1
|
Hasegawa R, Ito H. Transposition of the heat-activated retrotransposon ONSEN results in enhanced hypocotyl elongation. Genes Genet Syst 2025; 100:n/a. [PMID: 39864852 DOI: 10.1266/ggs.24-00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025] Open
Abstract
We aimed to identify new mutants resulting from ONSEN transposition in Arabidopsis thaliana by subjecting nrpd1 mutant seedlings to heat stress. We isolated a mutant with a significantly elongated hypocotyl, named Long hypocotyl in ONSEN-inserted line 1 (hyo1). This phenotype was heritable, with progeny consistently displaying longer hypocotyls than the wild type. Genetic analysis revealed that this trait was due to a single recessive mutation. Further mapping and sequencing identified the insertion of ONSEN into the HY2 gene, a crucial regulator of hypocotyl elongation. The insertion disrupted HY2 transcription, as confirmed by quantitative PCR, leading to the observed phenotype. To assess any influence of the nrpd1 background, we generated lines backcrossed twice to wild-type Col-0, and the results were consistent with those observed in the original mutant lines. Furthermore, we examined the effect of HY2 and HYO1 mutations on flowering time by analyzing the expression levels of FT. The hyo1 mutant exhibited earlier flowering compared to both wild type and the nrpd1 mutant, with increased FT expression levels. This research highlights the impact of ONSEN transposition on gene function and phenotypic variation in A. thaliana, providing new insights into the mutagenic potential of transposons and their role in shaping plant traits.
Collapse
Affiliation(s)
- Ryu Hasegawa
- Graduate School of Life Science, Hokkaido University
| | | |
Collapse
|
2
|
Yan T, Kuang L, Gao F, Chen J, Li L, Wu D. Differentiation of genome-wide DNA methylation between japonica and indica rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17218. [PMID: 39887541 DOI: 10.1111/tpj.17218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 12/11/2024] [Indexed: 02/01/2025]
Abstract
Rice (Oryza sativa L.) subspecies japonica and indica show distinct morphological and genetic differentiation. However, the differences in the genome-wide DNA methylation and its effects on gene expression and metabolic levels between japonica and indica rice remain unclear. In this study, we investigated the genome-wide DNA methylation, transcriptomes and metabolomes of 12 representative japonica and indica rice accessions, to reveal the differentiation between rice subspecies. We detected 83 327 differentially methylated regions (DMRs) and 14 903 DMR-associated genes between two subspecies. Indica rice showed significantly lower levels of the CG, CHG, and CHH methylation compared with japonica rice. Subsequently, we identified 5596 differentially expressed genes between the two subspecies, predominantly enriched in pathways related to carbohydrate and amino acid metabolism. By integrating DNA methylation with transcriptomic data, a significant correlation was established between methylation patterns and the expression level of key agronomic genes in rice. Furthermore, multi-omics analyses reveal that carbohydrate metabolism pathways, especially the tricarboxylic acid (TCA) cycle metabolites, are remarkable differentiation between rice subspecies. These results provide a foundation for future studies in rice domestication and genetic improvement.
Collapse
Affiliation(s)
- Tao Yan
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Liuhui Kuang
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Fei Gao
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Jian Chen
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Lin Li
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| | - Dezhi Wu
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
- Yuelushan Laboratory, Changsha, 410128, China
| |
Collapse
|
3
|
Sena S, Prakash A, Van Staden J, Kumar V. Epigenetic control of plant regeneration: Unraveling the role of histone methylation. CURRENT PLANT BIOLOGY 2024; 40:100408. [DOI: 10.1016/j.cpb.2024.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
van den Bos E, Gadau J, Schrader L. Molecular identification of polymorphic transposable elements in populations of the invasive ant Cardiocondyla obscurior. Biol Methods Protoc 2024; 9:bpae050. [PMID: 39050818 PMCID: PMC11268152 DOI: 10.1093/biomethods/bpae050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/01/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Transposable elements (TEs) are found in virtually every eukaryotic genome and are important for generating de novo genetic variation. However, outside of costly and time-consuming whole-genome sequencing approaches, the set of available methods to study TE polymorphisms in non-model species is very limited. The Transposon Display (TD) is a simple yet effective technique to characterize polymorphisms across samples by identifying amplified fragment length polymorphisms using primers targeting specific TE families. So far, this technique has almost exclusively been used in plants. Here, we present an optimized TD protocol for insect species with small genomes such as ants (ca. 200-600 Mb). We characterized TE polymorphisms between two distinct genetic lineages of the invasive ant Cardiocondyla obscurior, as well as between neighboring populations of the New World lineage. We found active LTR/Ty3 retrotransposons, that contributed to the genetic diversification of populations in this species.
Collapse
Affiliation(s)
- Esther van den Bos
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| | - Jürgen Gadau
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| | - Lukas Schrader
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstraße 1, Münster 48149, Germany
| |
Collapse
|
5
|
Yu G, Zhang B, Chen Q, Huang Z, Zhang B, Wang K, Han J. Dynamic DNA methylation modifications in the cold stress response of cassava. Genomics 2024; 116:110871. [PMID: 38806102 DOI: 10.1016/j.ygeno.2024.110871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/21/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
Cassava, a crucial tropical crop, faces challenges from cold stress, necessitating an exploration of its molecular response. Here, we investigated the role of DNA methylation in moderating the response to moderate cold stress (10 °C) in cassava. Using whole-genome bisulfite sequencing, we examined DNA methylation patterns in leaf blades and petioles under control conditions, 5 h, and 48 h of cold stress. Tissue-specific responses were observed, with leaf blades exhibiting subtle changes, while petioles displayed a pronounced decrease in methylation levels under cold stress. We identified cold stress-induced differentially methylated regions (DMRs) that demonstrated both tissue and treatment specificity. Importantly, these DMRs were enriched in genes with altered expression, implying functional relevance. The cold-response transcription factor ERF105 associated with DMRs emerged as a significant and conserved regulator across tissues and treatments. Furthermore, we investigated DNA methylation dynamics in transposable elements, emphasizing the sensitivity of MITEs with bHLH binding motifs to cold stress. These findings provide insights into the epigenetic regulation of response to cold stress in cassava, contributing to an understanding of the molecular mechanisms underlying stress adaptation in this tropical plant.
Collapse
Affiliation(s)
- Guangrun Yu
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Baowang Zhang
- Qingdao Smart Rural Development Service Center, Qingdao 266000, China
| | - Qi Chen
- School of Life Sciences, Nantong University, Nantong 226019, China; Xinglin College, Nantong University, Qidong 226236, China
| | - Zequan Huang
- Xinglin College, Nantong University, Qidong 226236, China
| | - Baohong Zhang
- Department of Biology, East Carolina University, Greenville, NC 27858, USA
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong 226019, China.
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong 226019, China.
| |
Collapse
|
6
|
Abraham LN, Oggenfuss U, Croll D. Population-level transposable element expression dynamics influence trait evolution in a fungal crop pathogen. mBio 2024; 15:e0284023. [PMID: 38349152 PMCID: PMC10936205 DOI: 10.1128/mbio.02840-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
The rapid adaptive evolution of microbes is driven by strong selection pressure acting on genetic variation. How adaptive genetic variation is generated within species and how such variation influences phenotypic trait expression is often not well understood though. We focused on the recent activity of transposable elements (TEs) using deep population genomics and transcriptomics analyses of a fungal plant pathogen with a highly active content of TEs in the genome. Zymoseptoria tritici causes one of the most damaging diseases on wheat, with recent adaptation to the host and environment being facilitated by TE-associated mutations. We obtained genomic and RNA-sequencing data from 146 isolates collected from a single wheat field. We established a genome-wide map of TE insertion polymorphisms in the population by analyzing recent TE insertions among individuals. We quantified the locus-specific transcription of individual TE copies and found considerable population variation at individual TE loci in the population. About 20% of all TE copies show transcription in the genome suggesting that genomic defenses such as repressive epigenetic marks and repeat-induced polymorphisms are at least partially ineffective at preventing the proliferation of TEs in the genome. A quarter of recent TE insertions are associated with expression variation of neighboring genes providing broad potential to influence trait expression. We indeed found that TE insertions are likely responsible for variation in virulence on the host and potentially diverse components of secondary metabolite production. Our large-scale transcriptomics study emphasizes how TE-derived polymorphisms segregate even in individual microbial populations and can broadly underpin trait variation in pathogens.IMPORTANCEPathogens can rapidly adapt to new hosts, antimicrobials, or changes in the environment. Adaptation arises often from mutations in the genome; however, how such variation is generated remains poorly understood. We investigated the most dynamic regions of the genome of Zymoseptoria tritici, a major fungal pathogen of wheat. We focused on the transcription of transposable elements. A large proportion of the transposable elements not only show signatures of potential activity but are also variable within a single population of the pathogen. We find that this variation in activity is likely influencing many important traits of the pathogen. Hence, our work provides insights into how a microbial species can adapt over the shortest time periods based on the activity of transposable elements.
Collapse
Affiliation(s)
- Leen Nanchira Abraham
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
7
|
Lee S, Choi J, Park J, Hong CP, Choi D, Han S, Choi K, Roh TY, Hwang D, Hwang I. DDM1-mediated gene body DNA methylation is associated with inducible activation of defense-related genes in Arabidopsis. Genome Biol 2023; 24:106. [PMID: 37147734 PMCID: PMC10161647 DOI: 10.1186/s13059-023-02952-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/24/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Plants memorize previous pathogen attacks and are "primed" to produce a faster and stronger defense response, which is critical for defense against pathogens. In plants, cytosines in transposons and gene bodies are reported to be frequently methylated. Demethylation of transposons can affect disease resistance by regulating the transcription of nearby genes during defense response, but the role of gene body methylation (GBM) in defense responses remains unclear. RESULTS Here, we find that loss of the chromatin remodeler decrease in DNA methylation 1 (ddm1) synergistically enhances resistance to a biotrophic pathogen under mild chemical priming. DDM1 mediates gene body methylation at a subset of stress-responsive genes with distinct chromatin properties from conventional gene body methylated genes. Decreased gene body methylation in loss of ddm1 mutant is associated with hyperactivation of these gene body methylated genes. Knockout of glyoxysomal protein kinase 1 (gpk1), a hypomethylated gene in ddm1 loss-of-function mutant, impairs priming of defense response to pathogen infection in Arabidopsis. We also find that DDM1-mediated gene body methylation is prone to epigenetic variation among natural Arabidopsis populations, and GPK1 expression is hyperactivated in natural variants with demethylated GPK1. CONCLUSIONS Based on our collective results, we propose that DDM1-mediated GBM provides a possible regulatory axis for plants to modulate the inducibility of the immune response.
Collapse
Affiliation(s)
- Seungchul Lee
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Jaemyung Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
- Department of Cell & Developmental Biology, John Innes Centre, Norwich, NR4 7UH, UK
| | - Jihwan Park
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Chang Pyo Hong
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Daeseok Choi
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, 37673, Korea
| | - Soeun Han
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Kyuha Choi
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea
| | - Tae-Young Roh
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| | - Daehee Hwang
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Korea.
| | - Ildoo Hwang
- Department of Life Sciences, POSTECH, Pohang, 37673, Korea.
| |
Collapse
|
8
|
Hao Y, Su X, Li W, Li L, Zhang Y, Mumtaz MA, Shu H, Cheng S, Zhu G, Wang Z. The creation of autotetraploid provides insights into critical features of DNA methylome changes after genome doubling in water spinach ( Ipomoea aquatica Forsk). FRONTIERS IN PLANT SCIENCE 2023; 14:1155531. [PMID: 37123819 PMCID: PMC10140364 DOI: 10.3389/fpls.2023.1155531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/20/2023] [Indexed: 05/03/2023]
Abstract
Water spinach (Ipomoea aquatica Forsk) is an essential green leafy vegetable in Asia. In this study, we induced autotetraploid water spinach by colchicine. Furthermore, DNA methylation and transcriptome of tetraploid and diploid were compared using Whole Genome Bisulfite Sequencing (WGBS) and RNA-sequencing techniques. Autotetraploid water spinach was created for the first time. Compared with the diploid parent, autotetraploid water spinach had wider leaves, thicker petioles and stems, thicker and shorter adventitious roots, longer stomas, and larger parenchyma cells. The whole genome methylation level of the autotetraploid was slightly higher than that of the diploid. Compared with the diploid, 12281 Differentially Methylated Regions (DMRs)were found in the autotetraploid, including 2356 hypermethylated and 1310 hypomethylated genes, mainly enriched in 'Arginine and Proline metabolism', 'beta - Alanine metabolism', 'Plant homone signal translation', 'Ribome', and 'Plant - pathgen interaction' pathways. Correlation analysis of transcriptome and DNA methylation data showed that 121 differentially expressed genes undergone differential methylation, related to four pathways 'Other types of O-glycan biosynthesis', 'Terpenoid backbone biosynthesis', 'Biosynthesis of secondary metabolites', and 'Metabolic paths'. This work obtained important autotetraploid resources of water spinach and revealed the genomic DNA methylation changes after genome doubling, being helpful for further studying the molecular mechanism of variations caused by polyploids of the Ipomoea genus.
Collapse
Affiliation(s)
- Yuanyuan Hao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Xiao Su
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Wen Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Lin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Yu Zhang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Muhammad Ali Mumtaz
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Huangying Shu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Shanhan Cheng
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Guopeng Zhu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
| | - Zhiwei Wang
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, Sanya Nanfan Research Institute, Hainan University, Sanya, China
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Horticulture, Hainan University, Haikou, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- *Correspondence: Zhiwei Wang,
| |
Collapse
|
9
|
Characterization of Transposon-Derived Accessible Chromatin Regions in Rice (Oryza Sativa). Int J Mol Sci 2022; 23:ijms23168947. [PMID: 36012213 PMCID: PMC9408979 DOI: 10.3390/ijms23168947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Growing evidence indicates that transposons or transposable elements (TEs)-derived accessible chromatin regions (ACRs) play essential roles in multiple biological processes by interacting with trans-acting factors. However, the function of TE-derived ACRs in the regulation of gene expression in the rice genome has not been well characterized. In this study, we examined the chromatin dynamics in six types of rice tissues and found that ~8% of ACRs were derived from TEs and exhibited distinct levels of accessibility and conservation as compared to those without TEs. TEs exhibited a TE subtype-dependent impact on ACR formation, which can be mediated by changes in the underlying DNA methylation levels. Moreover, we found that tissue-specific TE-derived ACRs might function in the tissue development through the modulation of nearby gene expression. Interestingly, many genes in domestication sweeps were found to overlap with TE-derived ACRs, suggesting their potential functions in the rice domestication. In addition, we found that the expression divergence of 1070 duplicate gene pairs were associated with TE-derived ACRs and had distinct distributions of TEs and ACRs around the transcription start sites (TSSs), which may experience different selection pressures. Thus, our study provides some insights into the biological implications of TE-derived ACRs in the rice genome. Our results imply that these ACRs are likely involved in the regulation of tissue development, rice domestication and functional divergence of duplicated genes.
Collapse
|
10
|
López ME, Roquis D, Becker C, Denoyes B, Bucher E. DNA methylation dynamics during stress response in woodland strawberry ( Fragaria vesca). HORTICULTURE RESEARCH 2022; 9:uhac174. [PMID: 36204205 PMCID: PMC9533225 DOI: 10.1093/hr/uhac174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/27/2022] [Indexed: 05/29/2023]
Abstract
Environmental stresses can result in a wide range of physiological and molecular responses in plants. These responses can also impact epigenetic information in genomes, especially at the level of DNA methylation (5-methylcytosine). DNA methylation is the hallmark heritable epigenetic modification and plays a key role in silencing transposable elements (TEs). Although DNA methylation is an essential epigenetic mechanism, fundamental aspects of its contribution to stress responses and adaptation remain obscure. We investigated epigenome dynamics of wild strawberry (Fragaria vesca) in response to variable ecologically relevant environmental conditions at the DNA methylation level. F. vesca methylome responded with great plasticity to ecologically relevant abiotic and hormonal stresses. Thermal stress resulted in substantial genome-wide loss of DNA methylation. Notably, all tested stress conditions resulted in marked hot spots of differential DNA methylation near centromeric or pericentromeric regions, particularly in the non-symmetrical DNA methylation context. Additionally, we identified differentially methylated regions (DMRs) within promoter regions of transcription factor (TF) superfamilies involved in plant stress-response and assessed the effects of these changes on gene expression. These findings improve our understanding on stress-response at the epigenome level by highlighting the correlation between DNA methylation, TEs and gene expression regulation in plants subjected to a broad range of environmental stresses.
Collapse
Affiliation(s)
- María-Estefanía López
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
- Department of Botany and Plant Biology, Faculty of Sciences, University of Geneva, 1205 Geneva, Switzerland
| | - David Roquis
- Crop Genome Dynamics Group, Agroscope, 1260 Nyon, Switzerland
| | - Claude Becker
- LMU BioCenter, Faculty of Biology, Ludwig-Maximilians-University Munich, D-82152 Martinsried, Germany
| | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | | |
Collapse
|
11
|
To TK, Kakutani T. Crosstalk among pathways to generate DNA methylome. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102248. [PMID: 35724481 DOI: 10.1016/j.pbi.2022.102248] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/19/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Cytosine is methylated in both CpG and non-CpG contexts (mCG and mCH, respectively) in plant genomes. Although mCG and mCH are almost independent in regard to their "maintenance," recent studies uncovered crosstalk between them during their "establishment," which unexpectedly functions in both RNAi-dependent and -independent pathways. In addition, the importance of linker histone H1 and variants of histone H2A to DNA methylation dynamics is starting to be understood. We summarize these new aspects of mechanisms to generate DNA methylomes and discuss future prospects.
Collapse
Affiliation(s)
- Taiko Kim To
- Department of Biological Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tetsuji Kakutani
- Department of Biological Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
12
|
Nozawa K, Masuda S, Saze H, Ikeda Y, Suzuki T, Takagi H, Tanaka K, Ohama N, Niu X, Kato A, Ito H. Epigenetic regulation of ecotype-specific expression of the heat-activated transposon ONSEN. FRONTIERS IN PLANT SCIENCE 2022; 13:899105. [PMID: 35923888 PMCID: PMC9340270 DOI: 10.3389/fpls.2022.899105] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/29/2022] [Indexed: 06/07/2023]
Abstract
Transposable elements are present in a wide variety of organisms; however, our understanding of the diversity of mechanisms involved in their activation is incomplete. In this study, we analyzed the transcriptional activation of the ONSEN retrotransposon, which is activated by high-temperature stress in Arabidopsis thaliana. We found that its transcription is significantly higher in the Japanese ecotype Kyoto. Considering that transposons are epigenetically regulated, DNA methylation levels were analyzed, revealing that CHH methylation was reduced in Kyoto compared to the standard ecotype, Col-0. A mutation was also detected in the Kyoto CMT2 gene, encoding a CHH methyltransferase, suggesting that it may be responsible for increased expression of ONSEN. CHH methylation is controlled by histone modifications through a self-reinforcing loop between DNA methyltransferase and histone methyltransferase. Analysis of these modifications revealed that the level of H3K9me2, a repressive histone marker for gene expression, was lower in Kyoto than in Col-0. The level of another repressive histone marker, H3K27me1, was decreased in Kyoto; however, it was not impacted in a Col-0 cmt2 mutant. Therefore, in addition to the CMT2 mutation, other factors may reduce repressive histone modifications in Kyoto.
Collapse
Affiliation(s)
- Kosuke Nozawa
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | - Seiji Masuda
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | - Hidetoshi Saze
- Plant Epigenetics Unit, Okinawa Institute of Science and Technology, Onna-son, Japan
| | - Yoko Ikeda
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Hiroki Takagi
- Faculty of Bioresources and Environmental Sciences, Ishikawa Prefectural University, Nonoichi, Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Japan
| | - Naohiko Ohama
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Xiaoying Niu
- Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | - Atsushi Kato
- Faculty of Science, Hokkaido University, Sapporo, Japan
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Kumari P, Khan S, Wani IA, Gupta R, Verma S, Alam P, Alaklabi A. Unravelling the Role of Epigenetic Modifications in Development and Reproduction of Angiosperms: A Critical Appraisal. Front Genet 2022; 13:819941. [PMID: 35664328 PMCID: PMC9157814 DOI: 10.3389/fgene.2022.819941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/14/2022] [Indexed: 12/28/2022] Open
Abstract
Epigenetics are the heritable changes in gene expression patterns which occur without altering DNA sequence. These changes are reversible and do not change the sequence of the DNA but can alter the way in which the DNA sequences are read. Epigenetic modifications are induced by DNA methylation, histone modification, and RNA-mediated mechanisms which alter the gene expression, primarily at the transcriptional level. Such alterations do control genome activity through transcriptional silencing of transposable elements thereby contributing toward genome stability. Plants being sessile in nature are highly susceptible to the extremes of changing environmental conditions. This increases the likelihood of epigenetic modifications within the composite network of genes that affect the developmental changes of a plant species. Genetic and epigenetic reprogramming enhances the growth and development, imparts phenotypic plasticity, and also ensures flowering under stress conditions without changing the genotype for several generations. Epigenetic modifications hold an immense significance during the development of male and female gametophytes, fertilization, embryogenesis, fruit formation, and seed germination. In this review, we focus on the mechanism of epigenetic modifications and their dynamic role in maintaining the genomic integrity during plant development and reproduction.
Collapse
Affiliation(s)
- Priyanka Kumari
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Sajid Khan
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Conservation and Molecular Biology Lab., Department of Botany, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Renu Gupta
- Division of Soil Sciences & Agricultural Chemistry, Faculty of Agriculture Sher e Kashmir University of Agricultural Sciences and Technology, Chatha, India
| | - Susheel Verma
- Department of Botany, University of Jammu, Jammu, India
- *Correspondence: Susheel Verma,
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University (PSAU), Alkharj, Saudi Arabia
| | - Abdullah Alaklabi
- Department of Biology, College of Science, University of Bisha, Bisha, Saudi Arabia
| |
Collapse
|
14
|
Nunn A, Rodríguez‐Arévalo I, Tandukar Z, Frels K, Contreras‐Garrido A, Carbonell‐Bejerano P, Zhang P, Ramos Cruz D, Jandrasits K, Lanz C, Brusa A, Mirouze M, Dorn K, Galbraith DW, Jarvis BA, Sedbrook JC, Wyse DL, Otto C, Langenberger D, Stadler PF, Weigel D, Marks MD, Anderson JA, Becker C, Chopra R. Chromosome-level Thlaspi arvense genome provides new tools for translational research and for a newly domesticated cash cover crop of the cooler climates. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:944-963. [PMID: 34990041 PMCID: PMC9055812 DOI: 10.1111/pbi.13775] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 05/20/2023]
Abstract
Thlaspi arvense (field pennycress) is being domesticated as a winter annual oilseed crop capable of improving ecosystems and intensifying agricultural productivity without increasing land use. It is a selfing diploid with a short life cycle and is amenable to genetic manipulations, making it an accessible field-based model species for genetics and epigenetics. The availability of a high-quality reference genome is vital for understanding pennycress physiology and for clarifying its evolutionary history within the Brassicaceae. Here, we present a chromosome-level genome assembly of var. MN106-Ref with improved gene annotation and use it to investigate gene structure differences between two accessions (MN108 and Spring32-10) that are highly amenable to genetic transformation. We describe non-coding RNAs, pseudogenes and transposable elements, and highlight tissue-specific expression and methylation patterns. Resequencing of forty wild accessions provided insights into genome-wide genetic variation, and QTL regions were identified for a seedling colour phenotype. Altogether, these data will serve as a tool for pennycress improvement in general and for translational research across the Brassicaceae.
Collapse
Affiliation(s)
- Adam Nunn
- ecSeq Bioinformatics GmbHLeipzigGermany
- Department of Computer ScienceLeipzig UniversityLeipzigGermany
| | - Isaac Rodríguez‐Arévalo
- GeneticsFaculty of BiologyLudwig Maximilians UniversityMartinsriedGermany
- Gregor Mendel Institute of Molecular Plant Biology GmbHAustrian Academy of Sciences (ÖAW), Vienna BioCenter (VBC)ViennaAustria
| | - Zenith Tandukar
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | - Katherine Frels
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNEUSA
| | | | | | - Panpan Zhang
- Institut de Recherche pour le DéveloppementUMR232 DIADEMontpellierFrance
- Laboratory of Plant Genome and DevelopmentUniversity of PerpignanPerpignanFrance
| | - Daniela Ramos Cruz
- GeneticsFaculty of BiologyLudwig Maximilians UniversityMartinsriedGermany
- Gregor Mendel Institute of Molecular Plant Biology GmbHAustrian Academy of Sciences (ÖAW), Vienna BioCenter (VBC)ViennaAustria
| | - Katharina Jandrasits
- GeneticsFaculty of BiologyLudwig Maximilians UniversityMartinsriedGermany
- Gregor Mendel Institute of Molecular Plant Biology GmbHAustrian Academy of Sciences (ÖAW), Vienna BioCenter (VBC)ViennaAustria
| | - Christa Lanz
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - Anthony Brusa
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | - Marie Mirouze
- Institut de Recherche pour le DéveloppementUMR232 DIADEMontpellierFrance
- Laboratory of Plant Genome and DevelopmentUniversity of PerpignanPerpignanFrance
| | - Kevin Dorn
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMNUSA
- USDA‐ARSSoil Management and Sugarbeet ResearchFort CollinsCOUSA
| | - David W Galbraith
- BIO5 InstituteArizona Cancer CenterDepartment of Biomedical EngineeringUniversity of ArizonaSchool of Plant SciencesTucsonAZUSA
| | - Brice A. Jarvis
- School of Biological SciencesIllinois State UniversityNormalILUSA
| | - John C. Sedbrook
- School of Biological SciencesIllinois State UniversityNormalILUSA
| | - Donald L. Wyse
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | | | | | - Peter F. Stadler
- Department of Computer ScienceLeipzig UniversityLeipzigGermany
- Max Planck Institute for Mathematics in the SciencesLeipzigGermany
| | - Detlef Weigel
- Department of Molecular BiologyMax Planck Institute for Developmental BiologyTübingenGermany
| | - M. David Marks
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMNUSA
| | - James A. Anderson
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
| | - Claude Becker
- GeneticsFaculty of BiologyLudwig Maximilians UniversityMartinsriedGermany
- Gregor Mendel Institute of Molecular Plant Biology GmbHAustrian Academy of Sciences (ÖAW), Vienna BioCenter (VBC)ViennaAustria
| | - Ratan Chopra
- Department of Agronomy and Plant GeneticsUniversity of MinnesotaSaint PaulMNUSA
- Department of Plant and Microbial BiologyUniversity of MinnesotaSaint PaulMNUSA
| |
Collapse
|
15
|
Mokhtar MM, Alsamman AM, Abd-Elhalim HM, El Allali A. CicerSpTEdb: A web-based database for high-resolution genome-wide identification of transposable elements in Cicer species. PLoS One 2021; 16:e0259540. [PMID: 34762703 PMCID: PMC8584679 DOI: 10.1371/journal.pone.0259540] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/20/2021] [Indexed: 11/19/2022] Open
Abstract
Recently, Cicer species have experienced increased research interest due to their economic importance, especially in genetics, genomics, and crop improvement. The Cicer arietinum, Cicer reticulatum, and Cicer echinospermum genomes have been sequenced and provide valuable resources for trait improvement. Since the publication of the chickpea draft genome, progress has been made in genome assembly, functional annotation, and identification of polymorphic markers. However, work is still needed to identify transposable elements (TEs) and make them available for researchers. In this paper, we present CicerSpTEdb, a comprehensive TE database for Cicer species that aims to improve our understanding of the organization and structural variations of the chickpea genome. Using structure and homology-based methods, 3942 C. echinospermum, 3579 C. reticulatum, and 2240 C. arietinum TEs were identified. Comparisons between Cicer species indicate that C. echinospermum has the highest number of LTR-RT and hAT TEs. C. reticulatum has more Mutator, PIF Harbinger, Tc1 Mariner, and CACTA TEs, while C. arietinum has the highest number of Helitron. CicerSpTEdb enables users to search and visualize TEs by location and download their results. The database will provide a powerful resource that can assist in developing TE target markers for molecular breeding and answer related biological questions. Database URL: http://cicersptedb.easyomics.org/index.php.
Collapse
Affiliation(s)
- Morad M. Mokhtar
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- * E-mail: (AEA); (MMM)
| | | | - Haytham M. Abd-Elhalim
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- * E-mail: (AEA); (MMM)
| |
Collapse
|
16
|
Muller H, Loiseau V, Guillier S, Cordaux R, Gilbert C. Assessing the Impact of a Viral Infection on the Expression of Transposable Elements in the Cabbage Looper Moth (Trichoplusia ni). Genome Biol Evol 2021; 13:evab231. [PMID: 34613390 PMCID: PMC8634313 DOI: 10.1093/gbe/evab231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 12/13/2022] Open
Abstract
Most studies of stress-induced transposable element (TE) expression have so far focused on abiotic sources of stress. Here, we analyzed the impact of an infection by the AcMNPV baculovirus on TE expression in a cell line (Tnms42) and midgut tissues of the cabbage looper moth (Trichoplusia ni). We find that a large fraction of TE families (576/636 in Tnms42 cells and 503/612 in midgut) is lowly expressed or not expressed at all [≤ 4 transcripts per million (TPM)] in the uninfected condition (median TPM of 0.37 in Tnms42 and 0.46 in midgut cells). In the infected condition, a total of 62 and 187 TE families were differentially expressed (DE) in midgut and Tnms42 cells, respectively, with more up- (46) than downregulated (16) TE families in the former and as many up- (91) as downregulated (96) TE families in the latter. Expression log2 fold changes of DE TE families varied from -4.95 to 9.11 in Tnms42 cells and from -4.28 to 7.66 in midgut. Large variations in expression profiles of DE TEs were observed depending on the type of cells and on time after infection. Overall, the impact of AcMNPV on TE expression in T. ni is moderate but potentially sufficient to affect TE activity and genome architecture. Interestingly, one host-derived TE integrated into AcMNPV genomes is highly expressed in infected Tnms42 cells. This result shows that virus-borne TEs can be expressed, further suggesting that they may be able to transpose and that viruses may act as vectors of horizontal transfer of TEs in insects.
Collapse
Affiliation(s)
- Héloïse Muller
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Vincent Loiseau
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Sandra Guillier
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Universite de Poitiers, CNRS, France
| | - Clément Gilbert
- Universite Paris Saclay, CNRS, IRD, UMR Evolution, Genomes, Comportement et Ecologie, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Viviani A, Ventimiglia M, Fambrini M, Vangelisti A, Mascagni F, Pugliesi C, Usai G. Impact of transposable elements on the evolution of complex living systems and their epigenetic control. Biosystems 2021; 210:104566. [PMID: 34718084 DOI: 10.1016/j.biosystems.2021.104566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 10/20/2022]
Abstract
Transposable elements (TEs) contribute to genomic innovations, as well as genome instability, across a wide variety of species. Popular designations such as 'selfish DNA' and 'junk DNA,' common in the 1980s, may be either inaccurate or misleading, while a more enlightened view of the TE-host relationship covers a range from parasitism to mutualism. Both plant and animal hosts have evolved epigenetic mechanisms to reduce the impact of TEs, both by directly silencing them and by reducing their ability to transpose in the genome. However, TEs have also been co-opted by both plant and animal genomes to perform a variety of physiological functions, ranging from TE-derived proteins acting directly in normal biological functions to innovations in transcription factor activity and also influencing gene expression. Their presence, in fact, can affect a range of features at genome, phenotype, and population levels. The impact TEs have had on evolution is multifaceted, and many aspects still remain unexplored. In this review, the epigenetic control of TEs is contextualized according to the evolution of complex living systems.
Collapse
Affiliation(s)
- Ambra Viviani
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Maria Ventimiglia
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy.
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto, 80-56124, Pisa, Italy
| |
Collapse
|
18
|
Ma T, Wei X, Zhang Y, Li J, Wu F, Yan Q, Yan Z, Zhang Z, Kanzana G, Zhao Y, Yang Y, Zhang J. Development of molecular markers based on LTR retrotransposon in the Cleistogenes songorica genome. J Appl Genet 2021; 63:61-72. [PMID: 34554437 DOI: 10.1007/s13353-021-00658-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022]
Abstract
Long terminal repeat retrotransposons (LTR-RTs) contribute a large fraction of many sequenced plant genomes and play important roles in genomic diversity and phenotypic variations. LTR-RTs are abundantly distributed in plant genomes, facilitating the development of markers based on LTR-RTs for a variety of genotyping purposes. Whole-genome analysis of LTR-RTs was performed in Cleistogenes songorica. A total of 299,079 LTR-RTs were identified and classified as Gypsy type, Copia type, or other type. LTR-RTs were widely distributed in the genome, enriched in the heterochromatic region of the chromosome, and negatively correlated with gene distribution. However, approximately one-fifth of genes were still interrupted by LTR-RTs, and these genes are annotated. Furthermore, four types of primer pairs (PPs) were designed, namely, retrotransposon-based insertion polymorphisms, inter-retrotransposon amplified polymorphisms, insertion site-based polymorphisms, and retrotransposon-microsatellite amplified polymorphisms. A total of 350 PPs were screened in 23 accessions of the genus Cleistogenes, of which 80 PPs showed polymorphism, and 72 PPs showed transferability among Gramineae and non-Gramineae species. In addition, a comparative analysis of homologous LTR-RTs was performed with other related grasses. Taken together, the study will serve as a valuable resource for genotyping applications for C. songorica and related grasses.
Collapse
Affiliation(s)
- Tiantian Ma
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xingyi Wei
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yufei Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jie Li
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Fan Wu
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qi Yan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhuanzhuan Yan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhengshe Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Gisele Kanzana
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yufeng Zhao
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Yingbo Yang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jiyu Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| |
Collapse
|
19
|
Nozawa K, Chen J, Jiang J, Leichter SM, Yamada M, Suzuki T, Liu F, Ito H, Zhong X. DNA methyltransferase CHROMOMETHYLASE3 prevents ONSEN transposon silencing under heat stress. PLoS Genet 2021; 17:e1009710. [PMID: 34411103 PMCID: PMC8376061 DOI: 10.1371/journal.pgen.1009710] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023] Open
Abstract
DNA methylation plays crucial roles in transposon silencing and genome integrity. CHROMOMETHYLASE3 (CMT3) is a plant-specific DNA methyltransferase responsible for catalyzing DNA methylation at the CHG (H = A, T, C) context. Here, we identified a positive role of CMT3 in heat-induced activation of retrotransposon ONSEN. We found that the full transcription of ONSEN under heat stress requires CMT3. Interestingly, loss-of-function CMT3 mutation led to increased CHH methylation at ONSEN. The CHH methylation is mediated by CMT2, as evidenced by greatly reduced CHH methylation in cmt2 and cmt2 cmt3 mutants coupled with increased ONSEN transcription. Furthermore, we found more CMT2 binding at ONSEN chromatin in cmt3 compared to wild-type accompanied with an ectopic accumulation of H3K9me2 under heat stress, suggesting a collaborative role of H3K9me2 and CHH methylation in preventing heat-induced ONSEN activation. In summary, this study identifies a non-canonical role of CMT3 in preventing transposon silencing and provides new insights into how DNA methyltransferases regulate transcription under stress conditions. DNA methylation is generally known to silence transposon and maintain genome integrity. Environmental stress has been reported to release the transcriptional silencing of some transposable elements. DNA methylation is involved in the transcriptional restriction of heat-induced Copia-type retrotransposon ONSEN in Arabidopsis when subjected to heat stress. Here, we identified a non-canonical and positive role of the DNA methyltransferase CMT3 in ONSEN reactivation under heat stress. We showed that CMT3 prevents CMT2-mediated CHH methylation and H3K9me2 accumulation under heat at ONSEN chromatin to modulate ONSEN transcription. Our work revealed the molecular mechanism of CMT3 in heat-induced ONSEN activation and sheds new light on the survival mechanism of certain transposons in the host genome under stress conditions.
Collapse
Affiliation(s)
- Kosuke Nozawa
- Graduate School of Life Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido, Japan
| | - Jiani Chen
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Jianjun Jiang
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Sarah M. Leichter
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Masataka Yamada
- Graduate School of Life Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi, Japan
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hidetaka Ito
- Faculty of Science, Hokkaido University, Kita10 Nishi8, Kita-ku, Sapporo, Hokkaido, Japan
- * E-mail: (HI); (XZ)
| | - Xuehua Zhong
- Wisconsin Institute for Discovery & Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail: (HI); (XZ)
| |
Collapse
|
20
|
Long J, Liu J, Xia A, Springer NM, He Y. Maize decrease in DNA methylation 1 targets RNA-directed DNA methylation on active chromatin. THE PLANT CELL 2021; 33:2183-2196. [PMID: 33779761 PMCID: PMC8364229 DOI: 10.1093/plcell/koab098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 03/25/2021] [Indexed: 06/01/2023]
Abstract
DNA methylation plays vital roles in repressing transposable element activity and regulating gene expression. The chromatin-remodeling factor Decrease in DNA methylation 1 (DDM1) is crucial for maintaining DNA methylation across diverse plant species, and is required for RNA-directed DNA methylation (RdDM) to maintain mCHH islands in maize (Zea mays). However, the mechanisms by which DDM1 is involved in RdDM are not well understood. In this work, we used chromatin immunoprecipitation coupled with high-throughput sequencing to ascertain the genome-wide occupancy of ZmDDM1 in the maize genome. The results revealed that ZmDDM1 recognized an 8-bp-long GC-rich degenerate DNA sequence motif, which is enriched in transcription start sites and other euchromatic regions. Meanwhile, 24-nucleotide siRNAs and CHH methylation were delineated at the edge of ZmDDM1-occupied sites. ZmDDM1 co-purified with Argonaute 4 (ZmAGO4) proteins, providing further evidence that ZmDDM1 is a component of RdDM complexes in planta. Consistent with this, the vast majority of ZmDDM1-targeted regions co-localized with ZmAGO4-bound genomic sites. Overall, our results suggest a model that ZmDDM1 may be recruited to euchromatic regions via recognition of a GC-rich motif, thereby remodeling chromatin to provide access for RdDM activities in maize.
Collapse
Affiliation(s)
- Jincheng Long
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Jinghan Liu
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Aiai Xia
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Nathan M. Springer
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN 55108, USA
| | - Yan He
- MOE Key Laboratory of Crop Heterosis and Utilization, National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
21
|
Liu L, Li J, Wen J, He Y. Genome-wide analyses of tandem repeats and transposable elements in patchouli. Genes Genet Syst 2021; 96:81-87. [PMID: 33883323 DOI: 10.1266/ggs.20-00044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Patchouli, Pogostemon cablin (Blanco) Benth., is a traditional Chinese medicinal plant from the order Lamiales. It is considered a valuable herb due to its essential oil content and range of therapeutic effects. This study aimed to explore the evolutionary history of repetitive sequences in the patchouli genome by analyzing tandem repeats and transposable elements (TEs). We first retrieved genomic data for patchouli and four other Lamiales species from the GenBank database. Next, the content of tandem repeats with different period sizes was identified. Long terminal repeats (LTRs) were then identified with LTR_STRUC. Finally, the evolutionary landscape of TEs was explored using an in-house PERL program. The analysis of repetitive sequences revealed that tandem repeats constitute a higher proportion of the patchouli genome compared to the four other species. Analyses of TE families showed that most of the repetitive sequences in the patchouli genome are TEs, and that recently inserted TEs make up a comparatively larger proportion than older ones. Our analyses of LTR retrotransposons in their host genome indicated the existence of ancient LTR retrotransposon expansion, and the escape of these elements from natural selection revealed their ages. Our identification and analyses of repetitive sequences should provide new insights for further investigation of patchouli evolution.
Collapse
Affiliation(s)
- Linqiu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine
| | - Junjun Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine
| | - Jiawei Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine
| | - Yang He
- State Key Laboratory of Southwestern Chinese Medicine Resources, College of Medical Technology, Chengdu University of Traditional Chinese Medicine
| |
Collapse
|
22
|
Ritter EJ, Niederhuth CE. Intertwined evolution of plant epigenomes and genomes. CURRENT OPINION IN PLANT BIOLOGY 2021; 61:101990. [PMID: 33445143 DOI: 10.1016/j.pbi.2020.101990] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
DNA methylation is found across eukaryotes; however, plants have evolved patterns and pathways of DNA methylation that are distinct from animals and fungi. DNA methylation shapes the evolution of genomes through its direct roles in transposon silencing, gene expression, genome stability, and its impact on mutation rates. In return the diversity of DNA methylation across species is shaped by genome sequence evolution. Extensive diversification of key DNA methylation pathways has continued in plants through gene duplication and loss. Meanwhile, frequent movement of transposons has altered local DNA methylation patterns and the genes affected. Only recently has the diversity and evolutionary history of plant DNA methylation become evident with the availability of increasing genomic and epigenomic data. However, much remains unresolved regarding the evolutionary forces that have shaped the dynamics of the complex and intertwined history of plant genome and epigenome evolution.
Collapse
Affiliation(s)
- Eleanore J Ritter
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Chad E Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI 48824, USA; AgBioResearch, Michigan State University, East Lansing, MI 48824, USA.
| |
Collapse
|
23
|
Vangelisti A, Simoni S, Usai G, Ventimiglia M, Natali L, Cavallini A, Mascagni F, Giordani T. LTR-retrotransposon dynamics in common fig (Ficus carica L.) genome. BMC PLANT BIOLOGY 2021; 21:221. [PMID: 34000996 PMCID: PMC8127270 DOI: 10.1186/s12870-021-02991-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 04/15/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Long Terminal Repeat retrotransposons (LTR-REs) are repetitive DNA sequences that constitute a large part of the genome. The improvement of sequencing technologies and sequence assembling strategies has achieved genome sequences with much greater reliability than those of the past, especially in relation to repetitive DNA sequences. RESULTS In this study, we analysed the genome of Ficus carica L., obtained using third generation sequencing technologies and recently released, to characterise the complete complement of full-length LTR-REs to study their dynamics during fig genome evolution. A total of 1867 full-length elements were identified. Those belonging to the Gypsy superfamily were the most abundant; among these, the Chromovirus/Tekay lineage was the most represented. For the Copia superfamily, Ale was the most abundant lineage. Measuring the estimated insertion time of each element showed that, on average, Ivana and Chromovirus/Tekay were the youngest lineages of Copia and Gypsy superfamilies, respectively. Most elements were inactive in transcription, both constitutively and in leaves of plants exposed to an abiotic stress, except for some elements, mostly belonging to the Copia/Ale lineage. A relationship between the inactivity of an element and inactivity of genes lying in close proximity to it was established. CONCLUSIONS The data reported in this study provide one of the first sets of information on the genomic dynamics related to LTR-REs in a plant species with highly reliable genome sequence. Fig LTR-REs are highly heterogeneous in abundance and estimated insertion time, and only a few elements are transcriptionally active. In general, the data suggested a direct relationship between estimated insertion time and abundance of an element and an inverse relationship between insertion time (or abundance) and transcription, at least for Copia LTR-REs.
Collapse
Affiliation(s)
- Alberto Vangelisti
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Samuel Simoni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Gabriele Usai
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Maria Ventimiglia
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Lucia Natali
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Andrea Cavallini
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Flavia Mascagni
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
| | - Tommaso Giordani
- Dipartimento di Scienze Agrarie, Alimentari e Agro-ambientali, Università di Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
24
|
Liu S, de Jonge J, Trejo‐Arellano MS, Santos‐González J, Köhler C, Hennig L. Role of H1 and DNA methylation in selective regulation of transposable elements during heat stress. THE NEW PHYTOLOGIST 2021; 229:2238-2250. [PMID: 33091182 PMCID: PMC7894476 DOI: 10.1111/nph.17018] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/09/2020] [Indexed: 05/03/2023]
Abstract
Heat-stressed Arabidopsis plants release heterochromatin-associated transposable element (TE) silencing, yet it is not accompanied by major reductions of epigenetic repressive modifications. In this study, we explored the functional role of histone H1 in repressing heterochromatic TEs in response to heat stress. We generated and analyzed RNA and bisulfite-sequencing data of wild-type and h1 mutant seedlings before and after heat stress. Loss of H1 caused activation of pericentromeric Gypsy elements upon heat treatment, despite these elements remaining highly methylated. By contrast, nonpericentromeric Copia elements became activated concomitantly with loss of DNA methylation. The same Copia elements became activated in heat-treated chromomethylase 2 (cmt2) mutants, indicating that H1 represses Copia elements through maintaining DNA methylation under heat. We discovered that H1 is required for TE repression in response to heat stress, but its functional role differs depending on TE location. Strikingly, H1-deficient plants treated with the DNA methyltransferase inhibitor zebularine were highly tolerant to heat stress, suggesting that both H1 and DNA methylation redundantly suppress the plant response to heat stress.
Collapse
Affiliation(s)
- Shujing Liu
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Jennifer de Jonge
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Minerva S. Trejo‐Arellano
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Juan Santos‐González
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Claudia Köhler
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| | - Lars Hennig
- Department of Plant BiologySwedish University of Agricultural Sciences and Linnean Center for Plant BiologyUppsala75007Sweden
| |
Collapse
|
25
|
Liu C, Huang R, Wang L, Liang G. Functional Identification of EjGIF1 in Arabidopsis and Preliminary Analysis of Its Regulatory Mechanisms in the Formation of Triploid Loquat Leaf Heterosis. FRONTIERS IN PLANT SCIENCE 2021; 11:612055. [PMID: 33510754 PMCID: PMC7835675 DOI: 10.3389/fpls.2020.612055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Although several results have been obtained in triploid loquat heterosis (i.e., leaf size of triploid loquat) studies in the past years, the underlying mechanisms of the heterosis are still largely unknown, especially the regulation effects of one specific gene on the corresponding morphology heterosis. In this study, we sought to further illustrate the regulatory mechanisms of one specific gene on the leaf size heterosis of triploid loquats. A leaf size development-related gene (EjGIF1) and its promoter were successfully cloned. Ectopic expression of EjGIF1 in Arabidopsis showed that the leaf size of transgenic plantlets was larger than that of WTs, and the transgenic plantlets had more leaves than WTs. Quantitative Reverse Transcription PCR (qRT-PCR) showed that the expression level of EjGIF1 showed an AHP expression pattern in most of the hybrids, and this was consistent with our previous phenotype observations. Structure analysis of EjGIF1 promoter showed that there were significantly more light-responsive elements than other elements. To further ascertain the regulatory mechanisms of EjGIF1 on triploid loquat heterosis, the methylation levels of EjGIF1 promoter in different ploidy loquats were analyzed by using bisulfite sequencing. Surprisingly, the total methylation levels of EjGIF1 promoter in triploid showed a decreasing trend compared with the mid-parent value (MPV), and this was also consistent with the qRT-PCR results of EjGIF1. Taken together, our results suggested that EjGIF1 played an important role in promoting leaf size development of loquat, and demethylation of EjGIF1 promoter in triploid loquats caused EjGIF1 to exhibit over-dominance expression pattern and then further to promote leaf heterosis formation. In conclusion, EjGIF1 played an important role in the formation of triploid loquat leaf size heterosis.
Collapse
Affiliation(s)
- Chao Liu
- College of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Renwei Huang
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Lingli Wang
- Technical Advice Station of Economic Crop, Chongqing, China
| | - Guolu Liang
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing, China
| |
Collapse
|
26
|
Fambrini M, Usai G, Vangelisti A, Mascagni F, Pugliesi C. The plastic genome: The impact of transposable elements on gene functionality and genomic structural variations. Genesis 2020; 58:e23399. [DOI: 10.1002/dvg.23399] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/07/2020] [Accepted: 11/10/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Gabriele Usai
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Alberto Vangelisti
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Flavia Mascagni
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE) University of Pisa Pisa Italy
| |
Collapse
|
27
|
Ji X, Li P, Fuscoe JC, Chen G, Xiao W, Shi L, Ning B, Liu Z, Hong H, Wu J, Liu J, Guo L, Kreil DP, Łabaj PP, Zhong L, Bao W, Huang Y, He J, Zhao Y, Tong W, Shi T. A comprehensive rat transcriptome built from large scale RNA-seq-based annotation. Nucleic Acids Res 2020; 48:8320-8331. [PMID: 32749457 PMCID: PMC7470976 DOI: 10.1093/nar/gkaa638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 07/14/2020] [Accepted: 07/21/2020] [Indexed: 01/01/2023] Open
Abstract
The rat is an important model organism in biomedical research for studying human disease mechanisms and treatments, but its annotated transcriptome is far from complete. We constructed a Rat Transcriptome Re-annotation named RTR using RNA-seq data from 320 samples in 11 different organs generated by the SEQC consortium. Totally, there are 52 807 genes and 114 152 transcripts in RTR. Transcribed regions and exons in RTR account for ∼42% and ∼6.5% of the genome, respectively. Of all 73 074 newly annotated transcripts in RTR, 34 213 were annotated as high confident coding transcripts and 24 728 as high confident long noncoding transcripts. Different tissues rather than different stages have a significant influence on the expression patterns of transcripts. We also found that 11 715 genes and 15 852 transcripts were expressed in all 11 tissues and that 849 house-keeping genes expressed different isoforms among tissues. This comprehensive transcriptome is freely available at http://www.unimd.org/rtr/. Our new rat transcriptome provides essential reference for genetics and gene expression studies in rat disease and toxicity models.
Collapse
Affiliation(s)
- Xiangjun Ji
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Peng Li
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | - James C Fuscoe
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Geng Chen
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Wenzhong Xiao
- Massachusetts General Hospital, Harvard Medical School, 51 Blossom St, Boston, MA 02114, USA
| | - Leming Shi
- Center for Pharmacogenomics, School of Pharmacy, Fudan University, Shanghai, 200438, China
| | - Baitang Ning
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Zhichao Liu
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Huixiao Hong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Jun Wu
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jinghua Liu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Lei Guo
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - David P Kreil
- Department of Biotechnology, Boku University Vienna, 1190 Muthgasse 18, Austria
| | - Paweł P Łabaj
- Department of Biotechnology, Boku University Vienna, 1190 Muthgasse 18, Austria.,Małopolska Centre of Biotechnology, Jagiellonian University, ul. Gronostajowa 7A, 30-387 Kraków, Poland
| | - Liping Zhong
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Wenjun Bao
- SAS Institute Inc., Cary, NC, 27513, USA
| | - Yong Huang
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Jian He
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Yongxiang Zhao
- Biological Targeting Diagnosis and Therapy Research Center, Guangxi Medical University, Nanning 530021, China
| | - Weida Tong
- National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.,Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University & Capital Medical University, Beijing, 100083, China
| |
Collapse
|
28
|
Raxwal VK, Ghosh S, Singh S, Katiyar-Agarwal S, Goel S, Jagannath A, Kumar A, Scaria V, Agarwal M. Abiotic stress-mediated modulation of the chromatin landscape in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:5280-5293. [PMID: 32526034 DOI: 10.1093/jxb/eraa286] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 06/10/2020] [Indexed: 05/18/2023]
Abstract
Limited information is available on abiotic stress-mediated alterations of chromatin conformation influencing gene expression in plants. In order to characterize the effect of abiotic stresses on changes in chromatin conformation, we employed FAIRE-seq (formaldehyde-assisted isolation of regulatory element sequencing) and DNase-seq to isolate accessible regions of chromatin from Arabidopsis thaliana seedlings exposed to either heat, cold, salt, or drought stress. Approximately 25% of regions in the Arabidopsis genome were captured as open chromatin, the majority of which included promoters and exons. A large proportion of chromatin regions apparently did not change their conformation in response to any of the four stresses. Digital footprints present within these regions had differential enrichment of motifs for binding of 43 different transcription factors. Further, in contrast to drought and salt stress, both high and low temperature treatments resulted in increased accessibility of the chromatin. Also, pseudogenes attained increased chromatin accessibility in response to cold and drought stresses. The highly accessible and inaccessible chromatin regions of seedlings exposed to drought stress correlated with the Ser/Thr protein kinases (MLK1 and MLK2)-mediated reduction and increase in H3 phosphorylation (H3T3Ph), respectively. The presented results provide a deeper understanding of abiotic stress-mediated chromatin modulation in plants.
Collapse
Affiliation(s)
- Vivek Kumar Raxwal
- Department of Botany, University of Delhi, Delhi, India
- Central European Institute of Technology (CEITEC), Masaryk University, Brno, Czech Republic
| | - Sourav Ghosh
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Somya Singh
- Department of Botany, University of Delhi, Delhi, India
| | | | | | | | - Amar Kumar
- Department of Botany, University of Delhi, Delhi, India
| | - Vinod Scaria
- Academy of Scientific and Innovative Research, CSIR-IGIB South Campus, New Delhi, India
- GN Ramachandran Knowledge Center for Genome Informatics, CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, India
| |
Collapse
|
29
|
Ryu HY, Ahn SH, Hochstrasser M. SUMO and cellular adaptive mechanisms. Exp Mol Med 2020; 52:931-939. [PMID: 32591648 PMCID: PMC7338444 DOI: 10.1038/s12276-020-0457-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/16/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023] Open
Abstract
The ubiquitin family member SUMO is a covalent regulator of proteins that functions in response to various stresses, and defects in SUMO-protein conjugation or deconjugation have been implicated in multiple diseases. The loss of the Ulp2 SUMO protease, which reverses SUMO-protein modifications, in the model eukaryote Saccharomyces cerevisiae is severely detrimental to cell fitness and has emerged as a useful model for studying how cells adapt to SUMO system dysfunction. Both short-term and long-term adaptive mechanisms are triggered depending on the length of time cells spend without this SUMO chain-cleaving enzyme. Such short-term adaptations include a highly specific multichromosome aneuploidy and large changes in ribosomal gene transcription. While aneuploid ulp2Δ cells survive, they suffer severe defects in growth and stress resistance. Over many generations, euploidy is restored, transcriptional programs are adjusted, and specific genetic changes that compensate for the loss of the SUMO protease are observed. These long-term adapted cells grow at normal rates with no detectable defects in stress resistance. In this review, we examine the connections between SUMO and cellular adaptive mechanisms more broadly. Cellular stress caused by disrupting attachment of the ubiquitous small ubiquitin-like modifier (SUMO) proteins, which are present in most organisms and regulate numerous DNA processes and stress responses by attaching to key proteins, results in some remarkable adaptations. Mark Hochstrasser at Yale University, New Haven, USA, and co-workers review how this “sumoylation” is reversed by protease enzymes, and how imbalances between sumoylation and desumoylation may be linked to diseases including cancer. When certain SUMO proteases are deliberately disrupted, the cells quickly become aneuploid, i.e., carry an abnormal number of chromosomes. These cells show severe growth defects, but over many generations they regain the normal number of chromosomes. They also undergo genetic changes that promote alternative mechanisms that compensate for losing the SUMO protease and facilitate the same efficient stress responses as the original cells.
Collapse
Affiliation(s)
- Hong-Yeoul Ryu
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, College of National Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Seong Hoon Ahn
- Department of Molecular and Life Science, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Mark Hochstrasser
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
30
|
Yates-Stewart AD, Daron J, Wijeratne S, Shahid S, Edgington HA, Slotkin RK, Michel A. Soybean aphids adapted to host-plant resistance by down regulating putative effectors and up regulating transposable elements. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 121:103363. [PMID: 32201218 DOI: 10.1016/j.ibmb.2020.103363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 03/06/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
In agricultural systems, crops equipped with host-plant resistance (HPR) have enhanced protection against pests, and are used as a safe and sustainable tool in pest management. In soybean, HPR can control the soybean aphid (Aphis glycines), but certain aphid populations have overcome this resistance (i.e., virulence). The molecular mechanisms underlying aphid virulence to HPR are unknown, but likely involve effector proteins that are secreted by aphids to modulate plant defenses. Another mechanism to facilitate adaptation is through the activity of transposable elements, which can become activated by stress. In this study, we performed RNA sequencing of virulent and avirulent soybean aphids fed susceptible or resistant (Rag1 + Rag2) soybean. Our goal was to better understand the molecular mechanisms underlying soybean aphid virulence. Our data showed that virulent aphids mostly down regulate putative effector genes relative to avirulent aphids, especially when aphids were fed susceptible soybean. Decreased expression of effectors may help evade HPR plant defenses. Virulent aphids also transcriptionally up regulate a diverse set of transposable elements and nearby genes, which is consistent with stress adaptation. Our work demonstrates two mechanisms of pest adaptation to resistance, and identifies effector gene targets for future functional testing.
Collapse
Affiliation(s)
| | - Josquin Daron
- CNRS, Centre National de la Recherche Scientifique, Montpellier, France
| | - Saranga Wijeratne
- The Ohio State University, Molecular and Cellular Imaging Center, OARDC, Wooster, OH, USA
| | - Saima Shahid
- Donald Danforth Plant Science Center, St, Louis, MO, USA
| | - Hilary A Edgington
- The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA
| | - R Keith Slotkin
- Donald Danforth Plant Science Center, St, Louis, MO, USA; Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| | - Andy Michel
- The Ohio State University, Center for Applied Plant Sciences, Wooster, OH, USA; The Ohio State University, Department of Entomology, CFAES Wooster Campus, Wooster, OH, USA.
| |
Collapse
|
31
|
Burgess D, Li H, Zhao M, Kim SY, Lisch D. Silencing of Mutator Elements in Maize Involves Distinct Populations of Small RNAs and Distinct Patterns of DNA Methylation. Genetics 2020; 215:379-391. [PMID: 32229532 PMCID: PMC7268996 DOI: 10.1534/genetics.120.303033] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/24/2020] [Indexed: 12/12/2022] Open
Abstract
Transposable elements (TEs) are a ubiquitous feature of plant genomes. Because of the threat they post to genome integrity, most TEs are epigenetically silenced. However, even closely related plant species often have dramatically different populations of TEs, suggesting periodic rounds of activity and silencing. Here, we show that the process of de novo methylation of an active element in maize involves two distinct pathways, one of which is directly implicated in causing epigenetic silencing and one of which is the result of that silencing. Epigenetic changes involve changes in gene expression that can be heritably transmitted to daughter cells in the absence of changes in DNA sequence. Epigenetics has been implicated in phenomena as diverse as development, stress response, and carcinogenesis. A significant challenge facing those interested in investigating epigenetic phenomena is determining causal relationships between DNA methylation, specific classes of small RNAs, and associated changes in gene expression. Because they are the primary targets of epigenetic silencing in plants and, when active, are often targeted for de novo silencing, TEs represent a valuable source of information about these relationships. We use a naturally occurring system in which a single TE can be heritably silenced by a single derivative of that TE. By using this system it is possible to unravel causal relationships between different size classes of small RNAs, patterns of DNA methylation, and heritable silencing. Here, we show that the long terminal inverted repeats within Zea mays MuDR transposons are targeted by distinct classes of small RNAs during epigenetic silencing that are dependent on distinct silencing pathways, only one of which is associated with transcriptional silencing of the transposon. Further, these small RNAs target distinct regions of the terminal inverted repeats, resulting in different patterns of cytosine methylation with different functional consequences with respect to epigenetic silencing and the heritability of that silencing.
Collapse
Affiliation(s)
- Diane Burgess
- Department of Plant and Microbial Biology, University of California, Berkeley, California 94720
| | - Hong Li
- Bayer US, Crop Science, Chesterfield, Missouri 63017
| | - Meixia Zhao
- Department of Biology, Miami University, Oxford, Ohio 45056
| | - Sang Yeol Kim
- US Department of Agriculture, Agricultural Research Service, Urbana, Illinois 61801
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
32
|
Fouché S, Badet T, Oggenfuss U, Plissonneau C, Francisco CS, Croll D. Stress-Driven Transposable Element De-repression Dynamics and Virulence Evolution in a Fungal Pathogen. Mol Biol Evol 2020; 37:221-239. [PMID: 31553475 DOI: 10.1093/molbev/msz216] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are drivers of genome evolution and affect the expression landscape of the host genome. Stress is a major factor inducing TE activity; however, the regulatory mechanisms underlying de-repression are poorly understood. Plant pathogens are excellent models to dissect the impact of stress on TEs. The process of plant infection induces stress for the pathogen, and virulence factors (i.e., effectors) located in TE-rich regions become expressed. To dissect TE de-repression dynamics and contributions to virulence, we analyzed the TE expression landscape of four strains of the major wheat pathogen Zymoseptoria tritici. We experimentally exposed strains to nutrient starvation and host infection stress. Contrary to expectations, we show that the two distinct conditions induce the expression of different sets of TEs. In particular, the most highly expressed TEs, including miniature inverted-repeat transposable element and long terminal repeat-Gypsy element, show highly distinct de-repression across stress conditions. Both the genomic context of TEs and the genetic background stress (i.e., different strains harboring the same TEs) were major predictors of de-repression under stress. Gene expression profiles under stress varied significantly depending on the proximity to the closest TEs and genomic defenses against TEs were largely ineffective to prevent de-repression. Next, we analyzed the locus encoding the Avr3D1 effector. We show that the insertion and subsequent silencing of TEs in close proximity likely contributed to reduced expression and virulence on a specific wheat cultivar. The complexity of TE responsiveness to stress across genetic backgrounds and genomic locations demonstrates substantial intraspecific genetic variation to control TEs with consequences for virulence.
Collapse
Affiliation(s)
- Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
33
|
Yang H, Yang Z, Mao Z, Li Y, Hu D, Li X, Shi G, Huang F, Liu B, Kong F, Yu D. Genome-Wide DNA Methylation Analysis of Soybean Curled-Cotyledons Mutant and Functional Evaluation of a Homeodomain-Leucine Zipper (HD-Zip) I Gene GmHDZ20. FRONTIERS IN PLANT SCIENCE 2020; 11:593999. [PMID: 33505408 PMCID: PMC7830220 DOI: 10.3389/fpls.2020.593999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 11/30/2020] [Indexed: 05/17/2023]
Abstract
DNA methylation is a major, conserved epigenetic modification that influences many biological processes. Cotyledons are specialized tissues that provide nutrition for seedlings at the early developmental stage. To investigate the patterns of genomic DNA methylation of germinated cotyledons in soybean (Glycine max) and its effect on cotyledon development, we performed a genome-wide comparative analysis of DNA methylation between the soybean curled-cotyledons (cco) mutant, which has abnormal cotyledons, and its corresponding wild type (WT) by whole-genome bisulfite sequencing. The cco mutant was methylated at more sites but at a slightly lower level overall than the WT on the whole-genome level. A total of 46 CG-, 92 CHG-, and 9723 CHH- (H = A, C, or T) differentially methylated genes (DMGs) were identified in cotyledons. Notably, hypomethylated CHH-DMGs were enriched in the gene ontology term "sequence-specific DNA binding transcription factor activity." We selected a DMG encoding a homeodomain-leucine zipper (HD-Zip) I subgroup transcription factor (GmHDZ20) for further functional characterization. GmHDZ20 localized to the nucleus and was highly expressed in leaf and cotyledon tissues. Constitutive expression of GmHDZ20 in Arabidopsis thaliana led to serrated rosette leaves, shorter siliques, and reduced seed number per silique. A yeast two-hybrid assay revealed that GmHDZ20 physically interacted with three proteins associated with multiple aspects of plant growth. Collectively, our results provide a comprehensive study of soybean DNA methylation in normal and aberrant cotyledons, which will be useful for the identification of specific DMGs that participate in cotyledon development, and also provide a foundation for future in-depth functional study of GmHDZ20 in soybean.
Collapse
Affiliation(s)
- Hui Yang
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Hui Yang,
| | - Zhongyi Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Zhuozhuo Mao
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yali Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Guixia Shi
- Institute of Industrial Crops, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Deyue Yu,
| |
Collapse
|
34
|
Ferrafiat L, Pflieger D, Singh J, Thieme M, Böhrer M, Himber C, Gerbaud A, Bucher E, Pikaard CS, Blevins T. The NRPD1 N-terminus contains a Pol IV-specific motif that is critical for genome surveillance in Arabidopsis. Nucleic Acids Res 2019; 47:9037-9052. [PMID: 31372633 PMCID: PMC6753494 DOI: 10.1093/nar/gkz618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022] Open
Abstract
RNA-guided surveillance systems constrain the activity of transposable elements (TEs) in host genomes. In plants, RNA polymerase IV (Pol IV) transcribes TEs into primary transcripts from which RDR2 synthesizes double-stranded RNA precursors for small interfering RNAs (siRNAs) that guide TE methylation and silencing. How the core subunits of Pol IV, homologs of RNA polymerase II subunits, diverged to support siRNA biogenesis in a TE-rich, repressive chromatin context is not well understood. Here we studied the N-terminus of Pol IV’s largest subunit, NRPD1. Arabidopsis lines harboring missense mutations in this N-terminus produce wild-type (WT) levels of NRPD1, which co-purifies with other Pol IV subunits and RDR2. Our in vitro transcription and genomic analyses reveal that the NRPD1 N-terminus is critical for robust Pol IV-dependent transcription, siRNA production and DNA methylation. However, residual RNA-directed DNA methylation observed in one mutant genotype indicates that Pol IV can operate uncoupled from the high siRNA levels typically observed in WT plants. This mutation disrupts a motif uniquely conserved in Pol IV, crippling the enzyme's ability to inhibit retrotransposon mobilization. We propose that the NRPD1 N-terminus motif evolved to regulate Pol IV function in genome surveillance.
Collapse
Affiliation(s)
- Laura Ferrafiat
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - David Pflieger
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Jasleen Singh
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Michael Thieme
- Botanisches Institut, Universität Basel, CH-4056 Basel, Switzerland
| | - Marcel Böhrer
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Christophe Himber
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Aude Gerbaud
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| | - Etienne Bucher
- Botanisches Institut, Universität Basel, CH-4056 Basel, Switzerland
| | - Craig S Pikaard
- Howard Hughes Medical Institute, Indiana University, Bloomington, IN 47405, USA.,Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Todd Blevins
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, F-67084 Strasbourg, France
| |
Collapse
|
35
|
Boudichevskaia A, Houben A, Fiebig A, Prochazkova K, Pecinka A, Lermontova I. Depletion of KNL2 Results in Altered Expression of Genes Involved in Regulation of the Cell Cycle, Transcription, and Development in Arabidopsis. Int J Mol Sci 2019; 20:ijms20225726. [PMID: 31731608 PMCID: PMC6888302 DOI: 10.3390/ijms20225726] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/07/2019] [Accepted: 11/11/2019] [Indexed: 11/17/2022] Open
Abstract
Centromeres contain specialized nucleosomes at which histone H3 is partially replaced by the centromeric histone H3 variant cenH3 that is required for the assembly, maintenance, and proper function of kinetochores during mitotic and meiotic divisions. Previously, we identified a KINETOCHORE NULL 2 (KNL2) of Arabidopsis thaliana that is involved in the licensing of centromeres for the cenH3 recruitment. We also demonstrated that a knockout mutant for KNL2 shows mitotic and meiotic defects, slower development, reduced growth rate, and fertility. To analyze an effect of KNL2 mutation on global gene transcription of Arabidopsis, we performed RNA-sequencing experiments using seedling and flower bud tissues of knl2 and wild-type plants. The transcriptome data analysis revealed a high number of differentially expressed genes (DEGs) in knl2 plants. The set was enriched in genes involved in the regulation of the cell cycle, transcription, development, and DNA damage repair. In addition to comprehensive information regarding the effects of KNL2 mutation on the global gene expression, physiological changes in plants are also presented, which provides an integrated understanding of the critical role played by KNL2 in plant growth and development.
Collapse
Affiliation(s)
- Anastassia Boudichevskaia
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany; (A.H.); (A.F.)
- Correspondence: (A.B.); (I.L.); Tel.: +49/39482 5477 (A.B.); +49/39482 5570 (I.L.)
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany; (A.H.); (A.F.)
| | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany; (A.H.); (A.F.)
| | - Klara Prochazkova
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (K.P.); (A.P.)
| | - Ales Pecinka
- Institute of Experimental Botany, Czech Acad Sci, Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Šlechtitelů 31, CZ-77900 Olomouc, Czech Republic; (K.P.); (A.P.)
| | - Inna Lermontova
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstrasse 3, D-06466 Seeland, Germany; (A.H.); (A.F.)
- Mendel Centre for Plant Genomics and Proteomics, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
- Correspondence: (A.B.); (I.L.); Tel.: +49/39482 5477 (A.B.); +49/39482 5570 (I.L.)
| |
Collapse
|
36
|
Sanchez DH, Gaubert H, Yang W. Evidence of developmental escape from transcriptional gene silencing in MESSI retrotransposons. THE NEW PHYTOLOGIST 2019; 223:950-964. [PMID: 31063594 DOI: 10.1111/nph.15896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/12/2019] [Indexed: 05/04/2023]
Abstract
Transposable elements (TEs) are ubiquitous genomic features. 'Copy-and-paste' long-terminal-repeat (LTR) retrotransposons have been particularly successful during evolution of the plant kingdom, representing a substantial proportion of genomes. For survival in copious numbers, these TEs may have evolved replicative mobilization strategies that circumvented hosts' epigenetic silencing. Stressful circumstances are known to trigger the majority of known mobilizing plant retrotransposons, leading to the idea that most are activated by environmental signals. However, previous research revealed that plant developmental programs include steps of silencing relaxation, suggesting that developmental signals may also be of importance for thriving parasitic elements. Here, we uncover an unusual family of giant LTR retrotransposons from the Solanum clade, named MESSI, with transcriptional competence in shoot apical meristems of tomato. Despite being recognized and targeted by the host epigenetic surveillance, this family is activated in specific meristematic areas fundamental for plant shoot development, which are involved in meristem formation and maintenance. Our work provides initial evidence that some retrotransposons may evolve developmentally associated escape strategies to overcome transcriptional gene silencing in vegetative tissues contributing to the host's next generation. This implies that not only environmental but also developmental signals could be exploited by selfish elements for survival within the plant kingdom.
Collapse
Affiliation(s)
- Diego H Sanchez
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Hervé Gaubert
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| | - Weibing Yang
- The Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge, CB2 1LR, UK
| |
Collapse
|
37
|
Long JC, Xia AA, Liu JH, Jing JL, Wang YZ, Qi CY, He Y. Decrease in DNA methylation 1 (DDM1) is required for the formation of m CHH islands in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:749-764. [PMID: 30387549 DOI: 10.1111/jipb.12733] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 10/23/2018] [Indexed: 05/26/2023]
Abstract
DNA methylation plays a crucial role in suppressing mobilization of transposable elements and regulation of gene expression. A number of studies have indicated that DNA methylation pathways and patterns exhibit distinct properties in different species, including Arabidopsis, rice, and maize. Here, we characterized the function of DDM1 in regulating genome-wide DNA methylation in maize. Two homologs of ZmDDM1 are abundantly expressed in the embryo and their simultaneous disruption caused embryo lethality with abnormalities in cell proliferation from the early stage of kernel development. We establish that ZmDDM1 is critical for DNA methylation, at CHG sites, and to a lesser extent at CG sites, in heterochromatic regions, and unexpectedly, it is required for the formation of m CHH islands. In addition, ZmDDM1 is indispensable for the presence of 24-nt siRNA, suggesting its involvement in the RdDM pathway. Our results provide novel insight into the role of ZmDDM1 in regulating the formation of m CHH islands, via the RdDM pathway maize, suggesting that, in comparison to Arabidopsis, maize may have adopted distinct mechanisms for regulating m CHH.
Collapse
Affiliation(s)
- Jin Cheng Long
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Ai Ai Xia
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Jing Han Liu
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Ju Li Jing
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Ya Zhong Wang
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Chuang Ye Qi
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| | - Yan He
- National Maize Improvement Center of China, China Agricultural University, Beijing 100094, China
| |
Collapse
|
38
|
Ma B, Xin Y, Kuang L, He N. Distribution and Characteristics of Transposable Elements in the Mulberry Genome. THE PLANT GENOME 2019; 12:180094. [PMID: 31290922 DOI: 10.3835/plantgenome2018.12.0094] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Mulberry ( C. K. Schneid) leaves have been used as the food for the domesticated silkworm, , for more than 5000 yr, and the mulberry-silkworm relationship is one of the best-known and oldest models of plant defense-insect adaptation. The availability of a genome assembly of mulberry provides us with an opportunity to mine the characteristics and distribution of transposable elements (TEs) in this species and to examine their relationship to genes and gene expression. In this study, a significantly correlated inverse relationship between the percentage coverage of genes and TEs was observed. The TE-rich regions appeared to have a lower percentage of putatively expressed genes. Distribution patterns between different TE superfamilies were detected in the mulberry genome. The elements (the TE making up the greatest proportion of the mulberry genome) were significantly overrepresented within genes in the mulberry genome, and they may have a dominant influence on evolution of the mulberry genome. Approximately 96.93% (330/344) of the TE-containing genes assigned to pathways were assigned to metabolism-related pathways. The TE-related alternative splicing events accounted for 7.58% (402/5,302) of all alternative splicing types in the mulberry genome, suggesting that TEs are one of the driving forces in the formation of the alternatively spliced genes. The results will be valuable in improving our understanding of the important roles of TEs in mulberry genome evolution.
Collapse
|
39
|
Ma B, Kuang L, Xin Y, He N. New Insights into Long Terminal Repeat Retrotransposons in Mulberry Species. Genes (Basel) 2019; 10:genes10040285. [PMID: 30970574 PMCID: PMC6523491 DOI: 10.3390/genes10040285] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/27/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
The evolutionary dynamics of long terminal repeat (LTR) retrotransposons in tree genomes has remained largely unknown. The availability of the complete genome sequences of the mulberry tree (Morus notabilis) has offered an unprecedented opportunity for us to characterize these retrotransposon elements. We investigated 202 and 114 families of Copia and Gypsy superfamilies, respectively, comprising 2916 intact elements in the mulberry genome. The tRNAMet was the most frequently used type of tRNA in both superfamilies. Phylogenetic analysis suggested that Copia and Gypsy from mulberry can be grouped into eight and six lineages, respectively. All previously characterized families of such elements could also be found in the mulberry genome. About 95% of the identified Copia and Gypsy full elements were estimated to have been inserted into the mulberry genome within the past 2–3 million years. Meanwhile, the estimated insertion times of members of the three most abundant families of the Copia superfamily (908 members from the three most abundant families) and Gypsy superfamily (783 members from the three most abundant families) revealed divergent life histories. Compared with the situation in Gypsy elements, three families of Copia elements are under positive selection pressure, which suggested that Copia elements may have a dominant influence in the evolution of mulberry genes. Analysis of insertion and deletion dynamics suggested that Copia and Gypsy elements exhibited a very long half-life in the mulberry genome. The present work provides new insights into the insertion and deletion dynamics of LTR retrotransposons, and it will greatly improve our understanding of the important roles transposable elements play in the architecture of the mulberry genome.
Collapse
Affiliation(s)
- Bi Ma
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Lulu Kuang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Youchao Xin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Beibei, Chongqing 400715, China.
| |
Collapse
|
40
|
Genome defense against integrated organellar DNA fragments from plastids into plant nuclear genomes through DNA methylation. Sci Rep 2019; 9:2060. [PMID: 30765781 PMCID: PMC6376042 DOI: 10.1038/s41598-019-38607-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 12/31/2018] [Indexed: 01/09/2023] Open
Abstract
Nuclear genomes are always faced with the modification of themselves by insertions and integrations of foreign DNAs and intrinsic parasites such as transposable elements. There is also substantial number of integrations from symbiotic organellar genomes to their host nuclear genomes. Such integration might have acted as a beneficial mutation during the evolution of symbiosis, while most of them have more or less deleterious effects on the stability of current genomes. Here we report the pattern of DNA substitution and methylation on organellar DNA fragments integrated from plastid into plant nuclear genomes. The genome analyses of 17 plants show homology–dependent DNA substitution bias. A certain number of these sequences are DNA methylated in the nuclear genome. The intensity of DNA methylation also decays according to the increase of relative evolutionary times after being integrated into nuclear genomes. The methylome data of epigenetic mutants shows that the DNA methylation of organellar DNA fragments in nuclear genomes are mainly dependent on the methylation maintenance machinery, while other mechanisms may also affect on the DNA methylation level. The DNA methylation on organellar DNA fragments may contribute to maintaining the genome stability and evolutionary dynamics of symbiotic organellar and their host’s genomes.
Collapse
|
41
|
Liu M, Zhang C, Duan L, Luan Q, Li J, Yang A, Qi X, Ren Z. CsMYB60 is a key regulator of flavonols and proanthocyanidans that determine the colour of fruit spines in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:69-84. [PMID: 30256979 PMCID: PMC6305189 DOI: 10.1093/jxb/ery336] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 09/12/2018] [Indexed: 05/08/2023]
Abstract
Spine colour is an important fruit quality trait that influences the commercial value of cucumber (Cucumis sativus). However, little is known about the metabolites and the regulatory mechanisms of their biosynthesis in black spine varieties. In this study, we determined that the pigments of black spines are flavonoids, including flavonols and proanthocyanidins (PAs). We identified CsMYB60 as the best candidate for the previously identified B (Black spine) locus. Expression levels of CsMYB60 and the key genes involved in flavonoid biosynthesis were higher in black-spine inbred lines than that in white-spine lines at different developmental stages. The insertion of a Mutator-like element (CsMULE) in the second intron of CsMYB60 decreased its expression in a white-spine line. Transient overexpression assays indicated that CsMYB60 is a key regulatory gene and Cs4CL is a key structural gene in the pigmentation of black spines. In addition, the DNA methylation level in the CsMYB60 promoter was much lower in the black-spine line compared with white-spine line. The CsMULE insert may decrease the expression level of CsMYB60, causing hindered synthesis of flavonols and PAs in cucumber fruit spines.
Collapse
Affiliation(s)
- Mengyu Liu
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Cunjia Zhang
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Lixin Duan
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qianqian Luan
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Jialin Li
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| | - Aigang Yang
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiaoquan Qi
- The Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Nanxincun, Xiangshan, Beijing, China
| | - Zhonghai Ren
- State Key Laboratory of Corp Biology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops in Huang-Huai Region, Ministry of Agriculture, College of Horticultural Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, China
| |
Collapse
|
42
|
Cambiagno DA, Nota F, Zavallo D, Rius S, Casati P, Asurmendi S, Alvarez ME. Immune receptor genes and pericentromeric transposons as targets of common epigenetic regulatory elements. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:1178-1190. [PMID: 30238536 DOI: 10.1111/tpj.14098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 05/04/2023]
Abstract
Pattern recognition receptors (PRR) and nucleotide-binding leucine-rich repeat proteins (NLR) are major components of the plant immune system responsible for pathogen detection. To date, the transcriptional regulation of PRR/NLR genes is poorly understood. Some PRR/NLR genes are affected by epigenetic changes of neighboring transposable elements (TEs) (cis regulation). We analyzed whether these genes can also respond to changes in the epigenetic marks of distal pericentromeric TEs (trans regulation). We found that Arabidopsis tissues infected with Pseudomonas syringae pv. tomato (Pst) initially induced the expression of pericentromeric TEs, and then repressed it by RNA-directed DNA methylation (RdDM). The latter response was accompanied by the accumulation of small RNAs (sRNAs) mapping to the TEs. Curiously these sRNAs also mapped to distal PRR/NLR genes, which were controlled by RdDM but remained induced in the infected tissues. Then, we used non-infected mom1 (Morpheus' molecule 1) mutants that expressed pericentromeric TEs to test if they lose repression of PRR/NLR genes. mom1 plants activated several PRR/NLR genes that were unlinked to MOM1-targeted TEs, and showed enhanced resistance to Pst. Remarkably, the increased defenses of mom1 were abolished when MOM1/RdDM-mediated pericentromeric TEs silencing was re-established. Therefore, common sRNAs could control PRR/NLR genes and distal pericentromeric TEs and preferentially silence TEs when they are activated.
Collapse
Affiliation(s)
- Damián A Cambiagno
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Florencia Nota
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| | - Diego Zavallo
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
| | - Sebastián Rius
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Paula Casati
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sebastián Asurmendi
- Instituto de Biotecnología, CICVyA, INTA, Hurlingham, Argentina
- CONICET, Buenos Aires, Argentina
| | - María E Alvarez
- CONICET, Universidad Nacional de Córdoba, Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC), Córdoba, Argentina
- Departamento de Química Biológica Ranwel Caputto, Universidad Nacional de Córdoba, Facultad de Ciencias Químicas, Córdoba, Argentina
| |
Collapse
|
43
|
Zhang H, Ali A, Hou F, Wu T, Guo D, Zeng X, Wang F, Zhao H, Chen X, Xu P, Wu X. Effects of ploidy variation on promoter DNA methylation and gene expression in rice (Oryza sativa L.). BMC PLANT BIOLOGY 2018; 18:314. [PMID: 30497392 PMCID: PMC6267922 DOI: 10.1186/s12870-018-1553-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Polyploidy, or whole-genome duplication (WGD) promotes genetic diversification in plants. However, whether WGD is accompanied by epigenetic regulation especially DNA methylation remains yet elusive. Methylation of different region in genomic DNA play discrete role in gene regulation and developmental processes in plants. RESULTS In our study, we used an apomictic rice line (SARII-628) that produces twin seedlings of different ploidy for methylated DNA immunoprecipitation sequencing (MeDIP-seq). We compared the level of methylation and mRNA expression in three different (CG, CHG, and CHH) sequence contexts of promoter region among haploid (1X), diploid (2X), and triploid (3X) seedling. We used MeDIP-Seq analysis of 14 genes to investigate whole genome DNA methylation and found that relative level of DNA methylation across different ploidy was in following order e.g. diploid > triploid > haploid. GO functional classification of differentially methylated genes into 9 comparisons group of promoter, intergenic and intragenic region discovered, these genes were mostly enriched for cellular component, molecular function, and biological process. By the comparison of methylome data, digital gene expression (DGE), mRNA expression profile, and Q-PCR findings LOC_ Os07g31450 and LOC_ Os01g59320 were analyzed for BS-Seq (Bisulphite sequencing). CONCLUSIONS We found that (1) The level of the promoter DNA methylation is negatively correlated with gene expression within each ploidy level. (2) Among all ploidy levels, CG sequence context had highest methylation frequency, and demonstrated that the high CG methylation did reduce gene expression change suggesting that DNA methylation exert repressive function and ensure genome stability during WGD. (3) Alteration in ploidy (from diploid to haploid, or diploid to triploid) reveals supreme changes in methylation frequency of CHH sequence context. Our finding will contribute an understanding towards lower stability of CHH sequence context and educate the effect of promoter region methylation during change in ploidy state in rice.
Collapse
Affiliation(s)
- Hongyu Zhang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Asif Ali
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Feixue Hou
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Tingkai Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Daiming Guo
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiufeng Zeng
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Fangfang Wang
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Huixia Zhao
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xiaoqiong Chen
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Peizhou Xu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| | - Xianjun Wu
- 211-Key Laboratory of Crop Genetic Resources and Genetic Improvement, Ministry of Education, Institute of Rice Research, Sichuan Agricultural University, Huimin Road, Chengdu, 611130 China
| |
Collapse
|
44
|
Cossu RM, Casola C, Giacomello S, Vidalis A, Scofield DG, Zuccolo A. LTR Retrotransposons Show Low Levels of Unequal Recombination and High Rates of Intraelement Gene Conversion in Large Plant Genomes. Genome Biol Evol 2018; 9:3449-3462. [PMID: 29228262 PMCID: PMC5751070 DOI: 10.1093/gbe/evx260] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2017] [Indexed: 12/29/2022] Open
Abstract
The accumulation and removal of transposable elements (TEs) is a major driver of genome size evolution in eukaryotes. In plants, long terminal repeat (LTR) retrotransposons (LTR-RTs) represent the majority of TEs and form most of the nuclear DNA in large genomes. Unequal recombination (UR) between LTRs leads to removal of intervening sequence and formation of solo-LTRs. UR is a major mechanism of LTR-RT removal in many angiosperms, but our understanding of LTR-RT-associated recombination within the large, LTR-RT-rich genomes of conifers is quite limited. We employ a novel read-based methodology to estimate the relative rates of LTR-RT-associated UR within the genomes of four conifer and seven angiosperm species. We found the lowest rates of UR in the largest genomes studied, conifers and the angiosperm maize. Recombination may also resolve as gene conversion, which does not remove sequence, so we analyzed LTR-RT-associated gene conversion events (GCEs) in Norway spruce and six angiosperms. Opposite the trend for UR, we found the highest rates of GCEs in Norway spruce and maize. Unlike previous work in angiosperms, we found no evidence that rates of UR correlate with retroelement structural features in the conifers, suggesting that another process is suppressing UR in these species. Recent results from diverse eukaryotes indicate that heterochromatin affects the resolution of recombination, by favoring gene conversion over crossing-over, similar to our observation of opposed rates of UR and GCEs. Control of LTR-RT proliferation via formation of heterochromatin would be a likely step toward large genomes in eukaryotes carrying high LTR-RT content.
Collapse
Affiliation(s)
- Rosa Maria Cossu
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia (IIT), Genova, Italy
| | - Claudio Casola
- Department of Ecosystem Science and Management, Texas A&M University
| | - Stefania Giacomello
- Science for Life Laboratory, School of Biotechnology, Royal Institute of Technology, Solna, Sweden.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | - Amaryllis Vidalis
- Department of Ecology and Environmental Science, Umeå University, Sweden.,Section of Population Epigenetics and Epigenomics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, Freising, Germany
| | - Douglas G Scofield
- Department of Ecology and Environmental Science, Umeå University, Sweden.,Department of Ecology and Genetics: Evolutionary Biology, Uppsala University, Sweden.,Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Sweden
| | - Andrea Zuccolo
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.,Istituto di Genomica Applicata, Udine, Italy
| |
Collapse
|
45
|
Quantification of DNA Methylation as Biomarker for Grain Quality. Methods Mol Biol 2018. [PMID: 30397813 DOI: 10.1007/978-1-4939-8914-0_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
DNA methylation is an important biomarker for gene activity. It contributes to gene silencing and is involved in regulating various seed developmental processes in plants. Many of these processes are involved in important traits associated with aspects of grain quality. A reliable, fast, and cheap method is the estimation of DNA methylation utilizing methylation sensitive restriction enzymes (MSRE) and quantitative real-time PCR (qPCR) for selected candidate regions. The presented method can be used to confirm an effect of RNAi constructs on their target genes or trans-activity. Analysis of promoter regions can contribute to estimation of gene activity and related traits.
Collapse
|
46
|
Shao F, Wang J, Xu H, Peng Z. FishTEDB: a collective database of transposable elements identified in the complete genomes of fish. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2018; 2018:4812028. [PMID: 29688350 PMCID: PMC6404401 DOI: 10.1093/database/bax106] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 12/21/2017] [Indexed: 11/28/2022]
Abstract
Transposable elements (TEs) are important for host gene regulation and genome evolution. Consensus sequences of TEs can assist investigators in accelerating studies on TE origins, amplification, functions and evolution, as well as comparative analyses and prediction of TEs in different species. In evolution, physiology, ecology and heredity research, fish are important models. However, to date, no comprehensive resource for TE consensus sequences exists for fish. Here, we collected genome-wide data and developed a novel database, FishTEDB, including 27 bony fishes, 1 cartilaginous fish, 1 lamprey and 1 lancelet. De novo, structure-based and homology-based approaches were combined to detect TEs. The database is open-source and user-friendly, and users can browse, search and download all data. FishTEDB also provides GetORF, BLAST and HMMER tools to analyze sequences. Database URL: http://www.fishtedb.org/
Collapse
Affiliation(s)
- Feng Shao
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| | - Jianrong Wang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, MI 48824, USA
| | - Hongen Xu
- Department of Genome Oriented Bioinformatics Wissenschaftszentrum Weihenstephan, TU Muenchen Maximus-von-Imhof-Forum 3, Freising 85354, Germany
| | - Zuogang Peng
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Southwest University School of Life Sciences, Chongqing 400715, China
| |
Collapse
|
47
|
Shen Y, Zhang J, Liu Y, Liu S, Liu Z, Duan Z, Wang Z, Zhu B, Guo YL, Tian Z. DNA methylation footprints during soybean domestication and improvement. Genome Biol 2018; 19:128. [PMID: 30201012 PMCID: PMC6130073 DOI: 10.1186/s13059-018-1516-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In addition to genetic variation, epigenetic variation plays an important role in determining various biological processes. The importance of natural genetic variation to crop domestication and improvement has been widely investigated. However, the contribution of epigenetic variation in crop domestication at population level has rarely been explored. RESULTS To understand the impact of epigenetics on crop domestication, we investigate the variation of DNA methylation during soybean domestication and improvement by whole-genome bisulfite sequencing of 45 soybean accessions, including wild soybeans, landraces, and cultivars. Through methylomic analysis, we identify 5412 differentially methylated regions (DMRs). These DMRs exhibit characters distinct from those of genetically selected regions. In particular, they have significantly higher genetic diversity. Association analyses suggest only 22.54% of DMRs can be explained by local genetic variations. Intriguingly, genes in the DMRs that are not associated with any genetic variation are enriched in carbohydrate metabolism pathways. CONCLUSIONS This study provides a valuable map of DNA methylation across diverse accessions and dissects the relationship between DNA methylation variation and genetic variation during soybean domestication, thus expanding our understanding of soybean domestication and improvement.
Collapse
Affiliation(s)
- Yanting Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Jixiang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Shulin Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zhi Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zongbiao Duan
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zheng Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Baoge Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- University of Chinese Academy of Sciences, Beijing, 100039 China
| |
Collapse
|
48
|
Krishnan P, Meile L, Plissonneau C, Ma X, Hartmann FE, Croll D, McDonald BA, Sánchez-Vallet A. Transposable element insertions shape gene regulation and melanin production in a fungal pathogen of wheat. BMC Biol 2018; 16:78. [PMID: 30012138 PMCID: PMC6047131 DOI: 10.1186/s12915-018-0543-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 06/20/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Fungal plant pathogens pose major threats to crop yield and sustainable food production if they are highly adapted to their host and the local environment. Variation in gene expression contributes to phenotypic diversity within fungal species and affects adaptation. However, very few cases of adaptive regulatory changes have been reported in fungi and the underlying mechanisms remain largely unexplored. Fungal pathogen genomes are highly plastic and harbor numerous insertions of transposable elements, which can potentially contribute to gene expression regulation. In this work, we elucidated how transposable elements contribute to variation in melanin accumulation, a quantitative trait in fungi that affects survival under stressful conditions. RESULTS We demonstrated that differential transcriptional regulation of the gene encoding the transcription factor Zmr1, which controls expression of the genes in the melanin biosynthetic gene cluster, is responsible for variation in melanin accumulation in the fungal plant pathogen Zymoseptoria tritici. We show that differences in melanin levels between two strains of Z. tritici are due to two levels of transcriptional regulation: (1) variation in the promoter sequence of Zmr1 and (2) an insertion of transposable elements upstream of the Zmr1 promoter. Remarkably, independent insertions of transposable elements upstream of Zmr1 occurred in 9% of Z. tritici strains from around the world and negatively regulated Zmr1 expression, contributing to variation in melanin accumulation. CONCLUSIONS Our studies identified two levels of transcriptional control that regulate the synthesis of melanin. We propose that these regulatory mechanisms evolved to balance the fitness costs associated with melanin production against its positive contribution to survival in stressful environments.
Collapse
Affiliation(s)
- Parvathy Krishnan
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Lukas Meile
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.,UMR BIOGER, INRA, AgroParisTech, Université Paris-Saclay, Thiverval-Grignon, France
| | - Xin Ma
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Fanny E Hartmann
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.,Ecologie Systématique Evolution, Univ. Paris-Sud, AgroParisTech, CNRS, Université Paris Saclay, Orsay, France
| | - Daniel Croll
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland.,Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Bruce A McDonald
- Plant Pathology, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
49
|
Sahebi M, Hanafi MM, van Wijnen AJ, Rice D, Rafii MY, Azizi P, Osman M, Taheri S, Bakar MFA, Isa MNM, Noor YM. Contribution of transposable elements in the plant's genome. Gene 2018; 665:155-166. [PMID: 29684486 DOI: 10.1016/j.gene.2018.04.050] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/04/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022]
Abstract
Plants maintain extensive growth flexibility under different environmental conditions, allowing them to continuously and rapidly adapt to alterations in their environment. A large portion of many plant genomes consists of transposable elements (TEs) that create new genetic variations within plant species. Different types of mutations may be created by TEs in plants. Many TEs can avoid the host's defense mechanisms and survive alterations in transposition activity, internal sequence and target site. Thus, plant genomes are expected to utilize a variety of mechanisms to tolerate TEs that are near or within genes. TEs affect the expression of not only nearby genes but also unlinked inserted genes. TEs can create new promoters, leading to novel expression patterns or alternative coding regions to generate alternate transcripts in plant species. TEs can also provide novel cis-acting regulatory elements that act as enhancers or inserts within original enhancers that are required for transcription. Thus, the regulation of plant gene expression is strongly managed by the insertion of TEs into nearby genes. TEs can also lead to chromatin modifications and thereby affect gene expression in plants. TEs are able to generate new genes and modify existing gene structures by duplicating, mobilizing and recombining gene fragments. They can also facilitate cellular functions by sharing their transposase-coding regions. Hence, TE insertions can not only act as simple mutagens but can also alter the elementary functions of the plant genome. Here, we review recent discoveries concerning the contribution of TEs to gene expression in plant genomes and discuss the different mechanisms by which TEs can affect plant gene expression and reduce host defense mechanisms.
Collapse
Affiliation(s)
- Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed M Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | | | - David Rice
- Department of Molecular Biology & Biotecnology, University of Sheffield, United Kingdom
| | - M Y Rafii
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Parisa Azizi
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohamad Osman
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | |
Collapse
|
50
|
Dubin MJ, Mittelsten Scheid O, Becker C. Transposons: a blessing curse. CURRENT OPINION IN PLANT BIOLOGY 2018; 42:23-29. [PMID: 29453028 DOI: 10.1016/j.pbi.2018.01.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 01/11/2018] [Accepted: 01/16/2018] [Indexed: 05/18/2023]
Abstract
The genomes of most plant species are dominated by transposable elements (TEs). Once considered as 'junk DNA', TEs are now known to have a major role in driving genome evolution. Over the last decade, it has become apparent that some stress conditions and other environmental stimuli can drive bursts of activity of certain TE families and consequently new TE insertions. These can give rise to altered gene expression patterns and phenotypes, with new TE insertions sometimes causing flanking genes to become transcriptionally responsive to the same stress conditions that activated the TE in the first place. Such connections between TE-mediated increases in diversity and an accelerated rate of genome evolution provide powerful mechanisms for plants to adapt more rapidly to new environmental conditions. This review will focus on environmentally induced transposition, the mechanisms by which it alters gene expression, and the consequences for plant genome evolution and breeding.
Collapse
Affiliation(s)
- Manu J Dubin
- Université de Lille CNRS, UMR 8198-Evo-Eco-Paleo, Lille, France.
| | - Ortrun Mittelsten Scheid
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria
| | - Claude Becker
- Gregor Mendel Institute of Molecular Plant Biology, Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria.
| |
Collapse
|