1
|
Panda S, Chappell-Maor L, Alejandro de Haro L, Jozwiak A, Gharat SA, Kazachkova Y, Cai J, Vainer A, Toppino L, Sehrawat U, Wizler G, Pliner M, Meir S, Rotino GL, Yasuor H, Rogachev I, Aharoni A. Molecular mechanisms driving the unusual pigmentation shift during eggplant fruit development. PLANT COMMUNICATIONS 2025; 6:101321. [PMID: 40143551 DOI: 10.1016/j.xplc.2025.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 03/22/2025] [Indexed: 03/28/2025]
Abstract
Fruit pigmentation is a major signal that attracts frugivores to enable seed dispersal. In most fleshy fruit, green chlorophyll typically accumulates early in development and is replaced by a range of pigments during ripening. In species such as grape and strawberry, chlorophyll is replaced by red anthocyanins produced by the flavonoid biosynthetic pathway. Eggplant (Solanum melongena) is unique, as its fruit accumulates anthocyanins beginning from fruit set, and these are later replaced by the yellow flavonoid-pathway intermediate naringenin chalcone. To decipher the genetic regulation of this extraordinary pigmentation shift, we integrated mRNA and microRNA (miRNA) profiling data obtained from developing eggplant fruit. We discovered that SQUAMOSA PROMOTER BINDING-LIKE (i.e., SPL6a, SPL10, and SPL15), MYB1, and MYB2 transcription factors (TFs) regulate anthocyanin biosynthesis in early fruit development, whereas the MYB12 TF controls later accumulation of naringenin chalcone. We further show that miRNA157 and miRNA858 negatively regulate the expression of SPLs and MYB12, respectively. Taken together, our findings suggest that opposing and complementary expression of miRNAs and TFs controls the pigmentation switch in eggplant fruit skin. Intriguingly, despite the distinctive pigmentation pattern in eggplant, fruit development in other species makes use of homologous regulatory factors to control the temporal and spatial production of different pigment classes.
Collapse
Affiliation(s)
- Sayantan Panda
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev 85280, Israel; Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle (Saale), Germany.
| | - Louise Chappell-Maor
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; School of Biological Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Luis Alejandro de Haro
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Adam Jozwiak
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sachin A Gharat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yana Kazachkova
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Jianghua Cai
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Andrii Vainer
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev 85280, Israel
| | - Laura Toppino
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, LO, Italy
| | - Urmila Sehrawat
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Guy Wizler
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Margarita Pliner
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Sagit Meir
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Giuseppe Leonardo Rotino
- Council for Agricultural Research and Economics (CREA), Research Centre for Genomics and Bioinformatics, 26836 Montanaso Lombardo, LO, Italy
| | - Hagai Yasuor
- Gilat Research Center, Agricultural Research Organization (ARO), Rural delivery Negev 85280, Israel
| | - Ilana Rogachev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
2
|
Liu GS, Gao Y, Fu DQ. Two Master Transcription Factors for Fruit Ripening, NOR and Its Homologue NOR-like1: Multiple Roles in tomato. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:10692-10700. [PMID: 40287839 DOI: 10.1021/acs.jafc.5c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Non-ripening (NOR) and NOR-like1, two members of the tomato NAC transcription factor (TF) family, exhibit a high degree of homology and are well-recognized for their robust control of fruit ripening. The discovery of NOR and NOR-like1 has greatly advanced our understanding of the regulation of tomato fruit ripening and their function studies beyond fruit ripening. This review systematically summarizes the current perception of nor natural mutant (nor mutant), as well as the roles of NOR and NOR-like1 in tomato fruit ripening and beyond. Additionally, this review highlights the functional similarity and divergence of NOR and NOR-like1. In summary, we discuss the functional diversity and underlying mechanisms of NOR and NOR-like1 in tomato and propose a molecular regulatory network dominated by NOR and NOR-like1.
Collapse
Affiliation(s)
- Gang-Shuai Liu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ying Gao
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
3
|
Bai F, Wu M, Huang W, Xu W, Wang Y, Zhang Y, Zhong Z, Hong Y, Pirrello J, Bouzayen M, Liu M. Removal of toxic steroidal glycoalkaloids and bitterness in tomato is controlled by a complex epigenetic and genetic network. SCIENCE ADVANCES 2025; 11:eads9601. [PMID: 39970214 PMCID: PMC11837996 DOI: 10.1126/sciadv.ads9601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
The steroidal glycoalkaloids (SGAs) produced in Solanaceae crops, including tomato, are antinutritional because of their cellular toxicity and resultant bitter taste to humans. To make fruits palatable, SGA profiles shift from bitter and toxic α-tomatine to nonbitter and nontoxic esculeoside A during the ripening process. However, the mechanisms regulating this conversion remain unclear. In this study, we showed that removal of toxic and bitter SGAs is under the control of DNA demethylation, ethylene, and key transcription factors by forming a feedback loop that governs the expression of key GLYCOALKALOID METABOLISM (GAME) genes during ripening. Moreover, the ethylene-inducible transcription factors NON-RIPENING, RIPENING INHIBITOR, and FRUITFULL1 coordinately regulate the expression of GAME31, GAME40, GAME5, and the glycoalkaloid transporter gene GORKY, whereas jasmonic acid-induced MYC2 modulates the transcription of GAME36. Furthermore, DNA demethylation mediated by the DEMETER-LIKE 2 drives SGA detoxification during tomato domestication.
Collapse
Affiliation(s)
- Feng Bai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Mengbo Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Wei Huang
- State Key Laboratory of Agricultural Genomics, Key Laboratory of Genomics, Ministry of Agriculture, BGI Research, Shenzhen, Guang Dong 518083, China
| | - Weijie Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yikui Wang
- Guangxi Academy of Agricultural Sciences, Nanning 530007, Guangxi, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Zhenhui Zhong
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Yiguo Hong
- School of Life Sciences, University of Warwick, Warwick CV4 7AL, UK
- State Key Laboratory of North China Crop Improvement and Regulation and College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Julien Pirrello
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mondher Bouzayen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
- Laboratoire de Recherche en Sciences Végétales-Génomique et Biotechnologie des Fruits-UMR5546, Université de Toulouse, CNRS, UPS, Toulouse-INP, Toulouse, France
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Zhai X, Li Q, Li B, Gao X, Liao X, Chen J, Kai W. Overexpression of the persimmon ABA receptor DkPYL3 gene alters fruit development and ripening in transgenic tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112287. [PMID: 39396616 DOI: 10.1016/j.plantsci.2024.112287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/15/2024]
Abstract
Abscisic acid (ABA) is a crucial plant hormone that regulates various aspects of plant development. However, the specific function of the ABA receptor PYL in fruit development has not been fully understood. In this study, we focused on DkPYL3, a member of the ABA receptor subfamily Ⅰ in persimmon, which exhibited high expression levels in fruit, particularly during the young fruit and turning stages. Through yeast two-hybrid (Y2H), firefly luciferase complementation imaging (LCI), protein inhibition assays, and RNA-seq techniques, we identified and characterized the DkPYL3 protein, which was found to inhibit the activity of protein phosphatase type 2 C (PP2C). By heterologous overexpressing (OE) persimmon DkPYL3 in tomatoes, we investigated the impact of the DkPYL3 gene on fruit development and ripening. DkPYL3-OE upregulated the expression of genes related to chlorophyll synthesis and development, leading to a significant increase in chlorophyll content in young fruit. Several fruit quality parameters were also affected by DkPYL3 expression, including sugar content, single fruit weight, and photosynthesis rate. Additionally, fruits overexpressing DkPYL3 exhibited earlier ripening and higher levels of carotenoids and flavonoids compared to wild-type fruits. These results demonstrate the pivotal role of DkPYL3 in ABA-mediated young fruit development, ripening onset, and fruit quality in transgenic tomatoes.
Collapse
Affiliation(s)
- Xiawan Zhai
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China; National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qian Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Bao Li
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xiaoqing Gao
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Xingqiang Liao
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jinyin Chen
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenbin Kai
- Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit & Vegetables, Jiangxi Agricultural University, Nanchang 330045, China; Jiangxi Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
5
|
Zamorano-Curaqueo M, Valenzuela-Riffo F, Herrera R, Moya-León MA. Characterization of FchAGL9 and FchSHP, two MADS-boxes related to softening of Fragaria chiloensis fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108985. [PMID: 39084168 DOI: 10.1016/j.plaphy.2024.108985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Fragaria chiloensis is a Chilean native species that softens intensively during its ripening. Its softening is related to cell wall disassembly due to the participation of cell wall degrading enzymes. Softening of F. chiloensis fruit can be accelerated by ABA treatment which is accompanied by the increment in the expression of key cell wall degrading genes, however the molecular machinery involved in the transcriptional regulation has not been studied until now. Therefore, the participation of two MADS-box transcription factors belonging to different subfamilies, FchAGL9 and FchSHP, was addressed. Both TFs are members of type-II MADS-box family (MIKC-type) and localized in the nucleus. FchAGL9 and FchSHP are expressed only in flower and fruit tissues, rising as the fruit softens with the highest expression level at C3-C4 stages. EMSA assays demonstrated that FchAGL9 binds to CArG sequences of RIN and SQM, meanwhile FchSHP interacts only with RIN. Bimolecular fluorescence complementation and yeast two-hybrid assays confirmed FchAGL9-FchAGL9 and FchAGL9-FchSHP interactions. Hetero-dimer structure was built through homology modeling concluding that FchSHP monomer binds to DNA. Functional validation by Luciferase-dual assays indicated that FchAGL9 transactivates FchRGL and FchPG's promoters, meanwhile FchSHP transactivates those of FchEXP2, FchRGL and FchPG. Over-expression of FchAGL9 in C2 F. chiloensis fruit rises FchEXP2 and FchEXP5 transcripts, meanwhile the over-expression of FchSHP also increments FchXTH1 and FchPL; in both cases there is a down-regulation of FchRGL and FchPG. In summary, we provided evidence of FchAGL9 and FchSHP participating in the transcription regulation associated to F. chiloensis's softening.
Collapse
Affiliation(s)
- Macarena Zamorano-Curaqueo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Felipe Valenzuela-Riffo
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - Raúl Herrera
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile
| | - María A Moya-León
- Laboratorio de Fisiología Vegetal y Genética Molecular, Instituto de Ciencias Biológicas, Universidad de Talca, Avenida Lircay s/n, Talca, Chile.
| |
Collapse
|
6
|
Yu Y, Bao Z, Zhou Q, Wu W, Chen W, Yang Z, Wang L, Li X, Cao S, Shi L. EjWRKY6 Is Involved in the ABA-Induced Carotenoid Biosynthesis in Loquat Fruit during Ripening. Foods 2024; 13:2829. [PMID: 39272594 PMCID: PMC11395680 DOI: 10.3390/foods13172829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/21/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
The yellow-fleshed loquat is abundant in carotenoids, which determine the fruit's color, provide vitamin A, and offer anti-inflammatory and anti-cancer health benefits. In this research, the impact of abscisic acid (ABA), a plant hormone, on carotenoid metabolism and flesh pigmentation in ripening loquat fruits was determined. Results revealed that ABA treatment enhanced the overall content of carotenoids in loquat fruit, including major components like β-cryptoxanthin, lutein, and β-carotene, linked to the upregulation of most genes in the carotenoid biosynthesis pathway. Furthermore, a transcription factor, EjWRKY6, whose expression was induced by ABA, was identified and was thought to play a role in ABA-induced carotenoid acceleration. Transient overexpression of EjWRKY6 in Nicotiana benthamiana and stable genetic transformation in Nicotiana tabacum with EjWRKY6 indicated that both carotenoid production and genes related to carotenoid biosynthesis could be upregulated in transgenic plants. A dual-luciferase assay proposed a probable transcriptional control between EjWRKY6 and promoters of genes associated with carotenoid production. To sum up, pre-harvest ABA application could lead to carotenoid biosynthesis in loquat fruit through the EjWRKY6-induced carotenoid biosynthesis pathway.
Collapse
Affiliation(s)
- Yan Yu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zeyang Bao
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Qihang Zhou
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Wu
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Wei Chen
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Zhenfeng Yang
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Li Wang
- College of Tea and Food Science and Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xuewen Li
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Shifeng Cao
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Liyu Shi
- Zhejiang Key Laboratory of Intelligent Food Logistic and Processing, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| |
Collapse
|
7
|
Rabie M, Aseel DG, Younes HA, Behiry SI, Abdelkhalek A. Transcriptional responses and secondary metabolites variation of tomato plant in response to tobacco mosaic virus infestation. Sci Rep 2024; 14:19565. [PMID: 39174617 PMCID: PMC11341961 DOI: 10.1038/s41598-024-69492-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024] Open
Abstract
The present study focused on the impact of infection with the tobacco mosaic virus (TMV). Specifically, changes in phytochemicals and gene activity related to pathogenesis-related and phenylpropanoid pathway genes in tomato plants (Solanum lycopersicum L.) during a period of 2-14 days post-inoculation (dpi). According to TEM investigation and coat protein sequence analysis, the purified TMV Egyptian AM isolate (PP133743) has a rod-shaped structure with a diameter of around 110 nm. The RT-qPCR analysis revealed that PR-1 showed an initial increase after TMV infection, as seen in the time-course analysis. In contrast, PR-2 was consistently elevated throughout the infection, suggesting a stronger reaction to the virus and suppressing PAL expression at 6 to 14 dpi. The expression levels of HQT and CHS transcripts exhibited alternating patterns of up-regulation and down-regulation at different time intervals. The HPLC and GC-MS analysis of control- and TMV-infected tomato extracts revealed that different phenolic, flavonoid, and fatty acid compounds were increased (such as naringenin, rutin, flavone, ferulic acid, and pyrogallol) or significantly decreased (such as salicylic acid and chlorogenic acid) after TMV infection. The ability of TMV to inhibit most polyphenolic compounds could potentially accelerate the viral life cycle. Consequently, focusing on enhancing the levels of such suppressed compounds may be critical for developing plant viral infection management strategies.
Collapse
Affiliation(s)
- Mona Rabie
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, 21511, Egypt
| | - Dalia G Aseel
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt
| | - Hosny A Younes
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Said I Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Ahmed Abdelkhalek
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, Alexandria, 21934, Egypt.
| |
Collapse
|
8
|
Zhu H, Yang JL, Chen W. Epigenetic insights into an epimutant colorless non-ripening: from fruit ripening to stress responses. FRONTIERS IN PLANT SCIENCE 2024; 15:1440120. [PMID: 39015288 PMCID: PMC11250591 DOI: 10.3389/fpls.2024.1440120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 06/12/2024] [Indexed: 07/18/2024]
Abstract
The epigenetic machinery has received extensive attention due to its involvement in plant growth, development, and adaptation to environmental changes. Recent studies often highlight the epigenetic regulatory network by discussing various epigenetic mutants across various plant species. However, a systemic understanding of essential epigenetic regulatory mechanisms remains limited due to a lack of representative mutants involved in multiple biological processes. Colorless Non-ripening (Cnr), a spontaneous epimutant isolated from a commercial population, was initially characterized for its role in fruit ripening regulation. Cnr fruits exhibit an immature phenotype with yellow skin, attributed to hypermethylation of the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE-CNR (SlSPL-CNR) promoter, resulting in the repression of gene expression. In addition to DNA methylation, this process also involves histone modification and microRNA, integrating multiple epigenetic regulatory factors. Interestingly, knockout mutants of SlSPL-CNR display phenotypical distinctions from Cnr in fruit ripening, indicating complex genetic and epigenetic control over the non-ripening phenotype in Cnr fruits. Accumulating evidence suggests that Cnr epimutation is pleiotropic, participating in various biological processes such as Cd stress, Fe deficiency, vivipary, and cell death. Therefore, the Cnr epimutant serve as an excellent model for unveiling how epigenetic mechanisms are involved in diverse biological processes. This review paper focuses on recent research advances regarding the Cnr epimutant, delving into its complex genetic and epigenetic regulatory mechanisms, with the aim of enhancing our understanding and facilitating the development of high-quality, high-yield crops through epigenetic modification.
Collapse
Affiliation(s)
- Huihui Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Key Laboratory of Vegetable Biology, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Jian Li Yang
- Key Laboratory of Vegetable Biology, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming, China
| | - Weiwei Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
9
|
Yu Z, Chen X, Li Y, Shah SHA, Xiao D, Wang J, Hou X, Liu T, Li Y. ETHYLENE RESPONSE FACTOR 070 inhibits flowering in Pak-choi by indirectly impairing BcLEAFY expression. PLANT PHYSIOLOGY 2024; 195:986-1004. [PMID: 38269601 DOI: 10.1093/plphys/kiae021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 01/26/2024]
Abstract
APETALA2/ethylene responsive factors respond to ethylene and participate in many biological and physiological processes, such as plant morphogenesis, stress resistance, and hormone signal transduction. Ethylene responsive factor 070 (BcERF070) is important in flowering. However, the underlying molecular mechanisms of BcERF070 in floral transition in response to ethylene signaling have not been fully characterized. Herein, we explored the function of BcERF070 in Pak-choi [Brassica campestris (syn. Brassica rapa) ssp. chinensis]. Ethylene treatment induced BcERF070 expression and delayed flowering in Pak-choi. Silencing of BcERF070 induced flowering in Pak-choi. BcERF070 interacted with major latex protein-like 328 (BcMLP328), which forms a complex with helix-loop-helix protein 30 (BcbHLH30) to enhance the transcriptional activity of BcbHLH30 on LEAFY (BcLFY), ultimately promoting flowering. However, BcERF070 impaired the BcMLP328-BcbHLH30 complex activation of LEAFY (BcLFY), ultimately inhibiting flowering in Pak-choi. BcERF070 directly promoted the expression of the flowering inhibitor gene B-box 29 (BcBBX29) and delayed flowering by reducing FLOWERING LOCUS T (BcFT) expression. These results suggest that BcERF070 mediates ethylene-reduced flowering by impairing the BcMLP328-BcbHLH30 complex activation of BcLFY and by directly promoting the gene expression of the flowering inhibition factor BcBBX29 to repress BcFT expression. The findings contribute to understanding the molecular mechanisms underlying floral transition in response to ethylene in plants.
Collapse
Affiliation(s)
- Zhanghong Yu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoshan Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sayyed Hamad Ahmad Shah
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianjun Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
10
|
Xin H, Liu X, Chai S, Yang X, Li H, Wang B, Xu Y, Lin S, Zhong X, Liu B, Lu Z, Zhang Z. Identification and functional characterization of conserved cis-regulatory elements responsible for early fruit development in cucurbit crops. THE PLANT CELL 2024; 36:2272-2288. [PMID: 38421027 PMCID: PMC11132967 DOI: 10.1093/plcell/koae064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 03/02/2024]
Abstract
A number of cis-regulatory elements (CREs) conserved during evolution have been found to be responsible for phenotypic novelty and variation. Cucurbit crops such as cucumber (Cucumis sativus), watermelon (Citrullus lanatus), melon (Cucumis melo), and squash (Cucurbita maxima) develop fruits from an inferior ovary and share some similar biological processes during fruit development. Whether conserved regulatory sequences play critical roles in fruit development of cucurbit crops remains to be explored. In six well-studied cucurbit species, we identified 392,438 conserved noncoding sequences (CNSs), including 82,756 that are specific to cucurbits, by comparative genomics. Genome-wide profiling of accessible chromatin regions (ACRs) and gene expression patterns mapped 20,865 to 43,204 ACRs and their potential target genes for two fruit tissues at two key developmental stages in six cucurbits. Integrated analysis of CNSs and ACRs revealed 4,431 syntenic orthologous CNSs, including 1,687 cucurbit-specific CNSs that overlap with ACRs that are present in all six cucurbit crops and that may regulate the expression of 757 adjacent orthologous genes. CRISPR mutations targeting two CNSs present in the 1,687 cucurbit-specific sequences resulted in substantially altered fruit shape and gene expression patterns of adjacent NAC1 (NAM, ATAF1/2, and CUC2) and EXT-like (EXTENSIN-like) genes, validating the regulatory roles of these CNSs in fruit development. These results not only provide a number of target CREs for cucurbit crop improvement, but also provide insight into the roles of CREs in plant biology and during evolution.
Collapse
Affiliation(s)
- Hongjia Xin
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Sen Chai
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Xueyong Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongbo Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Bowen Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Yuanchao Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shengnan Lin
- Key Laboratory of Horticultural Plant Biology, College of Horticulture and Forestry Sciences, Huazhong Agriculture University, Wuhan 430070, China
| | - Xiaoyun Zhong
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bin Liu
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi 830091China
| | - Zefu Lu
- National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhonghua Zhang
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
11
|
Li C, Hou X, Zhao Z, Liu H, Huang P, Shi M, Wu X, Gao R, Liu Z, Wei L, Li Y, Liao W. A tomato NAC transcription factor, SlNAP1, directly regulates gibberellin-dependent fruit ripening. Cell Mol Biol Lett 2024; 29:57. [PMID: 38649857 PMCID: PMC11036752 DOI: 10.1186/s11658-024-00577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/09/2024] [Indexed: 04/25/2024] Open
Abstract
In tomato (Solanum lycopersicum), the ripening of fruit is regulated by the selective expression of ripening-related genes, and this procedure is controlled by transcription factors (TFs). In the various plant-specific TF families, the no apical meristem (NAM), Arabidopsis thaliana activating factor 1/2 (ATAF1/2), and cup-shaped cotyledon 2 (CUC2; NAC) TF family stands out and plays a significant function in plant physiological activities, such as fruit ripening (FR). Despite the numerous genes of NAC found in the tomato genome, limited information is available on the effects of NAC members on FR, and there is also a lack of studies on their target genes. In this research, we focus on SlNAP1, which is a NAC TF that positively influences the FR of tomato. By employing CRISPR/Cas9 technology, compared with the wild type (WT), we generated slnap1 mutants and observed a delay in the ethylene production and color change of fruits. We employed the yeast one-hybrid (Y1H) and dual-luciferase reporter (DLR) assays to confirm that SlNAP1 directly binds to the promoters of two crucial genes involved in gibberellin (GA) degradation, namely SlGA2ox1 and SlGA2ox5, thus activating their expression. Furthermore, through a yeast two-hybrid (Y2H), bimolecular fluorescence complementation (BIFC) and luciferase (LUC) assays, we established an interaction between SlNAP1 and SlGID1. Hence, our findings suggest that SlNAP1 regulates FR positively by activating the GA degradation genes directly. Additionally, the interaction between SlNAP1 and SlGID1 may play a role in SlNAP1-induced FR. Overall, our study provides important insights into the molecular mechanisms through which NAC TFs regulate tomato FR via the GA pathway.
Collapse
Affiliation(s)
- Changxia Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
- College of Agriculture, Guangxi University, 100 East University Road, Xixiangtang District, Nanning, 530004, China
| | - Xuemei Hou
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zongxi Zhao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Huwei Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Panpan Huang
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Meimei Shi
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Xuetong Wu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Rong Gao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Zhiya Liu
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Lijuan Wei
- Spice Crops Research Institute, College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, China
| | - Yihua Li
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China
| | - Weibiao Liao
- College of Horticulture, Gansu Agricultural University, 1 Yinmen Village, Anning District, Lanzhou, 730070, China.
| |
Collapse
|
12
|
Lu M, Fu B, Meng X, Jia T, Lu X, Yang C, Li K, Yin P, Guo Y, Li W, Chi J, Wang G, Zhou C. Transcription factors NtNAC028 and NtNAC080 form heterodimers to regulate jasmonic acid biosynthesis during leaf senescence in Nicotiana tabacum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2351-2371. [PMID: 38205848 DOI: 10.1093/jxb/erae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Plant senescence, as a highly integrated developmental stage, involves functional degeneration and nutrient redistribution. NAM/ATAF1/CUC (NAC) transcription factors orchestrate various senescence-related signals and mediate the fine-tuning underlying plant senescence. Previous data revealed that knockout of either NtNAC028 or NtNAC080 leads to delayed leaf senescence in tobacco (Nicotiana tabacum), which implies that NtNAC028 and NtNAC080 play respective roles in the regulation of leaf senescence, although they share 91.87% identity with each other. However, the mechanism underlying NtNAC028- and NtNAC080-regulated leaf senescence remains obscure. Here, we determined that NtNAC028 and NtNAC080 activate a putative jasmonic acid (JA) biosynthetic gene, NtLOX3, and enhance the JA level in vivo. We found that NtNAC028 and NtNAC080 interact with each other and themselves through their NA-terminal region. Remarkably, only the dimerization between NtNAC028 and NtNAC080 stimulated the transcriptional activation activity, but not the DNA binding activity of this heterodimer on NtLOX3. Metabolome analysis indicated that overexpression of either NtNAC028 or NtNAC080 augments both biosynthesis and degradation of nicotine in the senescent stages. Thus, we conclude that NtNAC028 cooperates with NtNAC080 and forms a heterodimer to enhance NtLOX3 expression and JA biosynthesis to trigger the onset of leaf senescence and impact secondary metabolism in tobacco.
Collapse
Affiliation(s)
- Mingyue Lu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Boyang Fu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiao Meng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tiantian Jia
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Xiaoyue Lu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Chaosha Yang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ke Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Pengcheng Yin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yongfeng Guo
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Wei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266101, China
| | - Jina Chi
- Institute of Cotton Research, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
| | - Geng Wang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Chunjiang Zhou
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
13
|
Jiang G, Li Z, Ding X, Zhou Y, Lai H, Jiang Y, Duan X. WUSCHEL-related homeobox transcription factor SlWOX13 regulates tomato fruit ripening. PLANT PHYSIOLOGY 2024; 194:2322-2337. [PMID: 37995308 DOI: 10.1093/plphys/kiad623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Fruit ripening is a complex, genetically programmed process involving the action of critical transcription factors (TFs). Despite the established importance of WUSCHEL-related homeobox (WOX) TFs in plant development, the involvement of WOX and its underlying mechanism in the regulation of fruit ripening remain unclear. Here, we demonstrate that SlWOX13 regulates fruit ripening in tomato (Solanum lycopersicum). Overexpression of SlWOX13 accelerates fruit ripening, whereas loss-of-function mutation in SlWOX13 delays this process. Moreover, ethylene synthesis and carotenoid accumulation are significantly inhibited in slwox13 mutant fruit but accelerated in SlWOX13 transgenic fruit. Integrated analyses of RNA-seq and chromatin immunoprecipitation (ChIP)-seq identified 422 direct targets of SlWOX13, of which 243 genes are negatively regulated and 179 are positively regulated by SlWOX13. Electrophoretic mobility shift assay, RT-qPCR, dual-luciferase reporter assay, and ChIP-qPCR analyses demonstrated that SlWOX13 directly activates the expression of several genes involved in ethylene synthesis and signaling and carotenoid biosynthesis. Furthermore, SlWOX13 modulates tomato fruit ripening through key ripening-related TFs, such as RIPENING INHIBITOR (RIN), NON-RIPENING (NOR), and NAM, ATAF1, 2, and CUC2 4 (NAC4). Consequently, these effects promote fruit ripening. Taken together, these results demonstrate that SlWOX13 positively regulates tomato fruit ripening via both ethylene synthesis and signaling and by transcriptional regulation of key ripening-related TFs.
Collapse
Affiliation(s)
- Guoxiang Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiwei Li
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaochun Ding
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Yijie Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
| | - Hongmei Lai
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yueming Jiang
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuewu Duan
- State Key Laboratory of Plant Diversity and Specialty Crops & Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Gambhir P, Raghuvanshi U, Kumar R, Sharma AK. Transcriptional regulation of tomato fruit ripening. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:289-303. [PMID: 38623160 PMCID: PMC11016043 DOI: 10.1007/s12298-024-01424-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/15/2024] [Accepted: 02/27/2024] [Indexed: 04/17/2024]
Abstract
An intrinsic and genetically determined ripening program of tomato fruits often depends upon the appropriate activation of tissue- and stage-specific transcription factors in space and time. The past two decades have yielded considerable progress in detailing these complex transcriptional as well as hormonal regulatory circuits paramount to fleshy fruit ripening. This non-linear ripening process is strongly controlled by the MADS-box and NOR family of proteins, triggering a transcriptional response associated with the progression of fruit ripening. Deepening insights into the connection between MADS-RIN and plant hormones related transcription factors, such as ERFs and ARFs, further conjugates the idea that several signaling units work in parallel to define an output fruit ripening transcriptome. Besides these TFs, the role of other families of transcription factors such as MYB, GLK, WRKY, GRAS and bHLH have also emerged as important ripening regulators. Other regulators such as EIN and EIL proteins also determine the transcriptional landscape of ripening fruits. Despite the abundant knowledge of the complex spectrum of ripening networks in the scientific domain, identifying more ripening effectors would pave the way for a better understanding of fleshy fruit ripening at the molecular level. This review provides an update on the transcriptional regulators of tomato fruit ripening.
Collapse
Affiliation(s)
- Priya Gambhir
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Utkarsh Raghuvanshi
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| | - Rahul Kumar
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046 India
| | - Arun Kumar Sharma
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, 110021 India
| |
Collapse
|
15
|
Zhang RX, Liu Y, Zhang X, Chen X, Sun J, Zhao Y, Zhang J, Yao JL, Liao L, Zhou H, Han Y. Two adjacent NAC transcription factors regulate fruit maturity date and flavor in peach. THE NEW PHYTOLOGIST 2024; 241:632-649. [PMID: 37933224 DOI: 10.1111/nph.19372] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/29/2023] [Indexed: 11/08/2023]
Abstract
Although maturity date (MD) is an essential factor affecting fresh fruit marketing and has a pleiotropic effect on fruit taste qualities, the underlying mechanisms remain largely unclear. In this study, we functionally characterized two adjacent NAM-ATAF1/2-CUC2 (NAC) transcription factors (TFs), PpNAC1 and PpNAC5, both of which were associated with fruit MD in peach. PpNAC1 and PpNAC5 were found capable of activating transcription of genes associated with cell elongation, cell wall degradation and ethylene biosynthesis, suggesting their regulatory roles in fruit enlargement and ripening. Furthermore, PpNAC1 and PpNAC5 had pleiotropic effects on fruit taste due to their ability to activate transcription of genes for sugar accumulation and organic acid degradation. Interestingly, both PpNAC1 and PpNAC5 orthologues were found in fruit-producing angiosperms and adjacently arranged in all 91 tested dicots but absent in fruitless gymnosperms, suggesting their important roles in fruit development. Our results provide insight into the regulatory roles of NAC TFs in MD and fruit taste.
Collapse
Affiliation(s)
- Ruo-Xi Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yudi Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xian Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Xiaomei Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Juanli Sun
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, 19A Yuquanlu, Beijing, 100049, China
| | - Yun Zhao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jinyun Zhang
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Jia-Long Yao
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland, 1142, New Zealand
| | - Liao Liao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Hui Zhou
- Key Laboratory of Horticultural Crop Germplasm Innovation and Utilization (Co-construction by Ministry and Province), Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture, Anhui Academy of Agricultural Sciences, Hefei, 230031, China
| | - Yuepeng Han
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design of Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
16
|
Wei W, Yang YY, Wu CJ, Kuang JF, Lu WJ, Chen JY, Shan W. MaNAC19-MaXB3 regulatory module mediates sucrose synthesis in banana fruit during ripening. Int J Biol Macromol 2023; 253:127144. [PMID: 37802454 DOI: 10.1016/j.ijbiomac.2023.127144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Sucrose, a predominant sweetener in banana (Musa acuminata) fruit, determines sweetness and consumer preferences. Although sucrose phosphate synthase (SPS) is known to catalyze starch conversion into sucrose in banana fruit during the ripening process, the SPS regulatory mechanism during ripening still demands investigation. Hence, this study discovered that the MaSPS1 expression was promoted during ethylene-mediated ripening in banana fruit. MaNAC19, recognized as the MaSPS1 putative binding protein using yeast one-hybrid screening, directly binds to the MaSPS1 promoter, thereby transcriptionally activating its expression, which was verified by transient overexpression experiments, where the sucrose synthesis was accelerated through MaNAC19-induced transcription of MaSPS1. Interestingly, MaXB3, an ethylene-inhibited E3 ligase, was found to ubiquitinate MaNAC19, making it prone to proteasomal degradation, inhibiting transactivation of MaNAC19 to MaSPS1, thereby attenuating MaNAC19-promoted sucrose accumulation. This study's findings collectively illustrated the mechanistic basis of a MaXB3-MaNAC19-MaSPS1 regulatory module controlling sucrose synthesis during banana fruit ripening. These outcomes have broadened our understanding of the regulation mechanisms that contributed to sucrose metabolism occurring in transcriptional and post-transcriptional stages, which might help develop molecular approaches for controlling ripening and improving fruit quality.
Collapse
Affiliation(s)
- Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Ying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-Jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
17
|
Del Giúdice LZ, Falquetto-Gomes P, de Almeida Costa PM, Martins AO, Omena-Garcia RP, Araújo WL, Zsögön A, Picoli EADT, Nunes-Nesi A. Dynamic shifts in primary metabolism across fruit development stages in Capsicum chinense (cv. Habanero). JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154121. [PMID: 37924627 DOI: 10.1016/j.jplph.2023.154121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023]
Abstract
The development of fleshy fruits involves changes in size and mass, followed by cell differentiation, which is associated with anatomical and histological changes. Parallel to these changes, metabolic alterations lead to the production of osmolytes and energy that modify cell turgor pressure, thereby promoting cell expansion and fruit growth. Detailed information is known about these processes in climacteric fruits (e.g. tomato); however, the regulation of metabolism and its association with anatomical changes in non-climacteric fruit development are poorly understood. In this study, we used detailed anatomical and histological analyses to define three developmental phases of chili pepper (Capsicum chinense cv. Habanero): cell division, cell expansion, and ripening. We showed that each was marked by distinct metabolic profiles, underpinning the switches in energy metabolism to support cellular processes. Interestingly, mitochondrial activity was high in the early stages of development and declined over time, with a modest increase in O2 consumption by pericarp tissues at the beginning of the ripening stage. This respiratory-like burst was associated with the degradation of starch and malate, which are the sources of energy and carbon required for other processes associated with fruit maturation.
Collapse
Affiliation(s)
- Luciana Zacour Del Giúdice
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Priscilla Falquetto-Gomes
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | | | - Auxiliadora O Martins
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Rebeca Patrícia Omena-Garcia
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Agustín Zsögön
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | | | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
18
|
Wei W, Yang YY, Chen JY, Lakshmanan P, Kuang JF, Lu WJ, Shan W. MaNAC029 modulates ethylene biosynthesis and fruit quality and undergoes MaXB3-mediated proteasomal degradation during banana ripening. J Adv Res 2023; 53:33-47. [PMID: 36529351 PMCID: PMC10658243 DOI: 10.1016/j.jare.2022.12.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/12/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTIONS Ethylene regulates ripening by activating various metabolic pathways that controlcolor, aroma, flavor, texture, and consequently, the quality of fruits. However, the modulation of ethylene biosynthesis and quality formation during banana fruit ripening remains unclear. OBJECTIVES The present study aimed to identify the regulatory module that regulates ethylene and fruit quality-related metabolisms during banana fruit ripening. METHODS We used RNA-seq to compare unripe and ripe banana fruits and identified a ripening-induced NAC transcription factor, MaNAC029. We further performed DNA affinity purification sequencing to identify the MaNAC029's target genes involved in ethylene biosynthesis and fruit quality formation, and electrophoretic mobility shift assay, chromatin immunoprecipitation with real-time polymerase chain reaction and dual luciferase assays to explore the underlying regulatory mechanisms. Immunoprecipitation combined with mass spectrometry, yeast two-hybrid assay, and bimolecular fluorescence complementation assay were used to screen and verify the proteins interacting with MaNAC029. Finally, the function of MaNAC029 and its interacting protein associated with ethylene biosynthesis and quality formation was verified through transient overexpression experiments in banana fruits. RESULTS The study identified a nucleus-localized, ripening-induced NAC transcription factor MaNAC029. It transcriptionally activated genes associated with ethylene biosynthesis and a variety of cellular metabolisms related to fruit quality formation (cell wall degradation, starch degradation, aroma compound synthesis, and chlorophyll catabolism) by directly modulating their promoter activity during ripening. Overexpression of MaNAC029 in banana fruits activated ethylene biosynthesis and accelerated fruit ripening and quality formation. Notably, the E3 ligase MaXB3 interacted with and ubiquitinated MaNAC029 protein, facilitating MaNAC029 proteasomal degradation. Consistent with this finding, MaXB3 overexpression attenuated MaNAC029-enhanced ethylene biosynthesis and quality formation. CONCLUSION Our findings demonstrate that a MaXB3-MaNAC029 module regulates ethylene biosynthesis and a series of cellular metabolisms related to fruit quality formation during banana ripening. These results expand the understanding of the transcriptional and post-translational mechanisms of fruit ripening and quality formation.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-Ying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-Ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Prakash Lakshmanan
- Sugarcane Research Institute, Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Guangxi Academy of Agricultural Sciences, Nanning 530007, China; Interdisciplinary Research Center for Agriculture Green Development in Yangtze River Basin, Southwest University, Chongqing 400716, China; Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia 4067, QLD, Australia
| | - Jian-Fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-Jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
19
|
Wei W, Yang YY, Wu CJ, Kuang JF, Chen JY, Lu WJ, Shan W. MaMADS1-MaNAC083 transcriptional regulatory cascade regulates ethylene biosynthesis during banana fruit ripening. HORTICULTURE RESEARCH 2023; 10:uhad177. [PMID: 37868621 PMCID: PMC10585711 DOI: 10.1093/hr/uhad177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/25/2023] [Indexed: 10/24/2023]
Abstract
The hormone ethylene is crucial in the regulation of ripening in climacteric fruit, such as bananas. The transcriptional regulation of ethylene biosynthesis throughout banana fruit ripening has received much study, but the cascaded transcriptional machinery of upstream transcriptional regulators implicated in the ethylene biosynthesis pathway is still poorly understood. Here we report that ethylene biosynthesis genes, including MaACS1, MaACO1, MaACO4, MaACO5, and MaACO8, were upregulated in ripening bananas. NAC (NAM, ATAF, CUC) transcription factor, MaNAC083, a ripening and ethylene-inhibited gene, was discovered as a potential binding protein to the MaACS1 promoter by yeast one-hybrid screening. Further in vitro and in vivo experiments indicated that MaNAC083 bound directly to promoters of the five ethylene biosynthesis genes, thereby transcriptionally repressing their expression, which was further verified by transient overexpression experiments, where ethylene production was inhibited through MaNAC083-modulated transcriptional repression of ethylene biosynthesis genes in banana fruits. Strikingly, MaMADS1, a ripening-induced MADS (MCM1, AGAMOUS, DEFICIENS, SRF4) transcription factor, was found to directly repress the expression of MaNAC083, inhibiting trans-repression of MaNAC083 to ethylene biosynthesis genes, thereby attenuating MaNAC083-repressed ethylene production in bananas. These findings collectively illustrated the mechanistic basis of a MaMADS1-MaNAC083-MaACS1/MaACOs regulatory cascade controlling ethylene biosynthesis during banana fruit ripening. These findings increase our knowledge of the transcriptional regulatory mechanisms of ethylene biosynthesis at the transcriptional level and are expected to help develop molecular approaches to control ripening and improve fruit storability.
Collapse
Affiliation(s)
- Wei Wei
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ying-ying Yang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Chao-jie Wu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-fei Kuang
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jian-ye Chen
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wang-jin Lu
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Wei Shan
- Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
20
|
Yoon KN, Yoon YS, Hong HJ, Park JH, Song BS, Eun JB, Kim JK. Gamma irradiation delays tomato (Solanum lycopersicum) ripening by inducing transcriptional changes. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:6640-6653. [PMID: 37267467 DOI: 10.1002/jsfa.12760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/02/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Tomato (Solanum lycopersicum) has a relatively short shelf life as a result of rapid ripening, limiting its transportability and marketability. Recently, gamma irradiation has emerged as a viable method for delaying tomato fruit ripening. Although few studies have shown that gamma irradiation delays the ripening of tomatoes, the underlying mechanism remains unknown. Therefore, the present study aimed to examine the effects of gamma irradiation on tomato fruit ripening and the underlying mechanisms using transcriptomics. RESULTS Following gamma irradiation, the total microbial count, weight loss, and decay rate of tomatoes significantly reduced during storage. Furthermore, the redness (a*), color change (∆E), and lycopene content of gamma-irradiated tomatoes decreased in a dose-dependent manner during storage. Moreover, gamma irradiation significantly upregulated the expression levels of genes associated with DNA, chloroplast, and oxidative damage repairs, whereas those of ethylene and auxin signaling-, ripening-, and cell wall metabolism-related, as well as carotenoid genes, were downregulated. CONCLUSION Gamma irradiation effectively delayed ripening by downregulating the expression of ripening-related genes and inhibiting microbial growth, which prevented decay and prolonged the shelf life of tomatoes. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ki-Nam Yoon
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Yeong-Seok Yoon
- Center for Industrialization of Agricultural and Livestock Microorganisms, Jeongeup-si, Republic of Korea
| | - Hae-Jung Hong
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Heum Park
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Beom-Seok Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| | - Jong-Bang Eun
- Department of Food Science and Technology, Graduate School of Chonnam National University, Gwangju, Republic of Korea
| | - Jae-Kyung Kim
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup-si, Republic of Korea
| |
Collapse
|
21
|
Wang J, Wang Y, Yu Y, Zhang J, Ren Y, Tian S, Li M, Liao S, Guo S, Gong G, Zhang H, Xu Y. ClSnRK2.3 negatively regulates watermelon fruit ripening and sugar accumulation. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:2336-2348. [PMID: 37219233 DOI: 10.1111/jipb.13535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/23/2023] [Indexed: 05/24/2023]
Abstract
Watermelon (Citrullus lanatus) as non-climacteric fruit is domesticated from the ancestors with inedible fruits. We previously revealed that the abscisic acid (ABA) signaling pathway gene ClSnRK2.3 might influence watermelon fruit ripening. However, the molecular mechanisms are unclear. Here, we found that the selective variation of ClSnRK2.3 resulted in lower promoter activity and gene expression level in cultivated watermelons than ancestors, which indicated ClSnRK2.3 might be a negative regulator in fruit ripening. Overexpression (OE) of ClSnRK2.3 significantly delayed watermelon fruit ripening and suppressed the accumulation of sucrose, ABA and gibberellin GA4 . Furthermore, we determined that the pyrophosphate-dependent phosphofructokinase (ClPFP1) in sugar metabolism pathway and GA biosynthesis enzyme GA20 oxidase (ClGA20ox) could be phosphorylated by ClSnRK2.3 and thereby resulting in accelerated protein degradation in OE lines and finally led to low levels of sucrose and GA4 . Besides that, ClSnRK2.3 phosphorylated homeodomain-leucine zipper protein (ClHAT1) and protected it from degradation to suppress the expression of the ABA biosynthesis gene 9'-cis-epoxycarotenoid dioxygenase 3 (ClNCED3). These results indicated that ClSnRK2.3 negatively regulated watermelon fruit ripening by manipulating the biosynthesis of sucrose, ABA and GA4 . Altogether, these findings revealed a novel regulatory mechanism in non-climacteric fruit development and ripening.
Collapse
Affiliation(s)
- Jinfang Wang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Yanping Wang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Yongtao Yu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Jie Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Yi Ren
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Shouwei Tian
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Maoying Li
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Shengjin Liao
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Shaogui Guo
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Guoyi Gong
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Haiying Zhang
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| | - Yong Xu
- State Key Laboratory of Vegetable Biobreeding, National Engineering Research Center for Vegetables, Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, 100097, China
| |
Collapse
|
22
|
Yang K, Fu R, Feng H, Jiang G, Finkel O, Sun T, Liu M, Huang B, Li S, Wang X, Yang T, Wang Y, Wang S, Xu Y, Shen Q, Friman VP, Jousset A, Wei Z. RIN enhances plant disease resistance via root exudate-mediated assembly of disease-suppressive rhizosphere microbiota. MOLECULAR PLANT 2023; 16:1379-1395. [PMID: 37563832 DOI: 10.1016/j.molp.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 05/06/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
The RIPENING-INHIBITOR (RIN) transcriptional factor is a key regulator governing fruit ripening. While RIN also affects other physiological processes, its potential roles in triggering interactions with the rhizosphere microbiome and plant health are unknown. Here we show that RIN affects microbiome-mediated disease resistance via root exudation, leading to recruitment of microbiota that suppress the soil-borne, phytopathogenic Ralstonia solanacearum bacterium. Compared with the wild-type (WT) plant, RIN mutants had different root exudate profiles, which were associated with distinct changes in microbiome composition and diversity. Specifically, the relative abundances of antibiosis-associated genes and pathogen-suppressing Actinobacteria (Streptomyces) were clearly lower in the rhizosphere of rin mutants. The composition, diversity, and suppressiveness of rin plant microbiomes could be restored by the application of 3-hydroxyflavone and riboflavin, which were exuded in much lower concentrations by the rin mutant. Interestingly, RIN-mediated effects on root exudates, Actinobacteria, and disease suppression were evident from the seedling stage, indicating that RIN plays a dual role in the early assembly of disease-suppressive microbiota and late fruit development. Collectively, our work suggests that, while plant disease resistance is a complex trait driven by interactions between the plant, rhizosphere microbiome, and the pathogen, it can be indirectly manipulated using "prebiotic" compounds that promote the recruitment of disease-suppressive microbiota.
Collapse
Affiliation(s)
- Keming Yang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ruixin Fu
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; School of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Haichao Feng
- College of Agriculture, Henan University, Zhengzhou 450046, China
| | - Gaofei Jiang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Omri Finkel
- Department of Plant and Environmental Sciences, Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tianyu Sun
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Baowen Huang
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
| | - Shan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaofang Wang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Tianjie Yang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Yikui Wang
- Institute of Vegetable Research, Guangxi Academy of Agricultural Sciences, Nanning, China.
| | - Shimei Wang
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yangchun Xu
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Qirong Shen
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ville-Petri Friman
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Department of Biology, University of York, York YO10 5DD, UK; Department of Microbiology, University of Helsinki, 00014 Helsinki, Finland
| | - Alexandre Jousset
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhong Wei
- Key Lab of Organic-based Fertilizers of China, Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
23
|
Wu C, Deng W, Shan W, Liu X, Zhu L, Cai D, Wei W, Yang Y, Chen J, Lu W, Kuang J. Banana MKK1 modulates fruit ripening via the MKK1-MPK6-3/11-4-bZIP21 module. Cell Rep 2023; 42:112832. [PMID: 37498740 DOI: 10.1016/j.celrep.2023.112832] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/19/2023] [Accepted: 07/03/2023] [Indexed: 07/29/2023] Open
Abstract
The mitogen-activated protein kinase (MAPK) cascade consisting of MKKK, MKK, and MPK plays an indispensable role in various plant physiological processes. Previously, we showed that phosphorylation of MabZIP21 by MaMPK6-3 is involved in banana fruit ripening, but the regulatory mechanism by which MKK controls banana fruit ripening remains unclear. Here, ripening-induced MaMKK1 from banana fruit is characterized, and transiently overexpressing and silencing of MaMKK1 in banana fruit accelerates and inhibits fruit ripening, respectively, possibly by influencing phosphorylation and activity of MPK. MaMKK1 interacts with and phosphorylates MaMPK6-3 and MaMPK11-4 mainly at the pTEpY residues, resulting in MPK activation. MaMPK11-4 phosphorylates MabZIP21 to elevate its transcriptional activation ability. Transgenic tomato fruit expressing MabZIP21 ripen quickly with a concomitant increase in MabZIP21 phosphorylation. Additionally, MabZIP21 activates MaMPK11-4 and MaMKK1 transcription to form a regulatory feedback loop. Collectively, here we report a regulatory pathway of the MaMPK6-3/11-4-MabZIP21 module in controlling banana fruit ripening.
Collapse
Affiliation(s)
- Chaojie Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 400044, China
| | - Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Xuncheng Liu
- Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Lisha Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Danling Cai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wei Wei
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Jianye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China
| | - Wangjin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China.
| | - Jianfei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables/Engineering Research Center of Southern Horticultural Products Preservation, Ministry of Education, College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Liu Y, Wu P, Li B, Wang W, Zhu B. Phosphoribosyltransferases and Their Roles in Plant Development and Abiotic Stress Response. Int J Mol Sci 2023; 24:11828. [PMID: 37511586 PMCID: PMC10380321 DOI: 10.3390/ijms241411828] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Glycosylation is a widespread glycosyl modification that regulates gene expression and metabolite bioactivity in all life processes of plants. Phosphoribosylation is a special glycosyl modification catalyzed by phosphoribosyltransferase (PRTase), which functions as a key step in the biosynthesis pathway of purine and pyrimidine nucleotides, histidine, tryptophan, and coenzyme NAD(P)+ to control the production of these essential metabolites. Studies in the past decades have reported that PRTases are indispensable for plant survival and thriving, whereas the complicated physiological role of PRTases in plant life and their crosstalk is not well understood. Here, we comprehensively overview and critically discuss the recent findings on PRTases, including their classification, as well as the function and crosstalk in regulating plant development, abiotic stress response, and the balance of growth and stress responses. This review aims to increase the understanding of the role of plant PRTase and also contribute to future research on the trade-off between plant growth and stress response.
Collapse
Affiliation(s)
- Ye Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Peiwen Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bowen Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Weihao Wang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Benzhong Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
25
|
Naeem M, Zhao W, Ahmad N, Zhao L. Beyond green and red: unlocking the genetic orchestration of tomato fruit color and pigmentation. Funct Integr Genomics 2023; 23:243. [PMID: 37453947 DOI: 10.1007/s10142-023-01162-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Fruit color is a genetic trait and a key factor for consumer acceptability and is therefore receiving increasing importance in several breeding programs. Plant pigments offer plants with a variety of colored organs that attract animals for pollination, favoring seed dispersers and conservation of species. The pigments inside plant cells not only play a light-harvesting role but also provide protection against light damage and exhibit nutritional and ecological value for health and visual pleasure in humans. Tomato (Solanum lycopersicum) is a leading vegetable crop; its fruit color formation is associated with the accumulation of several natural pigments, which include carotenoids in the pericarp, flavonoids in the peel, as well as the breakdown of chlorophyll during fruit ripening. To improve tomato fruit quality, several techniques, such as genetic engineering and genome editing, have been used to alter fruit color and regulate the accumulation of secondary metabolites in related pathways. Recently, clustered regularly interspaced short palindromic repeat (CRISPR)-based systems have been extensively used for genome editing in many crops, including tomatoes, and promising results have been achieved using modified CRISPR systems, including CAS9 (CRISPR/CRISPR-associated-protein) and CRISPR/Cas12a systems. These advanced tools in biotechnology and whole genome sequencing of various tomato species will certainly advance the breeding of tomato fruit color with a high degree of precision. Here, we attempt to summarize the current advancement and effective application of genetic engineering techniques that provide further flexibility for fruit color formation. Furthermore, we have also discussed the challenges and opportunities of genetic engineering and genome editing to improve tomato fruit color.
Collapse
Affiliation(s)
- Muhammad Naeem
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Weihua Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Naveed Ahmad
- Joint Center for Single Cell Biology, Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Lingxia Zhao
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
26
|
Kaur G, Abugu M, Tieman D. The dissection of tomato flavor: biochemistry, genetics, and omics. FRONTIERS IN PLANT SCIENCE 2023; 14:1144113. [PMID: 37346138 PMCID: PMC10281629 DOI: 10.3389/fpls.2023.1144113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/02/2023] [Indexed: 06/23/2023]
Abstract
Flavor and quality are the major drivers of fruit consumption in the US. However, the poor flavor of modern commercial tomato varieties is a major cause of consumer dissatisfaction. Studies in flavor research have informed the role of volatile organic compounds in improving overall liking and sweetness of tomatoes. These studies have utilized and applied the tools of molecular biology, genetics, biochemistry, omics, machine learning, and gene editing to elucidate the compounds and biochemical pathways essential for good tasting fruit. Here, we discuss the progress in identifying the biosynthetic pathways and chemical modifications of important tomato volatile compounds. We also summarize the advances in developing highly flavorful tomato varieties and future steps toward developing a "perfect tomato".
Collapse
Affiliation(s)
- Gurleen Kaur
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| | - Modesta Abugu
- Department of Horticulture Science, North Carolina State University, Raleigh, NC, United States
| | - Denise Tieman
- Horticultural Sciences Department, University of Florida, Gainesville, FL, United States
| |
Collapse
|
27
|
Xia H, Lin Z, He Z, Guo Y, Liu X, Deng H, Li M, Xie Y, Zhang M, Wang J, Lv X, Deng Q, Luo X, Tang Y, Lin L, Liang D. AcMADS32 positively regulates carotenoid biosynthesis in kiwifruit by activating AcBCH1/2 expression. Int J Biol Macromol 2023; 242:124928. [PMID: 37224896 DOI: 10.1016/j.ijbiomac.2023.124928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 04/28/2023] [Accepted: 05/06/2023] [Indexed: 05/26/2023]
Abstract
Fruits provide abundant carotenoid nutrients for humans, whereas the understanding of the transcriptional regulatory mechanisms of carotenoids in fruits is still limited. Here, we identified a transcription factor AcMADS32 in kiwifruit, which was highly expressed in the fruit, correlated with carotenoid content and localized in the nucleus. The silencing expression of AcMADS32 significantly reduced the content of β-carotene and zeaxanthin and expression of β-carotene hydroxylase gene AcBCH1/2 in kiwifruit, while transient overexpression increased the accumulation of zeaxanthin, suggesting that AcMADS32 was an activator involved in the transcriptional regulation of carotenoid in fruit. When AcMADS32 was further stably transformed into kiwifruit, the content of total carotenoid and components in the leaves of transgenic lines significantly increased, and the expression level of carotenogenic genes was up-regulated. Moreover, Y1H and dual luciferase reporter experiments confirmed that AcMADS32 directly bound the AcBCH1/2 promoter and activated its expression. Through Y2H assays, AcMADS32 can interact with other MADS transcription factor AcMADS30, AcMADS64 and AcMADS70. These findings will contribute to our understanding of the transcriptional regulation mechanisms underlying carotenoid biosynthesis in plants.
Collapse
Affiliation(s)
- Hui Xia
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhiyi Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Zunzhen He
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuqi Guo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xinling Liu
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Honghong Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Minzhang Li
- Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Yue Xie
- Sichuan Provincial Academy of Natural Resources Sciences, Chengdu 610015, China
| | - Mingfei Zhang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Jin Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiulan Lv
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Qunxian Deng
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Xian Luo
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yi Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Lijin Lin
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Dong Liang
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
28
|
Zhang Z, Chen W, Tao L, Wei X, Gao L, Gao Y, Suo J, Yu W, Hu Y, Yang B, Jiang H, Farag MA, Wu J, Song L. Ethylene treatment promotes umami taste-active amino acids accumulation of Torreya grandis nuts post-harvest by comparative chemical and transcript analyses. Food Chem 2023; 408:135214. [PMID: 36565552 DOI: 10.1016/j.foodchem.2022.135214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/26/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
Amino acids play critical roles in physiological processes and also contribute significantly to fruit quality. In this study, the effect of exogenous ethylene on amino acids metabolism and related genes expression in Torreya grandis were investigated. The results revealed that ethylene treatment (3000 μL L-1 for 24 h) significantly increased amino acids level. Umami amino acids were distinctly upregulated in ethylene-treated versus control nuts, with glutamic and aspartic acids to demonstrate 1.9-fold and 2.1-fold increase. Transcriptome analysis revealed that deferentially expressed genes were mainly enriched in alanine aspartate and glutamate metabolism. RT-qPCR confirmed that ethylene treatment up-regulated expression of their biosynthesis genes (TgGOGAT1, TgAATC1, TgAATC4) concurrent with suppression of their degradation enzymes (TgGS2, TgGAD1, TgGAD3, TgASNS1). Ethylene treatment appears to promote umami taste-active amino acids and improve T. grandis nut quality post-harvest.
Collapse
Affiliation(s)
- Zuying Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, People's Republic of China
| | - Wenchao Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Liu Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Xixing Wei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Lingling Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Yadi Gao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Jinwei Suo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China
| | - Baoru Yang
- Food Chemistry and Food Development, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Huifeng Jiang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, People's Republic of China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr el Aini st., Cairo P.B. 11562, Egypt
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China.
| | - Lili Song
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an 311300, Zhejiang Province, People's Republic of China; Zhejiang Provincial Key Laboratory of Forest Aromatic Plants-based Healthcare Functions, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, People's Republic of China.
| |
Collapse
|
29
|
Upadhyay RK, Motyka V, Pokorna E, Dobrev PI, Lacek J, Shao J, Lewers KS, Mattoo AK. Comprehensive profiling of endogenous phytohormones and expression analysis of 1-aminocyclopropane-1-carboxylic acid synthase gene family during fruit development and ripening in octoploid strawberry (Fragaria× ananassa). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:186-196. [PMID: 36724703 DOI: 10.1016/j.plaphy.2023.01.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 12/02/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
The non-climacteric octoploid strawberry (Fragaria × ananassa Duchesne ex Rozier) was used as a model to study its regulation during fruit ripening. High performance liquid chromatography electrospray tandem-mass spectrometry (HPLC-ESI-MS/MS) was employed to profile 28 different endogenous phytohormones in strawberry. These include auxins, cytokinins (CKs), abscisic acid (ABA), ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC), jasmonates, and phenolic compounds salicylic acid (SA), benzoic acid (BzA) and phenylacetic acid (PAA) together with their various metabolic forms that have remained largely unexplored thus far. ABA, ACC and CK N6-(Δ2-isopentenyl)adenine (iP) were found to be associated with ripening while ABA catabolites 9-hydroxy-ABA and phaseic acid mimicked the pattern of climacteric decline at the turning phase of strawberry ripening. The content of other CK forms except iP decreased as fruit ripened, as also that of auxins indole-3-acetic acid (IAA) and oxo-IAA, and of jasmonates. Data presented here also suggest that both the transition and progression of strawberry fruit ripening are associated with N6-(Δ2-isopentenyl)adenosine-5'-monophosphate (iPRMP) → N6-(Δ2-isopentenyl)adenosine (iPR) → iP as the preferred CK metabolic pathway. In contrast, the ethylene precursor ACC was present at higher levels, with its abundance increasing from the onset of ripening to the red ripe stage. Further investigation of ripening-specific ACC accumulation revealed the presence of a large ACC synthase (ACS) encoding gene family in octoploid strawberry that was previously unknown. Seventeen ACS genes were found differentially expressed in fruit tissues, while six of them showed induced expression during strawberry fruit ripening. These data suggest a possible role(s) of ACC, ABA, and iP in strawberry fruit ripening. These data add new dimension to the existing knowledge of the interplay of different endogenous phytohormones in octoploid strawberry, paving the way for further investigation of their individual role(s) in fruit ripening.
Collapse
Affiliation(s)
- Rakesh K Upadhyay
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA.
| | - Vaclav Motyka
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Eva Pokorna
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petre I Dobrev
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jozef Lacek
- Laboratory of Hormonal Regulations in Plants, Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Jonathan Shao
- Bioinformatics-North-East Area Office, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Kim S Lewers
- Genetic Improvement of Fruits and Vegetables Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA
| | - Autar K Mattoo
- Sustainable Agricultural Systems Laboratory, United States Department of Agriculture, Agricultural Research Service, Henry A. Wallace Beltsville Agricultural Research Center, Beltsville, MD, 20705-2350, USA.
| |
Collapse
|
30
|
Li F, Fu M, Zhou S, Xie Q, Chen G, Chen X, Hu Z. A tomato HD-zip I transcription factor, VAHOX1, acts as a negative regulator of fruit ripening. HORTICULTURE RESEARCH 2022; 10:uhac236. [PMID: 36643762 PMCID: PMC9832867 DOI: 10.1093/hr/uhac236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
Homeodomain-leucine zipper (HD-Zip) transcription factors are only present in higher plants and are involved in plant development and stress responses. However, our understanding of their participation in the fruit ripening of economical plants, such as tomato (Solanum lycopersicum), remains largely unclear. Here, we report that VAHOX1, a member of the tomato HD-Zip I subfamily, was expressed in all tissues, was highly expressed in breaker+4 fruits, and could be induced by ethylene. RNAi repression of VAHOX1 (VAHOX1-RNAi) resulted in accelerated fruit ripening, enhanced sensitivity to ethylene, and increased total carotenoid content and ethylene production. Conversely, VAHOX1 overexpression (VAHOX1-OE) in tomato had the opposite effect. RNA-Seq results showed that altering VAHOX1 expression affected the transcript accumulation of a series of genes involved in ethylene biosynthesis and signal transduction and cell wall modification. Additionally, a dual-luciferase reporter assay, histochemical analysis of GUS activity and a yeast one-hybrid (Y1H) assay revealed that VAHOX1 could activate the expression of AP2a. Our findings may expand our knowledge about the physiological functions of HD-Zip transcription factors in tomato and highlight the diversities of transcriptional regulation during the fruit ripening process.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Mengjie Fu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, China
| | - Xuqing Chen
- Co-corresponding author: Zongli Hu: Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, China, E-mail: ; Xuqing Chen: Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, China, E-mail:
| | - Zongli Hu
- Co-corresponding author: Zongli Hu: Bioengineering College, Chongqing University, Campus B, 174 Shapingba Main Street, Chongqing, 400030, China, E-mail: ; Xuqing Chen: Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, 11 Shuguanghuayuan Middle Road, Haidian, Beijing, 100097, China, E-mail:
| |
Collapse
|
31
|
Choi I, Ahn CS, Lee DH, Baek SA, Jung JW, Kim JK, Lee HS, Pai HS. Silencing of the Target of Rapamycin Complex Genes Stimulates Tomato Fruit Ripening. Mol Cells 2022; 45:660-672. [PMID: 35993163 PMCID: PMC9448650 DOI: 10.14348/molcells.2022.2025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/19/2022] [Accepted: 04/25/2022] [Indexed: 11/27/2022] Open
Abstract
The target of rapamycin complex (TORC) plays a key role in plant cell growth and survival by regulating the gene expression and metabolism according to environmental information. TORC activates transcription, mRNA translation, and anabolic processes under favorable conditions, thereby promoting plant growth and development. Tomato fruit ripening is a complex developmental process promoted by ethylene and specific transcription factors. TORC is known to modulate leaf senescence in tomato. In this study, we investigated the function of TORC in tomato fruit ripening using virus-induced gene silencing (VIGS) of the TORC genes, TOR, lethal with SEC13 protein 8 (LST8), and regulatory-associated protein of TOR (RAPTOR). Quantitative reverse transcription-polymerase chain reaction showed that the expression levels of tomato TORC genes were the highest in the orange stage during fruit development in Micro-Tom tomato. VIGS of these TORC genes using stage 2 tomato accelerated fruit ripening with premature orange/red coloring and decreased fruit growth, when control tobacco rattle virus 2 (TRV2)-myc fruits reached the mature green stage. TORC-deficient fruits showed early accumulation of carotenoid lycopene and reduced cellulose deposition in pericarp cell walls. The early ripening fruits had higher levels of transcripts related to fruit ripening transcription factors, ethylene biosynthesis, carotenoid synthesis, and cell wall modification. Finally, the early ripening phenotype in Micro-Tom tomato was reproduced in the commercial cultivar Moneymaker tomato by VIGS of the TORC genes. Collectively, these results demonstrate that TORC plays an important role in tomato fruit ripening by modulating the transcription of various ripening-related genes.
Collapse
Affiliation(s)
- Ilyeong Choi
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Platform Technology Research Center, Corporate R&D, LG Chem/LG Science Park, Seoul 07796, Korea
| | - Du-Hwa Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Seung-A Baek
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jung Won Jung
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Jae Kwang Kim
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Korea
| | - Ho-Seok Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
32
|
Steelheart C, Alegre ML, Baldet P, Rothan C, Bres C, Just D, Okabe Y, Ezura H, Ganganelli IM, Gergoff Grozeff GE, Bartoli CG. High light stress induces H 2O 2 production and accelerates fruit ripening in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111348. [PMID: 35750294 DOI: 10.1016/j.plantsci.2022.111348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/03/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Increased synthesis of H2O2 is observed during the initiation of fruit ripening. However, its association with plant cell processes triggering the maturation of fruit has not yet been demonstrated. The aim of this work is to investigate whether H2O2 participates in the tomato ripening process and particularly through its association with the ethylene signaling pathway. The experiments were carried out with two ethyl methanesulfonate mutant lines of Micro-Tom tomato deficient in GDP-L-galactose phosphorylase activity and displaying lower ascorbic acid content than the corresponding parental genotype (i.e. wild type). Plants were subjected to a high irradiance (HI) treatment to stimulate H2O2 synthesis. HI treatment enhanced H2O2 production and reduced the timing of fruit ripening in both mutants and wild-type fruits. These results could be linked to an increase of the expression of H2O2-related genes and changes in the expression of ethylene-related genes. The fruit H2O2 production increased or decreased after applying the treatments that induced ethylene synthesis or blocked its action, respectively. The results presented in this work give an evidence of the association of redox and hormonal components during fruit ripening in which H2O2 participates downstream in the events regulated by ethylene.
Collapse
Affiliation(s)
- Charlotte Steelheart
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
| | - Matías L Alegre
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
| | - Pierre Baldet
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Christophe Rothan
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Cecile Bres
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Daniel Just
- Institut National de la Recherche Agronomique (INRAE), Université de Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Inti M Ganganelli
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
| | - Gustavo E Gergoff Grozeff
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina
| | - Carlos G Bartoli
- INFIVE, Facultades de Ciencias Agrarias y Forestales y Ciencias Naturales y Museo, Universidad Nacional de La Plata-CCT CONICET La Plata, Argentina.
| |
Collapse
|
33
|
Gao Y, Lin Y, Xu M, Bian H, Zhang C, Wang J, Wang H, Xu Y, Niu Q, Zuo J, Fu DQ, Pan Y, Chen K, Klee H, Lang Z, Zhang B. The role and interaction between transcription factor NAC-NOR and DNA demethylase SlDML2 in the biosynthesis of tomato fruit flavor volatiles. THE NEW PHYTOLOGIST 2022; 235:1913-1926. [PMID: 35686614 DOI: 10.1111/nph.18301] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Flavor-imparting volatile chemicals accumulate as fruits ripen, making major contributions to taste. The NAC transcription factor nonripening (NAC-NOR) and DNA demethylase 2 (SlDML2) are essential for tomato fruit ripening, but details of the potential roles and the relationship between these two regulators in the synthesis of volatiles are lacking. Here, we show substantial reductions in fatty acid and carotenoid-derived volatiles in tomato slnor and sldml2 mutants. An unexpected finding is the redundancy and divergence in volatile profiles, biosynthetic gene expression, and DNA methylation in slnor and sldml2 mutants relative to wild-type tomato fruit. Reduced transcript levels are accompanied by hypermethylation of promoters, including the NAC-NOR target gene lipoxygenase (SlLOXC) that is involved in fatty acid-derived volatile synthesis. Interestingly, NAC-NOR activates SlDML2 expression by directly binding to its promoter both in vitro and in vivo. Meanwhile, reduced NAC-NOR expression in the sldml2 mutant is accompanied by hypermethylation of its promoter. These results reveal a relationship between SlDML2-mediated DNA demethylation and NAC-NOR during tomato fruit ripening. In addition to providing new insights into the metabolic modulation of flavor volatiles, the outcome of our study contributes to understanding the genetics and control of fruit ripening and quality attributes in tomato.
Collapse
Affiliation(s)
- Ying Gao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yujing Lin
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Min Xu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Hanxiao Bian
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Chi Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Jingyu Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Hanqing Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Yaping Xu
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Qingfeng Niu
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jinhua Zuo
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agricultural and Forestry Sciences, Beijing, 100097, China
| | - Da-Qi Fu
- Laboratory of Fruit Biology, College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, 100083, China
| | - Yu Pan
- Key Laboratory of Horticulture Science for Southern Mountainous Regions, Ministry of Education, Southwest University, Chongqing, 400715, China
| | - Kunsong Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Harry Klee
- Horticultural Sciences, Genetic Institute, University of Florida, Gainesville, FL, 32611, USA
| | - Zhaobo Lang
- Shanghai Center for Plant Stress Biology, and National Key Laboratory of Plant Molecular Genetics, Center of Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo Zhang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| |
Collapse
|
34
|
Song J, Campbell L, Vinqvist-Tymchuk M. Application of quantitative proteomics to investigate fruit ripening and eating quality. JOURNAL OF PLANT PHYSIOLOGY 2022; 276:153766. [PMID: 35921768 DOI: 10.1016/j.jplph.2022.153766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/30/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The consumption of fruit and vegetables play an important role in human nutrition, dietary diversity and health. Fruit and vegetable industries impart significant impact on our society, economy, and environment, contributing towards sustainable development in both developing and developed countries. The eating quality of fruit is determined by its appearance, color, firmness, flavor, nutritional components, and the absence of defects from physiological disorders. However, all of these components are affected by many pre- and postharvest factors that influence fruit ripening and senescence. Significant efforts have been made to maintain and improve fruit eating quality by expanding our knowledge of fruit ripening and senescence, as well as by controlling and reducing losses. Innovative approaches are required to gain better understanding of the management of eating quality. With completion of the genome sequence for many horticultural products in recent years and development of the proteomic research technique, quantitative proteomic research on fruit is changing rapidly and represents a complementary research platform to address how genetics and environment influence the quality attributes of various produce. Quantiative proteomic research on fruit is advancing from protein abundance and protein quantitation to gene-protein interactions and post-translational modifications of proteins that occur during fruit development, ripening and in response to environmental influences. All of these techniques help to provide a comprehensive understanding of eating quality. This review focuses on current developments in the field as well as limitations and challenges, both in broad term and with specific examples. These examples include our own research experience in applying quantitative proteomic techniques to identify and quantify the protein changes in association with fruit ripening, quality and development of disorders, as well as possible control mechanisms.
Collapse
Affiliation(s)
- Jun Song
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada.
| | - Leslie Campbell
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| | - Melinda Vinqvist-Tymchuk
- Agriculture and Agri-Food Canada. KRDC, Kentville Research and Development Centre, Kentville, Nova Scotia, B4N 1J5, Canada
| |
Collapse
|
35
|
Huang W, Hu N, Xiao Z, Qiu Y, Yang Y, Yang J, Mao X, Wang Y, Li Z, Guo H. A molecular framework of ethylene-mediated fruit growth and ripening processes in tomato. THE PLANT CELL 2022; 34:3280-3300. [PMID: 35604102 PMCID: PMC9421474 DOI: 10.1093/plcell/koac146] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 04/22/2022] [Indexed: 05/08/2023]
Abstract
Although the role of ethylene in tomato (Solanum lycopersicum) fruit ripening has been intensively studied, its role in tomato fruit growth remains poorly understood. In addition, the relationship between ethylene and the developmental factors NON-RIPENING (NOR) and RIPENING INHIBITOR (RIN) during ripening is under debate. Here, we carried out comprehensive genetic analyses of genome-edited mutants of tomato ETHYLENE INSENSITIVE 2 (SlEIN2), four EIN3-like genes (SlEIL1-4), and three EIN3 BINDING F-box protein genes (SlEBF1-3). Both slein2-1 and the high-order sleil mutant (sleil1 sleil2 sleil3/SlEIL3 sleil4) showed reduced fruit size, mainly due to decreased auxin biosynthesis. During fruit maturation, slein2 mutants displayed the complete cessation of ripening, which was partially rescued by slebf1 but not slebf2 or slebf3. We also discovered that ethylene directly activates the expression of the developmental genes NOR, RIN, and FRUITFULL1 (FUL1) via SlEIL proteins. Indeed, overexpressing these genes partially rescued the ripening defects of slein2-1. Finally, the signal intensity of the ethylene burst during fruit maturation was intimately connected with the progression of full ripeness. Collectively, our work uncovers a critical role of ethylene in fruit growth and supports a molecular framework of ripening control in which the developmental factors NOR, RIN, and FUL1 act downstream of ethylene signaling.
Collapse
Affiliation(s)
- Wei Huang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Nan Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Zhina Xiao
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yuping Qiu
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yan Yang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Jie Yang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Mao
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Yichuan Wang
- Department of Biology,Institute of Plant and Food Science, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | | |
Collapse
|
36
|
Zhang Q, Jin YH, Zou JX, Zheng YS, Li DD. Characterization and functional analysis of the MADS-box EgAGL9 transcription factor from the mesocarp of oil palm (Elaeis guineensis Jacq.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111317. [PMID: 35696917 DOI: 10.1016/j.plantsci.2022.111317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
Oil palm (Elaeis guineensis Jacq.) is one of the most important oil crops in the world, and compared to all oil crops, it has the highest productive efficiency. In the present study, a MADS-box transcription factor of the AGAMOUS class, named EgAGL9, was identified by expression profile analysis in the different developmental stages of oil palm mesocarp. Real-time quantitative PCR results confirmed that the expression of EgAGL9 increased rapidly during the last stages of oil palm mesocarp development. Then, three downstream genes, including EgSAD (Stearoyl-ACP desaturase), EgTSA (Tryptophan synthase) and EgSDH (Succinate dehydrogenase), were screened by ChIP-Seq and data analysis. EMSA analysis verified that EgAGL9 interacted with the promoter regions of EgSAD, EgTSA and EgSDH. Moreover, the expression levels of EgSAD, EgTSA and EgSDH were downregulated in EgAGL9-overexpressing protoplasts and calli of oil palm. Compared to WT, the total lipid content and ratio of unsaturated fatty acids in transgenic calli (including oleic acid, linoleic acid and linolenic acid) were significantly decreased. Together, these results revealed that these three EgAGL9-regulated genes are involved in regulatory pathways in the oil palm mesocarp. Compared with previous studies, the present study provides a new research strategy for understanding of the molecular regulatory pathways of lipid metabolism in mesocarp of oil palm. The obtained results will bring a new perspective for a comprehensive understanding of the regulation of the metabolic accumulation in the oil palm mesocarp.
Collapse
Affiliation(s)
- Qing Zhang
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China
| | - Yuan-Hang Jin
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China
| | - Ji-Xin Zou
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China; Rubber Research Institute of Chinese Academy of Tropical Agricultural Sciences (CATAS), China
| | - Yu-Sheng Zheng
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China
| | - Dong-Dong Li
- College of Tropical Crops, Sanya Nanfan Research Institute, Hainan University, Hainan 570228, China.
| |
Collapse
|
37
|
Giordano A, Santo Domingo M, Quadrana L, Pujol M, Martín-Hernández AM, Garcia-Mas J. CRISPR/Cas9 gene editing uncovers the roles of CONSTITUTIVE TRIPLE RESPONSE 1 and REPRESSOR OF SILENCING 1 in melon fruit ripening and epigenetic regulation. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4022-4033. [PMID: 35394503 DOI: 10.1093/jxb/erac148] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/06/2022] [Indexed: 05/14/2023]
Abstract
Melon (Cucumis melo) has emerged as an alternative model to tomato for studying fruit ripening due to the coexistence of climacteric and non-climacteric varieties. Previous characterization of a major quantitative trait locus (QTL), ETHQV8.1, that is able to trigger climacteric ripening in a non-climacteric background resulted in the identification of a negative regulator of ripening CTR1-like (MELO3C024518) and a putative DNA demethylase ROS1 (MELO3C024516) that is the orthologue of DML2, a DNA demethylase that regulates fruit ripening in tomato. To understand the role of these genes in climacteric ripening, in this study we generated homozygous CRISPR knockout mutants of CTR1-like and ROS1 in a climacteric genetic background. The climacteric behavior was altered in both loss-of-function mutants in two growing seasons with an earlier ethylene production profile being observed compared to the climacteric wild type, suggesting a role of both genes in climacteric ripening in melon. Single-cytosine methylome analyses of the ROS1-knockout mutant revealed changes in DNA methylation in the promoter regions of the key ripening genes such as ACS1, ETR1, and ACO1, and in transcription factors associated with ripening including NAC-NOR, RIN, and CNR, suggesting the importance of ROS1-mediated DNA demethylation for triggering fruit ripening in melon.
Collapse
Affiliation(s)
- Andrea Giordano
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Leandro Quadrana
- Institut de Biologie de l'Ecole Normale Supérieure, Paris, France
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, 08193 Bellaterra, Barcelona, Spain
| |
Collapse
|
38
|
Vignati E, Lipska M, Dunwell JM, Caccamo M, Simkin AJ. Fruit Development in Sweet Cherry. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121531. [PMID: 35736682 PMCID: PMC9227597 DOI: 10.3390/plants11121531] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 05/19/2023]
Abstract
Fruits are an important source of vitamins, minerals and nutrients in the human diet. They also contain several compounds of nutraceutical importance that have significant antioxidant and anti-inflammatory roles, which can protect the consumer from diseases, such as cancer, and cardiovascular disease as well as having roles in reducing the build-up of LDL-cholesterol in blood plasma and generally reduce the risks of disease and age-related decline in health. Cherries contain high concentrations of bioactive compounds and minerals, including calcium, phosphorous, potassium and magnesium, and it is, therefore, unsurprising that cherry consumption has a positive impact on health. This review highlights the development of sweet cherry fruit, the health benefits of cherry consumption, and the options for increasing consumer acceptance and consumption.
Collapse
Affiliation(s)
- Edoardo Vignati
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Marzena Lipska
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Mario Caccamo
- NIAB, Cambridge Crop Research, Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Andrew J. Simkin
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence:
| |
Collapse
|
39
|
Chu Y, Gong J, Wu P, Liu Y, Du Y, Ma L, Fu D, Zhu H, Qu G, Zhu B. Deciphering Precise Gene Transcriptional Expression Using gwINTACT in Tomato. FRONTIERS IN PLANT SCIENCE 2022; 13:852206. [PMID: 35498641 PMCID: PMC9048029 DOI: 10.3389/fpls.2022.852206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Functional gene transcription mainly occurs in the nucleus and has a significant role in plant physiology. The isolation of nuclei tagged in specific cell type (INTACT) technique provides an efficient and stable nucleus purification method to investigate the dynamic changes of nuclear gene transcriptional expression. However, the application of traditional INTACT in plants is still limited to seedlings or root cells because of severe chloroplast pollution. In this study, we proposed a newly designed and simplified INTACT based on mas-enhanced GFP (eGFP)-SlWIP2 (gwINTACT) for nuclear purification in tomato (Solanum lycopersicum) leaves, flowers, and fruits for the first time. The yield of the nucleus purified using gwINTACT from transgenic tomato leaves was doubled compared with using a traditional INTACT procedure, accompanied by more than 95% removal of chloroplasts. Relative gene expression of ethylene-related genes with ethylene treatment was reevaluated in gwINTACT leaves to reveal more different results from the traditional gene expression assay based on total RNA. Therefore, establishing the gwINTACT system in this study facilitates the precise deciphering of the transcriptional status in various tomato tissues, which lays the foundation for the further experimental study of nucleus-related molecular regulation on fruit ripening, such as ChIP-seq and ATAC-seq.
Collapse
|
40
|
Sun Y, Wang J, Li Y, Jiang B, Wang X, Xu WH, Wang YQ, Zhang PT, Zhang YJ, Kong XD. Pan-Genome Analysis Reveals the Abundant Gene Presence/Absence Variations Among Different Varieties of Melon and Their Influence on Traits. FRONTIERS IN PLANT SCIENCE 2022; 13:835496. [PMID: 35401600 PMCID: PMC8990847 DOI: 10.3389/fpls.2022.835496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Melon (Cucumismelo L.) is an important vegetable crop that has been subjected to domestication and improvement. Several varieties of melons with diverse phenotypes have been produced. In this study, we constructed a melon pan-genome based on 297 accessions comprising 168 Mb novel sequences and 4,325 novel genes. Based on the results, there were abundant genetic variations among different melon groups, including 364 unfavorable genes in the IMP_A vs. LDR_A group, 46 favorable genes, and 295 unfavorable genes in the IMP_M vs. LDR_M group. The distribution of 709 resistance gene analogs (RGAs) was also characterized across 297 melon lines, of which 603 were core genes. Further, 106 genes were found to be variable, 55 of which were absent in the reference melon genome. Using gene presence/absence variation (PAV)-based genome-wide association analysis (GWAS), 13 gene PAVs associated with fruit length, fruit shape, and fruit width were identified, four of which were located in pan-genome additional contigs.
Collapse
Affiliation(s)
- Yang Sun
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Jing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yan Li
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bin Jiang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Xu Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Wen-Hui Xu
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yu-Qing Wang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Pei-Tao Zhang
- Key Laboratory for Conservation and Use of Important Biological Resources of Anhui Province, Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Yong-Jun Zhang
- Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | | |
Collapse
|
41
|
Jia H, Jia H, Lu S, Zhang Z, Su Z, Sadeghnezhad E, Li T, Xiao X, Wang M, Pervaiz T, Dong T, Fang J. DNA and Histone Methylation Regulates Different Types of Fruit Ripening by Transcriptome and Proteome Analyses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3541-3556. [PMID: 35266388 DOI: 10.1021/acs.jafc.1c06391] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Methylation affects different aspects of genetic material stability, gene expression regulation, and histone modification. The previous reports depicted that DNA and histone methylation regulates plant growth and development. In this study, we evaluated the effects of DNA and histone methylation on 'Hongjia' strawberry and 'Lichun' tomato. We investigated the transient transformation system for arginine methyltransferase (FvPRMT1.5) overexpression and interference and assessed the phenotypic appearance and mRNA and protein expression levels. Results depicted that changes in methylation levels caused inhibition of carotenoids and anthocyanins. Furthermore, the profiling of aroma components was altered in response to 5-azacytidine. DNA hypomethylation induced the expression levels of genes involved in photosynthesis, flavonoid biosynthesis, and hormone signal transduction pathways, while the expression levels of related proteins showed a downward trend. Overall, we proposed a model that reveals the possible regulatory effects of DNA and histone methylation during fruit ripening.
Collapse
Affiliation(s)
- Haoran Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Haifeng Jia
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Suwen Lu
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Zibo Zhang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ziwen Su
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ehsan Sadeghnezhad
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Teng Li
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xin Xiao
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mengting Wang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tariq Pervaiz
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Tianyu Dong
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Jinggui Fang
- Key Laboratory of Genetics and Fruit Development, Horticultural College, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| |
Collapse
|
42
|
Karniel U, Adler Berke N, Mann V, Hirschberg J. Perturbations in the Carotenoid Biosynthesis Pathway in Tomato Fruit Reactivate the Leaf-Specific Phytoene Synthase 2. FRONTIERS IN PLANT SCIENCE 2022; 13:844748. [PMID: 35283915 PMCID: PMC8914173 DOI: 10.3389/fpls.2022.844748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
The accumulation of the red carotenoid pigment lycopene in tomato (Solanum lycopersicum) fruit is achieved by increased carotenoid synthesis during ripening. The first committed step that determines the flux in the carotenoid pathway is the synthesis of phytoene catalyzed by phytoene synthase (PSY). Tomato has three PSY genes that are differentially expressed. PSY1 is exclusively expressed in fruits, while PSY2 mostly functions in green tissues. It has been established that PSY1 is mostly responsible for phytoene synthesis in fruits. Although PSY2 is found in the chromoplasts, it is inactive because loss-of-function mutations in PSY1 in the locus yellow flesh (r) eliminate carotenoid biosynthesis in the fruit. Here we demonstrate that specific perturbations of carotenoid biosynthesis downstream to phytoene prior and during the transition from chloroplast to chromoplast cause the recovery of phytoene synthesis in yellow flesh (r) fruits without significant transcriptional changes of PSY1 and PSY2. The recovery of carotenoid biosynthesis was abolished when the expression of PSY2 was silenced, indicating that the perturbations of carotenoid biosynthesis reactivated the chloroplast-specific PSY2 in fruit chromoplasts. Furthermore, it is demonstrated that PSY2 can function in fruit chromoplasts under certain conditions, possibly due to alterations in the plastidial sub-organelle organization that affect its association with the carotenoid biosynthesis metabolon. This finding provides a plausible molecular explanation to the epistasis of the mutation tangerine in the gene carotenoid isomerase over yellow flesh.
Collapse
Affiliation(s)
| | | | | | - Joseph Hirschberg
- Department of Genetics, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
43
|
Li X, Wang X, Zhang Y, Zhang A, You CX. Regulation of fleshy fruit ripening: From transcription factors to epigenetic modifications. HORTICULTURE RESEARCH 2022; 9:uhac013. [PMID: 35147185 PMCID: PMC9035223 DOI: 10.1093/hr/uhac013] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 12/01/2021] [Indexed: 05/24/2023]
Abstract
Fleshy fruits undergo a complex ripening process, developing organoleptic fruit traits that attract herbivores and maximize seed dispersal. Ripening is the terminal stage of fruit development and involves a series of physiological and biochemical changes. In fleshy fruits, ripening always involves a drastic color change triggered by the accumulation of pigments and degradation of chlorophyll, softening caused by cell wall remodeling, and flavor formation as acids and sugars accumulate alongside volatile compounds. The mechanisms underlying fruit ripening rely on the orchestration of ripening-related transcription factors, plant hormones, and epigenetic modifications. In this review, we discuss current knowledge of the transcription factors that regulate ripening in conjunction with ethylene and environmental signals (light and temperature) in the model plant tomato (Solanum lycopersicum) and other fleshy fruits. We emphasize the critical roles of epigenetic regulation, including DNA methylation and histone modification as well as RNA m6A modification, which has been studied intensively. This detailed review was compiled to provide a comprehensive description of the regulatory mechanisms of fruit ripening and guide new strategies for its effective manipulation.
Collapse
Affiliation(s)
- Xiuming Li
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| | - Xuemei Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Yi Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Aihong Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, Shandong 271018, China
| |
Collapse
|
44
|
Hamdan N, Lee CH, Wong SL, Fauzi CENCA, Zamri NMA, Lee TH. Prevention of Enzymatic Browning by Natural Extracts and Genome-Editing: A Review on Recent Progress. Molecules 2022; 27:1101. [PMID: 35164369 PMCID: PMC8839884 DOI: 10.3390/molecules27031101] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Fresh fruits and vegetable products are easily perishable during postharvest handling due to enzymatic browning reactions. This phenomenon has contributed to a significant loss of food quality and appearance. Thus, a safe and effective alternative method from natural sources is needed to tackle enzymatic browning prevention. The capabilities of natural anti-browning agents derived from plant- and animal-based resources in inhibiting enzymatic activity have been demonstrated in the literature. Some also possess strong antioxidants properties. This review aims to summarize a recent investigation regarding the use of natural anti-browning extracts from different sources for controlling the browning. The potential applications of genome-editing in preventing browning activity and improving postharvest quality is also discussed. Moreover, the patents on the anti-browning extract from natural sources is also presented in this review. The information reviewed here could provide new insights, contributing to the development of natural anti-browning extracts and genome-editing techniques for the prevention of food browning.
Collapse
Affiliation(s)
- Norfadilah Hamdan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Chia Hau Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Syie Luing Wong
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Department of Matem’atica Aplicada, Ciencia e Ingeniería de Materiales y Tecnología Electronica, Universidad Rey Juan Carlos, C/Tulip’an s/n, M´ostoles, 28933 Madrid, Spain
| | - Che Ellysa Nurshafika Che Ahmad Fauzi
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Nur Mirza Aqilah Zamri
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
| | - Ting Hun Lee
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (N.H.); (C.H.L.); (S.L.W.); (C.E.N.C.A.F.); (N.M.A.Z.)
- Innovation Centre in Agritechnology for Advanced Bioprocessing (ICA), Universiti Teknologi Malaysia, Pagoh 84600, Johor, Malaysia
| |
Collapse
|
45
|
Ding X, Liu X, Jiang G, Li Z, Song Y, Zhang D, Jiang Y, Duan X. SlJMJ7 orchestrates tomato fruit ripening via crosstalk between H3K4me3 and DML2-mediated DNA demethylation. THE NEW PHYTOLOGIST 2022; 233:1202-1219. [PMID: 34729792 DOI: 10.1111/nph.17838] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The ripening of fleshy fruits is a unique developmental process that Arabidopsis and rice lack. This process is driven by hormones and transcription factors. However, the critical and early regulators of fruit ripening are still poorly understood. Here, we revealed that SlJMJ7, an H3K4 demethylase, is a critical negative regulator of fruit ripening in tomato. Combined genome-wide transcription, binding sites, histone H3K4me3 and DNA methylation analyses demonstrated that SlJMJ7 regulates a key group of ripening-related genes, including ethylene biosynthesis (ACS2, ACS4 and ACO6), transcriptional regulation (RIN and NOR) and DNA demethylation (DML2) genes, by H3K4me3 demethylation. Moreover, loss of SlJMJ7 function leads to increased H3K4me3 levels, which directly activates ripening-related genes, and to global DML2-mediated DNA hypomethylation in fruit, which indirectly prompts expression of ripening-related genes. Together, these effects lead to accelerated fruit ripening in sljmj7 mutant. Our findings demonstrate that SlJMJ7 acts as a master negative regulator of fruit ripening not only through direct removal of H3K4me3 from multiple key ripening-related factors, but also through crosstalk between histone and DNA demethylation. These findings reveal a novel crosstalk between histone methylation and DNA methylation to regulate gene expression in plant developmental processes.
Collapse
Affiliation(s)
- Xiaochun Ding
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Xuncheng Liu
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Guoxiang Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhiwei Li
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunbo Song
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Dandan Zhang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yueming Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
| | - Xuewu Duan
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Economic Botany, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 10049, China
- Agro-food Science and Technology Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| |
Collapse
|
46
|
Zhu F, Wen W, Cheng Y, Fernie AR. The metabolic changes that effect fruit quality during tomato fruit ripening. MOLECULAR HORTICULTURE 2022; 2:2. [PMID: 37789428 PMCID: PMC10515270 DOI: 10.1186/s43897-022-00024-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/12/2022] [Indexed: 10/05/2023]
Abstract
As the most valuable organ of tomato plants, fruit has attracted considerable attention which most focus on its quality formation during the ripening process. A considerable amount of research has reported that fruit quality is affected by metabolic shifts which are under the coordinated regulation of both structural genes and transcriptional regulators. In recent years, with the development of the next generation sequencing, molecular and genetic analysis methods, lots of genes which are involved in the chlorophyll, carotenoid, cell wall, central and secondary metabolism have been identified and confirmed to regulate pigment contents, fruit softening and other aspects of fruit flavor quality. Here, both research concerning the dissection of fruit quality related metabolic changes, the transcriptional and post-translational regulation of these metabolic pathways are reviewed. Furthermore, a weighted gene correlation network analysis of representative genes of fruit quality has been carried out and the potential of the combined application of the gene correlation network analysis, fine-mapping strategies and next generation sequencing to identify novel candidate genes determinants of fruit quality is discussed.
Collapse
Affiliation(s)
- Feng Zhu
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Weiwei Wen
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany.
| |
Collapse
|
47
|
Li X, Guo W, Xu M, Zhao J, Wang G, Yuan H, Wang A. PuWRKY31 affects ethylene production in response to sucrose signal in pear fruit. HORTICULTURE RESEARCH 2022; 9:uhac156. [PMID: 36204212 PMCID: PMC9533224 DOI: 10.1093/hr/uhac156] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 08/26/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
The ripening of climacteric fruits is mainly controlled by the plant hormone ethylene. The regulatory effect of sucrose on ethylene biosynthesis in fruits remains unclear. Here we examined ethylene production in two Ussurian pear (Pyrus ussuriensis) varieties, 'Nanguo' (NG) pear and its bud sport variety (BNG), which has a higher sucrose content. We found that the peak of ethylene release occurred earlier in BNG fruit than in NG fruit during ripening. The expression of the transcription factor PuWRKY31 was higher in BNG fruit than in NG fruit, and was induced by sucrose treatment. Furthermore, PuWRKY31 bound to the promoters of ethylene biosynthetic genes and upregulated their transcription. Our findings suggest a mechanism by which sucrose regulates ethylene biosynthesis in pears.
Collapse
Affiliation(s)
| | | | - Mingyang Xu
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiaming Zhao
- Key Laboratory of Fruit Postharvest Biology (Liaoning Province), Key Laboratory of Protected Horticulture (Ministry of Education), National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Guan Wang
- Institute of Soybean, Heilongjiang Academy of Agricultural Sciences, 368 Xuefu Road, Harbin, 150086, China
| | - Hui Yuan
- Corresponding authors. E-mail: ,
| | | |
Collapse
|
48
|
Santo Domingo M, Areco L, Mayobre C, Valverde L, Martín-Hernández AM, Pujol M, Garcia-Mas J. Modulating climacteric intensity in melon through QTL stacking. HORTICULTURE RESEARCH 2022; 9:uhac131. [PMID: 35928400 PMCID: PMC9343914 DOI: 10.1093/hr/uhac131] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/29/2022] [Indexed: 05/14/2023]
Abstract
Fruit ripening is one of the main processes affecting fruit quality and shelf life. In melon there are both climacteric and non-climacteric genotypes, making it a suitable species to study fruit ripening. In the current study, in order to fine tune ripening, we have pyramided three climacteric QTLs in the non-climacteric genotype "Piel de Sapo": ETHQB3.5, ETHQV6.3 and ETHQV8.1. The results showed that the three QTLs interact epistatically, affecting ethylene production and ripening-related traits such as aroma profile. Each individual QTL has a specific role in the ethylene production profile. ETHQB3.5 accelerates the ethylene peak, ETHQV6.3 advances the ethylene production and ETHQV8.1 enhances the effect of the other two QTLs. Regarding aroma, the three QTLs independently activated the production of esters changing the aroma profile of the fruits, with no significant effects in fruit firmness, soluble solid content and fruit size. Understanding the interaction and the effect of different ripening QTLs offers a powerful knowledge for candidate gene identification as well as for melon breeding programs, where fruit ripening is one of the main objectives.
Collapse
Affiliation(s)
- Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Lorena Areco
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Laura Valverde
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agoralimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | | | | |
Collapse
|
49
|
Liu B, Santo Domingo M, Mayobre C, Martín-Hernández AM, Pujol M, Garcia-Mas J. Knock-Out of CmNAC-NOR Affects Melon Climacteric Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2022; 13:878037. [PMID: 35755703 PMCID: PMC9226586 DOI: 10.3389/fpls.2022.878037] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/23/2022] [Indexed: 05/14/2023]
Abstract
Fruit ripening is an important process that affects fruit quality. A QTL in melon, ETHQV6.3, involved in climacteric ripening regulation, has been found to be encoded by CmNAC-NOR, a homologue of the tomato NOR gene. To further investigate CmNAC-NOR function, we obtained two CRISPR/Cas9-mediated mutants (nor-3 and nor-1) in the climacteric Védrantais background. nor-3, containing a 3-bp deletion altering the NAC domain A, resulted in ~8 days delay in ripening without affecting fruit quality. In contrast, the 1-bp deletion in nor-1 resulted in a fully disrupted NAC domain, which completely blocked climacteric ripening. The nor-1 fruits did not produce ethylene, no abscission layer was formed and there was no external color change. Additionally, volatile components were dramatically altered, seeds were not well developed and flesh firmness was also altered. There was a delay in fruit ripening with the nor-1 allele in heterozygosis of ~20 days. Our results provide new information regarding the function of CmNAC-NOR in melon fruit ripening, suggesting that it is a potential target for modulating shelf life in commercial climacteric melon varieties.
Collapse
Affiliation(s)
- Bin Liu
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Miguel Santo Domingo
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Carlos Mayobre
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Ana Montserrat Martín-Hernández
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
| | - Marta Pujol
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
- *Correspondence: Marta Pujol,
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Barcelona, Spain
- Jordi Garcia-Mas,
| |
Collapse
|
50
|
Kang J, Gong J, Zhang L, Gao Z, Xie Q, Hu Z, Chen G. A novel E6-like gene, E6-2, affects fruit ripening in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111066. [PMID: 34763858 DOI: 10.1016/j.plantsci.2021.111066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/07/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Tomato fruit ripening is a complicated and well-coordinated process with numerous metabolic changes resulted from endogenous hormone and genetic regulators. Although the regulation of MADS-box transcription factor (MADS-RIN) controlling fruit ripening has been widely reported, its mechanisms underlying need to be further improved. Here, we characterized a novel tomato E6-like gene, E6-2, whose transcripts showed a high accumulation in fruit ripening stages (Breaker, Breaker+4 and Breaker+7), but a low level was observed in Never ripe (Nr) and ripening inhibitor (rin) mutants. MADS-RIN directly activates the expression of E6-2 in vivo. Additionally, a remarkable reduction of E6-2 was observed in wild-type (WT) tomato fruits at the MG stage treated with 1-MCP. RNAi-mediated silencing of E6-2 resulted in delayed fruit ripening, reduced accumulation of the total carotenoid and lycopene, reduced content of ethylene production, and increased contents of the total pectin, cellulose, starch and soluble sugar. Moreover, the expression of carotenoid biosynthesis genes (PSY1, PDS and ZDS), ripening-related genes (CNR, PG and ERF4), ethylene biosynthesis genes (ACS2, ACO1 and ACO3), ethylene-responsive genes (E4 and E8) and cell wall metabolism genes (TBG4, PL, EXP1 and XTH5) were inhibited in E6-2 -RNAi lines. These results indicate that E6-2 plays an important role in regulating tomato fruit ripening targeted by RIN.
Collapse
Affiliation(s)
- Jing Kang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Jun Gong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zihan Gao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|