models for antibodies. Comput Struct Biotechnol J 2024; 23:2648-2660. [PMID: 39027650 PMCID: PMC11254834 DOI: 10.1016/j.csbj.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
Therapeutic antibodies are an important class of biopharmaceuticals. With the rapid development of deep learning methods and the increasing amount of antibody data, antibody generative models have made great progress recently. They aim to solve the antibody space searching problems and are widely incorporated into the antibody development process. Therefore, a comprehensive introduction to the development methods in this field is imperative. Here, we collected 34 representative antibody generative models published recently and all generative models can be divided into three categories: sequence-generating models, structure-generating models, and hybrid models, based on their principles and algorithms. We further studied their performance and contributions to antibody sequence prediction, structure optimization, and affinity enhancement. Our manuscript will provide a comprehensive overview of the status of antibody generative models and also offer guidance for selecting different approaches.
Collapse
Affiliation(s)
- Fanxu Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Na Zhou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| | - Guangchun Hu
- School of Information Science and Engineering, University of Jinan, Jinan 250022, China
| | - Ruotong Liu
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| | - Yuanyuan Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Ming Jing
- Key Laboratory of Computing Power Network and Information Security, Ministry of Education, Shandong Computer Science Center, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Provincial Key Laboratory of Computer Networks, Shandong Fundamental Research Center for Computer Science, Jinan 250000, China
| | - Qingzhen Hou
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250100, China
- National Institute of Health Data Science of China, Shandong University, Jinan 250100, China
| |
Collapse
|
17
|
McKenzie CI, Reinwald S, Averso B, Spurrier B, Satz A, von Borstel A, Masinovic S, Varese N, Aui PM, Wines BD, Hogarth PM, Hew M, Rolland JM, O'Hehir RE, van Zelm MC. Subcutaneous immunotherapy for bee venom allergy induces epitope spreading and immunophenotypic changes in allergen-specific memory B cells. J Allergy Clin Immunol 2024; 154:1511-1522. [PMID: 39218358 DOI: 10.1016/j.jaci.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Allergen immunotherapy (AIT) is the only disease-modifying treatment for allergic disorders. We have recently discovered that allergen-specific memory B cells (Bmem) are phenotypically altered after 4 months of sublingual AIT for ryegrass pollen allergy. Whether these effects are shared with subcutaneous allergen immunotherapy (SCIT) and affect the epitope specificity of Bmem remain unknown. OBJECTIVE The study aimed to evaluate the phenotype and antigen receptor sequences of Bmem specific to the major bee venom (BV) allergen Api m 1 before and after ultra-rush SCIT for BV allergy. METHODS Recombinant Api m 1 protein tetramers were generated to evaluate basophil activation in a cohort of individuals with BV allergy before and after BV SCIT. Comprehensive flow cytometry was performed to evaluate and purify Api m 1-specific Bmem. Immunoglobulin genes from single Api m 1-specific Bmem were sequenced and structurally modeled onto Api m 1. RESULTS SCIT promoted class switching of Api m 1-specific Bmem to IgG2 and IgG4 with increased expression of CD23 and CD29. Furthermore, modeling of Api m 1-specific immunoglobulin from Bmem identified a suite of possible new and diverse allergen epitopes on Api m 1 and highlighted epitopes that may preferentially be bound by immunoglobulin after SCIT. CONCLUSIONS AIT induces shifting of epitope specificity and phenotypic changes in allergen-specific Bmem.
Collapse
Affiliation(s)
- Craig I McKenzie
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Simone Reinwald
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | | | | | | | - Anouk von Borstel
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Sabina Masinovic
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Nirupama Varese
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - Pei Mun Aui
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Bruce D Wines
- Immune Therapies Group, Burnet Institute, Melbourne, Australia
| | - P Mark Hogarth
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Immune Therapies Group, Burnet Institute, Melbourne, Australia; Department of Pathology, The University of Melbourne, Parkville, Australia
| | - Mark Hew
- Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Jennifer M Rolland
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | - Robyn E O'Hehir
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia
| | - Menno C van Zelm
- Department of Immunology, School of Translational Medicine, Monash University, Melbourne, Australia; Allergy, Asthma and Clinical Immunology, Alfred Health, Melbourne, Australia; Department of Immunology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
18
|
Gu M, Yang W, Liu M. Prediction of antibody-antigen interaction based on backbone aware with invariant point attention. BMC Bioinformatics 2024; 25:348. [PMID: 39506679 PMCID: PMC11542381 DOI: 10.1186/s12859-024-05961-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Antibodies play a crucial role in disease treatment, leveraging their ability to selectively interact with the specific antigen. However, screening antibody gene sequences for target antigens via biological experiments is extremely time-consuming and labor-intensive. Several computational methods have been developed to predict antibody-antigen interaction while suffering from the lack of characterizing the underlying structure of the antibody. RESULTS Beneficial from the recent breakthroughs in deep learning for antibody structure prediction, we propose a novel neural network architecture to predict antibody-antigen interaction. We first introduce AbAgIPA: an antibody structure prediction network to obtain the antibody backbone structure, where the structural features of antibodies and antigens are encoded into representation vectors according to the amino acid physicochemical features and Invariant Point Attention (IPA) computation methods. Finally, the antibody-antigen interaction is predicted by global max pooling, feature concatenation, and a fully connected layer. We evaluated our method on antigen diversity and antigen-specific antibody-antigen interaction datasets. Additionally, our model exhibits a commendable level of interpretability, essential for understanding underlying interaction mechanisms. CONCLUSIONS Quantitative experimental results demonstrate that the new neural network architecture significantly outperforms the best sequence-based methods as well as the methods based on residue contact maps and graph convolution networks (GCNs). The source code is freely available on GitHub at https://github.com/gmthu66/AbAgIPA .
Collapse
Affiliation(s)
- Miao Gu
- Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Weiyang Yang
- Department of Automation, Tsinghua University, Beijing, 100084, China
| | - Min Liu
- Department of Automation, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Sherpa P, Chong KT, Tayara H. FvFold: A model to predict antibody Fv structure using protein language model with residual network and Rosetta minimization. Comput Biol Med 2024; 182:109128. [PMID: 39270460 DOI: 10.1016/j.compbiomed.2024.109128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The immune system depends on antibodies (Abs) to recognize and attach to a wide range of antigens, playing a pivotal role in immunity. The precise prediction of the variable fragment (Fv) region of antibodies is vital for the progress of therapeutic and commercial applications, particularly in the treatment of diseases such as cancer. Although deep learning models exist for accurate antibody structure prediction, challenges persist, particularly in modeling complementarity-determining regions (CDRs) and the overall antibody Fv structures. Introducing the FvFold model, a deep learning approach harnessing the capabilities of the ProtT5-XL-UniRef50 protein language model which is capable of predicting accurate antibody Fv structure. Through evaluations on various benchmarks, our model outperforms existing models, demonstrating superior accuracy by achieving lower Root Mean Square Deviation (RMSD) in almost all loops and Orientational Coordinate Distance (OCD) values in the RosettaAntibody benchmark, Therapeutic benchmark and IgFold benchmark compared to the previous top-performing model.
Collapse
Affiliation(s)
- Pasang Sherpa
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea
| | - Kil To Chong
- Department of Electronics and Information Engineering, Jeonbuk National University, Jeonju, 54896, South Korea; Advanced Electronics and Information Research Center, Jeonbuk National University, Jeonju, 54896, South Korea.
| | - Hilal Tayara
- School of International Engineering and Science, Jeonbuk National University, Jeonju, 54896, South Korea.
| |
Collapse
|
20
|
D’Orsi L, Capasso B, Lamacchia G, Pizzichini P, Ferranti S, Liverani A, Fontana C, Panunzi S, De Gaetano A, Lo Presti E. Recent Advances in Artificial Intelligence to Improve Immunotherapy and the Use of Digital Twins to Identify Prognosis of Patients with Solid Tumors. Int J Mol Sci 2024; 25:11588. [PMID: 39519142 PMCID: PMC11546512 DOI: 10.3390/ijms252111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
To date, the public health system has been impacted by the increasing costs of many diagnostic and therapeutic pathways due to limited resources. At the same time, we are constantly seeking to improve these paths through approaches aimed at personalized medicine. To achieve the required levels of diagnostic and therapeutic precision, it is necessary to integrate data from different sources and simulation platforms. Today, artificial intelligence (AI), machine learning (ML), and predictive computer models are more efficient at guiding decisions regarding better therapies and medical procedures. The evolution of these multiparametric and multimodal systems has led to the creation of digital twins (DTs). The goal of our review is to summarize AI applications in discovering new immunotherapies and developing predictive models for more precise immunotherapeutic decision-making. The findings from this literature review highlight that DTs, particularly predictive mathematical models, will be pivotal in advancing healthcare outcomes. Over time, DTs will indeed bring the benefits of diagnostic precision and personalized treatment to a broader spectrum of patients.
Collapse
Affiliation(s)
- Laura D’Orsi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Biagio Capasso
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Giuseppe Lamacchia
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Paolo Pizzichini
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Sergio Ferranti
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Andrea Liverani
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Costantino Fontana
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Simona Panunzi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Andrea De Gaetano
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
- Department of Biomatics, Óbuda University, Bécsi Road 96/B, H-1034 Budapest, Hungary
| | - Elena Lo Presti
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
| |
Collapse
|
21
|
Breimann S, Kamp F, Steiner H, Frishman D. AAontology: An Ontology of Amino Acid Scales for Interpretable Machine Learning. J Mol Biol 2024; 436:168717. [PMID: 39053689 DOI: 10.1016/j.jmb.2024.168717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 07/27/2024]
Abstract
Amino acid scales are crucial for protein prediction tasks, many of them being curated in the AAindex database. Despite various clustering attempts to organize them and to better understand their relationships, these approaches lack the fine-grained classification necessary for satisfactory interpretability in many protein prediction problems. To address this issue, we developed AAontology-a two-level classification for 586 amino acid scales (mainly from AAindex) together with an in-depth analysis of their relations-using bag-of-word-based classification, clustering, and manual refinement over multiple iterations. AAontology organizes physicochemical scales into 8 categories and 67 subcategories, enhancing the interpretability of scale-based machine learning methods in protein bioinformatics. Thereby it enables researchers to gain a deeper biological insight. We anticipate that AAontology will be a building block to link amino acid properties with protein function and dysfunctions as well as aid informed decision-making in mutation analysis or protein drug design.
Collapse
Affiliation(s)
- Stephan Breimann
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany; Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Frits Kamp
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany
| | - Harald Steiner
- Ludwig-Maximilians-University Munich, Biomedical Center, Division of Metabolic Biochemistry, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Dmitrij Frishman
- Department of Bioinformatics, School of Life Sciences, Technical University of Munich, Freising, Germany.
| |
Collapse
|
22
|
Ohno S, Manabe N, Yamaguchi Y. Prediction of protein structure and AI. J Hum Genet 2024; 69:477-480. [PMID: 38177398 DOI: 10.1038/s10038-023-01215-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
AlphaFold, an artificial intelligence (AI)-based tool for predicting the 3D structure of proteins, is now widely recognized for its high accuracy and versatility in the folding of human proteins. AlphaFold is useful for understanding structure-function relationships from protein 3D structure models and can serve as a template or a reference for experimental structural analysis including X-ray crystallography, NMR and cryo-EM analysis. Its use is expanding among researchers, not only in structural biology but also in other research fields. Researchers are currently exploring the full potential of AlphaFold-generated protein models. Predicting disease severity caused by missense mutations is one such application. This article provides an overview of the 3D structural modeling of AlphaFold based on deep learning techniques and highlights the challenges in predicting the pathogenicity of missense mutations.
Collapse
Affiliation(s)
- Shiho Ohno
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
23
|
Kenlay H, Dreyer FA, Cutting D, Nissley D, Deane CM. ABodyBuilder3: improved and scalable antibody structure predictions. Bioinformatics 2024; 40:btae576. [PMID: 39363504 PMCID: PMC11474105 DOI: 10.1093/bioinformatics/btae576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/09/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
SUMMARY In this article, we introduce ABodyBuilder3, an improved and scalable antibody structure prediction model based on ABodyBuilder2. We achieve a new state-of-the-art accuracy in the modelling of CDR loops by leveraging language model embeddings, and show how predicted structures can be further improved through careful relaxation strategies. Finally, we incorporate a predicted Local Distance Difference Test into the model output to allow for a more accurate estimation of uncertainties. AVAILABILITY AND IMPLEMENTATION The software package is available at https://github.com/Exscientia/ABodyBuilder3 with model weights and data at https://zenodo.org/records/11354577.
Collapse
Affiliation(s)
| | | | | | | | - Charlotte M Deane
- Exscientia, Oxford OX4 4GE, United Kingdom
- Department of Statistics, University of Oxford, Oxford OX1 3LB, United Kingdom
| |
Collapse
|
24
|
Zhang H, Lan J, Wang H, Lu R, Zhang N, He X, Yang J, Chen L. AlphaFold2 in biomedical research: facilitating the development of diagnostic strategies for disease. Front Mol Biosci 2024; 11:1414916. [PMID: 39139810 PMCID: PMC11319189 DOI: 10.3389/fmolb.2024.1414916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Proteins, as the primary executors of physiological activity, serve as a key factor in disease diagnosis and treatment. Research into their structures, functions, and interactions is essential to better understand disease mechanisms and potential therapies. DeepMind's AlphaFold2, a deep-learning protein structure prediction model, has proven to be remarkably accurate, and it is widely employed in various aspects of diagnostic research, such as the study of disease biomarkers, microorganism pathogenicity, antigen-antibody structures, and missense mutations. Thus, AlphaFold2 serves as an exceptional tool to bridge fundamental protein research with breakthroughs in disease diagnosis, developments in diagnostic strategies, and the design of novel therapeutic approaches and enhancements in precision medicine. This review outlines the architecture, highlights, and limitations of AlphaFold2, placing particular emphasis on its applications within diagnostic research grounded in disciplines such as immunology, biochemistry, molecular biology, and microbiology.
Collapse
Affiliation(s)
- Hong Zhang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Jiajing Lan
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Huijie Wang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Ruijie Lu
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Nanqi Zhang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Xiaobai He
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang Province, Hangzhou, China
| | - Jun Yang
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
| | - Linjie Chen
- School of Laboratory Medicine, Hangzhou Medical College, Hangzhou, China
- Zhejiang Engineering Research Centre for Key Technology of Diagnostic Testing, Hangzhou, China
| |
Collapse
|
25
|
Natsrita P, Charoenkwan P, Shoombuatong W, Mahalapbutr P, Faksri K, Chareonsudjai S, Rungrotmongkol T, Pipattanaboon C. Machine-learning-assisted high-throughput identification of potent and stable neutralizing antibodies against all four dengue virus serotypes. Sci Rep 2024; 14:17165. [PMID: 39060292 PMCID: PMC11282219 DOI: 10.1038/s41598-024-67487-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Several computational methods have been developed to identify neutralizing antibodies (NAbs) covering four dengue virus serotypes (DENV-1 to DENV-4); however, limitations of the dataset and the resulting performance remain. Here, we developed a new computational framework to predict potent and stable NAbs against DENV-1 to DENV-4 using only antibody (CDR-H3) and epitope sequences as input. Specifically, our proposed computational framework employed sequence-based ML and molecular dynamic simulation (MD) methods to achieve more accurate identification. First, we built a novel dataset (n = 1108) by compiling the interactions of CDR-H3 and epitope sequences with the half maximum inhibitory concentration (IC50) values, which represent neutralizing activities. Second, we achieved an accurately predictive ML model that showed high AUC values of 0.879 and 0.885 by tenfold cross-validation and independent tests, respectively. Finally, our computational framework could be applied to filter approximately 2.5 million unseen antibodies into two final candidates that showed strong and stable binding to all four serotypes. In addition, the most potent and stable candidate (1B3B9_V21) was evaluated for its development potential as a therapeutic agent by molecular docking and MD simulations. This study provides an antibody computational approach to facilitate the high-throughput identification of NAbs and accelerate the development of therapeutic antibodies.
Collapse
Affiliation(s)
- Piyatida Natsrita
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Phasit Charoenkwan
- Modern Management and Information Technology, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Watshara Shoombuatong
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700, Thailand
| | - Panupong Mahalapbutr
- Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Kiatichai Faksri
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research and Diagnostic Center for Emerging Infectious Diseases, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sorujsiri Chareonsudjai
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanyada Rungrotmongkol
- Center of Excellent in Biocatalyst and Sustainable Biotechnology, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Chonlatip Pipattanaboon
- Department of Microbiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
26
|
Wang T, Zhang X, Zhang O, Chen G, Pan P, Wang E, Wang J, Wu J, Zhou D, Wang L, Jin R, Chen S, Shen C, Kang Y, Hsieh CY, Hou T. Highly Accurate and Efficient Deep Learning Paradigm for Full-Atom Protein Loop Modeling with KarmaLoop. RESEARCH (WASHINGTON, D.C.) 2024; 7:0408. [PMID: 39055686 PMCID: PMC11268956 DOI: 10.34133/research.0408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/22/2024] [Indexed: 07/27/2024]
Abstract
Protein loop modeling is a challenging yet highly nontrivial task in protein structure prediction. Despite recent progress, existing methods including knowledge-based, ab initio, hybrid, and deep learning (DL) methods fall substantially short of either atomic accuracy or computational efficiency. To overcome these limitations, we present KarmaLoop, a novel paradigm that distinguishes itself as the first DL method centered on full-atom (encompassing both backbone and side-chain heavy atoms) protein loop modeling. Our results demonstrate that KarmaLoop considerably outperforms conventional and DL-based methods of loop modeling in terms of both accuracy and efficiency, with the average RMSDs of 1.77 and 1.95 Å for the CASP13+14 and CASP15 benchmark datasets, respectively, and manifests at least 2 orders of magnitude speedup in general compared with other methods. Consequently, our comprehensive evaluations indicate that KarmaLoop provides a state-of-the-art DL solution for protein loop modeling, with the potential to hasten the advancement of protein engineering, antibody-antigen recognition, and drug design.
Collapse
Affiliation(s)
- Tianyue Wang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xujun Zhang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Odin Zhang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | | | - Peichen Pan
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ercheng Wang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- Zhejiang Laboratory, Hangzhou 311100, Zhejiang, China
| | - Jike Wang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Jialu Wu
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Donghao Zhou
- Shenzhen Institute of Advanced Technology,
Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China
| | - Langcheng Wang
- Department of Pathology,
New York University Medical Center, New York, NY 10016, USA
| | - Ruofan Jin
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
- College of Life Sciences,
Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Shicheng Chen
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao Shen
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Yu Kang
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chang-Yu Hsieh
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Tingjun Hou
- Innovation Institute for Artificial Intelligence in Medicine ofZhejiang University, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
27
|
Bruhn M, Obara M, Salam A, Costa B, Ziegler A, Waltl I, Pavlou A, Hoffmann M, Graalmann T, Pöhlmann S, Schambach A, Kalinke U. Diversification of the VH3-53 immunoglobulin gene segment by somatic hypermutation results in neutralization of SARS-CoV-2 virus variants. Eur J Immunol 2024; 54:e2451056. [PMID: 38593351 DOI: 10.1002/eji.202451056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024]
Abstract
COVID-19 induces re-circulating long-lived memory B cells (MBC) that, upon re-encounter with the pathogen, are induced to mount immunoglobulin responses. During convalescence, antibodies are subjected to affinity maturation, which enhances the antibody binding strength and generates new specificities that neutralize virus variants. Here, we performed a single-cell RNA sequencing analysis of spike-specific B cells from a SARS-CoV-2 convalescent subject. After COVID-19 vaccination, matured infection-induced MBC underwent recall and differentiated into plasmablasts. Furthermore, the transcriptomic profiles of newly activated B cells transiently shifted toward the ones of atypical and CXCR3+ B cells and several B-cell clonotypes massively expanded. We expressed monoclonal antibodies (mAbs) from all B-cell clones from the largest clonotype that used the VH3-53 gene segment. The in vitro analysis revealed that some somatic hypermutations enhanced the neutralization breadth of mAbs in a putatively stochastic manner. Thus, somatic hypermutation of B-cell clonotypes generates an anticipatory memory that can neutralize new virus variants.
Collapse
Affiliation(s)
- Matthias Bruhn
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Maureen Obara
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Abdus Salam
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Bibiana Costa
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Annett Ziegler
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Inken Waltl
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Andreas Pavlou
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Markus Hoffmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Theresa Graalmann
- Department for Rheumatology and Immunology, Hannover Medical School, Hannover, Germany
- Junior Research Group for Translational Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- Biomedical Research in End-Stage and Obstructive Lung Disease Hannover (BREATH), German Center for Lung Research (DZL), Hannover, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center, Göttingen, Germany
- Faculty of Biology, Georg-August-University Göttingen, Göttingen, Germany
| | - Axel Schambach
- Institute of Experimental Hematology, Hannover Medical School, Hannover, Germany
- Division of Hematology/Oncology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
- German Center for Infection Research (DZIF), partner site Hannover-Braunschweig, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| |
Collapse
|
28
|
Chen H, Fan X, Zhu S, Pei Y, Zhang X, Zhang X, Liu L, Qian F, Tian B. Accurate prediction of CDR-H3 loop structures of antibodies with deep learning. eLife 2024; 12:RP91512. [PMID: 38921957 PMCID: PMC11208048 DOI: 10.7554/elife.91512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024] Open
Abstract
Accurate prediction of the structurally diverse complementarity determining region heavy chain 3 (CDR-H3) loop structure remains a primary and long-standing challenge for antibody modeling. Here, we present the H3-OPT toolkit for predicting the 3D structures of monoclonal antibodies and nanobodies. H3-OPT combines the strengths of AlphaFold2 with a pre-trained protein language model and provides a 2.24 Å average RMSDCα between predicted and experimentally determined CDR-H3 loops, thus outperforming other current computational methods in our non-redundant high-quality dataset. The model was validated by experimentally solving three structures of anti-VEGF nanobodies predicted by H3-OPT. We examined the potential applications of H3-OPT through analyzing antibody surface properties and antibody-antigen interactions. This structural prediction tool can be used to optimize antibody-antigen binding and engineer therapeutic antibodies with biophysical properties for specialized drug administration route.
Collapse
Affiliation(s)
- Hedi Chen
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xiaoyu Fan
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Shuqian Zhu
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Yuchan Pei
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua UniversityBeijingChina
| | - Xiaochun Zhang
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Xiaonan Zhang
- Department of Natural Language Processing, Baidu International Technology (Shenzhen) Co LtdShenzhenChina
| | - Lihang Liu
- Department of Natural Language Processing, Baidu International Technology (Shenzhen) Co LtdShenzhenChina
| | - Feng Qian
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| | - Boxue Tian
- MOE Key Laboratory of Bioinformatics, State Key Laboratory of Molecular Oncology, School of Pharmaceutical Sciences, Tsinghua UniversityBeijingChina
| |
Collapse
|
29
|
Cheng J, Liang T, Xie XQ, Feng Z, Meng L. A new era of antibody discovery: an in-depth review of AI-driven approaches. Drug Discov Today 2024; 29:103984. [PMID: 38642702 DOI: 10.1016/j.drudis.2024.103984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/22/2024]
Abstract
Given their high affinity and specificity for a range of macromolecules, antibodies are widely used in the treatment of autoimmune diseases, cancers, inflammatory diseases, and Alzheimer's disease (AD). Traditional experimental methods are time-consuming, expensive, and labor-intensive. Recent advances in artificial intelligence (AI) technologies provide complementary methods that can reduce the time and costs required for antibody design by minimizing failures and increasing the success rate of experimental tests. In this review, we scrutinize the plethora of AI-driven methodologies that have been deployed over the past 4 years for modeling antibody structures, predicting antibody-antigen interactions, optimizing antibody affinity, and generating novel antibody candidates. We also briefly address the challenges faced in integrating AI-based models with traditional antibody discovery pipelines and highlight the potential future directions in this burgeoning field.
Collapse
Affiliation(s)
- Jin Cheng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China
| | - Tianjian Liang
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang-Qun Xie
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA; Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Computational Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Structural Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Zhiwei Feng
- Department of Pharmaceutical Sciences, Computational Chemical Genomics Screening Center, and Pharmacometrics & System Pharmacology PharmacoAnalytics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA; Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| | - Li Meng
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng, 224005, China.
| |
Collapse
|
30
|
Vu MH, Robert PA, Akbar R, Swiatczak B, Sandve GK, Haug DTT, Greiff V. Linguistics-based formalization of the antibody language as a basis for antibody language models. NATURE COMPUTATIONAL SCIENCE 2024; 4:412-422. [PMID: 38877120 DOI: 10.1038/s43588-024-00642-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 05/13/2024] [Indexed: 06/16/2024]
Abstract
Apparent parallels between natural language and antibody sequences have led to a surge in deep language models applied to antibody sequences for predicting cognate antigen recognition. However, a linguistic formal definition of antibody language does not exist, and insight into how antibody language models capture antibody-specific binding features remains largely uninterpretable. Here we describe how a linguistic formalization of the antibody language, by characterizing its tokens and grammar, could address current challenges in antibody language model rule mining.
Collapse
Affiliation(s)
- Mai Ha Vu
- Department of Linguistics and Scandinavian Studies, University of Oslo, Oslo, Norway.
| | - Philippe A Robert
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bartlomiej Swiatczak
- Department of History of Science and Scientific Archeology, University of Science and Technology of China, Hefei, China
| | | | | | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
31
|
Joubbi S, Micheli A, Milazzo P, Maccari G, Ciano G, Cardamone D, Medini D. Antibody design using deep learning: from sequence and structure design to affinity maturation. Brief Bioinform 2024; 25:bbae307. [PMID: 38960409 PMCID: PMC11221890 DOI: 10.1093/bib/bbae307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/20/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024] Open
Abstract
Deep learning has achieved impressive results in various fields such as computer vision and natural language processing, making it a powerful tool in biology. Its applications now encompass cellular image classification, genomic studies and drug discovery. While drug development traditionally focused deep learning applications on small molecules, recent innovations have incorporated it in the discovery and development of biological molecules, particularly antibodies. Researchers have devised novel techniques to streamline antibody development, combining in vitro and in silico methods. In particular, computational power expedites lead candidate generation, scaling and potential antibody development against complex antigens. This survey highlights significant advancements in protein design and optimization, specifically focusing on antibodies. This includes various aspects such as design, folding, antibody-antigen interactions docking and affinity maturation.
Collapse
Affiliation(s)
- Sara Joubbi
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italy
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Alessio Micheli
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italy
| | - Paolo Milazzo
- Department of Computer Science, University of Pisa, Largo B. Pontecorvo, 3, 56127, Pisa, Italy
| | - Giuseppe Maccari
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Giorgio Ciano
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Dario Cardamone
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| | - Duccio Medini
- Data Science for Health (DaScH) Lab, Fondazione Toscana Life Sciences, Via Fiorentina, 1, 53100, Siena, Italy
| |
Collapse
|
32
|
Jing H, Gao Z, Xu S, Shen T, Peng Z, He S, You T, Ye S, Lin W, Sun S. Accurate prediction of antibody function and structure using bio-inspired antibody language model. Brief Bioinform 2024; 25:bbae245. [PMID: 38797969 PMCID: PMC11128484 DOI: 10.1093/bib/bbae245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
In recent decades, antibodies have emerged as indispensable therapeutics for combating diseases, particularly viral infections. However, their development has been hindered by limited structural information and labor-intensive engineering processes. Fortunately, significant advancements in deep learning methods have facilitated the precise prediction of protein structure and function by leveraging co-evolution information from homologous proteins. Despite these advances, predicting the conformation of antibodies remains challenging due to their unique evolution and the high flexibility of their antigen-binding regions. Here, to address this challenge, we present the Bio-inspired Antibody Language Model (BALM). This model is trained on a vast dataset comprising 336 million 40% nonredundant unlabeled antibody sequences, capturing both unique and conserved properties specific to antibodies. Notably, BALM showcases exceptional performance across four antigen-binding prediction tasks. Moreover, we introduce BALMFold, an end-to-end method derived from BALM, capable of swiftly predicting full atomic antibody structures from individual sequences. Remarkably, BALMFold outperforms those well-established methods like AlphaFold2, IgFold, ESMFold and OmegaFold in the antibody benchmark, demonstrating significant potential to advance innovative engineering and streamline therapeutic antibody development by reducing the need for unnecessary trials. The BALMFold structure prediction server is freely available at https://beamlab-sh.com/models/BALMFold.
Collapse
Affiliation(s)
- Hongtai Jing
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Zhengtao Gao
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Sheng Xu
- Shanghai AI Laboratory, Shanghai 200232, China
| | - Tao Shen
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
- Zelixir Biotech, Shanghai 201206, China
| | - Zhangzhi Peng
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Shwai He
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Tao You
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
| | - Shuang Ye
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Wei Lin
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
- Shanghai AI Laboratory, Shanghai 200232, China
- School of Mathematical Sciences and Shanghai Center for Mathematical Sciences, Fudan University, Shanghai 200433, China
| | - Siqi Sun
- Research Institute of Intelligent Complex Systems, Fudan University, Shanghai 200433, China
- Shanghai AI Laboratory, Shanghai 200232, China
| |
Collapse
|
33
|
Petersen BM, Kirby MB, Chrispens KM, Irvin OM, Strawn IK, Haas CM, Walker AM, Baumer ZT, Ulmer SA, Ayala E, Rhodes ER, Guthmiller JJ, Steiner PJ, Whitehead TA. An integrated technology for quantitative wide mutational scanning of human antibody Fab libraries. Nat Commun 2024; 15:3974. [PMID: 38730230 PMCID: PMC11087541 DOI: 10.1038/s41467-024-48072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/19/2024] [Indexed: 05/12/2024] Open
Abstract
Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of nine different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.
Collapse
Affiliation(s)
- Brian M Petersen
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Monica B Kirby
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Karson M Chrispens
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Olivia M Irvin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Isabell K Strawn
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Cyrus M Haas
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Alexis M Walker
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Zachary T Baumer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Sophia A Ulmer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Emily R Rhodes
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Jenna J Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Paul J Steiner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA
| | - Timothy A Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
34
|
Townsend DR, Towers DM, Lavinder JJ, Ippolito GC. Innovations and trends in antibody repertoire analysis. Curr Opin Biotechnol 2024; 86:103082. [PMID: 38428225 DOI: 10.1016/j.copbio.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/07/2023] [Accepted: 01/28/2024] [Indexed: 03/03/2024]
Abstract
Monoclonal antibodies have revolutionized the treatment of human diseases, which has made them the fastest-growing class of therapeutics, with global sales expected to reach $346.6 billion USD by 2028. Advances in antibody engineering and development have led to the creation of increasingly sophisticated antibody-based therapeutics (e.g. bispecific antibodies and chimeric antigen receptor T cells). However, approaches for antibody discovery have remained comparatively grounded in conventional yet reliable in vitro assays. Breakthrough developments in high-throughput single B-cell sequencing and immunoglobulin proteomic serology, however, have enabled the identification of high-affinity antibodies directly from endogenous B cells or circulating immunoglobulin produced in vivo. Moreover, advances in artificial intelligence offer vast potential for antibody discovery and design with large-scale repertoire datasets positioned as the optimal source of training data for such applications. We highlight advances and recent trends in how these technologies are being applied to antibody repertoire analysis.
Collapse
Affiliation(s)
- Douglas R Townsend
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Dalton M Towers
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Jason J Lavinder
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Gregory C Ippolito
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
35
|
Jing X, Wu F, Luo X, Xu J. Single-sequence protein structure prediction by integrating protein language models. Proc Natl Acad Sci U S A 2024; 121:e2308788121. [PMID: 38507445 PMCID: PMC10990103 DOI: 10.1073/pnas.2308788121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 02/05/2024] [Indexed: 03/22/2024] Open
Abstract
Protein structure prediction has been greatly improved by deep learning in the past few years. However, the most successful methods rely on multiple sequence alignment (MSA) of the sequence homologs of the protein under prediction. In nature, a protein folds in the absence of its sequence homologs and thus, a MSA-free structure prediction method is desired. Here, we develop a single-sequence-based protein structure prediction method RaptorX-Single by integrating several protein language models and a structure generation module and then study its advantage over MSA-based methods. Our experimental results indicate that in addition to running much faster than MSA-based methods such as AlphaFold2, RaptorX-Single outperforms AlphaFold2 and other MSA-free methods in predicting the structure of antibodies (after fine-tuning on antibody data), proteins of very few sequence homologs, and single mutation effects. By comparing different protein language models, our results show that not only the scale but also the training data of protein language models will impact the performance. RaptorX-Single also compares favorably to MSA-based AlphaFold2 when the protein under prediction has a large number of sequence homologs.
Collapse
Affiliation(s)
| | - Fandi Wu
- MoleculeMind Ltd., Beijing100084, China
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing100190, China
| | - Xiao Luo
- Toyota Technological Institute at Chicago, Chicago, IL60637
- Shanghai Artificial Intelligence Laboratory, Shanghai200232, China
| | - Jinbo Xu
- MoleculeMind Ltd., Beijing100084, China
- Toyota Technological Institute at Chicago, Chicago, IL60637
| |
Collapse
|
36
|
Li S, Meng X, Li R, Huang B, Wang X. NanoBERTa-ASP: predicting nanobody paratope based on a pretrained RoBERTa model. BMC Bioinformatics 2024; 25:122. [PMID: 38515052 PMCID: PMC10956323 DOI: 10.1186/s12859-024-05750-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/18/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Nanobodies, also known as VHH or single-domain antibodies, are unique antibody fragments derived solely from heavy chains. They offer advantages of small molecules and conventional antibodies, making them promising therapeutics. The paratope is the specific region on an antibody that binds to an antigen. Paratope prediction involves the identification and characterization of the antigen-binding site on an antibody. This process is crucial for understanding the specificity and affinity of antibody-antigen interactions. Various computational methods and experimental approaches have been developed to predict and analyze paratopes, contributing to advancements in antibody engineering, drug development, and immunotherapy. However, existing predictive models trained on traditional antibodies may not be suitable for nanobodies. Additionally, the limited availability of nanobody datasets poses challenges in constructing accurate models. METHODS To address these challenges, we have developed a novel nanobody prediction model, named NanoBERTa-ASP (Antibody Specificity Prediction), which is specifically designed for predicting nanobody-antigen binding sites. The model adopts a training strategy more suitable for nanobodies, based on an advanced natural language processing (NLP) model called BERT (Bidirectional Encoder Representations from Transformers). To be more specific, the model utilizes a masked language modeling approach named RoBERTa (Robustly Optimized BERT Pretraining Approach) to learn the contextual information of the nanobody sequence and predict its binding site. RESULTS NanoBERTa-ASP achieved exceptional performance in predicting nanobody binding sites, outperforming existing methods, indicating its proficiency in capturing sequence information specific to nanobodies and accurately identifying their binding sites. Furthermore, NanoBERTa-ASP provides insights into the interaction mechanisms between nanobodies and antigens, contributing to a better understanding of nanobodies and facilitating the design and development of nanobodies with therapeutic potential. CONCLUSION NanoBERTa-ASP represents a significant advancement in nanobody paratope prediction. Its superior performance highlights the potential of deep learning approaches in nanobody research. By leveraging the increasing volume of nanobody data, NanoBERTa-ASP can further refine its predictions, enhance its performance, and contribute to the development of novel nanobody-based therapeutics. Github repository: https://github.com/WangLabforComputationalBiology/NanoBERTa-ASP.
Collapse
Affiliation(s)
- Shangru Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Xiangpeng Meng
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Rui Li
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China.
| | - Xin Wang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, China.
| |
Collapse
|
37
|
Wang Y, Buck A, Piel B, Zerefa L, Murugan N, Coherd CD, Miklosi AG, Johal H, Bastos RN, Huang K, Ficial M, Laimon YN, Signoretti S, Zhong Z, Hoang SM, Kastrunes GM, Grimaud M, Fayed A, Yuan HC, Nguyen QD, Thai T, Ivanova EV, Paweletz CP, Wu MR, Choueiri TK, Wee JO, Freeman GJ, Barbie DA, Marasco WA. Affinity fine-tuning anti-CAIX CAR-T cells mitigate on-target off-tumor side effects. Mol Cancer 2024; 23:56. [PMID: 38491381 PMCID: PMC10943873 DOI: 10.1186/s12943-024-01952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 03/18/2024] Open
Abstract
One of the major hurdles that has hindered the success of chimeric antigen receptor (CAR) T cell therapies against solid tumors is on-target off-tumor (OTOT) toxicity due to sharing of the same epitopes on normal tissues. To elevate the safety profile of CAR-T cells, an affinity/avidity fine-tuned CAR was designed enabling CAR-T cell activation only in the presence of a highly expressed tumor associated antigen (TAA) but not when recognizing the same antigen at a physiological level on healthy cells. Using direct stochastic optical reconstruction microscopy (dSTORM) which provides single-molecule resolution, and flow cytometry, we identified high carbonic anhydrase IX (CAIX) density on clear cell renal cell carcinoma (ccRCC) patient samples and low-density expression on healthy bile duct tissues. A Tet-On doxycycline-inducible CAIX expressing cell line was established to mimic various CAIX densities, providing coverage from CAIX-high skrc-59 tumor cells to CAIX-low MMNK-1 cholangiocytes. Assessing the killing of CAR-T cells, we demonstrated that low-affinity/high-avidity fine-tuned G9 CAR-T has a wider therapeutic window compared to high-affinity/high-avidity G250 that was used in the first anti-CAIX CAR-T clinical trial but displayed serious OTOT effects. To assess the therapeutic effect of G9 on patient samples, we generated ccRCC patient derived organotypic tumor spheroid (PDOTS) ex vivo cultures and demonstrated that G9 CAR-T cells exhibited superior efficacy, migration and cytokine release in these miniature tumors. Moreover, in an RCC orthotopic mouse model, G9 CAR-T cells showed enhanced tumor control compared to G250. In summary, G9 has successfully mitigated OTOT side effects and in doing so has made CAIX a druggable immunotherapeutic target.
Collapse
Affiliation(s)
- Yufei Wang
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Alicia Buck
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Brandon Piel
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Luann Zerefa
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Nithyassree Murugan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Christian D Coherd
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | | | | | - Kun Huang
- Molecular Imaging Core, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Miriam Ficial
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Yasmin Nabil Laimon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Sabina Signoretti
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, 02115, USA
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | | | | | - Gabriella M Kastrunes
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Marion Grimaud
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Atef Fayed
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Hsien-Chi Yuan
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Quang-De Nguyen
- Lurie Family Imaging Center, Center for Biomedical Imaging in Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Tran Thai
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Elena V Ivanova
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Cloud P Paweletz
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Ming-Ru Wu
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Toni K Choueiri
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Jon O Wee
- Lowe Center for Thoracic Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Gordon J Freeman
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - David A Barbie
- Harvard Medical School, Boston, MA, 02115, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Belfer Center of Applied Cancer Science, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Wayne A Marasco
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
38
|
Jeon W, Kim D. AbFlex: designing antibody complementarity determining regions with flexible CDR definition. Bioinformatics 2024; 40:btae122. [PMID: 38449295 PMCID: PMC10965422 DOI: 10.1093/bioinformatics/btae122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/04/2024] [Accepted: 03/05/2024] [Indexed: 03/08/2024] Open
Abstract
MOTIVATION Antibodies are proteins that the immune system produces in response to foreign pathogens. Designing antibodies that specifically bind to antigens is a key step in developing antibody therapeutics. The complementarity determining regions (CDRs) of the antibody are mainly responsible for binding to the target antigen, and therefore must be designed to recognize the antigen. RESULTS We develop an antibody design model, AbFlex, that exhibits state-of-the-art performance in terms of structure prediction accuracy and amino acid recovery rate. Furthermore, >38% of newly designed antibody models are estimated to have better binding energies for their antigens than wild types. The effectiveness of the model is attributed to two different strategies that are developed to overcome the difficulty associated with the scarcity of antibody-antigen complex structure data. One strategy is to use an equivariant graph neural network model that is more data-efficient. More importantly, a new data augmentation strategy based on the flexible definition of CDRs significantly increases the performance of the CDR prediction model. AVAILABILITY AND IMPLEMENTATION The source code and implementation are available at https://github.com/wsjeon92/AbFlex.
Collapse
Affiliation(s)
- Woosung Jeon
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Dongsup Kim
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
39
|
Lv Y, Gong H, Liu X, Hao J, Xu L, Sun Z, Yu C, Xu L. A dual computational and experimental strategy to enhance TSLP antibody affinity for improved asthma treatment. PLoS Comput Biol 2024; 20:e1011984. [PMID: 38536788 PMCID: PMC10971747 DOI: 10.1371/journal.pcbi.1011984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024] Open
Abstract
Thymic stromal lymphopoietin is a key cytokine involved in the pathogenesis of asthma and other allergic diseases. Targeting TSLP and its signaling pathways is increasingly recognized as an effective strategy for asthma treatment. This study focused on enhancing the affinity of the T6 antibody, which specifically targets TSLP, by integrating computational and experimental methods. The initial affinity of the T6 antibody for TSLP was lower than the benchmark antibody AMG157. To improve this, we utilized alanine scanning, molecular docking, and computational tools including mCSM-PPI2 and GEO-PPI to identify critical amino acid residues for site-directed mutagenesis. Subsequent mutations and experimental validations resulted in an antibody with significantly enhanced blocking capacity against TSLP. Our findings demonstrate the potential of computer-assisted techniques in expediting antibody affinity maturation, thereby reducing both the time and cost of experiments. The integration of computational methods with experimental approaches holds great promise for the development of targeted therapeutic antibodies for TSLP-related diseases.
Collapse
Affiliation(s)
- Yitong Lv
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - He Gong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xuechao Liu
- Beijing Sungen Biomedical Technology Co., Ltd, Beijing, China
| | - Jia Hao
- Beijing Sungen Biomedical Technology Co., Ltd, Beijing, China
| | - Lei Xu
- Beijing Sungen Biomedical Technology Co., Ltd, Beijing, China
| | - Zhiwei Sun
- Beijing Sungen Biomedical Technology Co., Ltd, Beijing, China
| | - Changyuan Yu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lida Xu
- Beijing Sungen Biomedical Technology Co., Ltd, Beijing, China
- Beijing Hotgen Biotech Co., Ltd, Beijing, China
| |
Collapse
|
40
|
Paul R, Kasahara K, Sasaki J, Pérez JF, Matsunaga R, Hashiguchi T, Kuroda D, Tsumoto K. Unveiling the affinity-stability relationship in anti-measles virus antibodies: a computational approach for hotspots prediction. Front Mol Biosci 2024; 10:1302737. [PMID: 38495738 PMCID: PMC10941800 DOI: 10.3389/fmolb.2023.1302737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/11/2023] [Indexed: 03/19/2024] Open
Abstract
Recent years have seen an uptick in the use of computational applications in antibody engineering. These tools have enhanced our ability to predict interactions with antigens and immunogenicity, facilitate humanization, and serve other critical functions. However, several studies highlight the concern of potential trade-offs between antibody affinity and stability in antibody engineering. In this study, we analyzed anti-measles virus antibodies as a case study, to examine the relationship between binding affinity and stability, upon identifying the binding hotspots. We leverage in silico tools like Rosetta and FoldX, along with molecular dynamics (MD) simulations, offering a cost-effective alternative to traditional in vitro mutagenesis. We introduced a pattern in identifying key residues in pairs, shedding light on hotspots identification. Experimental physicochemical analysis validated the predicted key residues by confirming significant decrease in binding affinity for the high-affinity antibodies to measles virus hemagglutinin. Through the nature of the identified pairs, which represented the relative hydropathy of amino acid side chain, a connection was proposed between affinity and stability. The findings of the study enhance our understanding of the interactions between antibody and measles virus hemagglutinin. Moreover, the implications of the observed correlation between binding affinity and stability extend beyond the field of anti-measles virus antibodies, thereby opening doors for advancements in antibody research.
Collapse
Affiliation(s)
- Rimpa Paul
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Research Center of Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keisuke Kasahara
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Jiei Sasaki
- Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Jorge Fernández Pérez
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Ryo Matsunaga
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takao Hashiguchi
- Institute for Life and Medical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Daisuke Kuroda
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Research Center of Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
- The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
41
|
Kim DN, McNaughton AD, Kumar N. Leveraging Artificial Intelligence to Expedite Antibody Design and Enhance Antibody-Antigen Interactions. Bioengineering (Basel) 2024; 11:185. [PMID: 38391671 PMCID: PMC10886287 DOI: 10.3390/bioengineering11020185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
This perspective sheds light on the transformative impact of recent computational advancements in the field of protein therapeutics, with a particular focus on the design and development of antibodies. Cutting-edge computational methods have revolutionized our understanding of protein-protein interactions (PPIs), enhancing the efficacy of protein therapeutics in preclinical and clinical settings. Central to these advancements is the application of machine learning and deep learning, which offers unprecedented insights into the intricate mechanisms of PPIs and facilitates precise control over protein functions. Despite these advancements, the complex structural nuances of antibodies pose ongoing challenges in their design and optimization. Our review provides a comprehensive exploration of the latest deep learning approaches, including language models and diffusion techniques, and their role in surmounting these challenges. We also present a critical analysis of these methods, offering insights to drive further progress in this rapidly evolving field. The paper includes practical recommendations for the application of these computational techniques, supplemented with independent benchmark studies. These studies focus on key performance metrics such as accuracy and the ease of program execution, providing a valuable resource for researchers engaged in antibody design and development. Through this detailed perspective, we aim to contribute to the advancement of antibody design, equipping researchers with the tools and knowledge to navigate the complexities of this field.
Collapse
Affiliation(s)
| | | | - Neeraj Kumar
- Pacific Northwest National Laboratory, 902 Battelle Blvd., Richland, WA 99352, USA; (D.N.K.); (A.D.M.)
| |
Collapse
|
42
|
Bravi B. Development and use of machine learning algorithms in vaccine target selection. NPJ Vaccines 2024; 9:15. [PMID: 38242890 PMCID: PMC10798987 DOI: 10.1038/s41541-023-00795-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/07/2023] [Indexed: 01/21/2024] Open
Abstract
Computer-aided discovery of vaccine targets has become a cornerstone of rational vaccine design. In this article, I discuss how Machine Learning (ML) can inform and guide key computational steps in rational vaccine design concerned with the identification of B and T cell epitopes and correlates of protection. I provide examples of ML models, as well as types of data and predictions for which they are built. I argue that interpretable ML has the potential to improve the identification of immunogens also as a tool for scientific discovery, by helping elucidate the molecular processes underlying vaccine-induced immune responses. I outline the limitations and challenges in terms of data availability and method development that need to be addressed to bridge the gap between advances in ML predictions and their translational application to vaccine design.
Collapse
Affiliation(s)
- Barbara Bravi
- Department of Mathematics, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
43
|
Petersen BM, Kirby MB, Chrispens KM, Irvin OM, Strawn IK, Haas CM, Walker AM, Baumer ZT, Ulmer SA, Ayala E, Rhodes ER, Guthmiller JJ, Steiner PJ, Whitehead TA. An integrated technology for quantitative wide mutational scanning of human antibody Fab libraries. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.575852. [PMID: 38293170 PMCID: PMC10827193 DOI: 10.1101/2024.01.16.575852] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Antibodies are engineerable quantities in medicine. Learning antibody molecular recognition would enable the in silico design of high affinity binders against nearly any proteinaceous surface. Yet, publicly available experiment antibody sequence-binding datasets may not contain the mutagenic, antigenic, or antibody sequence diversity necessary for deep learning approaches to capture molecular recognition. In part, this is because limited experimental platforms exist for assessing quantitative and simultaneous sequence-function relationships for multiple antibodies. Here we present MAGMA-seq, an integrated technology that combines multiple antigens and multiple antibodies and determines quantitative biophysical parameters using deep sequencing. We demonstrate MAGMA-seq on two pooled libraries comprising mutants of ten different human antibodies spanning light chain gene usage, CDR H3 length, and antigenic targets. We demonstrate the comprehensive mapping of potential antibody development pathways, sequence-binding relationships for multiple antibodies simultaneously, and identification of paratope sequence determinants for binding recognition for broadly neutralizing antibodies (bnAbs). MAGMA-seq enables rapid and scalable antibody engineering of multiple lead candidates because it can measure binding for mutants of many given parental antibodies in a single experiment.
Collapse
Affiliation(s)
- Brian M. Petersen
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Monica B. Kirby
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Karson M. Chrispens
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Olivia M. Irvin
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Isabell K. Strawn
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Cyrus M. Haas
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Alexis M. Walker
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Zachary T. Baumer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Sophia A. Ulmer
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Edgardo Ayala
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Emily R. Rhodes
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Jenna J. Guthmiller
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045
| | - Paul J. Steiner
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| | - Timothy A. Whitehead
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO, 80305, USA
| |
Collapse
|
44
|
Park E, Izadi S. Molecular surface descriptors to predict antibody developability: sensitivity to parameters, structure models, and conformational sampling. MAbs 2024; 16:2362788. [PMID: 38853585 PMCID: PMC11168226 DOI: 10.1080/19420862.2024.2362788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 05/29/2024] [Indexed: 06/11/2024] Open
Abstract
In silico assessment of antibody developability during early lead candidate selection and optimization is of paramount importance, offering a rapid and material-free screening approach. However, the predictive power and reproducibility of such methods depend heavily on the selection of molecular descriptors, model parameters, accuracy of predicted structure models, and conformational sampling techniques. Here, we present a set of molecular surface descriptors specifically designed for predicting antibody developability. We assess the performance of these descriptors by benchmarking their correlations with an extensive array of experimentally determined biophysical properties, including viscosity, aggregation, hydrophobic interaction chromatography, human pharmacokinetic clearance, heparin retention time, and polyspecificity. Further, we investigate the sensitivity of these surface descriptors to methodological nuances, such as the choice of interior dielectric constant, hydrophobicity scales, structure prediction methods, and the impact of conformational sampling. Notably, we observe systematic shifts in the distribution of surface descriptors depending on the structure prediction method used, driving weak correlations of surface descriptors across structure models. Averaging the descriptor values over conformational distributions from molecular dynamics mitigates the systematic shifts and improves the consistency across different structure prediction methods, albeit with inconsistent improvements in correlations with biophysical data. Based on our benchmarking analysis, we propose six in silico developability risk flags and assess their effectiveness in predicting potential developability issues for a set of case study molecules.
Collapse
Affiliation(s)
- Eliott Park
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| | - Saeed Izadi
- Pharmaceutical Development, Genentech Inc, South San Francisco, CA, USA
| |
Collapse
|
45
|
Hutchinson M, Ruffolo JA, Haskins N, Iannotti M, Vozza G, Pham T, Mehzabeen N, Shandilya H, Rickert K, Croasdale-Wood R, Damschroder M, Fu Y, Dippel A, Gray JJ, Kaplan G. Toward enhancement of antibody thermostability and affinity by computational design in the absence of antigen. MAbs 2024; 16:2362775. [PMID: 38899735 PMCID: PMC11195458 DOI: 10.1080/19420862.2024.2362775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Over the past two decades, therapeutic antibodies have emerged as a rapidly expanding domain within the field of biologics. In silico tools that can streamline the process of antibody discovery and optimization are critical to support a pipeline that is growing more numerous and complex every year. High-quality structural information remains critical for the antibody optimization process, but antibody-antigen complex structures are often unavailable and in silico antibody docking methods are still unreliable. In this study, DeepAb, a deep learning model for predicting antibody Fv structure directly from sequence, was used in conjunction with single-point experimental deep mutational scanning (DMS) enrichment data to design 200 potentially optimized variants of an anti-hen egg lysozyme (HEL) antibody. We sought to determine whether DeepAb-designed variants containing combinations of beneficial mutations from the DMS exhibit enhanced thermostability and whether this optimization affected their developability profile. The 200 variants were produced through a robust high-throughput method and tested for thermal and colloidal stability (Tonset, Tm, Tagg), affinity (KD) relative to the parental antibody, and for developability parameters (nonspecific binding, aggregation propensity, self-association). Of the designed clones, 91% and 94% exhibited increased thermal and colloidal stability and affinity, respectively. Of these, 10% showed a significantly increased affinity for HEL (5- to 21-fold increase) and thermostability (>2.5C increase in Tm1), with most clones retaining the favorable developability profile of the parental antibody. Additional in silico tests suggest that these methods would enrich for binding affinity even without first collecting experimental DMS measurements. These data open the possibility of in silico antibody optimization without the need to predict the antibody-antigen interface, which is notoriously difficult in the absence of crystal structures.
Collapse
Affiliation(s)
- Mark Hutchinson
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jeffrey A. Ruffolo
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, USA
- Profluent Bio, Machine Learning, Berkeley, CA, USA
| | - Nantaporn Haskins
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
- Currently at Protein Engineering, R&D, Amgen Inc, Rockville, MD, USA
| | - Michael Iannotti
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
- Honigman LLP, Intellectual Property, Washington, DC, United States
| | - Giuliana Vozza
- Biopharmaceuticals Development, R&D, AstraZeneca, Cambridge, UK
| | - Tony Pham
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Keith Rickert
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | | | | | - Ying Fu
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Andrew Dippel
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| | - Jeffrey J. Gray
- Program in Molecular Biophysics, The Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Gilad Kaplan
- Biologics Engineering, R&D, AstraZeneca, Gaithersburg, MD, USA
| |
Collapse
|
46
|
Liang S, Zhang C, Zhu M. Ab Initio Prediction of 3-D Conformations for Protein Long Loops with High Accuracy and Applications to Antibody CDRH3 Modeling. J Chem Inf Model 2023; 63:7568-7577. [PMID: 38018130 DOI: 10.1021/acs.jcim.3c01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Residue-level potentials of mean force were widely used for protein backbone refinements to avoid simultaneous sampling of side-chain conformations. The interaction energy between the reduced side chains and backbone atoms was not considered explicitly. In this study, we developed novel methods to calculate the residue-atom interaction energy in combination with atomic and residue-level terms. The parameters were optimized step by step to remove the overcounting or overlap problem between different energy terms. The mixing energy functions were then used to evaluate the generated backbone conformations at the initial sampling stage of protein loop modeling (OSCAR-loop), including the interaction energy between the reduced loop residues and full atoms of the protein framework. The accuracies of top-ranked decoys were 1.18 and 2.81 Å for 8-residue and 12-residue loops, respectively. We then selected diverse decoys for side-chain modeling, backbone refinement, and energy minimization. The procedure was repeated multiple times to select one prediction with the lowest energy. Consequently, we obtained an accuracy of 0.74 Å for a prevailing test set of 12-residue loops, compared with >1.4 Å reported by other researchers. The OSCAR-loop was also effective for modeling the H3 loops of antibody complementary determining regions (CDRs) in the crystal environment. The prediction accuracy of OSCAR-loop (1.74 Å) was better than the accuracy of the Rosetta NGK method (3.11 Å) or those achieved by deep learning methods (>2.2 Å) for the CDRH3 loops of 49 targets in the Rosetta antibody benchmark. The performance of OSCAR-loop in a model environment was also discussed.
Collapse
Affiliation(s)
- Shide Liang
- Department of Computational Biology, 20n Bio Limited, Hangzhou 310018, P. R. China
- Department of Research and Development, Bio-Thera Solutions, Guangzhou 510530, P. R. China
| | - Chi Zhang
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588, United States
| | - Mingfu Zhu
- Department of Computational Biology, 20n Bio Limited, Hangzhou 310018, P. R. China
| |
Collapse
|
47
|
Chungyoun M, Gray JJ. AI Models for Protein Design are Driving Antibody Engineering. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2023; 28:100473. [PMID: 37484815 PMCID: PMC10361400 DOI: 10.1016/j.cobme.2023.100473] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Therapeutic antibody engineering seeks to identify antibody sequences with specific binding to a target and optimized drug-like properties. When guided by deep learning, antibody generation methods can draw on prior knowledge and experimental efforts to improve this process. By leveraging the increasing quantity and quality of predicted structures of antibodies and target antigens, powerful structure-based generative models are emerging. In this review, we tie the advancements in deep learning-based protein structure prediction and design to the study of antibody therapeutics.
Collapse
Affiliation(s)
- Michael Chungyoun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Jeffrey J Gray
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
- Program in Molecular Biophysics, institute for Nanobiotechnology, and Center for Computational Biology, Johns Hopkins University, Baltimore, MD, 21287, USA
| |
Collapse
|
48
|
Robbins M. Therapies for Tau-associated neurodegenerative disorders: targeting molecules, synapses, and cells. Neural Regen Res 2023; 18:2633-2637. [PMID: 37449601 PMCID: PMC10358644 DOI: 10.4103/1673-5374.373670] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 03/15/2023] [Indexed: 07/18/2023] Open
Abstract
Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have shown success in late-stage clinical trials for Tau-associated neurodegenerative disorders. The most commonly prescribed treatments are symptomatic treatments such as cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers that were approved for use in Alzheimer's disease. As diagnostic screening can detect disorders at earlier time points, the field needs pre-symptomatic treatments that can prevent, or significantly delay the progression of these disorders (Koychev et al., 2019). These approaches may be different from late-stage treatments that may help to ameliorate symptoms and slow progression once symptoms have become more advanced should early diagnostic screening fail. This mini-review will highlight five key avenues of academic and industrial research for identifying therapeutic strategies to treat Tau-associated neurodegenerative disorders. These avenues include investigating (1) the broad class of chemicals termed "small molecules"; (2) adaptive immunity through both passive and active antibody treatments; (3) innate immunity with an emphasis on microglial modulation; (4) synaptic compartments with the view that Tau-associated neurodegenerative disorders are synaptopathies. Although this mini-review will focus on Alzheimer's disease due to its prevalence, it will also argue the need to target other tauopathies, as through understanding Alzheimer's disease as a Tau-associated neurodegenerative disorder, we may be able to generalize treatment options. For this reason, added detail linking back specifically to Tau protein as a direct therapeutic target will be added to each topic.
Collapse
Affiliation(s)
- Miranda Robbins
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Ave, Trumpington, Cambridge, UK; University of Cambridge, Department of Zoology, Cambridge, UK
| |
Collapse
|
49
|
Castel J, Delaux S, Hernandez-Alba O, Cianférani S. Recent advances in structural mass spectrometry methods in the context of biosimilarity assessment: from sequence heterogeneities to higher order structures. J Pharm Biomed Anal 2023; 236:115696. [PMID: 37713983 DOI: 10.1016/j.jpba.2023.115696] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/17/2023]
Abstract
Biotherapeutics and their biosimilar versions have been flourishing in the biopharmaceutical market for several years. Structural and functional characterization is needed to achieve analytical biosimilarity through the assessment of critical quality attributes as required by regulatory authorities. The role of analytical strategies, particularly mass spectrometry-based methods, is pivotal to gathering valuable information for the in-depth characterization of biotherapeutics and biosimilarity assessment. Structural mass spectrometry methods (native MS, HDX-MS, top-down MS, etc.) provide information ranging from primary sequence assessment to higher order structure evaluation. This review focuses on recent developments and applications in structural mass spectrometry for biotherapeutic and biosimilar characterization.
Collapse
Affiliation(s)
- Jérôme Castel
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Delaux
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Oscar Hernandez-Alba
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France
| | - Sarah Cianférani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC UMR 7178, Université de Strasbourg, CNRS, Strasbourg 67087, France; Infrastructure Nationale de Protéomique ProFI, FR2048 CNRS CEA, Strasbourg 67087, France.
| |
Collapse
|
50
|
Parthiban S, Vijeesh T, Gayathri T, Shanmugaraj B, Sharma A, Sathishkumar R. Artificial intelligence-driven systems engineering for next-generation plant-derived biopharmaceuticals. FRONTIERS IN PLANT SCIENCE 2023; 14:1252166. [PMID: 38034587 PMCID: PMC10684705 DOI: 10.3389/fpls.2023.1252166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 12/02/2023]
Abstract
Recombinant biopharmaceuticals including antigens, antibodies, hormones, cytokines, single-chain variable fragments, and peptides have been used as vaccines, diagnostics and therapeutics. Plant molecular pharming is a robust platform that uses plants as an expression system to produce simple and complex recombinant biopharmaceuticals on a large scale. Plant system has several advantages over other host systems such as humanized expression, glycosylation, scalability, reduced risk of human or animal pathogenic contaminants, rapid and cost-effective production. Despite many advantages, the expression of recombinant proteins in plant system is hindered by some factors such as non-human post-translational modifications, protein misfolding, conformation changes and instability. Artificial intelligence (AI) plays a vital role in various fields of biotechnology and in the aspect of plant molecular pharming, a significant increase in yield and stability can be achieved with the intervention of AI-based multi-approach to overcome the hindrance factors. Current limitations of plant-based recombinant biopharmaceutical production can be circumvented with the aid of synthetic biology tools and AI algorithms in plant-based glycan engineering for protein folding, stability, viability, catalytic activity and organelle targeting. The AI models, including but not limited to, neural network, support vector machines, linear regression, Gaussian process and regressor ensemble, work by predicting the training and experimental data sets to design and validate the protein structures thereby optimizing properties such as thermostability, catalytic activity, antibody affinity, and protein folding. This review focuses on, integrating systems engineering approaches and AI-based machine learning and deep learning algorithms in protein engineering and host engineering to augment protein production in plant systems to meet the ever-expanding therapeutics market.
Collapse
Affiliation(s)
- Subramanian Parthiban
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thandarvalli Vijeesh
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Thashanamoorthi Gayathri
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Balamurugan Shanmugaraj
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Queretaro, Mexico
| | - Ramalingam Sathishkumar
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore, India
| |
Collapse
|