1
|
Scogings PF, Mkhize NR. Intraspecific Responses of Seedlings of Three Vachellia Species to Simulated Browsing Reflect Adaptive Traits of Older Life Stages. Ecol Evol 2025; 15:e71163. [PMID: 40104625 PMCID: PMC11919466 DOI: 10.1002/ece3.71163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/20/2025] Open
Abstract
Intraspecific variation in adaptation to herbivory has been studied in juvenile (sapling) and adult (reproductive) stages of woody species in African savannas, but has not been studied at the early seedling stage. We hypothesized that, among Vachellia species commonly occurring in African savannas, spinescence increases and growth rate decreases after herbivory, but these responses would be expressed most strongly in populations with slower growing seedlings. Seedlings of V. nilotica , V. tortilis, and V. karroo were grown from seeds of different populations within the Southeastern Coastal Hinterland geomorphic province of South Africa. Seedlings were grown in a greenhouse and clipped at three intensities when they were 3 months old. Responses were determined for seedlings harvested 3 months later. Statistically significant (p < 0.05) interacting effects of clipping and population were rare. Clipping increased the spine mass fraction of V. tortilis seedlings from one population. Clipping reduced the relative height growth of V. nilotica and V. tortilis seedlings, while populations of V. nilotica and V. karroo differed in relative growth rate. We interpret weak vertical regrowth of V. nilotica and V. tortilis seedlings as reflecting adaptation to herbivory reported for saplings and adults in other studies. Conversely, we interpret strong height regrowth of V. karroo seedlings as reflecting adaptation to fire in association with herbivory or shading, as reported for older plants elsewhere. The study highlights the importance of studying plant traits relevant to herbivory in different populations and at different life stages to better understand adaptations to herbivory.
Collapse
Affiliation(s)
- Peter F Scogings
- Centre for Functional Biodiversity, School of Life Sciences University of KwaZulu-Natal Scottsville South Africa
| | - Ntuthuko R Mkhize
- School of Agricultural, Earth and Environmental Sciences University of KwaZulu-Natal Scottsville South Africa
| |
Collapse
|
2
|
Ashworth M, Rocha RL, Baxter S, Flower K. Early silique-shedding wild radish (Raphanus raphanistrum L.) phenotypes persist in a long-term harvest weed seed control managed field in Western Australia. PEST MANAGEMENT SCIENCE 2024; 80:3470-3477. [PMID: 38415813 DOI: 10.1002/ps.8051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND This study introduces a wild radish population collected from Yelbeni in the Western Australian grainbelt that evolved an early silique abscission (shedding) trait to persist despite long-term harvest weed seed control (HWSC) use. In 2017, field-collected seed (known herein as Yelbeni) was compared to surrounding ruderal and field-collected populations in a fully randomized common garden study. RESULTS The Yelbeni population exhibited a higher rate of silique abscission when compared to the ruderal populations collected from the site before wheat (Triticum aestivum L.) harvest (assessed at soft dough stage, Zadoks 83). A similar common garden study was conducted in the subsequent season (2018) using progeny reproduced on a single site without stress. The HWSC-selected progeny (Yelbeni P) shed 1048 (±288) siliques before wheat maturity at the soft dough stage (Zadoks 83) compared to 25 (±7) siliques from the pooled control populations. The Yelbeni P population only flowered 6 days earlier (FT50 as determined by log-logistic analysis) than pooled control populations, which is unlikely to fully account for the increased rate of silique abscission. The Yelbeni P population also located its lowest siliques below the lowest height for harvest interception (10 cm), which is likely to increase HWSC evasion. The mechanism inducing early silique-shedding is yet to be determined; however, wild radish is known for its significant genetic variability and has demonstrated its capacity to adapt to environmental and management stresses. CONCLUSION This study demonstrates that the repeated use of HWSC can lead to the selection of HWSC-avoidance traits including early silique-shedding before harvest and/or locating siliques below the harvest cutting height for interception. © 2024 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Michael Ashworth
- Australian Herbicide Resistance Initiative, The University of Western Australia, Crawley, Western Australia, Australia
| | - Roberto Lujan Rocha
- Australian Herbicide Resistance Initiative, The University of Western Australia, Crawley, Western Australia, Australia
| | - Shane Baxter
- Australian Herbicide Resistance Initiative, The University of Western Australia, Crawley, Western Australia, Australia
| | - Ken Flower
- Australian Herbicide Resistance Initiative, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
3
|
Wang G, Mao J, Ji M, Wang W, Fu J. A comprehensive assessment of photosynthetic acclimation to shade in C4 grass (Cynodon dactylon (L.) Pers.). BMC PLANT BIOLOGY 2024; 24:591. [PMID: 38902617 PMCID: PMC11191358 DOI: 10.1186/s12870-024-05242-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/03/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Light deficit in shaded environment critically impacts the growth and development of turf plants. Despite this fact, past research has predominantly concentrated on shade avoidance rather than shade tolerance. To address this, our study examined the photosynthetic adjustments of Bermudagrass when exposed to varying intensities of shade to gain an integrative understanding of the shade response of C4 turfgrass. RESULTS We observed alterations in photosynthetic pigment-proteins, electron transport and its associated carbon and nitrogen assimilation, along with ROS-scavenging enzyme activity in shaded conditions. Mild shade enriched Chl b and LHC transcripts, while severe shade promoted Chl a, carotenoids and photosynthetic electron transfer beyond QA- (ET0/RC, φE0, Ψ0). The study also highlighted differential effects of shade on leaf and root components. For example, Soluble sugar content varied between leaves and roots as shade diminished SPS, SUT1 but upregulated BAM. Furthermore, we observed that shading decreased the transcriptional level of genes involving in nitrogen assimilation (e.g. NR) and SOD, POD, CAT enzyme activities in leaves, even though it increased in roots. CONCLUSIONS As shade intensity increased, considerable changes were noted in light energy conversion and photosynthetic metabolism processes along the electron transport chain axis. Our study thus provides valuable theoretical groundwork for understanding how C4 grass acclimates to shade tolerance.
Collapse
Affiliation(s)
- Guangyang Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinyan Mao
- College of Agriculture, Ludong University, Yantai, 264025, Shandong, China
| | - Mingxia Ji
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Wei Wang
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China
| | - Jinmin Fu
- Coastal Salinity Tolerant Grass Engineering and Technology Research Center, Ludong University, Yantai, 264025, Shandong, China.
| |
Collapse
|
4
|
Earley TS, Feiner N, Alvarez MF, Coolon JD, Sultan SE. The relative impact of parental and current environment on plant transcriptomes depends on type of stress and genotype. Proc Biol Sci 2023; 290:20230824. [PMID: 37752834 PMCID: PMC10523085 DOI: 10.1098/rspb.2023.0824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Through developmental plasticity, an individual organism integrates influences from its immediate environment with those due to the environment of its parents. While both effects on phenotypes are well documented, their relative impact has been little studied in natural systems, especially at the level of gene expression. We examined this issue in four genotypes of the annual plant Persicaria maculosa by varying two key resources-light and soil moisture-in both generations. Transcriptomic analyses showed that the relative effects of parent and offspring environment on gene expression (i.e. the number of differentially expressed transcripts, DETs) varied both for the two types of resource stress and among genotypes. For light, immediate environment induced more DETs than parental environment for all genotypes, although the precise proportion of parental versus immediate DETs varied among genotypes. By contrast, the relative effect of soil moisture varied dramatically among genotypes, from 8-fold more DETs due to parental than immediate conditions to 10-fold fewer. These findings provide evidence at the transcriptomic level that the relative impacts of parental and immediate environment on the developing organism may depend on the environmental factor and vary strongly among genotypes, providing potential for the interplay of these developmental influences to evolve.
Collapse
Affiliation(s)
- Timothy S. Earley
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | | | - Mariano F. Alvarez
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D. Coolon
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Sonia E. Sultan
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
5
|
Yang J, Song J, Shilpha J, Jeong BR. Top and Side Lighting Induce Morphophysiological Improvements in Korean Ginseng Sprouts ( Panax ginseng C.A. Meyer) Grown from One-Year-Old Roots. PLANTS (BASEL, SWITZERLAND) 2023; 12:2849. [PMID: 37571002 PMCID: PMC10421474 DOI: 10.3390/plants12152849] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Nowadays, not only the roots, but also leaves and flowers of ginseng are increasingly popular ingredients in supplements for healthcare products and traditional medicine. The cultivation of the shade-loving crop, ginseng, is very demanding in terms of the light environment. Along with the intensity and duration, light direction is another important factor in regulating plant morphophysiology. In the current study, three lighting directions-top (T), side (S), or top + side (TS)-with an intensity of 30 ± 5 μmol·m-2·s-1 photosynthetic photon flux density (PPFD) were employed. Generally, compared with the single T lighting, the composite lighting direction, TS, was more effective in shaping the ginseng with improved characteristics, including shortened, thick shoots; enlarged, thick leaves; more leaf trichomes; earlier flower bud formation; and enhanced photosynthesis. The single S light resulted in the worst growth parameters and strongly inhibited the flower bud formation, leading to the latest flower bud observation. Additionally, the S lighting acted as a positive factor in increasing the leaf thickness and number of trichomes on the leaf adaxial surface. However, the participation of the T lighting weakened these traits. Overall, the TS lighting was the optimal direction for improving the growth and development traits in ginseng. This preliminary research may provide new ideas and orientations in ginseng cultivation lodging resistance and improving the supply of ginseng roots, leaves, and flowers to the market.
Collapse
Affiliation(s)
- Jingli Yang
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang 262700, China; (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jinnan Song
- Shandong Facility Horticulture Bioengineering Research Center, Jia Sixie College of Agriculture, Weifang University of Science and Technology, Shouguang 262700, China; (J.Y.); (J.S.)
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jayabalan Shilpha
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
| | - Byoung Ryong Jeong
- Department of Horticulture, Division of Applied Life Science (BK21 Four), Graduate School of Gyeongsang National University, Jinju 52828, Republic of Korea
- Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea;
- Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Su Y, Zhang Z, He J, Zeng W, Cai Z, Lai Z, Pan Y, Hao X, Xing G, Wang W, Zhang J, Li Y, Sun Z, Gai J. Gene-allele system of shade tolerance in southern China soybean germplasm revealed by genome-wide association study using gene-allele sequence as markers. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:152. [PMID: 37310498 DOI: 10.1007/s00122-023-04390-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/16/2023] [Indexed: 06/14/2023]
Abstract
KEY MESSAGE Fifty-three shade tolerance genes with 281 alleles in the SCSGP were identified directly using gene-allele sequence as markers in RTM GWAS, from which optimized crosses, evolutionary motivators, and gene-allele networks were explored. Shade tolerance is a key for optimal cultivation of soybean inter/relay-cropped with corn. To explore the shade tolerance gene-allele system in the southern China soybean germplasm, we proposed using gene-allele sequence markers (GASMs) in a restricted two-stage multi-locus model genome-wide association study (GASM-RTM-GWAS). A representative sample with 394 accessions was tested for their shade tolerance index (STI), in Nanning, China. Through whole-genome re-sequencing, 47,586 GASMs were assembled. From GASM-RTM-GWAS, 53 main-effect STI genes with 281 alleles (2-13 alleles/gene) (totally 63 genes with 308 alleles, including 38 G × E genes with 191 alleles) were identified and then organized into a gene-allele matrix composed of eight submatrices corresponding to geo-seasonal subpopulations. The population featured mild STI changes (1.69 → 1.56-1.82) and mild gene-allele changes (92.5% alleles inherited, 0% alleles excluded, 7.5% alleles emerged) from the primitive (SAIII) to the derived seven subpopulations, but large transgressive recombination potentials and optimal crosses were predicted. The 63 STI genes were annotated into six biological categories (metabolic process, catalytic activity, response to stresses, transcription and translation, signal transduction and transport and unknown functions), interacted as gene networks. From the STI gene-allele system, 38 important alleles of 22 genes were nominated for further in-depth study. GASM-RTM-GWAS performed powerful and efficient in germplasm population genetic study comparing to other procedures through facilitating direct and thorough identification of its gene-allele system, from which genome-wide breeding by design could be achieved, and evolutionary motivators and gene-allele networks could be explored.
Collapse
Affiliation(s)
- Yanzhu Su
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhipeng Zhang
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jianbo He
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Weiying Zeng
- Institute of Economic Crops, Guangxi Academy of Agricultural Sciences, Nanning, 5300007, Guangxi, China
| | - Zhaoyan Cai
- Institute of Economic Crops, Guangxi Academy of Agricultural Sciences, Nanning, 5300007, Guangxi, China
| | - Zhenguang Lai
- Institute of Economic Crops, Guangxi Academy of Agricultural Sciences, Nanning, 5300007, Guangxi, China
| | - Yongpeng Pan
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaoshuai Hao
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Guangnan Xing
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Wubin Wang
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Jiaoping Zhang
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yan Li
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zudong Sun
- Institute of Economic Crops, Guangxi Academy of Agricultural Sciences, Nanning, 5300007, Guangxi, China.
| | - Junyi Gai
- Soybean Research Institute and MARA National Center for Soybean Improvement and MARA Key Laboratory of Biology and Genetic Improvement of Soybean and State Key Laboratory for Crop Genetics and Germplasm Enhancement and State Innovation Platform for Integrated Production and Education in Soybean Bio-Breeding and Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
7
|
Shi F, Zhao Z, Jiang Y, Liu S, Tan C, Liu C, Ye X, Liu Z. Whole transcriptome analysis and construction of a ceRNA regulatory network related to leaf and petiole development in Chinese cabbage (Brassica campestris L. ssp. pekinensis). BMC Genomics 2023; 24:144. [PMID: 36964498 PMCID: PMC10039531 DOI: 10.1186/s12864-023-09239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
BACKGROUND The growth and development of leaves and petioles have a significant effect on photosynthesis. Understanding the molecular mechanisms underlying leaf and petiole development is necessary for improving photosynthetic efficiency, cultivating varieties with high photosynthetic efficiency, and improving the yield of crops of which the leaves are foodstuffs. This study aimed to identify the mRNAs, long non-coding RNAs (lncRNAs), microRNAs (miRNAs), and circular RNAs (circRNAs) related to leaf and petiole development in Chinese cabbage (Brassica campestris L. ssp. pekinensis). The data were used to construct a competitive endogenous RNA (ceRNA) network to obtain insights into the mechanisms underlying leaf and petiole development. RESULTS The leaves and petioles of the 'PHL' inbred line of Chinese cabbage were used as research materials for whole transcriptome sequencing. A total of 10,646 differentially expressed (DE) mRNAs, 303 DElncRNAs, 7 DEcircRNAs, and 195 DEmiRNAs were identified between leaves and petioles. Transcription factors and proteins that play important roles in leaf and petiole development were identified, including xyloglucan endotransglucosylase/hydrolase, expansion proteins and their precursors, transcription factors TCP15 and bHLH, lateral organ boundary domain protein, cellulose synthase, MOR1-like protein, and proteins related to plant hormone biosynthesis. A ceRNA regulatory network related to leaf and petiole development was constructed, and 85 pairs of ceRNA relationships were identified, including 71 DEmiRNA-DEmRNA, 12 DEmiRNA-DElncRNA, and 2 DEmiRNA-DEcircRNA pairs. Three LSH genes (BrLSH1, BrLSH2 and BrLSH3) with significant differential expression between leaves and petioles were screened from transcriptome data, and their functions were explored through subcellular localization analysis and transgenic overexpression verification. BrLSH1, BrLSH2 and BrLSH3 were nuclear proteins, and BrLSH2 inhibited the growth and development of Arabidopsis thaliana. CONCLUSIONS This study identifies mRNAs and non-coding RNAs that may be involved in the development of leaves and petioles in Chinese cabbage, and establishes a ceRNA regulatory network related to development of the leaves and petioles, providing valuable genomic resources for further research on the molecular mechanisms underlying leaf and petiole development in this crop species.
Collapse
Affiliation(s)
- Fengyan Shi
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
- Vegetable Research Institute of Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Zifan Zhao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Yang Jiang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Song Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Chuanhong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xueling Ye
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
8
|
Kong D, Li C, Xue W, Wei H, Ding H, Hu G, Zhang X, Zhang G, Zou T, Xian Y, Wang B, Zhao Y, Liu Y, Xie Y, Xu M, Wu H, Liu Q, Wang H. UB2/UB3/TSH4-anchored transcriptional networks regulate early maize inflorescence development in response to simulated shade. THE PLANT CELL 2023; 35:717-737. [PMID: 36472157 PMCID: PMC9940873 DOI: 10.1093/plcell/koac352] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/11/2022] [Accepted: 12/05/2022] [Indexed: 05/12/2023]
Abstract
Increasing planting density has been adopted as an effective means to increase maize (Zea mays) yield. Competition for light from neighbors can trigger plant shade avoidance syndrome, which includes accelerated flowering. However, the regulatory networks of maize inflorescence development in response to high-density planting remain poorly understood. In this study, we showed that shade-mimicking treatments cause precocious development of the tassels and ears. Comparative transcriptome profiling analyses revealed the enrichment of phytohormone-related genes and transcriptional regulators among the genes co-regulated by developmental progression and simulated shade. Network analysis showed that three homologous Squamosa promoter binding protein (SBP)-like (SPL) transcription factors, Unbranched2 (UB2), Unbranched3 (UB3), and Tasselsheath4 (TSH4), individually exhibited connectivity to over 2,400 genes across the V3-to-V9 stages of tassel development. In addition, we showed that the ub2 ub3 double mutant and tsh4 single mutant were almost insensitive to simulated shade treatments. Moreover, we demonstrated that UB2/UB3/TSH4 could directly regulate the expression of Barren inflorescence2 (BIF2) and Zea mays teosinte branched1/cycloidea/proliferating cell factor30 (ZmTCP30). Furthermore, we functionally verified a role of ZmTCP30 in regulating tassel branching and ear development. Our results reveal a UB2/UB3/TSH4-anchored transcriptional regulatory network of maize inflorescence development and provide valuable targets for breeding shade-tolerant maize cultivars.
Collapse
Affiliation(s)
- Dexin Kong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Changyu Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weicong Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hongbin Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Hui Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guizhen Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoming Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Guisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ting Zou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yuting Xian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miaoyun Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Qing Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
9
|
Gottlieb R, Gruntman M. Can plants integrate information on above-ground competition in their directional responses below ground? ANNALS OF BOTANY 2022; 130:763-771. [PMID: 36001107 PMCID: PMC9670743 DOI: 10.1093/aob/mcac106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND AIMS Light competition can induce varying above-ground responses in plants. However, very little is known regarding the effect of above-ground light competition cues on plant responses below ground. Here we asked whether light competition cues that indicate the occurrence and direction of neighbours above ground might affect directional root placemat. METHODS In a common-garden experiment, we examined the integrated responses of the annual procumbent plant Portulaca oleracea to light competition cues and soil nutrient distribution. Soil nutrients were distributed either uniformly or in patches, and light competition was simulated using a transparent green filter, which was spatially located either in the same or opposite direction of the soil nutrient patch. KEY RESULTS As predicted, root proliferation of P. oleracea increased in the direction of the enriched soil patches but was homogenously distributed under the uniform nutrient distribution. Interestingly, root distribution was also affected by the light competition cue and increased in its direction regardless of the location of the soil patches. CONCLUSIONS Our results provide initial support to the idea that below-ground plant responses to competition might also be regulated by above-ground neighbour cues, highlighting the need to further investigate the combined effects of both above- and below-ground competition cues on root behaviour.
Collapse
Affiliation(s)
- Ruth Gottlieb
- School of Plant Sciences and Food Security, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| | - Michal Gruntman
- School of Plant Sciences and Food Security, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
- Porter School of the Environment and Earth Sciences, Tel Aviv University, PO Box 39040, Tel Aviv 6997801, Israel
| |
Collapse
|
10
|
Wu Y, Chen P, Gong W, Gul H, Zhu J, Yang F, Wang X, Yong T, Liu J, Pu T, Yan Y, Yang W. Morphological and physiological variation of soybean seedlings in response to shade. FRONTIERS IN PLANT SCIENCE 2022; 13:1015414. [PMID: 36275582 PMCID: PMC9583947 DOI: 10.3389/fpls.2022.1015414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Soybean (Glycine max) is a legume species that is widely used in intercropping. Quantitative analyses of plasticity and genetic differences in soybean would improve the selection and breeding of soybean in intercropping. Here, we used data of 20 varieties from one year artificial shading experiment and one year intercropping experiment to characterize the morphological and physiological traits of soybean seedlings grown under shade and full sun light conditions. Our results showed that shade significantly decreased biomass, leaf area, stem diameter, fraction of dry mass in petiole, leaf mass per unit area, chlorophyll a/b ratio, net photosynthetic rate per unit area at PAR of 500 μmol m-2 s-1 and 1,200 μmol m-2 s-1 of soybean seedling, but significantly increased plant height, fraction of dry mass in stem and chlorophyll content. Light × variety interaction was significant for all measured traits, light effect contributed more than variety effect. The biomass of soybean seedlings was positively correlated with leaf area and stem diameter under both shade and full sunlight conditions, but not correlated with plant height and net photosynthetic rate. The top five (62.75% variation explained) most important explanatory variables of plasticity of biomass were that the plasticity of leaf area, leaf area ratio, leaflet area, plant height and chlorophyll content, whose total weight were 1, 0.9, 0.3, 0.2, 0.19, respectively. The plasticity of biomass was positively correlated with plasticity of leaf area and leaflet area but significant negative correlated with plasticity of plant height. The principal component one account for 42.45% variation explain. A cluster analysis further indicated that soybean cultivars were classified into three groups and cultivars; Jiandebaimaodou, Gongdou 2, and Guixia 3 with the maximum plasticity of biomass. These results suggest that for soybean seedlings grown under shade increasing the capacity for light interception by larger leaf area is more vital than light searching (plant height) and light conversion (photosynthetic rate).
Collapse
Affiliation(s)
- Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Ping Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Wanzhuo Gong
- Crop Research Institute, Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, China
| | - Hina Gul
- National Center of Industrial Biotechnology (NCIB), PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Junqi Zhu
- Plant and Food Research, Blenheim, New Zealand
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Jiang Liu
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- College of Life Science, Sichuan Agricultural University, Chengdu, China
| | - Tian Pu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| | - Yanhong Yan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Crop Eco-Physiology and Farming System, Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
| |
Collapse
|
11
|
Liu D, Cui Y, Zhao Z, Zhang J, Li S, Liu Z. Transcriptome analysis and mining of genes related to shade tolerance in foxtail millet ( Setaria italica (L.) P. Beauv.). ROYAL SOCIETY OPEN SCIENCE 2022; 9:220953. [PMID: 36249327 PMCID: PMC9532984 DOI: 10.1098/rsos.220953] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
A stereo interplanting system with foxtail millet beneath chestnut trees is an effective planting method to raise the utilization of land in chestnut orchards, increase yields and improve quality of chestnut nuts. Consequently, exploration of genes involved in shade tolerance response in foxtail millet and breeding shade-tolerant varieties have become urgent issues. In this study, RNA-seq of leaf samples from two shade-tolerant varieties and three shade-intolerant varieties of foxtail millet at the booting stage was performed. Comparisons between the varieties revealed that 70 genes were commonly differentially expressed. Moreover, the ratio of net photosynthetic rate under shaded environment to that under light environment could be used as an indicator of shade tolerance. Subsequently, weighted gene co-expression network analysis was employed to construct a co-expression network and modules were correlated with this ratio. A total of 375 genes were identified as potentially relevant to shade tolerance, among which nine genes were also present in the 70 differentially expressed genes, which implied that they were good candidates for genes involved in shade tolerance. Our results provide valuable resources for elucidation of the molecular mechanisms underlying shade tolerance and will contribute to breeding of shade-tolerant foxtail millet that are adapted to the shaded environment under chestnut trees.
Collapse
Affiliation(s)
- Dan Liu
- Tianjin Key Laboratory of Crop Genetics and Breeding, Institute of Crop Sciences, Tianjin Academy of Agricultural Sciences, Tianjin, People's Republic of China
| | - Yanjiao Cui
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| | - Zilong Zhao
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| | - Jing Zhang
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| | - Suying Li
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| | - Zhengli Liu
- Department of Life Sciences, Tangshan Normal University, Tangshan, People's Republic of China
| |
Collapse
|
12
|
Yuan HY, Caron CT, Vandenberg A, Bett KE. RNA-Seq and Gene Ontology Analysis Reveal Differences Associated With Low R/FR-Induced Shade Responses in Cultivated Lentil and a Wild Relative. Front Genet 2022; 13:891702. [PMID: 35795209 PMCID: PMC9251359 DOI: 10.3389/fgene.2022.891702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/06/2022] [Indexed: 12/01/2022] Open
Abstract
Lentil is an important pulse crop not only because of its high nutrient value but also because of its ecological advantage in a sustainable agricultural system. Our previous work showed that the cultivated lentil and wild lentil germplasm respond differently to light environments, especially to low R/FR-induced shade conditions. Little is known about how cultivated and wild lentils respond to shade at the level of gene expression and function. In this study, transcriptomic profiling of a cultivated lentil (Lupa, L. culinaris) and a wild lentil (BGE 016880, L. orientalis) at several growth stages is presented. De novo transcriptomes were assembled for both genotypes, and differential gene expression analysis and gene ontology enrichment analysis were performed. The transcriptomic resources generated in this study provide fundamental information regarding biological processes and genes associated with shade responses in lentils. BGE 016880 and Lupa shared a high similarity in their transcriptomes; however, differential gene expression profiles were not consistent between these two genotypes. The wild lentil BGE 016880 had more differentially expressed genes than the cultivated lentil Lupa. Upregulation of genes involved in gibberellin, brassinosteroid, and auxin synthesis and signaling pathways, as well as cell wall modification, in both genotypes explains their similarity in stem elongation response under the shade. Genes involved in jasmonic acid and flavonoid biosynthesis pathways were downregulated in BGE 016880 only, and biological processes involved in defense responses were significantly enriched in the wild lentil BGE 016880 only. Downregulation of WRKY and MYB transcription factors could contribute to the reduced defense response in BGE 016880 but not in Lupa under shade conditions. A better understanding of shade responses of pulse crop species and their wild relatives will play an important role in developing genetic strategies for crop improvement in response to changes in light environments.
Collapse
Affiliation(s)
- Hai Ying Yuan
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Aquatic and Crop Resource Development Research Center, National Research Council of Canada, Saskatoon, SK, Canada
| | - Carolyn T. Caron
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Albert Vandenberg
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Kirstin E. Bett
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Kirstin E. Bett,
| |
Collapse
|
13
|
Liu C, Feng B, Zhou Y, Liu C, Gong X. Exogenous brassinosteroids increases tolerance to shading by altering stress responses in mung bean (Vigna radiata L.). PHOTOSYNTHESIS RESEARCH 2022; 151:279-294. [PMID: 34846599 DOI: 10.1007/s11120-021-00887-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Plant steroidal hormones, brassinosteroids, play a key role in various developmental processes of plants and the adaptation to various environmental stresses. The purpose of this research was to evaluate the effect of exogenous 24-epibrassinolide (EBR) application on the morphology, photosynthetic characteristics, chlorophyll fluorescence parameters, photosynthetic enzymes activities, and endogenous hormone content of mung bean (Vigna radiata L.) leaves under shading stress environment. Two mung bean cultivars, Xilv 1 and Yulv 1, were tested. The results showed that all of the investigated data were significantly affected by shading stress; however, foliar application of EBR increased the net photosynthetic rate, transpiration rate, stomatal conductance, and decreased intercellular CO2 concentration of mung bean leaves under shading condition. Increased photosynthetic capacity in EBR-treated leaves was accompanied by improvement in higher photosynthetic enzymes activities. EBR-treated leaves exhibited more quantum yield of PSII electron transport and efficiency of energy capture than the control, which was mainly due to clearer leaf anatomical structure such as palisade tissues and spongy tissues, further resulting in altered plant morphological characteristics. Moreover, the treatment with EBL regulated the endogenous hormone content, including the decreased gibberellins and increased brassinolide, although to different levels. Combined with the morphological and physiological responses, we concluded that exogenous EBR treatment is beneficial to enhancing plant tolerance to shading stress and mitigating injure from weak light. The modifications of the physiological metabolism through EBR application may be a potential strategy to weaken shading stress in the future sustainable agricultural production.
Collapse
Affiliation(s)
- Chunjuan Liu
- College of Agronomy, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, 110866, Liaoning, People's Republic of China
| | - Baili Feng
- State Key Laboratory of Crop Stress Biology in Arid Areas/College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yufei Zhou
- College of Agronomy, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, 110866, Liaoning, People's Republic of China
| | - Chang Liu
- College of Agronomy, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, 110866, Liaoning, People's Republic of China
| | - Xiangwei Gong
- College of Agronomy, Shenyang Agricultural University, No. 120 Dongling Road, Shenyang, 110866, Liaoning, People's Republic of China.
- State Key Laboratory of Crop Stress Biology in Arid Areas/College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
14
|
Lighting from Top and Side Enhances Photosynthesis and Plant Performance by Improving Light Usage Efficiency. Int J Mol Sci 2022; 23:ijms23052448. [PMID: 35269590 PMCID: PMC8910434 DOI: 10.3390/ijms23052448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022] Open
Abstract
Light is a critical environmental factor that influences plant growth and development, ranging from seed germination to flowering and fruiting. This study was carried out to explore how the optimal combination of various lighting directions increases the light usage efficiency and influences the plant morphophysiology, by investigating the plant growth parameters, leaf anatomy, epidermal morphology, stomatal properties, chlorophyll content, key physiological changes, and correlated gene expressions. In closed-type plant growth chambers, rooted cuttings of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars, “Pearl Egg” and “Gaya Glory”, were subjected to a 10-h photoperiod with 600 μmol∙m−2·s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) in each light-direction combination (top (1/1) (T), top (1/2) + side (1/2) (TS), top (1/2) + bottom (1/2) (TB), side (1/2) + bottom (1/2) (SB), and top (1/3) + side (1/3) + bottom (1/3) (TSB)). The TS lighting significantly enhanced the morphophysiological performance, compared to the other lighting direction combinations. Notably, the excellent branch formation and earlier flowering were induced by the TS lighting in both “Pearl Egg” and “Gaya Glory” plants.
Collapse
|
15
|
Colombo M, Montazeaud G, Viader V, Ecarnot M, Prosperi J, David J, Fort F, Violle C, Freville H. A genome‐wide analysis suggests pleiotropic effects of Green Revolution genes on shade avoidance in wheat. Evol Appl 2022; 15:1594-1604. [PMID: 36330302 PMCID: PMC9624089 DOI: 10.1111/eva.13349] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/26/2022] Open
Abstract
A classic example of phenotypic plasticity in plants is the suit of phenotypic responses induced by a change in the ratio of red to far-red light (R∶FR) as a result of shading, also known as the shade avoidance syndrome (SAS). While the adaptive consequences of this syndrome have been extensively discussed in natural ecosystems, how SAS varies within crop populations and how SAS evolved during crop domestication and breeding remain poorly known. In this study, we grew a panel of 180 durum wheat (Triticum turgidum ssp. durum) genotypes spanning diversity from wild, early domesticated, and elite genetic compartments under two light treatments: low R:FR light (shaded treatment) and high R:FR light (unshaded treatment). We first quantified the genetic variability of SAS, here measured as a change in plant height at the seedling stage. We then dissected the genetic basis of this variation through genome-wide association mapping. Genotypes grown in shaded conditions were taller than those grown under unshaded conditions. Interaction between light quality and genotype did not affect plant height. We found six QTLs affecting plant height. Three significantly interacted with light quality among which the well-known Rht1 gene introgressed in elite germplasm during the Green Revolution. Interestingly at three loci, short genotypes systematically expressed reduced SAS, suggesting a positive genetic correlation between plant height and plant height plasticity. Overall, our study sheds light on the evolutionary history of crops and illustrates the relevance of genetic approaches to tackle agricultural challenges.
Collapse
Affiliation(s)
- Michel Colombo
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
- CEFE Univ. Montpellier Institut Agro CNRS EPHE, IRD Univ Valéry Montpellier France
| | - Germain Montazeaud
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
- CEFE Univ. Montpellier Institut Agro CNRS EPHE, IRD Univ Valéry Montpellier France
- Department of Ecology and Evolution University of Lausanne 1015 Lausanne Switzerland
| | - Veronique Viader
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
| | - Martin Ecarnot
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
| | | | - Jacques David
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
| | - Florian Fort
- CEFE Univ. Montpellier Institut Agro CNRS EPHE, IRD Univ Valéry Montpellier France
| | - Cyrille Violle
- CEFE Univ. Montpellier CNRS EPHE, IRD Univ Valéry Montpellier France
| | - Helene Freville
- AGAP Univ Montpellier CIRAD, INRAE Institut Agro Montpellier France
| |
Collapse
|
16
|
Xu H, Chen P, Tao Y. Understanding the Shade Tolerance Responses Through Hints From Phytochrome A-Mediated Negative Feedback Regulation in Shade Avoiding Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:813092. [PMID: 35003197 PMCID: PMC8727698 DOI: 10.3389/fpls.2021.813092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Based on how plants respond to shade, we typically classify them into two groups: shade avoiding and shade tolerance plants. Under vegetative shade, the shade avoiding species induce a series of shade avoidance responses (SARs) to outgrow their competitors, while the shade tolerance species induce shade tolerance responses (STRs) to increase their survival rates under dense canopy. The molecular mechanism underlying the SARs has been extensively studied using the shade avoiding model plant Arabidopsis thaliana, while little is known about STRs. In Aarabidopsis, there is a PHYA-mediated negative feedback regulation that suppresses exaggerated SARs. Recent studies revealed that in shade tolerance Cardamine hirsuta plants, a hyperactive PHYA was responsible for suppressing shade-induced elongation growth. We propose that similar signaling components may be used by shade avoiding and shade tolerance plants, and different phenotypic outputs may result from differential regulation or altered dynamic properties of these signaling components. In this review, we summarized the role of PHYA and its downstream components in shade responses, which may provide insights into understanding how both types of plants respond to shade.
Collapse
Affiliation(s)
| | | | - Yi Tao
- Key Laboratory of Xiamen Plant Genetics and State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| |
Collapse
|
17
|
Chen T, Zhang J, Wang X, Zeng R, Chen Y, Zhang H, Wan S, Zhang L. Monoseeding Increases Peanut (Arachis hypogaea L.) Yield by Regulating Shade-Avoidance Responses and Population Density. PLANTS 2021; 10:plants10112405. [PMID: 34834768 PMCID: PMC8625293 DOI: 10.3390/plants10112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 11/16/2022]
Abstract
We aimed to elucidate the possible yield-increasing mechanisms through regulation of shade-avoidance responses at both physiological and molecular levels under monoseeding. Our results revealed that monoseeding decreased the main stem height but increased the main stem diameter and the number of branches and nodes compared to the traditional double- and triple-seeding patterns. The chlorophyll contents were higher under monoseeding than that under double- and triple-seeding. Further analysis showed that this, in turn, increased the net photosynthetic rate and reallocated higher levels of assimilates to organs. Monoseeding induced the expression patterns of Phytochrome B (Phy B) gene but decreased the expression levels of Phytochrome A (Phy A) gene. Furthermore, the bHLH transcription factors (PIF 1 and PIF 4) that interact with the phytochromes were also decreased under monoseeding. The changes in the expression levels of these genes may regulate the shade-avoidance responses under monoseeding. In addition, monoseeding increased pod yield at the same population density through increasing the number of pods per plant and 100-pod weight than double- and triple-seeding patterns. Thus, we inferred that monoseeding is involved in the regulation of shade-avoidance responsive genes and reallocating assimilates at the same population density, which in turn increased the pod yield.
Collapse
Affiliation(s)
- Tingting Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (X.W.); (R.Z.); (Y.C.); (H.Z.)
| | - Jialei Zhang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Science, Jinan 250100, China;
| | - Xinyue Wang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (X.W.); (R.Z.); (Y.C.); (H.Z.)
| | - Ruier Zeng
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (X.W.); (R.Z.); (Y.C.); (H.Z.)
| | - Yong Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (X.W.); (R.Z.); (Y.C.); (H.Z.)
| | - Hui Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (X.W.); (R.Z.); (Y.C.); (H.Z.)
| | - Shubo Wan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Science, Jinan 250100, China;
- Correspondence: (S.W.); (L.Z.); Tel.: +86-20-85280203 (L.Z.)
| | - Lei Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (T.C.); (X.W.); (R.Z.); (Y.C.); (H.Z.)
- Correspondence: (S.W.); (L.Z.); Tel.: +86-20-85280203 (L.Z.)
| |
Collapse
|
18
|
Side Lighting Enhances Morphophysiology by Inducing More Branching and Flowering in Chrysanthemum Grown in Controlled Environment. Int J Mol Sci 2021; 22:ijms222112019. [PMID: 34769450 PMCID: PMC8584406 DOI: 10.3390/ijms222112019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/28/2021] [Accepted: 11/04/2021] [Indexed: 11/30/2022] Open
Abstract
Light is one of the most important factors that influence plant growth and development. This study was conducted to examine how lighting direction affects plant morphophysiology by investigating plant growth parameters, leaf anatomy, epidermal cell elongation, stomatal properties, chloroplast arrangement, and physiological changes. In closed-type plant factory units, the rooted cuttings of two chrysanthemum (Chrysanthemum morifolium Ramat.) cultivars, ‘Gaya Glory’ and ‘Pearl Egg’, were subjected to a 10 h photoperiod with a 300 μmol∙m−2∙s−1 photosynthetic photon flux density (PPFD) provided by light-emitting diodes (LEDs) from three directions relative to the plant including the top, side, and bottom. Compared to the top or bottom lighting, the side lighting greatly enhanced the plant growth, improved the leaf internal structure and chloroplast arrangement, induced small stomata with a higher density, and promoted stomatal opening, which is associated with an increased stomatal conductance and photosynthetic efficiency. It is worth noting that the side lighting significantly enhanced the induction of branching and flowering for both cultivars., The plants grown with side lighting consistently exhibited the greatest physiological performance. We conclude that the lighting direction had a profound effect on the morphophysiological characteristics of chrysanthemum, and that side lighting dramatically promoted their growth and development, especially in their branching and flowering.
Collapse
|
19
|
Mohiley A, Tielbörger K, Weber M, Clemens S, Gruntman M. Competition for light induces metal accumulation in a metal hyperaccumulating plant. Oecologia 2021; 197:157-165. [PMID: 34370097 DOI: 10.1007/s00442-021-05001-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/16/2021] [Indexed: 11/25/2022]
Abstract
Plants can respond to competition with a myriad of physiological or morphological changes. Competition has also been shown to affect the foraging decisions of plants belowground. However, a completely unexplored idea is that competition might also affect plants' foraging for specific elements required to inhibit the growth of their competitors. In this study, we examined the effect of simulated competition on root foraging and accumulation of heavy metals in the metal hyperaccumulating perennial plant Arabidopsis halleri, whose metal accumulation has been shown to provide allelopathic ability. A. halleri plants originating from both metalliferous and non-metalliferous soils were grown in a "split-root" setup with one root in a high-metal pot and the other in a low-metal one. The plants were then assigned to either simulated light competition or no-competition (control) treatments, using vertical green or clear plastic filters, respectively. While simulated light competition did not induce greater root allocation into the high-metal pots, it did result in enhanced metal accumulation by A. halleri, particularly in the less metal-tolerant plants, originating from non-metalliferous soils. Interestingly, this accumulation response was particularly enhanced for zinc rather than cadmium. These results provide support to the idea that the accumulation of metals by hyperaccumulating plants can be facultative and change according to their demand following competition.
Collapse
Affiliation(s)
- Anubhav Mohiley
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Katja Tielbörger
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany
| | - Michael Weber
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Stephan Clemens
- Plant Physiology Department, University of Bayreuth, Bayreuth, Germany
| | - Michal Gruntman
- Institute of Evolution and Ecology, University of Tübingen, Tübingen, Germany.
- School of Plant Sciences and Food Security, Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
20
|
Pitchers B, Do FC, Pradal C, Dufour L, Lauri PÉ. Apple tree adaptation to shade in agroforestry: an architectural approach. AMERICAN JOURNAL OF BOTANY 2021; 108:732-743. [PMID: 33934329 DOI: 10.1002/ajb2.1652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
PREMISE The expression of shade adaptation traits is expected to be stronger in low light and can be detrimental to flowering and yield. Our study focused on the expression of shade adaptation traits of apple trees (Malus domestica Borkh. 'Dalinette') in an agroforestry system. METHODS The architecture of 45 apple trees in their third and fourth year was extensively described and analyzed at the tree scale and compared depending on the light quantity received during the growing season. Flower cluster phenology and the relation between leaf area and floral initiation were also investigated. RESULTS The number of growing shoots and the leaf area were reduced by shade even if specific leaf area increased with increasing shade. Shade did not modify primary growth but did decrease secondary growth, so that apple tree shoots in shade were slender, with a lower taper and reduced number and proportion of flower clusters. The correlation between floral initiation and leaf area was high both in full and moderate light but not for apple trees in low light. Shade did not impact the date of bud burst and the early phenological stages of flower clusters, but it reduced the number of days at full bloom. CONCLUSIONS Our results suggest that while the architecture of apple trees is modified by a reduction in light intensity, it is not until a reduction of 65% that the capability to produce fruit is impeded. These results could help optimize the design of apple-tree-based agroforestry systems.
Collapse
Affiliation(s)
- Benjamin Pitchers
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Frédéric C Do
- Eco&Sols, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Christophe Pradal
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- Inria & LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | - Lydie Dufour
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Pierre-Éric Lauri
- ABSys, Univ Montpellier, CIHEAM-IAMM, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
21
|
Solbach JA, Fricke A, Stützel H. Seasonal Efficiency of Supplemental LED Lighting on Growth and Photomorphogenesis of Sweet Basil. FRONTIERS IN PLANT SCIENCE 2021; 12:609975. [PMID: 33889161 PMCID: PMC8056084 DOI: 10.3389/fpls.2021.609975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
For decisions on supplemental lighting a quantitative knowledge of the plants' responses to light under varying conditions is fundamental. In this study, we developed light dose-response curves of growth and morphological traits for Ocimum basilicum L. and examined the effects of light color (blue, red, and white plus far-red) and natural environment (season) on these curves. Four greenhouse experiments were conducted throughout the year to determine the efficiencies of the light regimes on growth and their effects on plant morphology. A special aspect was the photosynthetic efficiency of far-red light. Linear and monomolecular relationships were found for the relationships between plant traits and supplemental light dose. Traits related to biomass productivity increased linearly with light dose whereas some morphological characters showed a saturation behavior. Red light and white plus far-red light were more efficient in plant dry weight production than blue light, and the plants adapted differently to the light qualities: higher biomass under red light was related to a plant architecture more favorable for light capture, i.e., taller plants and bigger leaves. White plus far-red light, on the other hand, increased leaf mass per area (LMA) and light use efficiency (LUE). Blue light resulted in lowest plant light interception and LUE. Considering photosynthetic effects of near-infrared light (PPFD800, 400-800 nm) instead of photosynthetic photon flux density (PPFD700, 400-700 nm) led to strongly reduced efficiencies. Traits related to photosynthesis such as dry weight, LMA and LUE were particularly affected by PPFD800. There were no interactions between the efficiencies of the different light colors and the seasons. Efficiencies of all light regimes were significantly lower during summer compared to spring and winter. Higher dry weight production during summer compared to winter and spring were a consequence of increased light interception rather than changes in LUE. The observed differences in seasonal efficiencies were directly linked to the amount of natural light present as indicated by changes in the ratio of supplemental to natural light.
Collapse
Affiliation(s)
- Jan Andreas Solbach
- Vegetable Systems Modelling Section, Institute of Horticultural Production Systems, University of Hannover, Hannover, Germany
| | | | | |
Collapse
|
22
|
Lyu X, Cheng Q, Qin C, Li Y, Xu X, Ji R, Mu R, Li H, Zhao T, Liu J, Zhou Y, Li H, Yang G, Chen Q, Liu B. GmCRY1s modulate gibberellin metabolism to regulate soybean shade avoidance in response to reduced blue light. MOLECULAR PLANT 2021; 14:298-314. [PMID: 33249237 DOI: 10.1016/j.molp.2020.11.016] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/20/2020] [Accepted: 11/17/2020] [Indexed: 05/25/2023]
Abstract
Soybean is an important legume crop that displays the classic shade avoidance syndrome (SAS), including exaggerated stem elongation, which leads to lodging and yield reduction under density farming conditions. Here, we compared the effects of two shade signals, low red light to far-red light ratio (R:FR) and low blue light (LBL), on soybean status and revealed that LBL predominantly induces excessive stem elongation. We used CRISPR-Cas9-engineered Gmcry mutants to investigate the functions of seven cryptochromes (GmCRYs) in soybean and found that the four GmCRY1s overlap in mediating LBL-induced SAS. Light-activated GmCRY1s increase the abundance of the bZIP transcription factors STF1 and STF2, which directly upregulate the expression of genes encoding GA2 oxidases to deactivate GA1 and repress stem elongation. Notably, GmCRY1b overexpression lines displayed multiple agronomic advantages over the wild-type control under both dense planting and intercropping conditions. Our study demonstrates the integration of GmCRY1-mediated signals with the GA metabolic pathway in the regulation of LBL-induced SAS in soybean. It also provides a promising option for breeding lodging-resistant, high-yield soybean cultivars in the future.
Collapse
Affiliation(s)
- Xiangguang Lyu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Qican Cheng
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Chao Qin
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Xinying Xu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ronghuan Ji
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Ruolan Mu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Hongyu Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Tao Zhao
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Jun Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China
| | - Yonggang Zhou
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, P.R. China
| | - Haiyan Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun, P.R. China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, P.R China
| | - Qingshan Chen
- Key Laboratory of Soybean Biology of Chinese Ministry of Education, Key Laboratory of Soybean Biology and Breeding/Genetics of Chinese Agriculture Ministry, College of Agriculture, Northeast Agricultural University, Harbin, P.R China
| | - Bin Liu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, P.R. China.
| |
Collapse
|
23
|
Bawa G, Feng L, Chen G, Chen H, Hu Y, Pu T, Cheng Y, Shi J, Xiao T, Zhou W, Yong T, Sun X, Yang F, Yang W, Wang X. Gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature interaction. PHYSIOLOGIA PLANTARUM 2020; 170:345-356. [PMID: 32588443 DOI: 10.1111/ppl.13158] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/18/2020] [Accepted: 06/23/2020] [Indexed: 05/25/2023]
Abstract
Soybean is an important oilseed crop grown globally. However, two examples of environmental stresses that drastically regulate soybean growth are low light and high-temperature. Emerging evidence suggests a possible interconnection between these two environmental stimuli. Low light and high-temperature as individual factors have been reported to regulate plant hypocotyl elongation. However, their interactive signal effect on soybean growth and development remains largely unclear. Here, we report that gibberellins (GAs) and auxin are required for soybean hypocotyl elongation under low light and high-temperature interaction. Our analysis indicated that low light and high-temperature interaction enhanced the regulation of soybean hypocotyl elongation and that the endogenous GA3 , GA7 , indole-3-acetic acid (IAA), and indole-3-pyruvate (IPA) contents significantly increased. Again, analysis of the effect of exogenous phytohormones and biosynthesis inhibitors treatments showed that exogenous GA, IAA, and paclobutrazol (PAC), 2, 3, 5,-triiodobenzoic acid (TIBA) treatments significantly regulated soybean seedlings growth under low light and high-temperature interaction. Further qRT-PCR analysis showed that the expression level of GA biosynthesis pathway genes (GmGA3ox1, GmGA3ox2 and GmGA3) and auxin biosynthesis pathway genes (GmYUCCA3, GmYUCCA5 and GmYUCCA7) significantly increased under (i) low light and high-temperature interaction and (ii) exogenous GA and IAA treatments. Altogether, these observations support the hypothesis that gibberellins and auxin regulate soybean hypocotyl elongation under low light and high-temperature stress interaction.
Collapse
Affiliation(s)
- George Bawa
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lingyang Feng
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Guopeng Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hong Chen
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yun Hu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Tian Pu
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yajiao Cheng
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jianyi Shi
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Te Xiao
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenguan Zhou
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Taiwen Yong
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xin Sun
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Feng Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wenyu Yang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiaochun Wang
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, 611130, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Agricultural University, Chengdu, 611130, China
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| |
Collapse
|
24
|
Zhang N, van Westreenen A, Anten NPR, Evers JB, Marcelis LFM. Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading: a simulation study using a functional-structural plant model. ANNALS OF BOTANY 2020; 126:635-646. [PMID: 31793625 PMCID: PMC7489061 DOI: 10.1093/aob/mcz197] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 12/02/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Shading by an overhead canopy (i.e. canopy shading) entails simultaneous changes in both photosynthetically active radiation (PAR) and red to far-red ratio (R:FR). As plant responses to PAR (e.g. changes in leaf photosynthesis) are different from responses to R:FR (e.g. changes in plant architecture), and these responses occur at both organ and plant levels, understanding plant photosynthesis responses to canopy shading needs separate analysis of responses to reductions in PAR and R:FR at different levels. METHODS In a glasshouse experiment we subjected plants of woody perennial rose (Rosa hybrida) to different light treatments, and so separately quantified the effects of reductions in PAR and R:FR on leaf photosynthetic traits and plant architectural traits. Using a functional-structural plant model, we separately quantified the effects of responses in these traits on plant photosynthesis, and evaluated the relative importance of changes of individual traits for plant photosynthesis under mild and heavy shading caused by virtual overhead canopies. KEY RESULTS Model simulations showed that the individual trait responses to canopy shading could have positive and negative effects on plant photosynthesis. Under mild canopy shading, trait responses to reduced R:FR on photosynthesis were generally negative and with a larger magnitude than effects of responses to reduced PAR. Conversely, under heavy canopy shading, the positive effects of trait responses to reduced PAR became dominant. The combined effects of low-R:FR responses and low-PAR responses on plant photosynthesis were not equal to the sum of the separate effects, indicating interactions between individual trait responses. CONCLUSIONS Our simulation results indicate that under canopy shading, the relative importance of plant responses to PAR and R:FR for plant photosynthesis changes with shade levels. This suggests that the adaptive significance of plant plasticity responses to one shading factor depends on plant responses to the other.
Collapse
Affiliation(s)
- Ningyi Zhang
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, 6700 AA Wageningen, The Netherlands
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, 6700 AK Wageningen, The Netherlands
- For correspondence. E-mail: ,
| | - Arian van Westreenen
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, 6700 AA Wageningen, The Netherlands
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, 6700 AK Wageningen, The Netherlands
| | - Niels P R Anten
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, 6700 AK Wageningen, The Netherlands
| | - Jochem B Evers
- Centre for Crop Systems Analysis, Department of Plant Sciences, Wageningen University, 6700 AK Wageningen, The Netherlands
| | - Leo F M Marcelis
- Horticulture and Product Physiology Group, Department of Plant Sciences, Wageningen University, 6700 AA Wageningen, The Netherlands
- For correspondence. E-mail: ,
| |
Collapse
|
25
|
Yang YY, Kim JG. Shade avoidance and reproductive strategies of an early successional species Penthorum chinense in relation to shade treatments. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:494-499. [PMID: 31872474 DOI: 10.1111/plb.13086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 12/12/2019] [Indexed: 06/10/2023]
Abstract
Shade avoidance is expected to be favoured under moderate light. However, in previous studies, shade avoidance was highest in the deepest shade, despite the fact that the plants incur the costs of shade avoidance without the benefits of being exposed to increased light. We performed shading experiments under different light intensities to understand: (i) how shade avoidance traits of Penthorum chinense could peak in moderate light, and (ii) if there was a trade-off between plant height and allocation of seeds along the light gradients. Penthorum chinense increased shade avoidance traits such as height per total dry mass as the amount of light decreased. Side stem number per total dry mass of P. chinense decreased as shade became deeper, from full light to low light. Regressions on seed mass fraction and height were significant with a linear model (y = -0.0006x + 0.1338). There were more resources allocated to seeds under low light than under moderate light. Penthorum chinense increased shade avoidance traits with the decrease in light amount, as found in previously studied species. There was a trade-off between height and production of more seeds. The reproductive strategy of P. chinense was to increase seed mass fraction under low light more than under moderate light. This species might be able to expand established populations by both rhizomes and seeds under low light environments.
Collapse
Affiliation(s)
- Y Y Yang
- Graduate School of Interdisciplinary Program in Environmental Education, Seoul National University, Seoul, Korea
| | - J G Kim
- Graduate School of Interdisciplinary Program in Environmental Education, Seoul National University, Seoul, Korea
- Department of Biology Education, Seoul National University, Seoul, Korea
- Center for Education Research, Seoul National University, Seoul, Korea
| |
Collapse
|
26
|
Quantification of Spectral Perception of Plants with Light Absorption of Photoreceptors. PLANTS 2020; 9:plants9050556. [PMID: 32349252 PMCID: PMC7285096 DOI: 10.3390/plants9050556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/16/2022]
Abstract
Although plant responses to artificial lighting spectra often produce abnormal morphogenesis and reduced productivity, no quantification method to determine how plants perceive and respond to light has been available. Our objective in this study was to test whether a plant's spectral perception can be quantified using the light absorption of its major photoreceptors, phytochrome, cryptochrome, and phototropin. We developed an artificial solar lamp and three different light sources, based on a high-pressure sodium lamp, a fluorescent lamp, and red and blue light-emitting diodes, whose absorption by photoreceptors was equal to that of the standard solar spectrum. Cucumber plants grown under the artificial solar and developed light sources showed normal photomorphogenesis and were indistinguishable from each other. Plants grown under unmodified commercial light sources had abnormal photomorphogenesis that made them short and small. The photosynthetic rate was higher under the unmodified light sources; however, dry masses were highest under the artificial solar and modified light sources, indicating that the cucumber plants are optimized to the solar spectrum. Our results clearly demonstrate that the spectral perceptions of plants can be quantified using the light absorption of their photoreceptors, not visual color or spectra. We expect that our findings will contribute to a better understanding of plant perceptions of and responses to light quality, and improve the productivity of plants cultivated under artificial light.
Collapse
|
27
|
Xie Y, Zhou Q, Zhao Y, Li Q, Liu Y, Ma M, Wang B, Shen R, Zheng Z, Wang H. FHY3 and FAR1 Integrate Light Signals with the miR156-SPL Module-Mediated Aging Pathway to Regulate Arabidopsis Flowering. MOLECULAR PLANT 2020; 13:483-498. [PMID: 32017999 DOI: 10.1016/j.molp.2020.01.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/13/2020] [Accepted: 01/28/2020] [Indexed: 05/15/2023]
Abstract
In response to competition for light from their neighbors, shade-intolerant plants flower precociously to ensure reproductive success and survival. However, the molecular mechanisms underlying this key developmental switch are not well understood. Here, we show that a pair of Arabidopsis transcription factors essential for phytochrome A signaling, FAR-RED ELONGATED HYPOCOTYL3 (FHY3) and FAR-RED IMPAIRED RESPONSE1 (FAR1), regulate flowering time by integrating environmental light signals with the miR156-SPL module-mediated aging pathway. We found that FHY3 and FAR1 directly interact with three flowering-promoting SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors, SPL3, SPL4, and SPL5, and inhibit their binding to the promoters of several key flowering regulatory genes, including FRUITFUL (FUL), LEAFY (LFY), APETALA1 (AP1), and MIR172C, thus downregulating their transcript levels and delaying flowering. Under simulated shade conditions, levels of SPL3/4/5 proteins increase, whereas levels of FHY3 and FAR1 proteins decline, thus releasing SPL3/4/5 from FHY3/FAR1 inhibition to allow activation of FUL, LFY, AP1, and MIR172C and, consequently, early flowering. Taken together, these results unravel a novel mechanism whereby plants regulate flowering time by integrating environmental cues (such as light conditions) and an internal developmental program (the miR156-SPL module-mediated aging pathway).
Collapse
Affiliation(s)
- Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qin Zhou
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongping Zhao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Quanquan Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Mengdi Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Rongxin Shen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Zhigang Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Haiyang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
28
|
Ding J, Zhao J, Pan T, Xi L, Zhang J, Zou Z. Comparative Transcriptome Analysis of Gene Expression Patterns in Tomato Under Dynamic Light Conditions. Genes (Basel) 2019; 10:genes10090662. [PMID: 31470680 PMCID: PMC6770952 DOI: 10.3390/genes10090662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/21/2019] [Accepted: 08/27/2019] [Indexed: 02/02/2023] Open
Abstract
Plants grown under highly variable natural light regimes differ strongly from plants grown under constant light (CL) regimes. Plant phenotype and adaptation responses are important for plant biomass and fitness. However, the underlying regulatory mechanisms are still poorly understood, particularly from a transcriptional perspective. To investigate the influence of different light regimes on tomato plants, three dynamic light (DL) regimes were designed, using a CL regime as control. Morphological, photosynthetic, and transcriptional differences after five weeks of treatment were compared. Leaf area, plant height, shoot /root weight, total chlorophyll content, photosynthetic rate, and stomatal conductance all significantly decreased in response to DL regimes. The biggest expression difference was found between the treatment with the highest light intensity at the middle of the day with a total of 1080 significantly up-/down-regulated genes. A total of 177 common differentially expressed genes were identified between DL and CL conditions. Finally, significant differences were observed in the levels of gene expression between DL and CL treatments in multiple pathways, predominantly of plant–pathogen interactions, plant hormone signal transductions, metabolites, and photosynthesis. These results expand the understanding of plant development and photosynthetic regulations under DL conditions by multiple pathways.
Collapse
Affiliation(s)
- Juanjuan Ding
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jiantao Zhao
- INRA, UR1052, Génétique et Amélioration des Fruits et Légumes, Domaine Saint Maurice, 67 Allée des Chênes CS 60094, 84143 Montfavet, France
| | - Tonghua Pan
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Linjie Xi
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Jing Zhang
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Zhirong Zou
- College of Horticulture, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
29
|
Yellow light promotes the growth and accumulation of bioactive flavonoids in Epimedium pseudowushanense. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2019; 197:111550. [DOI: 10.1016/j.jphotobiol.2019.111550] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 02/07/2023]
|
30
|
Robson TM, Aphalo PJ, Banaś AK, Barnes PW, Brelsford CC, Jenkins GI, Kotilainen TK, Łabuz J, Martínez-Abaigar J, Morales LO, Neugart S, Pieristè M, Rai N, Vandenbussche F, Jansen MAK. A perspective on ecologically relevant plant-UV research and its practical application. Photochem Photobiol Sci 2019; 18:970-988. [PMID: 30720036 DOI: 10.1039/c8pp00526e] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Plants perceive ultraviolet-B (UV-B) radiation through the UV-B photoreceptor UV RESISTANCE LOCUS 8 (UVR8), and initiate regulatory responses via associated signalling networks, gene expression and metabolic pathways. Various regulatory adaptations to UV-B radiation enable plants to harvest information about fluctuations in UV-B irradiance and spectral composition in natural environments, and to defend themselves against UV-B exposure. Given that UVR8 is present across plant organs and tissues, knowledge of the systemic signalling involved in its activation and function throughout the plant is important for understanding the context of specific responses. Fine-scale understanding of both UV-B irradiance and perception within tissues and cells requires improved application of knowledge about UV-attenuation in leaves and canopies, warranting greater consideration when designing experiments. In this context, reciprocal crosstalk among photoreceptor-induced pathways also needs to be considered, as this appears to produce particularly complex patterns of physiological and morphological response. Through crosstalk, plant responses to UV-B radiation go beyond simply UV-protection or amelioration of damage, but may give cross-protection over a suite of environmental stressors. Overall, there is emerging knowledge showing how information captured by UVR8 is used to regulate molecular and physiological processes, although understanding of upscaling to higher levels of organisation, i.e. organisms, canopies and communities remains poor. Achieving this will require further studies using model plant species beyond Arabidopsis, and that represent a broad range of functional types. More attention should also be given to plants in natural environments in all their complexity, as such studies are needed to acquire an improved understanding of the impact of climate change in the context of plant-UV responses. Furthermore, broadening the scope of experiments into the regulation of plant-UV responses will facilitate the application of UV radiation in commercial plant production. By considering the progress made in plant-UV research, this perspective highlights prescient topics in plant-UV photobiology where future research efforts can profitably be focussed. This perspective also emphasises burgeoning interdisciplinary links that will assist in understanding of UV-B effects across organisational scales and gaps in knowledge that need to be filled so as to achieve an integrated vision of plant responses to UV-radiation.
Collapse
Affiliation(s)
- T Matthew Robson
- Organismal and Evolutionary Biology, Viikki Plant Science Centre (ViPS), University of Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Brelsford CC, Morales LO, Nezval J, Kotilainen TK, Hartikainen SM, Aphalo PJ, Robson TM. Do UV-A radiation and blue light during growth prime leaves to cope with acute high light in photoreceptor mutants of Arabidopsis thaliana? PHYSIOLOGIA PLANTARUM 2019; 165:537-554. [PMID: 29704249 DOI: 10.1111/ppl.12749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/14/2018] [Accepted: 04/25/2018] [Indexed: 05/22/2023]
Abstract
We studied how plants acclimated to growing conditions that included combinations of blue light (BL) and ultraviolet (UV)-A radiation, and whether their growing environment affected their photosynthetic capacity during and after a brief period of acute high light (as might happen during an under-canopy sunfleck). Arabidopsis thaliana Landsberg erecta wild-type were compared with mutants lacking functional blue light and UV photoreceptors: phototropin 1, cryptochromes (CRY1 and CRY2) and UV RESISTANT LOCUS 8 (uvr8). This was achieved using light-emitting-diode (LED) lamps in a controlled environment to create treatments with or without BL, in a split-plot design with or without UV-A radiation. We compared the accumulation of phenolic compounds under growth conditions and after exposure to 30 min of high light at the end of the experiment (46 days), and likewise measured the operational efficiency of photosystem II (ϕPSII, a proxy for photosynthetic performance) and dark-adapted maximum quantum yield (Fv /Fm to assess PSII damage). Our results indicate that cryptochromes are the main photoreceptors regulating phenolic compound accumulation in response to BL and UV-A radiation, and a lack of functional cryptochromes impairs photosynthetic performance under high light. Our findings also reveal a role for UVR8 in accumulating flavonoids in response to a low UV-A dose. Interestingly, phototropin 1 partially mediated constitutive accumulation of phenolic compounds in the absence of BL. Low-irradiance BL and UV-A did not improve ϕPSII and Fv /Fm upon our acute high-light treatment; however, CRYs played an important role in ameliorating high-light stress.
Collapse
Affiliation(s)
- Craig C Brelsford
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Luis O Morales
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Jakub Nezval
- Faculty of Science, University of Ostrava, 701 03 Ostrava, Czech Republic
| | - Titta K Kotilainen
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Saara M Hartikainen
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - Pedro J Aphalo
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| | - T Matthew Robson
- Organismal and Evolutionary Biology Research Programme, Viikki Plant Science Center (ViPS), Faculty of Biological and Environmental Sciences, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
32
|
Feng L, Raza MA, Li Z, Chen Y, Khalid MHB, Du J, Liu W, Wu X, Song C, Yu L, Zhang Z, Yuan S, Yang W, Yang F. The Influence of Light Intensity and Leaf Movement on Photosynthesis Characteristics and Carbon Balance of Soybean. FRONTIERS IN PLANT SCIENCE 2019; 9:1952. [PMID: 30687355 PMCID: PMC6338029 DOI: 10.3389/fpls.2018.01952] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/14/2018] [Indexed: 05/02/2023]
Abstract
In intercropping systems shading conditions significantly impair the seed yield and quality of soybean, and rarely someone investigated the minimum amount of light requirement for soybean growth and development. Therefore, it is an urgent need to determine the threshold light intensity to ensure sustainable soybean production under these systems. An integrated approach combining morphology, physiology, biochemistry and genetic analysis was undertaken to study the light intensity effects on soybean growth and development. A pot experiment was set up in a growth chamber under increasing light intensity treatments of 100 (L100), 200 (L200), 300 (L300), 400 (L400), and 500 (L500) μmol m-2 s-1. Compared with L100, plant height, hypocotyl length, and abaxial leaf petiole angle were decreased, biomass, root:shoot ratio, and stem diameter were increased, extremum was almost observed in L400 and L500. Leaf petiole movement and leaf hyponasty in each treatment has presented a tendency to decrease the leaf angle from L500 to L100. In addition, the cytochrome content (Chl a, Chl b, Car), net photosynthetic rate, chlorophyll fluorescence values of F v/F m, F v ' / F m ' , ETR, ΦPSII, and qP were increased as the light intensity increased, and higher values were noted under L400. Leaf microstructure and chloroplast ultrastructure positively improved with increasing light intensity, and leaf-thickness, palisade, and spongy tissues-thickness were increased by 105, 90, and 370%, under L500 than L100. Moreover, the cross-sectional area of chloroplast (C) outer membrane and starch grains (S), and sectional area ratio (S:C) was highest under L400 and L500, respectively. Compared to L100, the content of starch granules increased by 35.5, 122.0, 157.6, and 145.5%, respectively in L400. The same trends were observed in the enzyme activity of sucrose-synthase, sucrose phosphate synthase, starch synthase, rubisco, phosphoenol pyruvate carboxykinase, and phosphoenol pyruvate phosphatase. Furthermore, sucrose synthesis-related genes were also up-regulated by increasing light intensity, and the highest seed yield and yield related parameters were recorded in the L400. Overall, these results suggested that 400 and 500 μmol m-2 s-1 is the optimum light intensity which positively changed the leaf orientation and adjusts leaf angle to perpendicular to coming light, consequently, soybean plants grow well under prevailing conditions.
Collapse
Affiliation(s)
- Lingyang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Muhammad Ali Raza
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhongchuan Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yuankai Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Muhammad Hayder Bin Khalid
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaoling Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Chun Song
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Liang Yu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhongwei Zhang
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Shu Yuan
- College of Resources, Sichuan Agricultural University, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- China Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
33
|
Taylor MA, Cooper MD, Schmitt J. Phenological and fitness responses to climate warming depend upon genotype and competitive neighbourhood in
Arabidopsis thaliana. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13262] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
34
|
Polko JK, Kieber JJ. 1-Aminocyclopropane 1-Carboxylic Acid and Its Emerging Role as an Ethylene-Independent Growth Regulator. FRONTIERS IN PLANT SCIENCE 2019; 10:1602. [PMID: 31921251 PMCID: PMC6915048 DOI: 10.3389/fpls.2019.01602] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/14/2019] [Indexed: 05/10/2023]
Abstract
1-Aminocyclopropane 1-carboxylic acid (ACC) is the direct precursor of the plant hormone ethylene. ACC is synthesized from S-adenosyl-L-methionine (SAM) by ACC synthases (ACSs) and subsequently oxidized to ethylene by ACC oxidases (ACOs). Exogenous ACC application has been used as a proxy for ethylene in numerous studies as it is readily converted by nearly all plant tissues to ethylene. However, in recent years, a growing body of evidence suggests that ACC plays a signaling role independent of the biosynthesis. In this review, we briefly summarize our current knowledge of ACC as an ethylene precursor, and present new findings with regards to the post-translational modifications of ACS proteins and to ACC transport. We also summarize the role of ACC in regulating plant development, and its involvement in cell wall signaling, guard mother cell division, and pathogen virulence.
Collapse
|
35
|
Chen BJW, Hajiboland R, Bahrami-Rad S, Moradtalab N, Anten NPR. Presence of Belowground Neighbors Activates Defense Pathways at the Expense of Growth in Tobacco Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:751. [PMID: 31263473 PMCID: PMC6584819 DOI: 10.3389/fpls.2019.00751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 05/22/2019] [Indexed: 05/20/2023]
Abstract
Plants can detect the presence of their neighbors belowground, often responding with changes in root growth for resource competition. Recent evidence also implies that perception of neighbors may also elicit defense responses, however, the associated metabolic activities are unclear. We investigated primary and defense-related secondary metabolisms and hormone expressions in tobaccos (Nicotiana rustica) grown either with own roots or roots of another conspecifics in hydroponic condition. The results showed that non-self root interaction significantly reduced photosynthetic activity and assimilate production, leading to a reduction of growth. Non-self interaction also modified plant phenylpropanoids metabolism, yielding higher lignin content (i.e., structural resistance) at whole plant level and higher phenolics accumulation (i.e., chemical defense) in roots. All these metabolic responses were associated with enhanced expressions of phytohormones, particularly jasmonic acid, salicylic acid and cytokinin in roots and abscisic acid in leaves, at the early stage of non-self interaction. Since the presence of neighbors often increase the probability of attacks from, e.g., pathogens and pests, this defense activation may act as an adaptation of plants to these possible upcoming attacks.
Collapse
Affiliation(s)
- Bin J. W. Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Roghieh Hajiboland
- Department of Plant Science, University of Tabriz, Tabriz, Iran
- *Correspondence: Roghieh Hajiboland,
| | | | - Narges Moradtalab
- Institute of Crop Science, University of Hohenheim, Stuttgart, Germany
| | - Niels P. R. Anten
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
36
|
Vaishak KP, Yadukrishnan P, Bakshi S, Kushwaha AK, Ramachandran H, Job N, Babu D, Datta S. The B-box bridge between light and hormones in plants. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 191:164-174. [PMID: 30640143 DOI: 10.1016/j.jphotobiol.2018.12.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/23/2018] [Accepted: 12/27/2018] [Indexed: 11/29/2022]
Abstract
Plant development is meticulously modulated by interactions between the surrounding environment and the endogenous phytohormones. Light, as an external signal coordinates with the extensive networks of hormones inside the plant to execute its effects on growth and development. Several proteins in plants have been identified for their crucial roles in mediating light regulated development. Among these are the B-box (BBX) family of transcription factors characterized by the presence of zinc-finger B-box domain in their N-terminal region. In Arabidopsis there are 32 BBX proteins that are divided into five structural groups on the basis of the domains present. Several BBX proteins play important roles in seedling photomorphogenesis, neighbourhood detection and photoperiodic regulation of flowering. There is increasing evidence that besides light signaling BBX proteins also play integral roles in several hormone signaling pathways in plants. Here we attempt to comprehensively integrate the roles of multiple BBX proteins in various light and hormone signaling pathways. We further discuss the role of the BBX proteins in mediating crosstalk between the two signaling pathways to harmonize plant growth and development. Finally, we try to analyse the conservation of BBX genes across species and discuss the role of BBX proteins in regulating economically important traits in crop plants.
Collapse
Affiliation(s)
- K P Vaishak
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India; School of Biological Sciences, Indian Institute of Science Education and Research (IISER) Thiruvananthapuram, India
| | - Premachandran Yadukrishnan
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Souvika Bakshi
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Amit Kumar Kushwaha
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Harshil Ramachandran
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Nikhil Job
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Dion Babu
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India
| | - Sourav Datta
- Plant Cell and Development Biology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal, India.
| |
Collapse
|
37
|
Sher A, Khan A, Ashraf U, Liu HH, Li JC. Characterization of the Effect of Increased Plant Density on Canopy Morphology and Stalk Lodging Risk. FRONTIERS IN PLANT SCIENCE 2018; 9:1047. [PMID: 30254649 PMCID: PMC6141682 DOI: 10.3389/fpls.2018.01047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 06/27/2018] [Indexed: 05/15/2023]
Abstract
Plants react to the environment and to management interventions by undergoing architectural and structural modifications. A field trial was conducted in China in 2016 to study the effects of the plant population on morphological development of the maize canopy. The main objectives of the current study were (i) to characterize the effects of increased plant density on canopy morphology and stalk lodging and (ii) to explore the relationships between organ morphology and stalk lodging. The field experiment was composed of five plant densities (4.5, 6, 7.5, 9, and 15 plants m-2) of three cultivars: Zhengdan 958 (lodging-resistant cultivar), Longping 206 and Jinqiu 119 (lodging-susceptible cultivars). In response to plant densities of all the three cultivars, the lamina and sheath lengths increased in lower phytomers but decreased in upper phytomers. The lamina width and internode diameter decreased for all phytomers in response to plant densities for all the cultivars. The correlation between organ morphology, plant density and stalk lodging was linear. Data obtained from characterization used in this study (that is, canopy morphology, correlation of organ morphology with stalk lodging traits in response to various plant densities for different cultivars, etc.) will be useful in future modeling studies to predict the morphology characteristics of the canopy affected by interplant competition and stalk lodging.
Collapse
Affiliation(s)
- Alam Sher
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Aaqil Khan
- School of Agronomy, Anhui Agricultural University, Hefei, China
| | - Umair Ashraf
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing, China
| | - Hui Hui Liu
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Jin Cai Li
- School of Agronomy, Anhui Agricultural University, Hefei, China
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
38
|
Zhou T, Meng L, Ma Y, Liu Q, Zhang Y, Yang Z, Yang D, Bian M. Overexpression of sweet sorghum cryptochrome 1a confers hypersensitivity to blue light, abscisic acid and salinity in Arabidopsis. PLANT CELL REPORTS 2018; 37:251-264. [PMID: 29098377 DOI: 10.1007/s00299-017-2227-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 10/16/2017] [Indexed: 05/14/2023]
Abstract
This work provides the bioinformatics, expression pattern and functional analyses of cryptochrome 1a from sweet sorghum (SbCRY1a), together with an exploration of the signaling mechanism mediated by SbCRY1a. Sweet sorghum [Sorghum bicolor (L.) Moench] is considered to be an ideal candidate for biofuel production due to its high efficiency of photosynthesis and the ability to maintain yield under harsh environmental conditions. Blue light receptor cryptochromes regulate multiple aspects of plant growth and development. Here, we reported the function and signal mechanism of sweet sorghum cryptochrome 1a (SbCRY1a) to explore its potential for genetic improvement of sweet sorghum varieties. SbCRY1a transcripts experienced almost 24 h diurnal cycling; however, its protein abundance showed no oscillation. Overexpression of SbCRY1a in Arabidopsis rescued the phenotype of cry1 mutant in a blue light-specific manner and regulated HY5 accumulation under blue light. SbCRY1a protein was present in both nucleus and cytoplasm. The photoexcited SbCRY1a interacted directly with a putative RING E3 ubiquitin ligase constitutive photomorphogenesis 1 (COP1) from sweet sorghum (SbCOP1) instead of SbSPA1 to suppress SbCOP1-SbHY5 interaction responding to blue light. These observations indicate that the function and signaling mechanism of cryptochromes are basically conservative between monocotyledons and dicotyledons. Moreover, SbCRY1a-overexpressed transgenic Arabidopsis showed oversensitive to abscisic acid (ABA) and salinity. The ABA-responsive gene ABI5 was up-regulated evidently in SbCRY1a transgenic lines, suggesting that SbCRY1a might regulate ABA signaling through the HY5-ABI5 regulon.
Collapse
Affiliation(s)
- Tingting Zhou
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Lingyang Meng
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Yue Ma
- Agronomy College of Northeast Agricultural University, 59 Wood Street, Harbin, 150030, China
| | - Qing Liu
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Yunyun Zhang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Zhenming Yang
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China
| | - Deguang Yang
- Agronomy College of Northeast Agricultural University, 59 Wood Street, Harbin, 150030, China
| | - Mingdi Bian
- Jilin Province Engineering Laboratory of Plant Genetic Improvement, College of Plant Science, Jilin University, 5333 xi'an Road, Changchun, 130062, China.
| |
Collapse
|
39
|
Yang F, Fan Y, Wu X, Cheng Y, Liu Q, Feng L, Chen J, Wang Z, Wang X, Yong T, Liu W, Liu J, Du J, Shu K, Yang W. Auxin-to-Gibberellin Ratio as a Signal for Light Intensity and Quality in Regulating Soybean Growth and Matter Partitioning. FRONTIERS IN PLANT SCIENCE 2018; 9:56. [PMID: 29441084 PMCID: PMC5797538 DOI: 10.3389/fpls.2018.00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 01/11/2018] [Indexed: 05/04/2023]
Abstract
The intensity and quality (red to far-red (R/Fr) ratio) of light directly affect growth of plant under shading. Gibberellins (GAs) and auxin [indole-3-acetic acid (IAA)] play important roles in mediating the shading adaptive responses of plants. Thus, the intensity and quality of the uncoupling light from shading were assessed to identify the influence of each component on the morphology and matter distribution of the leaf, stem, and petiole. This assessment was based on the changes in endogenous Gibberellin 1 (GA1) and IAA levels. Soybean plants were grown in a growth chamber with four treatments [normal (N), N+Fr, low (L), and L+Fr light]. Results revealed that the reductions in photosynthetically active radiation (PAR) and R/Fr ratio equally increased height and stem mass fractions (SMFs) of the soybean seedling. The light intensity significantly influenced the dry mass per unit area and mass fraction of soybean leaves, whereas the light quality regulated the petiole elongation and mass fraction. Low R/Fr ratio (high Fr light) increased the soybean biomass by improving the photosynthetic assimilation rate and quantum yield of photosystem II. In addition, the IAA and GA1 levels in the leaf, stem, and petiole did not reflect the growth response trends of each tissue toward light intensity and quality; however, trends of the IAA-to-GA1 content ratios were similar to those of the growth and matter allocation of each soybean tissue under different light environments. Therefore, the response of growth and matter allocation of soybean to light intensity and quality may be regulated by the IAA-to-GA1 content ratio in the tissues of the soybean plant.
Collapse
Affiliation(s)
- Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yuanfang Fan
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaoling Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Yajiao Cheng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Qinlin Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Lingyang Feng
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Junxu Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Zhonglin Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Xiaochun Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Jiang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Kai Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, China
| |
Collapse
|
40
|
Gruntman M, Groß D, Májeková M, Tielbörger K. Decision-making in plants under competition. Nat Commun 2017; 8:2235. [PMID: 29269832 PMCID: PMC5740169 DOI: 10.1038/s41467-017-02147-2] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 11/09/2017] [Indexed: 11/30/2022] Open
Abstract
Plants can plastically respond to light competition in three strategies, comprising vertical growth, which promotes competitive dominance; shade tolerance, which maximises performance under shade; or lateral growth, which offers avoidance of competition. Here, we test the hypothesis that plants can 'choose' between these responses, according to their abilities to competitively overcome their neighbours. We study this hypothesis in the clonal plant Potentilla reptans using an experimental setup that simulates both the height and density of neighbours, thus presenting plants with different light-competition scenarios. Potentilla reptans ramets exhibit the highest vertical growth under simulated short-dense neighbours, highest specific leaf area (leaf area/dry mass) under tall-dense neighbours, and tend to increase total stolon length under tall-sparse neighbours. These responses suggest shifts between 'confrontational' vertical growth, shade tolerance and lateral-avoidance, respectively, and provide evidence that plants adopt one of several alternative plastic responses in a way that optimally corresponds to prevailing light-competition scenarios.
Collapse
Affiliation(s)
- Michal Gruntman
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany.
| | - Dorothee Groß
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| | - Maria Májeková
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
- Department of Soil Science, Faculty of Natural Science, Comenius University in Bratislava, Ilkovičova 6, 842 15, Mlynska dolina, Bratislava, Slovak Republic
- Department of Botany, Faculty of Science, University of South Bohemia, 370 05, České Budějovice, Czech Republic
| | - Katja Tielbörger
- Plant Ecology Group, Institute of Evolution and Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076, Tübingen, Germany
| |
Collapse
|
41
|
Wille W, Pipper CB, Rosenqvist E, Andersen SB, Weiner J. Reducing shade avoidance responses in a cereal crop. AOB PLANTS 2017; 9:plx039. [PMID: 29071064 PMCID: PMC5647810 DOI: 10.1093/aobpla/plx039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/04/2017] [Indexed: 05/22/2023]
Abstract
Several researchers have hypothesized that shade avoidance behaviour is favoured by natural selection because it increases the fitness of individuals. Shade avoidance can be disadvantageous for crops, however, because it reduces allocation of resources to reproductive yield, increases the risk of lodging and reduces weed suppression. One approach to develop varieties with reduced shade avoidance and enhanced agronomic performance is by inducing mutations followed by phenotypic screening. We treated spring wheat seeds with ethyl methanesulfonate and screened the seedlings repeatedly under green filters for plants showing reduced elongation of the first leaf sheath and second leaf lamina. The shade avoidance responses of five promising mutant lines were further compared to non-mutated plants in a climate chamber experiment with added far-red light. Two of the selected lines displayed significantly reduced elongation under all light treatments while two lines showed reduced elongation only in added far-red light. The most promising mutant line did not differ in height from the non-mutated cultivar in neutral light, but elongated 20.6% less in strong far-red light. This traditional forward approach of screening mutagenized spring wheat produced plants with reduced shade avoidance responses. These mutants may generate new molecular handles to modify the reaction of plants to changes in light spectral distribution in traditional and novel cultivation systems.
Collapse
Affiliation(s)
- Wibke Wille
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Christian B Pipper
- Department of Public Health, University of Copenhagen, DK-1014 Copenhagen, Denmark
| | - Eva Rosenqvist
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Sven B Andersen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| | - Jacob Weiner
- Department of Plant and Environmental Sciences, University of Copenhagen, DK-1871 Frederiksberg, Denmark
| |
Collapse
|
42
|
Wu Y, Gong W, Yang W. Shade Inhibits Leaf Size by Controlling Cell Proliferation and Enlargement in Soybean. Sci Rep 2017; 7:9259. [PMID: 28835715 PMCID: PMC5569092 DOI: 10.1038/s41598-017-10026-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/02/2017] [Indexed: 11/23/2022] Open
Abstract
To gain more insight into the physiological function of shade and how shade affects leaf size, we investigated the growth, leaf anatomical structure, hormones and genes expressions in soybean. Soybean seeds were sown in plastic pots and were allowed to germinate and grow for 30 days under shade or full sunlight conditions. Shade treated plants showed significantly increase on stem length and petiole length, and decrease on stem diameters, shoot biomass and its partition to leaf also were significantly lower than that in full sunlight. Smaller and thinner on shade treated leaves than corresponding leaves on full sunlight plants. The decreased leaf size caused by shade was largely attributable to cell proliferation in young leaves and both cell proliferation and enlargement in old leaves. Shade induced the expression of a set of genes related to cell proliferation and/or enlargement, but depended on the developmental stage of leaf. Shade significantly increased the auxin and gibberellin content, and significantly decreased the cytokinin content in young, middle and old leaves. Taken together, these results indicated that shade inhibited leaf size by controlling cell proliferation and enlargement, auxin, gibberellin and cytokinin may play important roles in this process.
Collapse
Affiliation(s)
- Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, P.R. China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, PR China
| | - Wanzhuo Gong
- Characteristic Crops Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, P.R. China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, P.R. China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, P.R. China.
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, PR China.
| |
Collapse
|
43
|
Etnier SA, Villani PJ, Ryan TJ. Influence of Light Quality and Quantity on Heterophylly in the Aquatic Plant Nymphaea odorata subsp. tuberosa (Nymphaeaceae). Northeast Nat (Steuben) 2017. [DOI: 10.1656/045.024.0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Shelley A. Etnier
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208
| | - Philip J. Villani
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208
| | - Travis J. Ryan
- Department of Biological Sciences, Butler University, Indianapolis, IN 46208
| |
Collapse
|
44
|
Köhl K, Tohge T, Schöttler MA. Performance of Arabidopsis thaliana under different light qualities: comparison of light-emitting diodes to fluorescent lamp. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:727-738. [PMID: 32480602 DOI: 10.1071/fp17051] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 04/13/2017] [Indexed: 06/11/2023]
Abstract
For precise phenotyping, Arabidopsis thaliana (L.) Heynh. is grown under controlled conditions with fluorescent lamps as the predominant light source. Replacement by systems based on light emitting diodes (LED) could improve energy efficiency and stability of light quality and intensity. To determine whether this affects the reproducibility of results obtained under fluorescent lamps, four Arabidopsis accessions and a phytochrome mutant were grown and phenotyped under two different LED types or under fluorescent lamps. All genotypes had significantly higher rosette weight and seed mass and developed faster under LED light than under fluorescent lamps. However, differences between genotypes were reproducible independent of the light source. Chlorophyll content, photosynthetic complex accumulation and light response curves of chlorophyll fluorescence parameters were indistinguishable under LED and fluorescent light. Principal component analysis of leaf metabolite concentrations revealed that the effect of a change from fluorescent light to LED light was small compared with the diurnal effect, which explains 74% of the variance and the age effect during vegetative growth (12%). Altogether, the replacement of fluorescent lamps by LED allowed Arabidopsis cultivation and reproduction of results obtained under fluorescent light.
Collapse
Affiliation(s)
- Karin Köhl
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
45
|
Yoneda Y, Nakashima H, Miyasaka J, Ohdoi K, Shimizu H. Impact of blue, red, and far-red light treatments on gene expression and steviol glycoside accumulation in Stevia rebaudiana. PHYTOCHEMISTRY 2017; 137:57-65. [PMID: 28215607 DOI: 10.1016/j.phytochem.2017.02.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 02/01/2017] [Accepted: 02/03/2017] [Indexed: 06/06/2023]
Abstract
Stevia rebaudiana (Bertoni) Bertoni is a plant that biosynthesizes a group of natural sweeteners that are up to approximately 400 times sweeter than sucrose. The sweetening components of S. rebaudiana are steviol glycosides (SGs) that partially share their biosynthesis pathway with gibberellins (GAs). However, the molecular mechanisms through which SGs levels can be improved have not been studied. Therefore, transcription levels of several SG biosynthesis-related genes were analyzed under several light treatments involved in GA biosynthesis. We detected higher transcription of UGT85C2, which is one of the UDP-glycosyltransferases (UGTs) involved in catalyzing the sugar-transfer reaction, under red/far-red (R/FR) 1.22 light-emitting diodes (LEDs) and blue LEDs treatment. In this study, it was demonstrated that transcription levels of SG-related genes and the SGs content are affected by light treatments known to affect the GA contents. It is expected that this approach could serve as a practical way to increase SG contents using specific light treatments.
Collapse
Affiliation(s)
- Yuki Yoneda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Nakashima
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Juro Miyasaka
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Katsuaki Ohdoi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hiroshi Shimizu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan.
| |
Collapse
|
46
|
Smith HL, McAusland L, Murchie EH. Don't ignore the green light: exploring diverse roles in plant processes. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2099-2110. [PMID: 28575474 DOI: 10.1093/jxb/erx098] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The pleasant green appearance of plants, caused by their reflectance of wavelengths in the 500-600 nm range, might give the impression that green light is of minor importance in biology. This view persists to an extent. However, there is strong evidence that these wavelengths are not only absorbed but that they also drive and regulate physiological responses and anatomical traits in plants. This review details the existing evidence of essential roles for green wavelengths in plant biology. Absorption of green light is used to stimulate photosynthesis deep within the leaf and canopy profile, contributing to carbon gain and likely crop yield. In addition, green light also contributes to the array of signalling information available to leaves, resulting in developmental adaptation and immediate physiological responses. Within shaded canopies this enables optimization of resource-use efficiency and acclimation of photosynthesis to available irradiance. In this review, we suggest that plants may use these wavelengths not just to optimize stomatal aperture but also to fine-tune whole-canopy efficiency. We conclude that all roles for green light make a significant contribution to plant productivity and resource-use efficiency. We also outline the case for using green wavelengths in applied settings such as crop cultivation in LED-based agriculture and horticulture.
Collapse
Affiliation(s)
- Hayley L Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| | - Lorna McAusland
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| | - Erik H Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington campus, Leicestershire LE12 5JS, UK
| |
Collapse
|
47
|
Fragoso V, Oh Y, Kim SG, Gase K, Baldwin IT. Functional specialization of Nicotiana attenuata phytochromes in leaf development and flowering time. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2017; 59:205-224. [PMID: 28009482 DOI: 10.1111/jipb.12516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Phytochromes mainly function in photoautotrophic organisms to adjust growth in response to fluctuating light signals. The different isoforms of plant phytochromes often display both conserved and divergent roles, presumably to fine-tune plant responses to environmental signals and optimize fitness. Here we describe the distinct, yet partially redundant, roles of phytochromes NaPHYA, NaPHYB1 and NaPHYB2 in a wild tobacco species, Nicotiana attenuata using RNAi-silenced phytochrome lines. Consistent with results reported from other species, silencing the expression of NaPHYA or NaPHYB2 in N. attenuata had mild or no influence on plant development as long as NaPHYB1 was functional; whereas silencing the expression of NaPHYB1 alone strongly altered flowering time and leaf morphology. The contribution of NaPHYB2 became significant only in the absence of NaPHYB1; plants silenced for both NaPHYB1 and NaPHYB2 largely skipped the rosette-stage of growth to rapidly produce long, slender stalks that bore flowers early: hallmarks of the shade-avoidance responses. The phenotyping of phytochrome-silenced lines, combined with sequence and transcript accumulation analysis, suggest the independent functional diversification of the phytochromes, and a dominant role of NaPHYB1 and NaPHYB2 in N. attenuata's vegetative and reproductive development.
Collapse
Affiliation(s)
- Variluska Fragoso
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Sang-Gyu Kim
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Klaus Gase
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| | - Ian Thomas Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, D-07745 Jena, Germany
| |
Collapse
|
48
|
Balduzzi M, Binder BM, Bucksch A, Chang C, Hong L, Iyer-Pascuzzi AS, Pradal C, Sparks EE. Reshaping Plant Biology: Qualitative and Quantitative Descriptors for Plant Morphology. FRONTIERS IN PLANT SCIENCE 2017; 8:117. [PMID: 28217137 PMCID: PMC5289971 DOI: 10.3389/fpls.2017.00117] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 01/19/2017] [Indexed: 05/04/2023]
Abstract
An emerging challenge in plant biology is to develop qualitative and quantitative measures to describe the appearance of plants through the integration of mathematics and biology. A major hurdle in developing these metrics is finding common terminology across fields. In this review, we define approaches for analyzing plant geometry, topology, and shape, and provide examples for how these terms have been and can be applied to plants. In leaf morphological quantifications both geometry and shape have been used to gain insight into leaf function and evolution. For the analysis of cell growth and expansion, we highlight the utility of geometric descriptors for understanding sepal and hypocotyl development. For branched structures, we describe how topology has been applied to quantify root system architecture to lend insight into root function. Lastly, we discuss the importance of using morphological descriptors in ecology to assess how communities interact, function, and respond within different environments. This review aims to provide a basic description of the mathematical principles underlying morphological quantifications.
Collapse
Affiliation(s)
| | - Brad M. Binder
- Department of Biochemistry and Cellular and Molecular Biology, University of Tennessee-KnoxvilleKnoxville, TN, USA
| | - Alexander Bucksch
- Department of Plant Biology, University of GeorgiaAthens, GA, USA
- Warnell School of Forestry and Environmental Resources, University of GeorgiaAthens, GA, USA
- Institute of Bioinformatics, University of GeorgiaAthens, GA, USA
| | - Cynthia Chang
- Division of Biological Sciences, University of Washington-BothellBothell, WA, USA
| | - Lilan Hong
- Weill Institute for Cell and Molecular Biology and Section of Plant Biology, School of Integrative Plant Sciences, Cornell UniversityIthaca, NY, USA
| | | | - Christophe Pradal
- INRIA, Virtual PlantsMontpellier, France
- CIRAD, UMR AGAPMontpellier, France
| | | |
Collapse
|
49
|
Ding Z, Zhang Y, Xiao Y, Liu F, Wang M, Zhu X, Liu P, Sun Q, Wang W, Peng M, Brutnell T, Li P. Transcriptome response of cassava leaves under natural shade. Sci Rep 2016; 6:31673. [PMID: 27539510 PMCID: PMC4990974 DOI: 10.1038/srep31673] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 07/21/2016] [Indexed: 11/19/2022] Open
Abstract
Cassava is an important staple crop in tropical and sub-tropical areas. As a common farming practice, cassava is usually cultivated intercropping with other crops and subjected to various degrees of shading, which causes reduced productivity. Herein, a comparative transcriptomic analysis was performed on a series of developmental cassava leaves under both full sunlight and natural shade conditions. Gene expression profiles of these two conditions exhibited similar developmental transitions, e.g. genes related to cell wall and basic cellular metabolism were highly expressed in immature leaves, genes involved in lipid metabolism and tetrapyrrole synthesis were highly expressed during the transition stages, and genes related to photosynthesis and carbohydrates metabolism were highly expressed in mature leaves. Compared with the control, shade significantly induced the expression of genes involved in light reaction of photosynthesis, light signaling and DNA synthesis/chromatin structure; however, the genes related to anthocyanins biosynthesis, heat shock, calvin cycle, glycolysis, TCA cycle, mitochondrial electron transport, and starch and sucrose metabolisms were dramatically depressed. Moreover, the shade also influenced the expression of hormone-related genes and transcriptional factors. The findings would improve our understanding of molecular mechanisms of shade response, and shed light on pathways associated with shade-avoidance syndrome for cassava improvement.
Collapse
Affiliation(s)
- Zehong Ding
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan 571101, China
| | - Yang Zhang
- Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA.,Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, USA
| | - Yi Xiao
- CAS-Key laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Fangfang Liu
- Department of Statistics, Iowa State University, Ames, Iowa 50011, USA
| | - Minghui Wang
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, New York 14850, USA
| | - Xinguang Zhu
- CAS-Key laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, CAS, Shanghai 200031, China
| | - Peng Liu
- Department of Statistics, Iowa State University, Ames, Iowa 50011, USA
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, New York 14850, USA
| | - Wenquan Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan 571101, China
| | - Ming Peng
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, The Institute of Tropical Bioscience and Biotechnology (ITBB), Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, Hainan 571101, China
| | - Tom Brutnell
- Donald Danforth Plant Science Center, St. Louis, Missouri 63132, USA
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomic Sciences, Shandong Agricultural University, Tai'an, Shandong 271018, China
| |
Collapse
|
50
|
Järvi S, Isojärvi J, Kangasjärvi S, Salojärvi J, Mamedov F, Suorsa M, Aro EM. Photosystem II Repair and Plant Immunity: Lessons Learned from Arabidopsis Mutant Lacking the THYLAKOID LUMEN PROTEIN 18.3. FRONTIERS IN PLANT SCIENCE 2016; 7:405. [PMID: 27064270 PMCID: PMC4814454 DOI: 10.3389/fpls.2016.00405] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/16/2016] [Indexed: 05/29/2023]
Abstract
Chloroplasts play an important role in the cellular sensing of abiotic and biotic stress. Signals originating from photosynthetic light reactions, in the form of redox and pH changes, accumulation of reactive oxygen and electrophile species or stromal metabolites are of key importance in chloroplast retrograde signaling. These signals initiate plant acclimation responses to both abiotic and biotic stresses. To reveal the molecular responses activated by rapid fluctuations in growth light intensity, gene expression analysis was performed with Arabidopsis thaliana wild type and the tlp18.3 mutant plants, the latter showing a stunted growth phenotype under fluctuating light conditions (Biochem. J, 406, 415-425). Expression pattern of genes encoding components of the photosynthetic electron transfer chain did not differ between fluctuating and constant light conditions, neither in wild type nor in tlp18.3 plants, and the composition of the thylakoid membrane protein complexes likewise remained unchanged. Nevertheless, the fluctuating light conditions repressed in wild-type plants a broad spectrum of genes involved in immune responses, which likely resulted from shade-avoidance responses and their intermixing with hormonal signaling. On the contrary, in the tlp18.3 mutant plants there was an imperfect repression of defense-related transcripts upon growth under fluctuating light, possibly by signals originating from minor malfunction of the photosystem II (PSII) repair cycle, which directly or indirectly modulated the transcript abundances of genes related to light perception via phytochromes. Consequently, a strong allocation of resources to defense reactions in the tlp18.3 mutant plants presumably results in the stunted growth phenotype under fluctuating light.
Collapse
Affiliation(s)
- Sari Järvi
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| | - Janne Isojärvi
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| | | | - Jarkko Salojärvi
- Plant Biology, Department of Biosciences, University of HelsinkiHelsinki, Finland
| | - Fikret Mamedov
- Molecular Biomimetics, Department of Chemistry—Ångström Laboratory, Uppsala UniversityUppsala, Sweden
| | - Marjaana Suorsa
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of TurkuTurku, Finland
| |
Collapse
|