1
|
Xie Y, Chan LY, Cheung MY, Li MW, Lam HM. Current technical advancements in plant epitranscriptomic studies. THE PLANT GENOME 2023; 16:e20316. [PMID: 36890704 DOI: 10.1002/tpg2.20316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The growth and development of plants are the result of the interplay between the internal developmental programming and plant-environment interactions. Gene expression regulations in plants are made up of multi-level networks. In the past few years, many studies were carried out on co- and post-transcriptional RNA modifications, which, together with the RNA community, are collectively known as the "epitranscriptome." The epitranscriptomic machineries were identified and their functional impacts characterized in a broad range of physiological processes in diverse plant species. There is mounting evidence to suggest that the epitranscriptome provides an additional layer in the gene regulatory network for plant development and stress responses. In the present review, we summarized the epitranscriptomic modifications found so far in plants, including chemical modifications, RNA editing, and transcript isoforms. The various approaches to RNA modification detection were described, with special emphasis on the recent development and application potential of third-generation sequencing. The roles of epitranscriptomic changes in gene regulation during plant-environment interactions were discussed in case studies. This review aims to highlight the importance of epitranscriptomics in the study of gene regulatory networks in plants and to encourage multi-omics investigations using the recent technical advancements.
Collapse
Affiliation(s)
- Yichun Xie
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Long-Yiu Chan
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Ming-Yan Cheung
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Man-Wah Li
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| |
Collapse
|
2
|
Shi T, Bai Y, Wu X, Wang Y, Iqbal S, Tan W, Ni Z, Gao Z. PmAGAMOUS recruits polycomb protein PmLHP1 to regulate single-pistil morphogenesis in Japanese apricot. PLANT PHYSIOLOGY 2023; 193:466-482. [PMID: 37204822 DOI: 10.1093/plphys/kiad292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/31/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023]
Abstract
Japanese apricot (Prunus mume Sieb. et Zucc.) is a traditional fruit tree with a long history. Multiple pistils (MP) lead to the formation of multiple fruits, decreasing fruit quality and yield. In this study, the morphology of flowers was observed at 4 stages of pistil development: undifferentiated stage (S1), predifferentiation stage (S2), differentiation stage (S3), and late differentiation stage (S4). In S2 and S3, the expression of PmWUSCHEL (PmWUS) in the MP cultivar was significantly higher than that in the single-pistil (SP) cultivar, and the gene expression of its inhibitor, PmAGAMOUS (PmAG), also showed the same trend, indicating that other regulators participate in the regulation of PmWUS during this period. Chromatin immunoprecipitation-qPCR (ChIP-qPCR) showed that PmAG could bind to the promoter and the locus of PmWUS, and H3K27me3 repressive marks were also detected at these sites. The SP cultivar exhibited an elevated level of DNA methylation in the promoter region of PmWUS, which partially overlapped with the region of histone methylation. This suggests that the regulation of PmWUS involves both transcription factors and epigenetic modifications. Also, the gene expression of Japanese apricot LIKE HETEROCHROMATIN PROTEIN (PmLHP1), an epigenetic regulator, in MP was significantly lower than that in SP in S2 to 3, contrary to the trend in expression of PmWUS. Our results showed that PmAG recruited sufficient PmLHP1 to maintain the level of H3K27me3 on PmWUS during the S2 of pistil development. This recruitment of PmLHP1 by PmAG inhibits the expression of PmWUS at the precise time, leading to the formation of 1 normal pistil primordium.
Collapse
Affiliation(s)
- Ting Shi
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Bai
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinxin Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Yike Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shahid Iqbal
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Horticultural Science Department, North Florida Research and Education Center, University of Florida/IFAS, Quincy, FL 32351, USA
| | - Wei Tan
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhaojun Ni
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihong Gao
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
3
|
Change of Leaf Trait Asymmetry Type in Tilia cordata Mill. and Betula pendula Roth under Air Pollution. Symmetry (Basel) 2020. [DOI: 10.3390/sym12050727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Leaf fluctuating asymmetry (FA) is widely used as an environmental stress index, including pollution. Besides FA, leaf bilateral traits can have directional asymmetry (DA) and antisymmetry (AS), which are considered hereditary. Leaf FA transitioning to DA/AS or mixed asymmetry, under air pollution, has been insufficiently investigated. This study analysed leaf asymmetry types in Tilia cordata Mill. and Betula pendula Roth under traffic air pollution over several years. In addition, the relations of such transitions to pollution, and their effect on FA-integrated index, were studied. The asymmetry types of all studied leaf traits varied with air pollution increase, as well as in control trees in different years. T. cordata most often had FA transition to DA/mixed asymmetry, while B. pendula rarely had a mixed asymmetry and FA transitions to DA/AS were observed with the same frequency. Air pollution impacted FA transitions to other asymmetry types. In most cases their frequency changed non-monotonically that corresponded to hormesis and paradoxical effects. However, FA integrated index in studied trees did not depend on change of leaf asymmetry type. Thus, DA and AS in studied plants were not exclusively hereditary. Hence, the changes of leaf asymmetry type should be considered when using leaf FA in environment assessment.
Collapse
|
4
|
Wang Z, Yang Z, Li F. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1706-1722. [PMID: 31111642 PMCID: PMC6686129 DOI: 10.1111/pbi.13167] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/12/2019] [Accepted: 05/14/2019] [Indexed: 05/11/2023]
Abstract
Trichomes are specialized epidermal cells and a vital plant organ that protect plants from various harms and provide valuable resources for plant development and use. Some key genes related to trichomes have been identified in the model plant Arabidopsis thaliana through glabrous mutants and gene cloning, and the hub MYB-bHLH-WD40, consisting of several factors including GLABRA1 (GL1), GL3, TRANSPARENT TESTA GLABRA1 (TTG1), and ENHANCER OF GLABRA3 (EGL3), has been established. Subsequently, some upstream transcription factors, phytohormones and epigenetic modification factors have also been studied in depth. In cotton, a very important fibre and oil crop globally, in addition to the key MYB-like factors, more important regulators and potential molecular mechanisms (e.g. epigenetic modifiers, distinct metabolic pathways) are being exploited during different fibre developmental stages. This occurs due to increased cotton research, resulting in the discovery of more complex regulation mechanisms from the allotetraploid genome of cotton. In addition, some conservative as well as specific mediators are involved in trichome development in other species. This study summarizes molecular mechanisms in trichome development and provides a detailed comparison of the similarities and differences between Arabidopsis and cotton, analyses the possible reasons for the discrepancy in identification of regulators, and raises future questions and foci for understanding trichome development in more detail.
Collapse
Affiliation(s)
- Zhi Wang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Zuoren Yang
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
- State Key Laboratory of Cotton BiologyInstitute of Cotton ResearchChinese Academy of Agricultural SciencesAnyangChina
| |
Collapse
|
5
|
Pandey G, Yadav CB, Sahu PP, Muthamilarasan M, Prasad M. Salinity induced differential methylation patterns in contrasting cultivars of foxtail millet (Setaria italica L.). PLANT CELL REPORTS 2017; 36:759-772. [PMID: 27999979 DOI: 10.1007/s00299-016-2093-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/07/2016] [Indexed: 05/18/2023]
Abstract
Genome-wide methylation analysis of foxtail millet cultivars contrastingly differing in salinity tolerance revealed DNA demethylation events occurring in tolerant cultivar under salinity stress, eventually modulating the expression of stress-responsive genes. Reduced productivity and significant yield loss are the adverse effects of environmental conditions on physiological and biochemical pathways in crop plants. In this context, understanding the epigenetic machinery underlying the tolerance traits in a naturally stress tolerant crop is imperative. Foxtail millet (Setaria italica) is known for its better tolerance to abiotic stresses compared to other cereal crops. In the present study, methylation-sensitive amplified polymorphism (MSAP) technique was used to quantify the salt-induced methylation changes in two foxtail millet cultivars contrastingly differing in their tolerance levels to salt stress. The study highlighted that the DNA methylation level was significantly reduced in tolerant cultivar compared to sensitive cultivar. A total of 86 polymorphic MSAP fragments were identified, sequenced and functionally annotated. These fragments showed sequence similarity to several genes including ABC transporter, WRKY transcription factor, serine threonine-protein phosphatase, disease resistance, oxidoreductases, cell wall-related enzymes and retrotransposon and transposase like proteins, suggesting salt stress-induced methylation in these genes. Among these, four genes were chosen for expression profiling which showed differential expression pattern between both cultivars of foxtail millet. Altogether, the study infers that salinity stress induces genome-wide DNA demethylation, which in turn, modulates expression of corresponding genes.
Collapse
Affiliation(s)
- Garima Pandey
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Chandra Bhan Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | - Pranav Pankaj Sahu
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India
| | | | - Manoj Prasad
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110 067, India.
| |
Collapse
|
6
|
Xia H, Huang W, Xiong J, Yan S, Tao T, Li J, Wu J, Luo L. Differentially Methylated Epiloci Generated from Numerous Genotypes of Contrasting Tolerances Are Associated with Osmotic-Tolerance in Rice Seedlings. FRONTIERS IN PLANT SCIENCE 2017; 8:11. [PMID: 28154573 PMCID: PMC5243842 DOI: 10.3389/fpls.2017.00011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 01/03/2017] [Indexed: 05/20/2023]
Abstract
DNA methylation plays an essential role in plant responses to environmental stress. Since drought develops into a rising problem in rice cultivation, investigations on genome-wide DNA methylation in responses to drought stress and in-depth explorations of its association with drought-tolerance are required. For this study, 68 rice accessions were used for an evaluation of their osmotic-tolerance related to 20% PEG6000 simulated physiological traits. The tolerant group revealed significantly higher levels of total antioxidant capacity and higher contents of H2O2 in both normal and osmotic-stressed treatments, as well as higher survival ratios. We furthermore investigated the DNA methylation status in normal, osmotic-stressed, and re-watering treatments via the methylation-sensitive amplification polymorphism (MSAP). The averaged similarity between two rice accessions from tolerant and susceptible groups was approximately 50%, similar with that between two accessions within the tolerant/susceptible group. However, the proportion of overall tolerance-associated epiloci was only 5.2% of total epiloci. The drought-tolerant accessions revealed lower DNA methylation levels in the stressed condition and more de-methylation events when they encountered osmotic stress, compared to the susceptible group. During the recovery process, the drought-tolerant accessions possessed more re-methylation events. Fourteen differentially methylated epiloci (DME) were, respectively, generated in normal, osmotic-stressed, and re-watering treatments. Approximately, 35.7% DME were determined as tolerance-associated epiloci. Additionally, rice accessions with lower methylation degrees on DME in the stressed conditions had a higher survival ratio compared to these with higher methylation degrees. This result is consistent with the lower DNA methylation levels of tolerant accessions observed in the stressed treatment. Methylation degrees on a differentially methylated epilocus may further influence gene regulation in the rice seedling in response to the osmotic stress. All these results indicate that DME generated from a number of genotypes could have higher probabilityies for association with stress-tolerance, rather than DME generated from two genotypes of contrasting tolerance. The DME found in this study are suspected to be good epigenetic markers for the application in drought-tolerant rice breeding. They could also be a valuable tool to study the epigenetic differentiation in the drought-tolerance between upland and lowland rice ecotypes.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Weixia Huang
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jie Xiong
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Shuaigang Yan
- Shanghai Agrobiological Gene CenterShanghai, China
- College of Plant Sciences and Technology, Huazhong Agricultural UniversityWuhan, China
| | - Tao Tao
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jiajia Li
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Jinhong Wu
- Shanghai Agrobiological Gene CenterShanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene CenterShanghai, China
- *Correspondence: Lijun Luo
| |
Collapse
|
7
|
Orłowska R, Machczyńska J, Oleszczuk S, Zimny J, Bednarek PT. DNA methylation changes and TE activity induced in tissue cultures of barley (Hordeum vulgare L.). JOURNAL OF BIOLOGICAL RESEARCH (THESSALONIKE, GREECE) 2016; 23:19. [PMID: 27508170 PMCID: PMC4977862 DOI: 10.1186/s40709-016-0056-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 07/25/2016] [Indexed: 11/10/2022]
Abstract
BACKGROUND In vitro plant regeneration via androgenesis or somatic embryogenesis is capable of inducing (epi)mutations that may affect sexual progenies. While epimutations are associated with DNA methylation, mutations could be due to the movement of transposons. The common notion is that both processes are linked. It is being assumed that demethylation activates transposable elements (TEs). Analysis of methylation changes and their relation with TEs activation in tissue cultures requires uniquely derived donor plants (Ds), their regenerants (Rs) and respective progeny (Ps) that would allow discrimination of processes not related to changes introduced via in vitro cultures. Moreover, a set of methods (RP-HPLC, SSAP, and MSTD) is needed to study whether different TEs families are being activated during in vitro tissue culture plant regeneration and whether their activity could be linked to DNA methylation changes or alternative explanations should be considered. RESULTS The in vitro tissue culture plant regeneration in barley was responsible for the induction of DNA methylation in regenerants and conservation of the methylation level in the progeny as shown by the RP-HPLC approach. No difference between andro- and embryo-derived Rs and Ps was observed. The SSAP and MSTD approach revealed that Ds and Rs were more polymorphic than Ps. Moreover, Rs individuals exhibited more polymorphisms with the MSTD than SSAP approach. The differences between Ds, Rs and Ps were also evaluated via ANOVA and AMOVA. CONCLUSIONS Stressful conditions during plant regeneration via in vitro tissue cultures affect regenerants and their sexual progeny leading to an increase in global DNA methylation of Rs and Ps compared to Ds in barley. The increased methylation level noted among regenerants remains unchanged in the Ps as indicated via RP-HPLC data. Marker-based experiments suggest that TEs are activated via in vitro tissue cultures and that, independently of the increased methylation, their activity in Rs is greater than in Ps. Thus, the increased methylation level may not correspond to the stabilization of TEs movement at least at the level of regenerants. The presence of TEs variation among Ds that were genetically and epigenetically uniform may suggest that at least some mobile elements may be active, and they may mask variation related to tissue cultures. Thus, tissue cultures may activate some TEs whereas the others remain intact, or their level of movement is changed. Finally, we suggest that sexual reproduction may be responsible for the stabilization of TEs.
Collapse
Affiliation(s)
- Renata Orłowska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Joanna Machczyńska
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Sylwia Oleszczuk
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Janusz Zimny
- Department of Plant Biotechnology and Cytogenetics, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| | - Piotr Tomasz Bednarek
- Department of Plant Physiology and Biochemistry, Plant Breeding and Acclimatization Institute-National Research Institute, Radzików, 05-870 Błonie, Poland
| |
Collapse
|
8
|
Xia H, Huang W, Xiong J, Tao T, Zheng X, Wei H, Yue Y, Chen L, Luo L. Adaptive Epigenetic Differentiation between Upland and Lowland Rice Ecotypes Revealed by Methylation-Sensitive Amplified Polymorphism. PLoS One 2016; 11:e0157810. [PMID: 27380174 PMCID: PMC4933381 DOI: 10.1371/journal.pone.0157810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
The stress-induced epimutations could be inherited over generations and play important roles in plant adaption to stressful environments. Upland rice has been domesticated in water-limited environments for thousands of years and accumulated drought-induced epimutations of DNA methylation, making it epigenetically differentiated from lowland rice. To study the epigenetic differentiation between upland and lowland rice ecotypes on their drought-resistances, the epigenetic variation was investigated in 180 rice landraces under both normal and osmotic conditions via methylation-sensitive amplified polymorphism (MSAP) technique. Great alterations (52.9~54.3% of total individual-locus combinations) of DNA methylation are recorded when rice encountering the osmotic stress. Although the general level of epigenetic differentiation was very low, considerable level of ΦST (0.134~0.187) was detected on the highly divergent epiloci (HDE). The HDE detected in normal condition tended to stay at low levels in upland rice, particularly the ones de-methylated in responses to osmotic stress. Three out of four selected HDE genes differentially expressed between upland and lowland rice under normal or stressed conditions. Moreover, once a gene at HDE was up-/down-regulated in responses to the osmotic stress, its expression under the normal condition was higher/lower in upland rice. This result suggested expressions of genes at the HDE in upland rice might be more adaptive to the osmotic stress. The epigenetic divergence and its influence on the gene expression should contribute to the higher drought-resistance in upland rice as it is domesticated in the water-limited environment.
Collapse
Affiliation(s)
- Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Weixia Huang
- Shanghai Agrobiological Gene Center, Shanghai, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Jie Xiong
- Shanghai Agrobiological Gene Center, Shanghai, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Tao Tao
- Shanghai Agrobiological Gene Center, Shanghai, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaoguo Zheng
- Shanghai Agrobiological Gene Center, Shanghai, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Haibin Wei
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Yunxia Yue
- Shanghai Agrobiological Gene Center, Shanghai, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai, China
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
9
|
Zheng X, Chen L, Li M, Lou Q, Xia H, Wang P, Li T, Liu H, Luo L. Transgenerational variations in DNA methylation induced by drought stress in two rice varieties with distinguished difference to drought resistance. PLoS One 2013; 8:e80253. [PMID: 24244664 PMCID: PMC3823650 DOI: 10.1371/journal.pone.0080253] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/01/2013] [Indexed: 11/19/2022] Open
Abstract
Adverse environmental conditions have large impacts on plant growth and crop production. One of the crucial mechanisms that plants use in variable and stressful natural environments is gene expression modulation through epigenetic modification. In this study, two rice varieties with different drought resistance levels were cultivated under drought stress from tilling stage to seed filling stage for six successive generations. The variations in DNA methylation of the original generation (G0) and the sixth generation (G6) of these two varieties in normal condition (CK) and under drought stress (DT) at seedling stage were assessed by using Methylation Sensitive Amplification Polymorphism (MSAP) method. The results revealed that drought stress had a cumulative effect on the DNA methylation pattern of both varieties, but these two varieties had different responses to drought stress in DNA methylation. The DNA methylation levels of II-32B (sensitive) and Huhan-3 (resistant) were around 39% and 32%, respectively. Genome-wide DNA methylation variations among generations or treatments accounted for around 13.1% of total MSAP loci in II-32B, but was only approximately 1.3% in Huhan-3. In II-32B, 27.6% of total differentially methylated loci (DML) were directly induced by drought stress and 3.2% of total DML stably transmitted their changed DNA methylation status to the next generation. In Huhan-3, the numbers were 48.8% and 29.8%, respectively. Therefore, entrainment had greater effect on Huhan-3 than on II-32B. Sequence analysis revealed that the DML were widely distributed on all 12 rice chromosomes and that it mainly occurred on the gene’s promoter and exon region. Some genes with DML respond to environmental stresses. The inheritance of epigenetic variations induced by drought stress may provide a new way to develop drought resistant rice varieties.
Collapse
Affiliation(s)
- Xiaoguo Zheng
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Liang Chen
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Mingshou Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Qiaojun Lou
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hui Xia
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Pei Wang
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Tiemei Li
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Hongyan Liu
- Shanghai Agrobiological Gene Center, Shanghai, China
| | - Lijun Luo
- College of Plant Sciences & Technology, Huazhong Agricultural University, Wuhan, China
- Shanghai Agrobiological Gene Center, Shanghai, China
- * E-mail:
| |
Collapse
|
10
|
Bemer M, Grossniklaus U. Dynamic regulation of Polycomb group activity during plant development. CURRENT OPINION IN PLANT BIOLOGY 2012; 15:523-9. [PMID: 22999383 DOI: 10.1016/j.pbi.2012.09.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 07/02/2012] [Accepted: 09/05/2012] [Indexed: 05/18/2023]
Abstract
Polycomb group (PcG) complexes play important roles in phase transitions and cell fate determination in plants and animals, by epigenetically repressing sets of genes that promote either proliferation or differentiation. The continuous differentiation of new organs in plants, such as leaves or flowers, requires a highly dynamic PcG function, which can be induced, modulated, or repressed when necessary. In this review, we discuss the recent advance in understanding PcG function in plants and focus on the diverse molecular mechanisms that have been described to regulate and counteract PcG activity in Arabidopsis.
Collapse
Affiliation(s)
- Marian Bemer
- Institute of Plant Biology & Zürich-Basel Plant Science Centre, University of Zürich, Zollikerstrasse 107, CH-8008 Zürich, Switzerland.
| | | |
Collapse
|
11
|
Viejo M, Santamaría ME, Rodríguez JL, Valledor L, Meijón M, Pérez M, Pascual J, Hasbún R, Fernández Fraga M, Berdasco M, Toorop PE, Cañal MJ, Rodríguez Fernández R. Epigenetics, the role of DNA methylation in tree development. Methods Mol Biol 2012; 877:277-301. [PMID: 22610636 DOI: 10.1007/978-1-61779-818-4_22] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
During development of multicellular organisms, cells become differentiated by modulating different programs of gene expression. Cells have their own epigenetic signature which reflects genotype, developmental history, and environmental influences, and it is ultimately reflected in the phenotype of the cells and the organism. However, in normal development or disease situations, such as adaptation to climate change or during in vitro culture, some cells undergo major epigenetic reprogramming involving the removal of epigenetic marks in the nuclei followed by the establishment of a different new set of marks. Compared with animal cells, biotech-mediated achievements are reduced in plants despite the presence of cell polypotency. In forestry, any sustainable developments using biotech tools remain restricted to the lab, without progressing to the field for application. Such barriers in the translation between development and implementation need to be addressed by organizations that have the power to integrate these two fields. However, a lack of understanding of gene regulation is also to blame for this barrier. In recent years, great progress has been made in unraveling the control of gene expression. These advances are discussed in this chapter, including the possibility of applying this knowledge in forestry practice.
Collapse
Affiliation(s)
- Marcos Viejo
- Área de Fisiología Vegetal, Departamento BOS, Facultad de Biología, Universidad de Oviedo, Oviedo, Spain.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Fang A, Zhang Y, Li M, Guo H, Yu X, Li F, Hu H. Effects of DNA methylation and histone modification on differentiation-associated gene expression in ES, NIH3T3, and NIT-1. ACTA ACUST UNITED AC 2011; 31:10-16. [DOI: 10.1007/s11596-011-0142-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Indexed: 12/14/2022]
|
13
|
Paun O, Bateman RM, Fay MF, Hedrén M, Civeyrel L, Chase MW. Stable epigenetic effects impact adaptation in allopolyploid orchids (Dactylorhiza: Orchidaceae). Mol Biol Evol 2010; 27:2465-73. [PMID: 20551043 PMCID: PMC2955735 DOI: 10.1093/molbev/msq150] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Epigenetic information includes heritable signals that modulate gene expression but are not encoded in the primary nucleotide sequence. We have studied natural epigenetic variation in three allotetraploid sibling orchid species (Dactylorhiza majalis s.str, D. traunsteineri s.l., and D. ebudensis) that differ radically in geography/ecology. The epigenetic variation released by genome doubling has been restructured in species-specific patterns that reflect their recent evolutionary history and have an impact on their ecology and evolution, hundreds of generations after their formation. Using two contrasting approaches that yielded largely congruent results, epigenome scans pinpointed epiloci under divergent selection that correlate with eco-environmental variables, mainly related to water availability and temperature. The stable epigenetic divergence in this group is largely responsible for persistent ecological differences, which then set the stage for species-specific genetic patterns to accumulate in response to further selection and/or drift. Our results strongly suggest a need to expand our current evolutionary framework to encompass a complementary epigenetic dimension when seeking to understand population processes that drive phenotypic evolution and adaptation.
Collapse
Affiliation(s)
- Ovidiu Paun
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, United Kingdom.
| | | | | | | | | | | |
Collapse
|
14
|
Zhang M, Kimatu JN, Xu K, Liu B. DNA cytosine methylation in plant development. J Genet Genomics 2010; 37:1-12. [PMID: 20171573 DOI: 10.1016/s1673-8527(09)60020-5] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2009] [Revised: 11/15/2009] [Accepted: 11/30/2009] [Indexed: 10/19/2022]
Abstract
Cytosine bases of the nuclear genome in higher plants are often extensively methylated. Cytosine methylation has been implicated in the silencing of both transposable elements (TEs) and endogenous genes, and loss of methylation may have severe functional consequences. The recent methylation profiling of the entire Arabidopsis genome has provided novel insights into the extent and pattern of cytosine methylation and its relationships with gene activity. In addition, the fresh studies also revealed the more dynamic nature of this epigenetic modification across plant development than previously believed. Cytosine methylation of gene promoter regions usually inhibits transcription, but methylation in coding regions (gene-body methylation) does not generally affect gene expression. Active demethylation (though probably act synergistically with passive loss of methylation) of promoters by the 5-methyl cytosine DNA glycosylase or DEMETER (DME) is required for the uni-parental expression of imprinting genes in endosperm, which is essential for seed viability. The opinion that cytosine methylation is indispensible for normal plant development has been reinforced by using single or combinations of diverse loss-of-function mutants for DNA methyltransferases, DNA glycosylases, components involved in siRNA biogenesis and chromatin remodeling factors. Patterns of cytosine methylation in plants are usually faithfully maintained across organismal generations by the concerted action of epigenetic inheritance and progressive correction of strayed patterns. However, some variant methylation patterns may escape from being corrected and hence produce novel epialleles in the affected somatic cells. This, coupled with the unique property of plants to produce germline cells late during development, may enable the newly acquired epialleles to be inherited to future generations, which if visible to selection may contribute to adaptation and evolution.
Collapse
Affiliation(s)
- Meishan Zhang
- Key Laboratory of Molecular Epigenetics of MOE and Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | |
Collapse
|
15
|
Ho DH, Burggren WW. Epigenetics and transgenerational transfer: a physiological perspective. ACTA ACUST UNITED AC 2010; 213:3-16. [PMID: 20008356 DOI: 10.1242/jeb.019752] [Citation(s) in RCA: 202] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Epigenetics, the transgenerational transfer of phenotypic characters without modification of gene sequence, is a burgeoning area of study in many disciplines of biology. However, the potential impact of this phenomenon on the physiology of animals is not yet broadly appreciated, in part because the phenomenon of epigenetics is not typically part of the design of physiological investigations. Still enigmatic and somewhat ill defined is the relationship between the overarching concept of epigenetics and interesting transgenerational phenomena (e.g. 'maternal/parental effects') that alter the physiological phenotype of subsequent generations. The lingering effect on subsequent generations of an initial environmental disturbance in parent animals can be profound, with genes continuing to be variously silenced or expressed without an associated change in gene sequence for many generations. Known epigenetic mechanisms involved in this phenomenon include chromatin remodeling (DNA methylation and histone modification), RNA-mediated modifications (non-coding RNA and microRNA), as well as other less well studied mechanisms such as self-sustaining loops and structural inheritance. In this review we: (1) discuss how the concepts of epigenetics and maternal effects both overlap with, and are distinct from, each other; (2) analyze examples of existing animal physiological studies based on these concepts; and (3) offer a construct by which to integrate these concepts into the design of future investigations in animal physiology.
Collapse
Affiliation(s)
- D H Ho
- Department of Biological Sciences, University of North Texas, 1155 Union Circle #305220, Denton, TX 76203-5017, USA.
| | | |
Collapse
|
16
|
Santamaría ME, Hasbún R, Valera MJ, Meijón M, Valledor L, Rodríguez JL, Toorop PE, Cañal MJ, Rodríguez R. Acetylated H4 histone and genomic DNA methylation patterns during bud set and bud burst in Castanea sativa. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1360-9. [PMID: 19376609 DOI: 10.1016/j.jplph.2009.02.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/13/2009] [Accepted: 02/12/2009] [Indexed: 05/06/2023]
Abstract
The relationships between genomic DNA cytosine methylation, histone H4 acetylation and bud dormancy in Castanea sativa are described. Acetylated H4 histone and genomic DNA methylation patterns showed opposite abundance patterns during bud set and bud burst. Increased and decreased methylation levels in the apical buds coincided with bud set and bud burst, respectively. Intermediate axillary buds were characterized by constant levels of DNA methylation during burst of apical buds and reduced fluctuation in DNA methylation throughout the year, which coincided with the absence of macro-morphological changes. Furthermore, acetylated histone H4 (AcH4) levels from apical buds were higher during bud burst than during bud set, as was demonstrated by immunodetection. Results were validated with three additional C. sativa provenances. Thus, global DNA methylation and AcH4 levels showed opposite patterns and coincided with changes in bud dormancy in C. sativa.
Collapse
Affiliation(s)
- Ma Estrella Santamaría
- Area Fisiología Vegetal, Departamento de Biologia de Organismos y Sistemas, Asturias Institute of Biotechnology (IUBA), Universidad de Oviedo, E-33071 Oviedo, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
March-Díaz R, García-Domínguez M, Lozano-Juste J, León J, Florencio FJ, Reyes JC. Histone H2A.Z and homologues of components of the SWR1 complex are required to control immunity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2008; 53:475-87. [PMID: 17988222 DOI: 10.1111/j.1365-313x.2007.03361.x] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
One of the mechanisms involved in chromatin remodelling is so-called 'histone replacement'. An example of such a mechanism is the substitution of canonical H2A histone by the histone variant H2A.Z. The ATP-dependent chromatin remodelling complex SWR1 is responsible for this action in yeast. We have previously proposed the existence of an SWR1-like complex in Arabidopsis by demonstrating genetic and physical interaction of the components SEF, ARP6 and PIE1, which are homologues of the yeast Swc6 and Arp6 proteins and the core ATPase Swr1, respectively. Here we show that histone variant H2A.Z, but not canonical H2A histone, interacts with PIE1. Plants mutated at loci HTA9 and HTA11 (two of the three Arabidopsis H2A.Z-coding genes) displayed developmental abnormalities similar to those found in pie1, sef and arp6 plants, exemplified by an early-flowering phenotype. Comparison of gene expression profiles revealed that 65% of the genes differentially regulated in hta9 hta11 plants were also mis-regulated in pie1 plants. Detailed examination of the expression data indicated that the majority of mis-regulated genes were related to salicylic acid-dependent immunity. RT-PCR and immunoblotting experiments confirmed constitutive expression of systemic acquired resistance (SAR) marker genes in pie1, hta9 hta11 and sef plants. Variations observed at the molecular level resulted in phenotypic alterations such as spontaneous cell death and enhanced resistance to the phytopathogenic bacteria Pseudomonas syringae pv. tomato. Thus, our results support the existence in Arabidopsis of an SWR1-like chromatin remodelling complex that is functionally related to that described in yeast and human, and attribute to this complex a role in maintaining a repressive state of the SAR response.
Collapse
Affiliation(s)
- Rosana March-Díaz
- Instituto de Bioquímica Vegetal y Fotosíntesis (CSIC-USE), Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
18
|
Zhang X, Clarenz O, Cokus S, Bernatavichute YV, Pellegrini M, Goodrich J, Jacobsen SE. Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis. PLoS Biol 2007; 5:e129. [PMID: 17439305 PMCID: PMC1852588 DOI: 10.1371/journal.pbio.0050129] [Citation(s) in RCA: 557] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2006] [Accepted: 03/07/2007] [Indexed: 11/19/2022] Open
Abstract
Trimethylation of histone H3 lysine 27 (H3K27me3) plays critical roles in regulating animal development, and in several cases, H3K27me3 is also required for the proper expression of developmentally important genes in plants. However, the extent to which H3K27me3 regulates plant genes on a genome-wide scale remains unknown. In addition, it is not clear whether the establishment and spreading of H3K27me3 occur through the same mechanisms in plants and animals. We identified regions containing H3K27me3 in the genome of the flowering plant Arabidopsis thaliana using a high-density whole-genome tiling microarray. The results suggest that H3K27me3 is a major silencing mechanism in plants that regulates an unexpectedly large number of genes in Arabidopsis (~4,400), and that the maintenance of H3K27me3 is largely independent of other epigenetic pathways, such as DNA methylation or RNA interference. Unlike in animals, where H3K27m3 occupies large genomic regions, in Arabidopsis, we found that H3K27m3 domains were largely restricted to the transcribed regions of single genes. Furthermore, unlike in animals systems, H3K27m3 domains were not preferentially associated with low-nucleosome density regions. The results suggest that different mechanisms may underlie the establishment and spreading of H3K27me3 in plants and animals.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Oliver Clarenz
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Shawn Cokus
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Yana V Bernatavichute
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Justin Goodrich
- Institute of Molecular Plant Science, University of Edinburgh, Edinburgh, United Kingdom
- School of Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, California, United States of America
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
19
|
Keyte AL, Percifield R, Liu B, Wendel JF. Infraspecific DNA Methylation Polymorphism in Cotton (Gossypium hirsutum L.). J Hered 2006; 97:444-50. [PMID: 16987937 DOI: 10.1093/jhered/esl023] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Cytosine methylation is important in the epigenetic regulation of gene expression and development in plants and has been implicated in silencing duplicate genes after polyploid formation in several plant groups. Relatively little information exists, however, on levels and patterns of methylation polymorphism (MP) at homologous loci within species. Here we explored the levels and patterns of methylation-polymorphism diversity at CCGG sites within allotetraploid cotton, Gossypium hirsutum, using a methylation-sensitive amplified fragment length polymorphism screen and a selected set of 20 G. hirsutum accessions for which we have information on genetic polymorphism levels and relationships. Methylation and MP exist at high levels within G. hirsutum: of 150 HpaII/MspI sites surveyed, 48 were methylated at the inner cytosine (32%) and 32 of these were polymorphic (67%). Both these values are higher than comparable measures of genetic diversity using restriction fragment length polymorphisms. The high percentage of methylation-polymorphic sites and potential relationship to gene expression underscore the potential significance of MP within and among populations. We speculate that biased correlation of methylation-polymorphic sites and genes in cotton may be a consequence of polyploidy and the attendant doubling of all genes.
Collapse
Affiliation(s)
- Anna L Keyte
- Department of Biology, Duke University, Durham, NC 27710, USA
| | | | | | | |
Collapse
|
20
|
Shepard KA. The molecular population genetics of shoot development in Arabidopsis thaliana. Genetica 2006; 129:19-36. [PMID: 16900315 DOI: 10.1007/s10709-006-0030-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 12/01/2005] [Indexed: 02/05/2023]
Abstract
Studies in Arabidopsis thaliana have provided us with a wealth of information about the genetic pathways that regulate plant morphogenesis. This developmental genetic treasure trove represents a fantastic resource for researchers interested in the microevolution of development. Several laboratories have begun using molecular population genetic analyses to investigate the evolutionary forces that act upon loci that regulate shoot morphogenesis. Much of this work has focused on coding sequence variation in transcription factors; however, recent studies have explored sequence variation in other types of proteins and in promoter regions. Several genes that regulate shoot development contain signatures of selective sweeps associated with positive selection or harbor putative balanced polymorphisms in coding and noncoding sequences. Other regulatory genes appear to be evolving neutrally, but have accumulated potentially deleterious replacement polymorphisms.
Collapse
Affiliation(s)
- Kristen A Shepard
- Department of Biological Sciences, Barnard College, Columbia University, 3009 Broadway, New York, NY 10027, USA.
| |
Collapse
|
21
|
Maletskaya EI, Yudanova SS, Maletskii SI. Effect of the epimutagen 5-azacytidine on the structure of floral-stalk metameres in sugar beet Beta vulgaris L. RUSS J GENET+ 2006. [DOI: 10.1134/s1022795406070118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Fojtová M, Bleys A, Bedřichová J, Van Houdt H, Křížová K, Depicker A, Kovařík A. The trans-silencing capacity of invertedly repeated transgenes depends on their epigenetic state in tobacco. Nucleic Acids Res 2006; 34:2280-93. [PMID: 16670434 PMCID: PMC1456325 DOI: 10.1093/nar/gkl180] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Revised: 03/13/2006] [Accepted: 03/22/2006] [Indexed: 11/13/2022] Open
Abstract
We studied the in trans-silencing capacities of a transgene locus that carried the neomycin phosphotransferase II reporter gene linked to the 35S promoter in an inverted repeat (IR). This transgene locus was originally posttranscriptionally silenced but switched to a transcriptionally silenced epiallele after in vitro tissue culture. Here, we show that both epialleles were strongly methylated in the coding region and IR center. However, by genomic sequencing, we found that the 1.0 kb region around the transcription start site was heavily methylated in symmetrical and non-symmetrical contexts in transcriptionally but not in posttranscriptionally silenced epilallele. Also, the posttranscriptionally silenced epiallele could trans-silence and trans-methylate homologous transgene loci irrespective of their genomic organization. We demonstrate that this in trans-silencing was accompanied by the production of small RNA molecules. On the other hand, the transcriptionally silenced variant could neither trans-silence nor trans-methylate homologous sequences, even after being in the same genetic background for generations and meiotic cycles. Interestingly, 5-aza-2-deoxy-cytidine-induced hypomethylation could partially restore signaling from the transcriptionally silenced epiallele. These results are consistent with the hypothesis that non-transcribed highly methylated IRs are poor silencers of homologous loci at non-allelic positions even across two generations and that transcription of the inverted sequences is essential for their trans-silencing potential.
Collapse
Affiliation(s)
- Miloslava Fojtová
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-612 65 Brno, Czech Republic
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Annick Bleys
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Jana Bedřichová
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-612 65 Brno, Czech Republic
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Helena Van Houdt
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Kateřina Křížová
- Institute of Biophysics, Academy of Sciences of the Czech RepublicCZ-612 65 Brno, Czech Republic
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Anna Depicker
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology, Ghent UniversityB-9052 Ghent, Belgium
| | - Aleš Kovařík
- To whom correspondence should be addressed at Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ 612 65 Brno, Czech Republic. Tel: +420 541 517 178; Fax: +420 541 211 293;
| |
Collapse
|
23
|
Veit B. Stem cell signalling networks in plants. PLANT MOLECULAR BIOLOGY 2006; 60:793-810. [PMID: 16724253 DOI: 10.1007/s11103-006-0033-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Accepted: 02/23/2006] [Indexed: 05/09/2023]
Abstract
The essential nature of meristematic tissues is addressed with reference to conceptual frameworks that have been developed to explain the behaviour of animal stem cells. Comparisons are made between different types of plant meristems with the objective of highlighting common themes that might illuminate underlying mechanisms. A more in depth comparison of the root and shoot apical meristems is made which suggests a common mechanism for maintaining stem cells. The relevance of organogenesis to stem cell maintenance is discussed, along with the nature of underlying mechanisms which help ensure that stem cell production is balanced with the depletion of cells through differentiation. Mechanisms that integrate stem cell behaviour in the whole plant are considered, with a focus on the roles of auxin and cytokinin. The review concludes with a brief discussion of epigenetic mechanisms that act to stabilise and maintain stem cell populations.
Collapse
Affiliation(s)
- Bruce Veit
- Plant Breeding and Genomics, AgResearch Ltd, Tennent Drive, Private Bag 11008, Palmerston North, New Zealand.
| |
Collapse
|
24
|
Abstract
DNA in plants is highly methylated, containing 5-methylcytosine (m5C) and N6-methyladenine (m6A); m5C is located mainly in symmetrical CG and CNG sequences but it may occur also in other non-symmetrical contexts. m6A but not m5C was found in plant mitochondrial DNA. DNA methylation in plants is species-, tissue-, organelle- and age-specific. It is controlled by phytohormones and changes on seed germination, flowering and under the influence of various pathogens (viral, bacterial, fungal). DNA methylation controls plant growth and development, with particular involvement in regulation of gene expression and DNA replication. DNA replication is accompanied by the appearance of under-methylated, newly formed DNA strands including Okazaki fragments; asymmetry of strand DNA methylation disappears until the end of the cell cycle. A model for regulation of DNA replication by methylation is suggested. Cytosine DNA methylation in plants is more rich and diverse compared with animals. It is carried out by the families of specific enzymes that belong to at least three classes of DNA methyltransferases. Open reading frames (ORF) for adenine DNA methyltransferases are found in plant and animal genomes, and a first eukaryotic (plant) adenine DNA methyltransferase (wadmtase) is described; the enzyme seems to be involved in regulation of the mitochondria replication. Like in animals, DNA methylation in plants is closely associated with histone modifications and it affects binding of specific proteins to DNA and formation of respective transcription complexes in chromatin. The same gene (DRM2) in Arabidopsis thaliana is methylated both at cytosine and adenine residues; thus, at least two different, and probably interdependent, systems of DNA modification are present in plants. Plants seem to have a restriction-modification (R-M) system. RNA-directed DNA methylation has been observed in plants; it involves de novo methylation of almost all cytosine residues in a region of siRNA-DNA sequence identity; therefore, it is mainly associated with CNG and non-symmetrical methylations (rare in animals) in coding and promoter regions of silenced genes. Cytoplasmic viral RNA can affect methylation of homologous nuclear sequences and it maybe one of the feedback mechanisms between the cytoplasm and the nucleus to control gene expression.
Collapse
Affiliation(s)
- B F Vanyushin
- Belozersky Institute of Physical and Chemical Biology, Lomonosov Moscow State University, Russia.
| |
Collapse
|
25
|
Long L, Lin X, Zhai J, Kou H, Yang W, Liu B. Heritable alteration in DNA methylation pattern occurred specifically at mobile elements in rice plants following hydrostatic pressurization. Biochem Biophys Res Commun 2006; 340:369-76. [PMID: 16364243 DOI: 10.1016/j.bbrc.2005.12.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2005] [Accepted: 12/04/2005] [Indexed: 12/31/2022]
Abstract
Intrinsic DNA methylation pattern is an integral component of the epigenetic network in many eukaryotes. Exploring the extent to which DNA methylation patterns can be altered under a specific condition is important for elucidating the biological functions of this epigenetic modification. This is of added significance in plants wherein the newly acquired methylation patterns can be inherited through organismal generations. We report here that DNA methylation patterns of mobile elements but not of cellular genes were specifically altered in rice plants following hydrostatic pressurization. This was evidenced by methylation-sensitive gel-blot analysis, which showed that 10 out of 10 studied low-copy transposons and retrotransposons manifested methylation alteration in at least one of the 8 randomly chosen pressure-treated plants, whereas none of the 16 studied low-copy cellular genes showed any change. Both gel-blotting and genome-wide fingerprinting indicated that the methylation alteration in mobile elements was not accompanied by a general genetic instability. Progeny analysis indicated retention of the altered methylation patterns in most progeny plants, underscoring early occurrence of the alterations, and their faithful epigenetic inheritance.
Collapse
Affiliation(s)
- Likun Long
- Laboratory of Plant Molecular Epigenetics, Institute of Genetics and Cytology, Northeast Normal University, Changchun 130024, China
| | | | | | | | | | | |
Collapse
|
26
|
Salmon A, Ainouche ML, Wendel JF. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol 2006; 14:1163-75. [PMID: 15773943 DOI: 10.1111/j.1365-294x.2005.02488.x] [Citation(s) in RCA: 276] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To study the consequences of hybridization and genome duplication on polyploid genome evolution and adaptation, we used independently formed hybrids (Spartina x townsendii and Spartina x neyrautii) that originated from natural crosses between Spartina alterniflora, an American introduced species, and the European native Spartina maritima. The hybrid from England, S. x townsendii, gave rise to the invasive allopolyploid, salt-marsh species, Spartina anglica. Recent studies indicated that allopolyploid speciation may be associated with rapid genetic and epigenetic changes. To assess this in Spartina, we performed AFLP (amplified fragment length polymorphism) and MSAP (methylation sensitive amplification polymorphism) on young hybrids and the allopolyploid. By comparing the subgenomes in the hybrids and the allopolyploid to the parental species, we inferred structural changes that arose repeatedly in the two independently formed hybrids. Surprisingly, 30% of the parental methylation patterns are altered in the hybrids and the allopolyploid. This high level of epigenetic regulation might explain the morphological plasticity of Spartina anglica and its larger ecological amplitude. Hybridization rather than genome doubling seems to have triggered most of the methylation changes observed in Spartina anglica.
Collapse
Affiliation(s)
- Armel Salmon
- UMR 118 INRA-Agrocampus Rennes, Amélioration des Plantes et Biotechnologies Végétales, Station de Génétique et Amélioration des Plantes, F-35653 Le Rheu, France
| | | | | |
Collapse
|
27
|
Nelson T, Tausta SL, Gandotra N, Liu T. Laser microdissection of plant tissue: what you see is what you get. ANNUAL REVIEW OF PLANT BIOLOGY 2006; 57:181-201. [PMID: 16669760 DOI: 10.1146/annurev.arplant.56.032604.144138] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Laser microdissection (LM) utilizes a cutting or harvesting laser to isolate specific cells from histological sections; the process is guided by microscopy. This provides a means of removing selected cells from complex tissues, based only on their identification by microscopic appearance, location, or staining properties (e.g., immunohistochemistry, reporter gene expression, etc.). Cells isolated by LM can be a source of cell-specific DNA, RNA, protein or metabolites for subsequent evaluation of DNA modifications, transcript/protein/metabolite profiling, or other cell-specific properties that would be averaged with those of neighboring cell types during analysis of undissected complex tissues. Plants are particularly amenable to the application of LM; the highly regular tissue organization and stable cell walls of plants facilitate the visual identification of most cell types even in unstained tissue sections. Plant cells isolated by LM have been the starting point for a variety of genomic and metabolite studies of specific cell types.
Collapse
Affiliation(s)
- Timothy Nelson
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA.
| | | | | | | |
Collapse
|
28
|
Wang Y, van der Hoeven RS, Nielsen R, Mueller LA, Tanksley SD. Characteristics of the tomato nuclear genome as determined by sequencing undermethylated EcoRI digested fragments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 112:72-84. [PMID: 16208505 DOI: 10.1007/s00122-005-0107-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2005] [Accepted: 09/01/2005] [Indexed: 05/04/2023]
Abstract
A collection of 9,990 single-pass nuclear genomic sequences, corresponding to 5 Mb of tomato DNA, were obtained using methylation filtration (MF) strategy and reduced to 7,053 unique undermethylated genomic islands (UGIs) distributed as follows: (1) 59% non-coding sequences, (2) 28% coding sequences, (3) 12% transposons-96% of which are class I retroelements, and (4) 1% organellar sequences integrated into the nuclear genome over the past approximately 100 million years. A more detailed analysis of coding UGIs indicates that the unmethylated portion of tomato genes extends as far as 676 bp upstream and 766 bp downstream of coding regions with an average of 174 and 171 bp, respectively. Based on the analysis of the UGI copy distribution, the undermethylated portion of the tomato genome is determined to account for the majority of the unmethylated genes in the genome and is estimated to constitute 61+/-15 Mb of DNA (approximately 5% of the entire genome)--which is significantly less than the 220 Mb estimated for gene-rich euchromatic arms of the tomato genome. This result indicates that, while most genes reside in the euchromatin, a significant portion of euchromatin is methylated in the intergenic spacer regions. Implications of the results for sequencing the genome of tomato and other solanaceous species are discussed.
Collapse
Affiliation(s)
- Y Wang
- Department of Plant Breeding and Genetics, Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
29
|
Schaefer SC, Gasic K, Cammue B, Broekaert W, van Damme EJM, Peumans WJ, Korban SS. Enhanced resistance to early blight in transgenic tomato lines expressing heterologous plant defense genes. PLANTA 2005; 222:858-66. [PMID: 16047198 DOI: 10.1007/s00425-005-0026-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Accepted: 04/16/2005] [Indexed: 05/03/2023]
Abstract
Genes coding for an iris ribosomal-inactivating protein (I-RIP), a maize beta-glucanase (M-GLU), and a Mirabilis jalapa antimicrobial peptide (Mj-AMP1) were separately introduced into tomato (Lycopersicon esculentum cv. Sweet Chelsea) cotyledons via Agrobacterium tumefaciens-mediated transformation. Transgenic lines carrying each of the transgenes were confirmed for integration into the tomato genome using Southern blot hybridization. Transcription of I-RIP, M-GLU, and Mj-AMP1 genes in various transgenic lines was determined using Northern blot analysis. Plants of selected transgenic lines were inoculated with a 2-3x10(4) conidial spores/ml suspension of the fungal pathogen Alternaria solani, the causal agent of tomato early blight. Compared to control (non-transformed) plants, two transgenic lines carrying either a M-GLU or Mj-AMP1 showed enhanced resistance to early blight disease. None of the four lines carrying the I-RIP transgene showed increased resistance to early blight.
Collapse
Affiliation(s)
- Scott C Schaefer
- Department of Natural Resources and Environmental Sciences, 310 ERML, University of Illinois, 1201 W. Gregory, Urbana, IL 61801, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
RNA silencing refers to a broad range of phenomena sharing the common feature that large, double-stranded RNAs or stem-loop precursors are processed to ca. 21-26 nucleotide small RNAs, which then guide the cleavage of cognate RNAs, block productive translation of these RNAs, or induce methylation of specific target DNAs. Although the core mechanisms are evolutionarily conserved, epigenetic maintenance of silencing by amplification of small RNAs and the elaboration of mobile, RNA-based silencing signals occur predominantly in plants. Plant RNA silencing systems are organized into a network with shared components and overlapping functions. MicroRNAs, and probably trans-acting small RNAs, help regulate development at the posttranscriptional level. Small interfering RNAs associated with transgene- and virus-induced silencing function primarily in defending against foreign nucleic acids. Another system, which is concerned with RNA-directed methylation of DNA repeats, seems to have roles in epigenetic silencing of certain transposable elements and genes under their control.
Collapse
Affiliation(s)
- Frederick Meins
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058, Basel, Switzerland.
| | | | | |
Collapse
|
31
|
Day RC, Grossniklaus U, Macknight RC. Be more specific! Laser-assisted microdissection of plant cells. TRENDS IN PLANT SCIENCE 2005; 10:397-406. [PMID: 16027030 DOI: 10.1016/j.tplants.2005.06.006] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2005] [Revised: 05/24/2005] [Accepted: 06/24/2005] [Indexed: 05/03/2023]
Abstract
Laser-assisted microdissection (LAM) is a powerful tool for isolating specific tissues, cell types and even organelles from sectioned biological specimen in a manner conducive to the extraction of RNA, DNA or protein. LAM, which is an established technique in many areas of biology, has now been successfully adapted for use with plant tissues. Here, we provide an overview of the processes involved in conducting a successful LAM study in plants and review recent developments that have made this technique even more desirable. We also discuss how the technology might be exploited to answer some pertinent questions in plant biology.
Collapse
Affiliation(s)
- Robert C Day
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
32
|
Fieldes MA, Schaeffer SM, Krech MJ, Brown JCL. DNA hypomethylation in 5-azacytidine-induced early-flowering lines of flax. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2005; 111:136-149. [PMID: 15864524 DOI: 10.1007/s00122-005-2005-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2004] [Accepted: 03/13/2005] [Indexed: 05/24/2023]
Abstract
HPLC analysis was used to examine the cytosine methylation of total DNA extracted from four early-flowering lines that were induced by treating germinating seeds of flax (Linum usitatissimum) with the DNA demethylating agent 5-azacytidine. In the normal lines that gave rise to the induced early-flowering lines, flowering usually begins approximately 50 days after sowing. The early-flowering lines flower 7-13 days earlier than normal. The normal level of cytosine methylation was approximately 14% of the cytosines and 2.7% of the nucleosides. In the early-flowering lines, these levels were 6.2% lower than normal in DNA from the terminal leaf clusters of 14-day-old seedlings and 9.7% lower than normal in DNA from the cotyledons and immature shoot buds of 4-day-old seedlings. This hypomethylation was seen in lines that were five to nine generations beyond the treatment generation. The level of hypomethylation was similar in three of the four early-flowering lines, but was not as low in the fourth line, which flowers early but not quite as early as the other three lines. Unexpectedly, the degree of hypomethylation seen in segregant lines, derived by selecting for the early-flowering phenotype in the F(2) and F(3) generations of out-crosses, was similar to that seen in the early-flowering lines. Analysis of the methylation levels in segregating generations of out-crosses between early-flowering and normal lines demonstrated a decrease in methylation level during the selection of early-flowering segregants. The results suggest an association between hypomethylation and the early-flowering phenotype, and that the hypomethylated regions may not be randomly distributed throughout the genome of the early-flowering lines.
Collapse
Affiliation(s)
- M A Fieldes
- Department of Biology, Wilfrid Laurier University, 75 University Ave. West, Waterloo, ON N2L 3C5, Canada.
| | | | | | | |
Collapse
|
33
|
Law RD, Suttle JC. Chromatin remodeling in plant cell culture: patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:527-34. [PMID: 15922608 DOI: 10.1016/j.plaphy.2005.03.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Accepted: 03/09/2005] [Indexed: 05/02/2023]
Abstract
Changes in DNA cytosine methylation and core histone multi-acetylation were determined in cell suspension cultures of potato (Solanum tuberosum L. cv. Russet Burbank) during 15 days of in vitro culture. Cell subculture induced a transient 33% decrease in genome-wide 5-methylcytosine (5mC) content and a transient threefold increase in transcription rates that were most evident at 6 and 9 days after subculture, respectively. In contrast to the global reduction in 5mC content, subculture resulted in a transient twofold increase in 5mC levels within 5'-CCGG-3' sequences and no detectable change in 5'-CG-3' methylation. Multi-acetylation of histones H3.1, H3.2 and H4 rose 2-, 1.5- and 3-fold by 9, 9 and 12 days after subculture, respectively. All observed epigenetic changes were reset during aging of cell cultures. Inclusion of the histone deacetylase inhibitor trichostatin A (TSA) and/or the cytosine methylation inhibitor 5-azacytidine (5AC) in culture sequentially decreased genome-wide 5mC levels by approximately 25% at day 9, then decreased 5'-mCmCGG-3' by 30-50% and increased H3 and H4 multi-acetylation by 30-60% at day 15, compared to controls. Treatment with 5AC or TSA alone or in combination had no effect on RNA synthesis at day 9. At day 15, 5AC treatment remained ineffective, while de novo RNA synthesis was approximately twofold higher in cells grown in both inhibitors or in TSA alone. Collectively, these results demonstrate that in potato suspension cultures, rapid, reversible changes in 5mC levels precede regulatory post-translational acetylation of core histones, and suggest that interactions between these epigenetic processes appear to be necessary to power transcription and growth induction in potato cells.
Collapse
Affiliation(s)
- R David Law
- United States Department of Agriculture, Agricultural Research Service, Northern Crop Science Laboratory, Sugarbeet and Potato Research, Post Office Box 5677, State University Station, Fargo, ND 58105-5677, USA
| | | |
Collapse
|
34
|
Prouteau M, Colot V. [Epigenetic control, development and natural genetic variation in plants]. Med Sci (Paris) 2005; 21:422-7. [PMID: 15811308 DOI: 10.1051/medsci/2005214422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Plant life strategies differ radically from those of most animals. Plants are not motile, and can only face stress by developing appropriate physiological responses. In addition, many developmental decisions take place during post-embryonic life in plants, whereas vertebrate and invertebrate development is nearly complete by the time of birth. For instance, while the germ line is typically set aside early during embryogenesis in animals, plants produce gametes from stem cell populations that were previously used for the vegetative growth of shoots. Nevertheless, plants and animals have similar nuclear organization, chromatin constitution and gene content, which raises the question as to whether or not fundamental differences in the use of genetic information underlie their distinct life strategies. More specifically, we would like to know if chromatin and the epigenetically defined, heritable cell fates that it can confer play comparable roles in plants and animals. Here we review our current knowledge on chromatin-mediated epigenetic processes in plants. Based on available evidence, we argue that epigenetic regulation of gene expression plays a relatively minor role in plants compared to mammals. Conversely, plants appear to be more prone than other multicellular organisms to the induction of chromatin-based, epigenetically modified gene activity states that can be transmitted over many generations. These so-called "epimutations" may therefore represent a significant proportion of the natural genetic variation seen in plants. In humans, epimutations are frequently observed in cancers, and given their metastable nature, they could also play an important role in familial disorders that do not demonstrate clear Mendelian inheritance.
Collapse
Affiliation(s)
- Manoël Prouteau
- Unité de Recherche en Génomique végétale, UMR INRA 1165-CNRS 8114-UEVE, 2, rue Gaston-Crémieux, 91057 Evry Cedex, France
| | | |
Collapse
|
35
|
Ranganath RM. Harnessing the developmental potential of nucellar cells: barriers and opportunities. Trends Biotechnol 2005; 22:504-10. [PMID: 15450743 DOI: 10.1016/j.tibtech.2004.08.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Angiosperm nucellar cells can either use or avoid meiosis in vivo, depending on the developmental context. This unique ability contrasts with the conditions required in vitro, either for a reconstituted oocyte to avoid meiosis and produce clones by somatic cell nuclear transfer (SCNT), or for mammalian stem cells to undergo meiosis and produce synthetic sex cells (gametes). Current biotechnological initiatives to harness the potential of nucellar cells are based on the transfer of apomixis genes to sexual crop plants with the aim of producing clones through seeds. The elusive genetic basis of apomixis compels us to examine whether this process involves epigenetic factors. The elegant and versatile developmental platform available in nucellar cells should be explored as a genome-scale science and compared with mammalian stem cell biology for a holistic understanding of developmental programming and reprogramming in eukaryotes.
Collapse
Affiliation(s)
- R M Ranganath
- Cytogenetics and Developmental Biology Laboratory, Department of Botany, Bangalore University, Jnanabharathi Campus, Bangalore 560056, India.
| |
Collapse
|
36
|
Autran D, Huanca-Mamani W, Vielle-Calzada JP. Genomic imprinting in plants: the epigenetic version of an Oedipus complex. CURRENT OPINION IN PLANT BIOLOGY 2005; 8:19-25. [PMID: 15653395 DOI: 10.1016/j.pbi.2004.11.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Genomic imprinting is a mitotically stable epigenetic modification that results in the functional non-equivalency of both parental genomes following fertilization. In flowering plants, studies of parent-of-origin effects have mostly identified genes that are only transcribed from a maternally inherited allele. In Arabidopsis, the Polycomb group protein MEDEA regulates seed development through the expression of the MADS-box gene PHERES1. Activation of the maternal MEDEA allele requires the function of DEMETER, a plant DNA glycosylase that also controls the transcriptional activity of the maternally inherited allele of the late-flowering gene FWA. Current studies of parent-of-origin effects have mostly identified genes that are only transcribed from a maternally inherited allele. Our current understanding of parent-of-origin effects could represent a new form of an Oedipus complex in which flowering plants prefer to rely transcriptionally on their maternal rather than their paternal chromosomes to ensure normal initiation of seed development.
Collapse
Affiliation(s)
- Daphné Autran
- Laboratory of Reproductive Development and Apomixis, Department of Genetic Engineering, CINVESTAV--Unidad Irapuato, Apartado Postal 629, CP 36 500, Irapuato, Gto. México.
| | | | | |
Collapse
|
37
|
Chanvivattana Y, Bishopp A, Schubert D, Stock C, Moon YH, Sung ZR, Goodrich J. Interaction of Polycomb-group proteins controlling flowering in Arabidopsis. Development 2004; 131:5263-76. [PMID: 15456723 DOI: 10.1242/dev.01400] [Citation(s) in RCA: 364] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Arabidopsis, the EMBYRONIC FLOWER2 (EMF2), VERNALISATION2 (VRN2) and FERTILISATION INDEPENDENT ENDOSPERM2 (FIS2) genes encode related Polycomb-group (Pc-G) proteins. Their homologues in animals act together with other Pc-G proteins as part of a multimeric complex, Polycomb Repressive Complex 2 (PRC2), which functions as a histone methyltransferase. Despite similarities between the fis2 mutant phenotype and those of some other plant Pc-G members, it has remained unclear how the FIS2/EMF2/VRN2 class Pc-G genes interact with the others. We have identified a weak emf2 allele that reveals a novel phenotype with striking similarity to that of severe mutations in another Pc-G gene, CURLY LEAF (CLF), suggesting that the two genes may act in a common pathway. Consistent with this, we demonstrate that EMF2 and CLF interact genetically and that this reflects interaction of their protein products through two conserved motifs, the VEFS domain and the C5 domain. We show that the full function of CLF is masked by partial redundancy with a closely related gene, SWINGER (SWN), so that null clf mutants have a much less severe phenotype than emf2 mutants. Analysis in yeast further indicates a potential for the CLF and SWN proteins to interact with the other VEFS domain proteins VRN2 and FIS2. The functions of individual Pc-G members may therefore be broader than single mutant phenotypes reveal. We suggest that plants have Pc-G protein complexes similar to the Polycomb Repressive Complex2 (PRC2) of animals, but the duplication and subsequent diversification of components has given rise to different complexes with partially discrete functions.
Collapse
Affiliation(s)
- Yindee Chanvivattana
- Institute of Molecular Plant Science, School of Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JH, UK
| | | | | | | | | | | | | |
Collapse
|