1
|
Wang X, Zheng K, Na T, Ye G, Han S, Wang J. Transcriptomic profiles reveal hormonal regulation of sugar-induced stolon initiation in potato. Sci Rep 2025; 15:19122. [PMID: 40450047 DOI: 10.1038/s41598-025-02215-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Accepted: 05/12/2025] [Indexed: 06/03/2025] Open
Abstract
Potato (Solanum tuberosum L.) is one of the world's most important non-cereal food crops, with stolon development playing a crucial role in determining tuber yield. While some studies have examined the effects of sugars on potato stolon growth, their influence-particularly that of sucrose-on early stolon development remains unclear. Furthermore, the regulatory role of plant hormones in this process has yet to be established. Using a combination of in vitro culture, transcriptomics, gene expression analysis, and biochemical approaches, we investigated the contribution of sucrose (3% or 8%) on potato seedling stem nodes and stolon initials through phenotypic observation, RNA sequencing (RNA-seq), comparison of expression patterns, and hormone quantification. Firstly, compared to other types of sugars, we found that high concentrations of sucrose were the most effective in inducing stolon initial formation in potato seedlings. Furthermore, RNA-seq data showed that high sucrose levels significantly up-regulated the expression of genes involved in sugar metabolism and plant hormone metabolism. Additionally, the development of stem nodes and stolon initials under high sucrose conditions was also closely linked to hormone metabolism. Notably, high sucrose concentrations contributed to stem node and stolon initial development by modulating the IAA, CK, and GA signaling pathways. Based on the endogenous hormone measurement, and exogenous hormone application, together with heterologous overexpression of a potato Auxin response factor 9 (StARF9), we concluded that the early development of potato stolons was regulated by plant hormones, particularly auxin. In summary, this study elucidates the hormonal regulation of stolon initiation under high sucrose concentrations, offering a theoretical foundation and potential targets for in vitro culture and genetic improvement of potato.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Qinghai University, Xining, 810016, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Kaifeng Zheng
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Tiancang Na
- Qinghai University, Xining, 810016, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Guangji Ye
- Qinghai University, Xining, 810016, China
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China
| | - Shengcheng Han
- College of Life Sciences, Beijing Normal University, Beijing, 100875, China
- Academy of Plateau Science and Sustainability of the People's Government of Qinghai Province & Beijing Normal University, Qinghai Normal University, Xining, 810008, China
| | - Jian Wang
- Qinghai University, Xining, 810016, China.
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, 810016, China.
| |
Collapse
|
2
|
Zhao B, Zhai D, Wang JW. Flowering time regulation through the lens of evolution. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102734. [PMID: 40334583 DOI: 10.1016/j.pbi.2025.102734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/05/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Flowering, the onset of reproductive development, marks a critical transition in the angiosperm life cycle. In the model plant Arabidopsis thaliana, the process is tightly regulated by a complex network of approximately 300 genes organized into distinct pathways. This mini-review examines the genetic and molecular mechanisms regulating flowering time from an evolutionary perspective. Our analysis reveals that genes involved in the age and photoperiod pathways are evolutionarily ancient and highly conserved across bryophytes and vascular plants. In contrast, other regulatory modules appear to have evolved more recently, likely through the repurposing of existing genes or adaptations to environmental changes. We propose that future research should shift away from studying flowering regulation mechanisms in individual model plants to exploring the evolution of flowering time pathways and their underlying drivers. Adopting an evolutionary perspective may ultimately illuminate the fundamental principles governing the timing of reproductive development in plants.
Collapse
Affiliation(s)
- Bo Zhao
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 20032, China
| | - Dong Zhai
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 20032, China
| | - Jia-Wei Wang
- Key Laboratory of Plant Carbon Capture, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 20032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
3
|
Deng H, Ma L, Yu L, Zhao Y, Jiang Y, Rong J. Stem trichome polarity development in Gossypium hirsutum: insights into GhPRP gene regulation. PLANT CELL REPORTS 2025; 44:102. [PMID: 40285922 DOI: 10.1007/s00299-025-03491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
KEY MESSAGE Cotton stem trichomes exhibit a distinct polarity distribution, which may be regulated by GhPRP genes and temperature. Stem trichomes in cotton are essential for pest resistance and stress tolerance, yet their molecular regulation remains poorly understood. Significant differences in trichome number and length were observed under 25 °C and 30 °C, with more and longer trichomes at the first stem node under 25 °C. The side above the first true leaf (M side) showed more number of trichomes than the opposite side (L side), indicating polarity distribution. Transcriptome sequencing (RNA-seq) identified differentially expressed genes (DEGs), and 17 key DEGs were selected for further analysis, including 9 upregulated genes encoding proline-rich cell wall proteins (PRPs), flavonol synthase (FLS), prolyl endopeptidase (PREP), and diacylglycerol O-acyltransferase 3 (DGAT3). Quantitative real-time PCR (qRT-PCR) confirmed higher GhPRP expression on the M side. When GhPRP1, GhPRP2, or GhPRP10 was silenced using virus-induced gene silencing (VIGS) technique, trichome density decreased, and polarity was disrupted, highlighting their regulatory roles. Bioinformatics analysis revealed hormone signal transduction-related domains in PRP gene promoters, potentially linking them to trichome polarity regulation. This study advances understanding the mechanisms of trichome polarity distribution and offers insights for improving pest resistance and stress adaptation in cotton.
Collapse
Affiliation(s)
- Huanying Deng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China
| | - Longen Ma
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Li Yu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yanhao Zhao
- Tonglu County Agricultural Technology Extension Centre, Hangzhou, 311500, China
| | - Yurong Jiang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China.
| | - Junkang Rong
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Linan, Hangzhou, 311300, Zhejiang, China.
| |
Collapse
|
4
|
Li Y, Deng Y, Qin D, An X. Study of the SPL gene family and miR156-SPL module in Populus tomentosa: Potential roles in juvenile-to-adult phase transition and reproductive phase. Int J Biol Macromol 2025; 296:139547. [PMID: 39793817 DOI: 10.1016/j.ijbiomac.2025.139547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Abstract
Populus tomentosa, a deciduous tree species distinguished by its significant economic and ecological value, enjoys a wide-ranging natural distribution. However, its long juvenile period severely restricts the advancement of breeding work. The SPL gene family, a distinctive class of transcription factors exclusive to the plant kingdom, is critical in various processes of plant growth and development. The miR156-SPL molecular module stands as an indispensable regulatory mechanism in the transition from the vegetative juvenile phase to the adult phase in plants. Consequently, this research endeavored a methodical and exhaustive exploration of the SPL gene family within the P.tomentosa species, synergistically integrating the miR156 family into the analysis. A total of 56 PtSPL genes were identified and subjected to a comprehensive analysis of their gene structure, conserved motifs, collinearity relationships, chromosomal localization, and promoter cis-acting elements. Further analysis of gene expression profiles confirmed the pivotal role of PtSPLs in the reproductive phase and tissue development of P. tomentosa. In addition, 11 members of miR156 in P. tomentosa were identified and their sequences analyzed, elucidating the miR156-SPL regulatory network. The target relationship between miR156k and PtSPLs was further validated by detecting the expression levels of PtSPLs in transgenic poplars overexpressing 35S::MIR156k. This comprehensive study lays a robust theoretical foundation for the continued exploration and application of the SPL genes in P. tomentosa, opening avenues for future research and potential advancements in plant biology and breeding strategies.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yufei Deng
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Debin Qin
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| | - Xinmin An
- State Key Laboratory of Tree Genetics and Breeding, Beijing Forestry University, Beijing 100083, China; National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Forestry University, Beijing 100083, China; Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
5
|
Huang Y, Yue E, Lian G, Lu J, Ran L, Ma S, Wang K, Bai Y, Han N, Bian H, Guo F. Novel mechanism of MicroRNA408 in callus formation from rice mature embryo. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:769-787. [PMID: 39265046 DOI: 10.1111/tpj.17019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/22/2024] [Accepted: 08/27/2024] [Indexed: 09/14/2024]
Abstract
Mature embryos are the main explants of tissue culture used in rice transgenic technology. However, the mechanism of mature embryo callus formation remains unclear. In this study, a microRNA-mediated gene regulatory network of rice calli was established using degradome sequencing. We identified a microRNA, OsmiR408, that regulates the formation of the callus derived from the mature rice embryo. OsUCLACYANIN 30 (OsUCL 30), a target gene of OsmiR408, was the most abundant cleavage mRNA in rice callus. OsUCL17 was verified as a target gene of OsmiR408 using RNA ligase-mediated 5'-RACE. In analysis of the OsmiR408 promoter reporter line and pri-miR408 transcript level, the promoter activity and transcript level of MIR408 were increased dramatically during callus formation. In phenotypic observations, OsmiR408 knockout caused severe defects in mature embryo callus formation, whereas OsmiR408 overexpression promoted callus formation. Transcriptome analysis demonstrated that OsUCLs and certain genes related to the plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway had different differential expression patterns between OsmiR408 knockout and overexpression calli. Thus, OsmiR408 may regulate callus formation mainly by affecting plant hormone signal transduction and phenylpropanoid-flavonoid biosynthesis pathway. Our findings provide insight into OsmiR408/UCLs module function in callus formation.
Collapse
Affiliation(s)
- Yizi Huang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Erkui Yue
- Hangzhou Academy of Agricultural Sciences, Hangzhou, 310024, China
| | - Guiwei Lian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinhan Lu
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Le Ran
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Shengyun Ma
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Kaiqiang Wang
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
| | - Yu Bai
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ning Han
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongwu Bian
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Fu Guo
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, 572025, China
- Institute of Genetics and Regenerative Biology, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Seed Industry Laboratory, Yazhou Bay Science and Technology City, Sanya, 572025, China
| |
Collapse
|
6
|
Le Gloanec C, Gómez-Felipe A, Alimchandani V, Branchini E, Bauer A, Routier-Kierzkowska AL, Kierzkowski D. Modulation of cell differentiation and growth underlies the shift from bud protection to light capture in cauline leaves. PLANT PHYSIOLOGY 2024; 196:1214-1230. [PMID: 39106417 PMCID: PMC11444300 DOI: 10.1093/plphys/kiae408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/09/2024]
Abstract
Plant organs have evolved into diverse shapes for specialized functions despite emerging as simple protrusions at the shoot apex. Cauline leaves serve as photosynthetic organs and protective structures for emerging floral buds. However, the growth patterns underlying this dual function remain unknown. Here, we investigate the developmental dynamics shaping Arabidopsis (Arabidopsis thaliana) cauline leaves underlying their functional diversification from other laminar organs. We show that cauline leaves display a significant delay in overall elongation compared with rosette leaves. Using live imaging, we reveal that their functional divergence hinges on early modulation of the timing of cell differentiation and cellular growth rates. In contrast to rosette leaves and sepals, cell differentiation is delayed in cauline leaves, fostering extended proliferation, prolonged morphogenetic activity, and growth redistribution within the organ. Notably, cauline leaf growth is transiently suppressed during the early stages, keeping the leaf small and unfolded during the initiation of the first flowers. Our findings highlight the unique developmental timing of cauline leaves, underlying their shift from an early protective role to a later photosynthetic function.
Collapse
Affiliation(s)
- Constance Le Gloanec
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Andrea Gómez-Felipe
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Viraj Alimchandani
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Elvis Branchini
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Amélie Bauer
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Anne-Lise Routier-Kierzkowska
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| | - Daniel Kierzkowski
- Département de Sciences Biologiques, Institut de Recherche en Biologie Végétale, Université de Montréal, 4101 Sherbrooke St E, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
7
|
An L, Ma J, Fan C, Li H, Wu A. Genome-Wide Characterization and Analysis of the SPL Gene Family in Eucalyptus grandis. Int J Genomics 2024; 2024:2708223. [PMID: 39295962 PMCID: PMC11410410 DOI: 10.1155/2024/2708223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/13/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
SQUAMOSA promoter-binding protein-like (SPL) gene family, a group of plant-specific transcription factors, played crucial roles in regulating plant growth, development, signal transduction, and stress response. This study focuses on the SPL gene family in the fast-growing Eucalyptus grandis, employing bioinformatics approaches to identify and analyze the gene physiochemical characteristics, conserved domains, structural composition, chromosomal distribution, phylogenetic relationships, cis-acting elements, and their expression patterns in various tissues and stress treatments. Twenty-three SPL genes were identified in E. grandis, which uneven distributed across seven chromosomes and classified into five groups. Prediction of cis-acting elements revealed that these genes might be related to light, hormone, and stress responses. Furthermore, EgSPL9 and EgSPL23, mainly expressed in the stem apex and lateral branches, seem to be involved in hormone stress resistance. Our study provides insights into the potential functions of the EgSPL genes in plant growth, stress response, and hormone transduction, offering valuable perspectives for subsequent research into their biological roles.
Collapse
Affiliation(s)
- Lijun An
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architectures South China Agricultural University, Guangzhou 510642, China
| | - Jiasi Ma
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architectures South China Agricultural University, Guangzhou 510642, China
| | - Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry Research Institute of Tropical Forestry Chinese Academy of Forestry, Guangzhou 510520, China
| | - Huiling Li
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architectures South China Agricultural University, Guangzhou 510642, China
| | - Aimin Wu
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm College of Forestry and Landscape Architectures South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
8
|
Chen C, Hu Y, Ikeuchi M, Jiao Y, Prasad K, Su YH, Xiao J, Xu L, Yang W, Zhao Z, Zhou W, Zhou Y, Gao J, Wang JW. Plant regeneration in the new era: from molecular mechanisms to biotechnology applications. SCIENCE CHINA. LIFE SCIENCES 2024; 67:1338-1367. [PMID: 38833085 DOI: 10.1007/s11427-024-2581-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/26/2024] [Indexed: 06/06/2024]
Abstract
Plants or tissues can be regenerated through various pathways. Like animal regeneration, cell totipotency and pluripotency are the molecular basis of plant regeneration. Detailed systematic studies on Arabidopsis thaliana gradually unravel the fundamental mechanisms and principles underlying plant regeneration. Specifically, plant hormones, cell division, epigenetic remodeling, and transcription factors play crucial roles in reprogramming somatic cells and reestablishing meristematic cells. Recent research on basal non-vascular plants and monocot crops has revealed that plant regeneration differs among species, with various plant species using distinct mechanisms and displaying significant differences in regenerative capacity. Conducting multi-omics studies at the single-cell level, tracking plant regeneration processes in real-time, and deciphering the natural variation in regenerative capacity will ultimately help understand the essence of plant regeneration, improve crop regeneration efficiency, and contribute to future crop design.
Collapse
Affiliation(s)
- Chunli Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Yuxin Hu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences (CAS), China National Botanical Garden, Beijing, 100093, China.
| | - Momoko Ikeuchi
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, 630-0192, Japan.
| | - Yuling Jiao
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, 100871, China.
- Peking-Tsinghua Center for Life Sciences, Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
| | - Kalika Prasad
- Indian Institute of Science Education and Research, Pune, 411008, India.
- , Thiruvananthapuram, 695551, India.
| | - Ying Hua Su
- State Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China.
- Sino-German Joint Research Center on Agricultural Biology, Shandong Agricultural University, Tai'an, 271018, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology (IGDB), CAS, Beijing, 100101, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), IGDB, CAS, Beijing, 100101, China.
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
| | - Weibing Yang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- CEPAMS, SIPPE, CAS, Shanghai, 200032, China.
| | - Zhong Zhao
- Hefei National Laboratory for Physical Sciences at the Microscale, CEMPS, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Wenkun Zhou
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China.
| | - Yun Zhou
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, 47907, USA.
| | - Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CEMPS, Institute of Plant Physiology and Ecology (SIPPE), CAS, Shanghai, 200032, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China.
- New Cornerstone Science Laboratory, Shanghai, 200032, China.
| |
Collapse
|
9
|
Jia X, Xu S, Wang Y, Jin L, Gao T, Zhang Z, Yang C, Qing Y, Li C, Ma F. Age-dependent changes in leaf size in apple are governed by a cytokinin-integrated module. PLANT PHYSIOLOGY 2024; 195:2406-2427. [PMID: 38588053 DOI: 10.1093/plphys/kiae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 04/10/2024]
Abstract
Plants undergo various age-dependent changes in leaf morphology during juvenile to adult vegetative stage. However, the precise molecular mechanisms governing these changes in apple (Malus domestica) remain unknown. Here, we showed that CYTOKININ OXIDASE/DEHYDROGENASE5 (MdCKX5), an age-dependent gene, encodes a functional CKX enzyme and serves as the common downstream target of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MdSPL14 and WRKY transcription factor MdWRKY24 to control the degradation of cytokinin (CK). As the target of mdm-microRNA156a, MdSPL14 interacts with MdWRKY24 to coordinately repress the transcription of MdCKX5 by forming the age-mediated mdm-miR156a-MdSPL14-MdWRKY24 module, which regulates age-dependent changes in CK during the juvenile-to-adult phase transition. We further demonstrated that MdARR6, a type-A ARABIDOPSIS RESPONSE REGULATOR (ARR), is a negative feedback regulator in the CK signaling pathway. Silencing of MdARR6 in apple resulted in large leaves with smaller epidermal cells and a greater number of epidermal cells. Biochemical analysis showed that the mdm-miR156a-MdSPL14-MdWRKY24 module acts as a transcriptional repressor to directly regulate MdARR6 expression, thus controlling the age-dependent changes in leaf size by reducing CK responses. These findings established a link between the age pathway and CK signaling and revealed the molecular mechanism underlying age-dependent changes during the juvenile-to-adult phase transition; our results also provide targets for the genetic improvement of the vegetative phase transition in apple.
Collapse
Affiliation(s)
- Xumei Jia
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Shuo Xu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yuting Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lu Jin
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Tengteng Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Zhijun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Yubin Qing
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Chao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi, China
| |
Collapse
|
10
|
Cheng YJ, Wang JW, Ye R. Histone dynamics responding to internal and external cues underlying plant development. PLANT PHYSIOLOGY 2024; 194:1980-1997. [PMID: 38124490 DOI: 10.1093/plphys/kiad676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
Plants necessitate a refined coordination of growth and development to effectively respond to external triggers for survival and successful reproduction. This intricate harmonization of plant developmental processes and adaptability hinges on significant alterations within their epigenetic landscapes. In this review, we first delve into recent strides made in comprehending underpinning the dynamics of histones, driven by both internal and external cues. We encapsulate the prevailing working models through which cis/trans elements navigate the acquisition and removal of histone modifications, as well as the substitution of histone variants. As we look ahead, we anticipate that delving deeper into the dynamics of epigenetic regulation at the level of individual cells or specific cell types will significantly enrich our comprehension of how plant development unfolds under the influence of internal and external cues. Such exploration holds the potential to provide unprecedented resolution in understanding the orchestration of plant growth and development.
Collapse
Affiliation(s)
- Ying-Juan Cheng
- College of Horticulture, Nanjing Agriculture University, Nanjing 210095, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Ruiqiang Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| |
Collapse
|
11
|
Lei Y, Yu Y, Fu W, Zhu T, Wu C, Zhang Z, Yu Z, Song X, Xu J, Liang Z, Lü P, Li C. BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants. Nat Commun 2024; 15:935. [PMID: 38296999 PMCID: PMC10830565 DOI: 10.1038/s41467-024-45250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are multi-subunit machineries that establish and maintain chromatin accessibility and gene expression by regulating chromatin structure. However, how the remodeling activities of SWI/SNF complexes are regulated in eukaryotes remains elusive. B-cell lymphoma/leukemia protein 7 A/B/C (BCL7A/B/C) have been reported as subunits of SWI/SNF complexes for decades in animals and recently in plants; however, the role of BCL7 subunits in SWI/SNF function remains undefined. Here, we identify a unique role for plant BCL7A and BCL7B homologous subunits in potentiating the genome-wide chromatin remodeling activities of SWI/SNF complexes in plants. BCL7A/B require the catalytic ATPase BRAHMA (BRM) to assemble with the signature subunits of the BRM-Associated SWI/SNF complexes (BAS) and for genomic binding at a subset of target genes. Loss of BCL7A and BCL7B diminishes BAS-mediated genome-wide chromatin accessibility without changing the stability and genomic targeting of the BAS complex, highlighting the specialized role of BCL7A/B in regulating remodeling activity. We further show that BCL7A/B fine-tune the remodeling activity of BAS complexes to generate accessible chromatin at the juvenility resetting region (JRR) of the microRNAs MIR156A/C for plant juvenile identity maintenance. In summary, our work uncovers the function of previously elusive SWI/SNF subunits in multicellular eukaryotes and provides insights into the mechanisms whereby plants memorize the juvenile identity through SWI/SNF-mediated control of chromatin accessibility.
Collapse
Affiliation(s)
- Yawen Lei
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caihong Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhihao Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zewang Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianqu Xu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peitao Lü
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
12
|
Zhao B, Wang JW. Perenniality: From model plants to applications in agriculture. MOLECULAR PLANT 2024; 17:141-157. [PMID: 38115580 DOI: 10.1016/j.molp.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023]
Abstract
To compensate for their sessile nature, plants have evolved sophisticated mechanisms enabling them to adapt to ever-changing environments. One such prominent feature is the evolution of diverse life history strategies, particularly such that annuals reproduce once followed by seasonal death, while perennials live longer by cycling growth seasonally. This intrinsic phenology is primarily genetic and can be altered by environmental factors. Although evolutionary transitions between annual and perennial life history strategies are common, perennials account for most species in nature because they survive well under year-round stresses. This proportion, however, is reversed in agriculture. Hence, perennial crops promise to likewise protect and enhance the resilience of agricultural ecosystems in response to climate change. Despite significant endeavors that have been made to generate perennial crops, progress is slow because of barriers in studying perennials, and many developed species await further improvement. Recent findings in model species have illustrated that simply rewiring existing genetic networks can lead to lifestyle variation. This implies that engineering plant life history strategy can be achieved by manipulating only a few key genes. In this review, we summarize our current understanding of genetic basis of perenniality and discuss major questions and challenges that remain to be addressed.
Collapse
Affiliation(s)
- Bo Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Key Laboratory of Plant Carbon Capture, CAS, Shanghai 200032, China; New Cornerstone Science Laboratory, Shanghai 200032, China.
| |
Collapse
|
13
|
Liao X, Su Y, Klintenäs M, Li Y, Sane S, Wu Z, Chen Q, Zhang B, Nilsson O, Ding J. Age-dependent seasonal growth cessation in Populus. Proc Natl Acad Sci U S A 2023; 120:e2311226120. [PMID: 37991940 PMCID: PMC10691234 DOI: 10.1073/pnas.2311226120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 11/24/2023] Open
Abstract
In temperate and boreal regions, perennial plants adapt their annual growth cycle to the change of seasons. In natural forests, juvenile seedlings usually display longer growth seasons compared to adult trees to ensure their establishment and survival under canopy shade. However, how trees adjust their annual growth according to their age is not known. In this study, we show that age-dependent seasonal growth cessation is genetically controlled and found that the miR156-SPL3/5 module, a key regulon of vegetative phase change (VPC), also triggers age-dependent growth cessation in Populus trees. We show that miR156 promotes shoot elongation during vegetative growth, and its targets SPL3/5s function in the same pathway but as repressors. We find that the miR156-SPL3/5s regulon controls growth cessation in both leaves and shoot apices and through multiple pathways, but with a different mechanism compared to how the miR156-SPL regulon controls VPC in annual plants. Taken together, our results reveal an age-dependent genetic network in mediating seasonal growth cessation, a key phenological process in the climate adaptation of perennial trees.
Collapse
Affiliation(s)
- Xiaoli Liao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Yunjie Su
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Maria Klintenäs
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Yue Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Shashank Sane
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Qihui Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Bo Zhang
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
14
|
Wei L, Liu J, Huang J, Wang C, Zhang L, Feng S. Genome-Wide Identification of miR156 and SPL family genes and phenotypic analysis of vegetative phase change in Pepper (Capsicum annuum L.). Gene 2023:147542. [PMID: 37279862 DOI: 10.1016/j.gene.2023.147542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 05/25/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
After germination, plants through two phases of vegetative development - juvenile and adult - before entering the reproductive phase. These phases have varying characteristics and timing across plant species, making it challenging to determine if different vegetative traits correspond to the same or distinct developmental processes. miR156 has been identified as the primary regulator of vegetative phase change in plants, with the miR156-SPLs (SQUAMOSA Promoter Binding Protein-Likes) module playing a crucial role in regulating age-related agronomic traits in various crops. Such traits include disease resistance, optimal plant breeding, and secondary metabolism regulation. However, it is unknown whether miR156-SPLs contribute to the critical agronomic traits of pepper (Capsicum annuum L.). Thus, this study seeks to identify miR156 and SPLs genes in pepper, analyze their evolutionary links with model plants, and confirm their expression patterns using gene expression assays. The study also examines the relationship between miR156 expression levels in two cultivars of pepper and specific traits associated with the juvenile-to-adult transition. The results indicate that leaf shape and the number of leaf veins are correlated to the timing expression of miR156. Our study represents an important resource for identifying age-dependent agronomic traits in pepper and lays the foundation for future systematic regulation of miR156-SPLs to advance pepper development.
Collapse
Affiliation(s)
- Liang Wei
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Jipeng Liu
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - JiaJie Huang
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Chenjie Wang
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China
| | - Lu Zhang
- Zhejiang Provincial Key Laboratory of Bioremediation of Soil Contamination, Zhejiang A&F University, Hangzhou, China; HainingHigh-Tech Research Institude, Jiaxing, China
| | - Shengjun Feng
- The Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vege-table, Ministry of Agriculture and Rural Affairs, College of Horticultural Science, Zhejiang A&F University, Hangzhou 311300, Zhejiang, China.
| |
Collapse
|
15
|
Dash PK, Gupta P, Sreevathsa R, Pradhan SK, Sanjay TD, Mohanty MR, Roul PK, Singh NK, Rai R. Phylogenomic Analysis of micro-RNA Involved in Juvenile to Flowering-Stage Transition in Photophilic Rice and Its Sister Species. Cells 2023; 12:1370. [PMID: 37408207 DOI: 10.3390/cells12101370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/16/2023] [Accepted: 04/18/2023] [Indexed: 07/07/2023] Open
Abstract
Vegetative to reproductive phase transition in phototropic plants is an important developmental process and is sequentially mediated by the expression of micro-RNA MIR172. To obtain insight into the evolution, adaptation, and function of MIR172 in photophilic rice and its wild relatives, we analyzed the genescape of a 100 kb segment harboring MIR172 homologs from 11 genomes. The expression analysis of MIR172 revealed its incremental accumulation from the 2-leaf to 10-leaf stage, with maximum expression coinciding with the flag-leaf stage in rice. Nonetheless, the microsynteny analysis of MIR172s revealed collinearity within the genus Oryza, but a loss of synteny was observed in (i) MIR172A in O. barthii (AA) and O. glaberima (AA); (ii) MIR172B in O. brachyantha (FF); and (iii) MIR172C in O. punctata (BB). Phylogenetic analysis of precursor sequences/region of MIR172 revealed a distinct tri-modal clade of evolution. The genomic information generated in this investigation through comparative analysis of MIRNA, suggests mature MIR172s to have evolved in a disruptive and conservative mode amongst all Oryza species with a common origin of descent. Further, the phylogenomic delineation provided an insight into the adaptation and molecular evolution of MIR172 to changing environmental conditions (biotic and abiotic) of phototropic rice through natural selection and the opportunity to harness untapped genomic regions from rice wild relatives (RWR).
Collapse
Affiliation(s)
- Prasanta K Dash
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Payal Gupta
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | | | | | - Mihir Ranjan Mohanty
- Department of Genetics & Plant Breeding (RRTTS, Jeypore), Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Pravat K Roul
- Department of Genetics & Plant Breeding (RRTTS, Jeypore), Odisha University of Agriculture and Technology, Bhubaneswar 751003, India
| | - Nagendra K Singh
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Rhitu Rai
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| |
Collapse
|
16
|
Tang HB, Wang J, Wang L, Shang GD, Xu ZG, Mai YX, Liu YT, Zhang TQ, Wang JW. Anisotropic cell growth at the leaf base promotes age-related changes in leaf shape in Arabidopsis thaliana. THE PLANT CELL 2023; 35:1386-1407. [PMID: 36748203 PMCID: PMC10118278 DOI: 10.1093/plcell/koad031] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 05/17/2023]
Abstract
Plants undergo extended morphogenesis. The shoot apical meristem (SAM) allows for reiterative development and the formation of new structures throughout the life of the plant. Intriguingly, the SAM produces morphologically different leaves in an age-dependent manner, a phenomenon known as heteroblasty. In Arabidopsis thaliana, the SAM produces small orbicular leaves in the juvenile phase, but gives rise to large elliptical leaves in the adult phase. Previous studies have established that a developmental decline of microRNA156 (miR156) is necessary and sufficient to trigger this leaf shape switch, although the underlying mechanism is poorly understood. Here we show that the gradual increase in miR156-targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE transcription factors with age promotes cell growth anisotropy in the abaxial epidermis at the base of the leaf blade, evident by the formation of elongated giant cells. Time-lapse imaging and developmental genetics further revealed that the establishment of adult leaf shape is tightly associated with the longitudinal cell expansion of giant cells, accompanied by a prolonged cell proliferation phase in their vicinity. Our results thus provide a plausible cellular mechanism for heteroblasty in Arabidopsis, and contribute to our understanding of anisotropic growth in plants.
Collapse
Affiliation(s)
- Hong-Bo Tang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Juan Wang
- School of Statistics and Mathematics, Inner Mongolia University of Finance and Economics, Huhehaote 010070, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- University of Chinese Academy of Sciences (UCAS), Shanghai 200032, China
| | - Yan-Xia Mai
- Core Facility Center of CEMPS, Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Ye-Tong Liu
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- Shanghai Normal University, College of Life and Environmental Sciences, Shanghai 200234, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Shanghai 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
17
|
Chen F, Zhang H, Li H, Lian L, Wei Y, Lin Y, Wang L, He W, Cai Q, Xie H, Zhang H, Zhang J. IPA1 improves drought tolerance by activating SNAC1 in rice. BMC PLANT BIOLOGY 2023; 23:55. [PMID: 36698063 PMCID: PMC9875436 DOI: 10.1186/s12870-023-04062-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/13/2023] [Indexed: 05/27/2023]
Abstract
Drought is a major abiotic stress to rice (Oryza sativa) during growth. Ideal Plant Architecture (IPA1), the first cloned gene controlling the ideal plant type in rice, has been reported to function in both ideal rice plant architecture and biotic resistance. Here, we report that the IPA1/OsSPL14, encoding a transcriptional factor, positively regulates drought tolerance in rice. The IPA1 is constitutively expressed and regulated by H2O2, abscisic acid, NaCl and polyethylene glycol 6000 treatments in rice. Furthermore, the IPA1-knockout plants showed much greater accumulation of H2O2 as measured by 3,3'-diaminobenzidine staining in leaves compared with WT plants. Yeast one-hybrid, dual-luciferase and electrophoretic mobility shift assays indicated that the IPA1 directly activates the promoter of SNAC1. Expression of SNAC1 is significantly down-regulated in IPA1 knockout plants. Further investigation indicated that the IPA1 plays a positive role in drought-stress tolerance by inducing reactive oxygen species scavenging in rice. Together, these findings indicated that the IPA1 played important roles in drought tolerance by regulating SNAC1, thus activating the antioxidant system in rice.
Collapse
Affiliation(s)
- Feihe Chen
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Haomin Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hong Li
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Ling Lian
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yidong Wei
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Yuelong Lin
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Lanning Wang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Wei He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Qiuhua Cai
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hongguang Xie
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China
| | - Hua Zhang
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, 350018, China.
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops/Key Laboratory of Germplasm Innovation and Molecular Breeding of Hybrid Rice for South China, Ministry of Agriculture and Affairs, P.R. China/Incubator of National Key Laboratory of Germplasm Innovation and Molecular Breeding between Fujian and Ministry of Sciences and Technology/Fuzhou Branch, National Rice Improvement Center of China/Fujian Engineering Laboratory of Crop Molecular Breeding/Fujian Key Laboratory of Rice Molecular Breeding, Fuzhou, 350003, China.
| |
Collapse
|
18
|
Hjertaas AC, Preston JC, Kainulainen K, Humphreys AM, Fjellheim S. Convergent evolution of the annual life history syndrome from perennial ancestors. FRONTIERS IN PLANT SCIENCE 2023; 13:1048656. [PMID: 36684797 PMCID: PMC9846227 DOI: 10.3389/fpls.2022.1048656] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Despite most angiosperms being perennial, once-flowering annuals have evolved multiple times independently, making life history traits among the most labile trait syndromes in flowering plants. Much research has focused on discerning the adaptive forces driving the evolution of annual species, and in pinpointing traits that distinguish them from perennials. By contrast, little is known about how 'annual traits' evolve, and whether the same traits and genes have evolved in parallel to affect independent origins of the annual syndrome. Here, we review what is known about the distribution of annuals in both phylogenetic and environmental space and assess the evidence for parallel evolution of annuality through similar physiological, developmental, and/or genetic mechanisms. We then use temperate grasses as a case study for modeling the evolution of annuality and suggest future directions for understanding annual-perennial transitions in other groups of plants. Understanding how convergent life history traits evolve can help predict species responses to climate change and allows transfer of knowledge between model and agriculturally important species.
Collapse
Affiliation(s)
- Ane C. Hjertaas
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Jill C. Preston
- Department of Plant Biology, The University of Vermont, Burlington, VT, United States
| | - Kent Kainulainen
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Aelys M. Humphreys
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Siri Fjellheim
- Department of Plant Sciences, Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
19
|
Genome-Wide Identification and Characterization of the SBP Gene Family in Passion Fruit ( Passiflora edulis Sims). Int J Mol Sci 2022; 23:ijms232214153. [PMID: 36430627 PMCID: PMC9695787 DOI: 10.3390/ijms232214153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
The SQUAMOSA promoter binding proteins (SBPs) gene family plays important roles in plant growth and development. The SBP gene family has been identified and reported in many species, but it has not been well studied in passion fruit. In this study, a total of 14 SBP genes were identified in passion fruit and named from PeSBP1 to PeSBP14 based on their chromosomal distribution. The phylogenetic tree, gene structure, conserved motifs, collinearity analysis, and expression patterns of the identified SBP members were analyzed. We classified the PeSBP genes into eight groups (I to VIII) according to the phylogenetic tree, gene structure, and conserved motifs. Synteny analysis found that 5 homologous gene pairs existed in PeSBP genes and 11 orthologous gene pairs existed between passion fruit and Arabidopsis. Synonymous nucleotide substitution analysis showed that the PeSBP genes were under strong negative selection. The expression pattern of PeSBP genes in seed, root, leaf, and flower showed that nine of the PeSBP genes displayed high expression in the leaf and the flower. The expression patterns of PeSBP3/6/8/9/10 were further detected by qRT-PCR. In addition, differences in the expression levels occurred for each gene in the different flower organs and at the different developmental stages. There were large differences among SBPs based on transcriptional levels under cold, heat, salt, and osmotic stress conditions. Altogether, this study provides an overview of SBP genes in passion fruit and lays the foundation for further functional analysis.
Collapse
|
20
|
Ye R, Wang M, Du H, Chhajed S, Koh J, Liu KH, Shin J, Wu Y, Shi L, Xu L, Chen S, Zhang Y, Sheen J. Glucose-driven TOR-FIE-PRC2 signalling controls plant development. Nature 2022; 609:986-993. [PMID: 36104568 PMCID: PMC9530021 DOI: 10.1038/s41586-022-05171-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/01/2022] [Indexed: 01/24/2023]
Abstract
Nutrients and energy have emerged as central modulators of developmental programmes in plants and animals1-3. The evolutionarily conserved target of rapamycin (TOR) kinase is a master integrator of nutrient and energy signalling that controls growth. Despite its key regulatory roles in translation, proliferation, metabolism and autophagy2-5, little is known about how TOR shapes developmental transitions and differentiation. Here we show that glucose-activated TOR kinase controls genome-wide histone H3 trimethylation at K27 (H3K27me3) in Arabidopsis thaliana, which regulates cell fate and development6-10. We identify FERTILIZATION-INDEPENDENT ENDOSPERM (FIE), an indispensable component of Polycomb repressive complex 2 (PRC2), which catalyses H3K27me3 (refs. 6-8,10-12), as a TOR target. Direct phosphorylation by TOR promotes the dynamic translocation of FIE from the cytoplasm to the nucleus. Mutation of the phosphorylation site on FIE abrogates the global H3K27me3 landscape, reprogrammes the transcriptome and disrupts organogenesis in plants. Moreover, glucose-TOR-FIE-PRC2 signalling modulates vernalization-induced floral transition. We propose that this signalling axis serves as a nutritional checkpoint leading to epigenetic silencing of key transcription factor genes that specify stem cell destiny in shoot and root meristems and control leaf, flower and silique patterning, branching and vegetative-to-reproduction transition. Our findings reveal a fundamental mechanism of nutrient signalling in direct epigenome reprogramming, with broad relevance for the developmental control of multicellular organisms.
Collapse
Affiliation(s)
- Ruiqiang Ye
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Meiyue Wang
- National Key Laboratory of Plant Molecular Genetics, CAS, Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of the Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Hao Du
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Shweta Chhajed
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
| | - Jin Koh
- Proteomics and Mass Spectrometry, Interdisciplinary Centre for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Kun-Hsiang Liu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, and Institute of Future Agriculture, Northwest Agriculture and Forestry University, Yangling, China
| | - Jinwoo Shin
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Yue Wu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Shi
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Xu
- National Key Laboratory of Plant Molecular Genetics, CAS, Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Sixue Chen
- Department of Biology, Genetics Institute, Plant Molecular and Cellular Biology Program, University of Florida, Gainesville, FL, USA
- Proteomics and Mass Spectrometry, Interdisciplinary Centre for Biotechnology Research, University of Florida, Gainesville, FL, USA
| | - Yijing Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS, Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Zhang Z, Liu J, Cao S, Guo Q, Sun Y, Niu D, Long C, Fan Y, Li Y. The RpTOE1- RpFT Module Is Involved in Rejuvenation during Root-Based Vegetative Propagation in Robinia pseudoacacia. Int J Mol Sci 2022; 23:ijms23095079. [PMID: 35563481 PMCID: PMC9104387 DOI: 10.3390/ijms23095079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/28/2022] [Accepted: 04/30/2022] [Indexed: 02/07/2023] Open
Abstract
Vegetative propagation is an important method of reproduction and rejuvenation in horticulture and forestry plants with a long lifespan. Although substantial juvenile clones have been obtained through the vegetative propagation of ornamental plants, the molecular factors that regulate rejuvenation during vegetative propagation are largely unknown. Here, root sprouting and root cutting of Robinia pseudoacacia were used as two vegetative propagation methods. From two consecutive years of transcriptome data from rejuvenated seedlings and mature trees, one gene module and one miRNA module were found to be specifically associated with rejuvenation during vegetative propagation through weighted gene co-expression network analysis (WGCNA). In the gene module, a transcription factor-encoding gene showed high expression during vegetative propagation, and it was subsequently named RpTOE1 through homology analysis. Heterologous overexpression of RpTOE1 in wild-type Arabidopsis and toe1 toe2 double mutants prolonged the juvenile phase. The qRT-PCR results predicted RpFT to be a downstream gene that was regulated by RpTOE1. Further investigation of the protein-DNA interactions using yeast one-hybrid, electrophoretic mobility shift, and dual luciferase reporter assays confirmed that RpTOE1 negatively regulated RpFT by binding directly to the TOE binding site (TBS)-like motif on its promoter. On the basis of these results, we showed that the high expression of RpTOE1 during vegetative propagation and its inhibition of RpFT played a key role in the phase reversal of R. pseudoacacia.
Collapse
Affiliation(s)
- Zijie Zhang
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Jie Liu
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Sen Cao
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Qi Guo
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Yuhan Sun
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Dongsheng Niu
- Black Locust Seed Orchard of Jixian County, Linfen 042200, China;
| | - Cui Long
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Yingming Fan
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
| | - Yun Li
- Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Z.Z.); (J.L.); (S.C.); (Q.G.); (Y.S.); (C.L.); (Y.F.)
- Correspondence: ; Tel./Fax: +86-10-6233-6094
| |
Collapse
|
22
|
Advances in the regulation of plant salt-stress tolerance by miRNA. Mol Biol Rep 2022; 49:5041-5055. [PMID: 35381964 DOI: 10.1007/s11033-022-07179-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 01/19/2022] [Indexed: 12/17/2022]
Abstract
Salt stress significantly affects the growth, development, yield, and quality of plants. MicroRNAs (miRNAs) are involved in various stress responses via target gene regulation. Their role in regulating salt stress has also received significant attention from researchers. Various transcription factor families are the common target genes of plant miRNAs. Thus, regulating the expression of miRNAs is a novel method for developing salt-tolerant crops. This review summarizes plant miRNAs that mediate salt tolerance, specifically miRNAs that have been utilized in genetic engineering to modify plant salinity tolerance. The molecular mechanism by which miRNAs mediate salt stress tolerance merits elucidation, and this knowledge will promote the development of miRNA-mediated salt-tolerant crops and provide new strategies against increasingly severe soil salinization.
Collapse
|
23
|
Gao J, Zhang K, Cheng YJ, Yu S, Shang GD, Wang FX, Wu LY, Xu ZG, Mai YX, Zhao XY, Zhai D, Lian H, Wang JW. A robust mechanism for resetting juvenility during each generation in Arabidopsis. NATURE PLANTS 2022; 8:257-268. [PMID: 35318444 DOI: 10.1038/s41477-022-01110-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 02/10/2022] [Indexed: 05/02/2023]
Abstract
Multicellular organisms undergo several developmental transitions during their life cycles. In contrast to animals, the plant germline is derived from adult somatic cells. As such, the juvenility of a plant must be reset in each generation. Previous studies have demonstrated that the decline in the levels of miR156/7 with age drives plant maturation. Here we show that the resetting of plant juvenility during each generation is mediated by de novo activation of MIR156/7 in Arabidopsis. Blocking this process leads to a shortened juvenile phase and premature flowering in the offspring. In particular, an Arabidopsis plant devoid of miR156/7 flowers even without formation of rosette leaves in long days. Mechanistically, we find that different MIR156/7 genes are reset at different developmental stages through distinct reprogramming routes. Among these genes, MIR156A, B and C are activated de novo during sexual reproduction and embryogenesis, while MIR157A and C are reset upon seed germination. This redundancy generates a robust reset mechanism that ensures accurate restoration of the juvenile phase in each plant generation.
Collapse
Affiliation(s)
- Jian Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Ke Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Ying-Juan Cheng
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Sha Yu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Guan-Dong Shang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Fu-Xiang Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Lian-Yu Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Yan-Xia Mai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin-Yan Zhao
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai, China
| | - Dong Zhai
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
24
|
Siqueira JA, Otoni WC, Araújo WL. The hidden half comes into the spotlight: Peeking inside the black box of root developmental phases. PLANT COMMUNICATIONS 2022; 3:100246. [PMID: 35059627 PMCID: PMC8760039 DOI: 10.1016/j.xplc.2021.100246] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 08/13/2021] [Accepted: 09/18/2021] [Indexed: 05/30/2023]
Abstract
Efficient use of natural resources (e.g., light, water, and nutrients) can be improved with a tailored developmental program that maximizes the lifetime and fitness of plants. In plant shoots, a developmental phase represents a time window in which the meristem triggers the development of unique morphological and physiological traits, leading to the emergence of leaves, flowers, and fruits. Whereas developmental phases in plant shoots have been shown to enhance food production in crops, this phenomenon has remained poorly investigated in roots. In light of recent advances, we suggest that root development occurs in three main phases: root apical meristem appearance, foraging, and senescence. We provide compelling evidence suggesting that these phases are regulated by at least four developmental pathways: autonomous, non-autonomous, hormonal, and periodic. Root developmental pathways differentially coordinate organ plasticity, promoting morphological alterations, tissue regeneration, and cell death regulation. Furthermore, we suggest how nutritional checkpoints may allow progression through the developmental phases, thus completing the root life cycle. These insights highlight novel and exciting advances in root biology that may help maximize the productivity of crops through more sustainable agriculture and the reduced use of chemical fertilizers.
Collapse
|
25
|
Cell division in the shoot apical meristem is a trigger for miR156 decline and vegetative phase transition in Arabidopsis. Proc Natl Acad Sci U S A 2021; 118:2115667118. [PMID: 34750273 DOI: 10.1073/pnas.2115667118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2021] [Indexed: 11/18/2022] Open
Abstract
What determines the rate at which a multicellular organism matures is a fundamental question in biology. In plants, the decline of miR156 with age serves as an intrinsic, evolutionarily conserved timer for the juvenile-to-adult phase transition. However, the way in which age regulates miR156 abundance is poorly understood. Here, we show that the rate of decline in miR156 is correlated with developmental age rather than chronological age. Mechanistically, we found that cell division in the apical meristem is a trigger for miR156 decline. The transcriptional activity of MIR156 genes is gradually attenuated by the deposition of the repressive histone mark H3K27me3 along with cell division. Our findings thus provide a plausible explanation of why the maturation program of a multicellular organism is unidirectional and irreversible under normal growth conditions and suggest that cell quiescence is the fountain of youth in plants.
Collapse
|
26
|
Liu Y, Aslam M, Yao LA, Zhang M, Wang L, Chen H, Huang Y, Qin Y, Niu X. Genomic analysis of SBP gene family in Saccharum spontaneum reveals their association with vegetative and reproductive development. BMC Genomics 2021; 22:767. [PMID: 34706643 PMCID: PMC8549313 DOI: 10.1186/s12864-021-08090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 10/15/2021] [Indexed: 11/10/2022] Open
Abstract
Background SQUAMOSA promoter binding proteins (SBPs) genes encode a family of plant-specific transcription factors involved in various growth and development processes, including flower and fruit development, leaf initiation, phase transition, and embryonic development. The SBP gene family has been identified and characterized in many species, but no systematic analysis of the SBP gene family has been carried out in sugarcane. Results In the present study, a total of 50 sequences for 30 SBP genes were identified by the genome-wide analysis and designated SsSBP1 to SsSBP30 based on their chromosomal distribution. According to the phylogenetic tree, gene structure and motif features, the SsSBP genes were classified into eight groups (I to VIII). By synteny analysis, 27 homologous gene pairs existed in SsSBP genes, and 37 orthologous gene pairs between sugarcane and sorghum were found. Expression analysis in different tissues, including vegetative and reproductive organs, showed differential expression patterns of SsSBP genes, indicating their functional diversity in the various developmental processes. Additionally, 22 SsSBP genes were predicted as the potential targets of miR156. The differential expression pattern of miR156 exhibited a negative correlation of transcription levels between miR156 and the SsSBP gene in different tissues. Conclusions The sugarcane genome possesses 30 SsSBP genes, and they shared similar gene structures and motif features in their subfamily. Based on the transcriptional and qRT-PCR analysis, most SsSBP genes were found to regulate the leaf initial and female reproductive development. The present study comprehensively and systematically analyzed SBP genes in sugarcane and provided a foundation for further studies on the functional characteristics of SsSBP genes during different development processes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08090-3.
Collapse
Affiliation(s)
- Yanhui Liu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China.,College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mohammad Aslam
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Li-Ang Yao
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Man Zhang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lulu Wang
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China
| | - Huihuang Chen
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youmei Huang
- College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuan Qin
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China. .,College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Xiaoping Niu
- Guangxi Key Laboratory of Sugarcane Biology, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
27
|
Kanojia A, Shrestha DK, Dijkwel PP. Primary metabolic processes as drivers of leaf ageing. Cell Mol Life Sci 2021; 78:6351-6364. [PMID: 34279698 PMCID: PMC8558203 DOI: 10.1007/s00018-021-03896-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/29/2021] [Accepted: 06/29/2021] [Indexed: 12/26/2022]
Abstract
Ageing in plants is a highly coordinated and complex process that starts with the birth of the plant or plant organ and ends with its death. A vivid manifestation of the final stage of leaf ageing is exemplified by the autumn colours of deciduous trees. Over the past decades, technological advances have allowed plant ageing to be studied on a systems biology level, by means of multi-omics approaches. Here, we review some of these studies and argue that these provide strong support for basic metabolic processes as drivers for ageing. In particular, core cellular processes that control the metabolism of chlorophyll, amino acids, sugars, DNA and reactive oxygen species correlate with leaf ageing. However, while multi-omics studies excel at identifying correlative processes and pathways, molecular genetic approaches can provide proof that such processes and pathways control ageing, by means of knock-out and ectopic expression of predicted regulatory genes. Therefore, we also review historic and current molecular evidence to directly test the hypotheses unveiled by the systems biology approaches. We found that the molecular genetic approaches, by and large, confirm the multi-omics-derived hypotheses with notable exceptions, where there is scant evidence that chlorophyll and DNA metabolism are important drivers of leaf ageing. We present a model that summarises the core cellular processes that drive leaf ageing and propose that developmental processes are tightly linked to primary metabolism to inevitably lead to ageing and death.
Collapse
Affiliation(s)
- Aakansha Kanojia
- Center of Plant Systems Biology and Biotechnology, Ruski 139 Blvd., Plovdiv, 4000, Bulgaria
| | - Deny K Shrestha
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand
| | - Paul P Dijkwel
- School of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, New Zealand.
| |
Collapse
|
28
|
Wang L, Yu P, Lyu J, Hu Y, Han C, Bai MY, Fan M. BZR1 Physically Interacts with SPL9 to Regulate the Vegetative Phase Change and Cell Elongation in Arabidopsis. Int J Mol Sci 2021; 22:ijms221910415. [PMID: 34638756 PMCID: PMC8509050 DOI: 10.3390/ijms221910415] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/23/2021] [Accepted: 09/23/2021] [Indexed: 11/23/2022] Open
Abstract
As sessile organisms, the precise development phase transitions are very important for the success of plant adaptability, survival and reproduction. The transition from juvenile to the adult phase—referred to as the vegetative phase change—is significantly influenced by numbers of endogenous and environmental signals. Here, we showed that brassinosteroid (BR), a major growth-promoting steroid hormone, positively regulates the vegetative phase change in Arabidopsis thaliana. The BR-deficient mutant det2-1 and BR-insensitive mutant bri1-301 displayed the increased ratio of leaf width to length and reduced blade base angle. The plant specific transcription factors SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) are key masters for the vegetative phase transition in plants. The expression levels of SPL9, SPL10 and SPL15 were significantly induced by BR treatment, but reduced in bri1-116 mutant compared to wild-type plants. The gain-of-function pSPL9:rSPL9 transgenic plants displayed the BR hypersensitivity on hypocotyl elongation and partially suppressed the delayed vegetative phase change of det2-1 and bri1-301. Furthermore, we showed that BRASSINAZOLE-RESISTANT 1 (BZR1), the master transcription factor of BR signaling pathway, interacted with SPL9 to cooperatively regulate the expression of downstream genes. Our findings reveal an important role for BRs in promoting vegetative phase transition through regulating the activity of SPL9 at transcriptional and post-transcriptional levels.
Collapse
|
29
|
Zierer W, Rüscher D, Sonnewald U, Sonnewald S. Tuber and Tuberous Root Development. ANNUAL REVIEW OF PLANT BIOLOGY 2021; 72:551-580. [PMID: 33788583 DOI: 10.1146/annurev-arplant-080720-084456] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Root and tuber crops have been an important part of human nutrition since the early days of humanity, providing us with essential carbohydrates, proteins, and vitamins. Today, they are especially important in tropical and subtropical regions of the world, where they help to feed an ever-growing population. Early induction and storage organ size are important agricultural traits, as they determine yield over time. During potato tuberization, environmental and metabolic status are sensed, ensuring proper timing of tuberization mediated by phloem-mobile signals. Coordinated cellular restructuring and expansion growth, as well as controlled storage metabolism in the tuber, are executed. This review summarizes our current understanding of potato tuber development and highlights similarities and differences to important tuberous root crop species like sweetpotato and cassava. Finally, we point out knowledge gaps that need to be filled before a complete picture of storage organ development can emerge.
Collapse
Affiliation(s)
- Wolfgang Zierer
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - David Rüscher
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, Friedrich-Alexander-University Erlangen-Nuremberg, 91058 Erlangen, Germany; , , ,
| |
Collapse
|
30
|
Reinvigoration/Rejuvenation Induced through Micrografting of Tree Species: Signaling through Graft Union. PLANTS 2021; 10:plants10061197. [PMID: 34208406 PMCID: PMC8231136 DOI: 10.3390/plants10061197] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/01/2021] [Accepted: 06/09/2021] [Indexed: 02/05/2023]
Abstract
Trees have a distinctive and generally long juvenile period during which vegetative growth rate is rapid and floral organs do not differentiate. Among trees, the juvenile period can range from 1 year to 15–20 years, although with some forest tree species, it can be longer. Vegetative propagation of trees is usually much easier during the juvenile phase than with mature phase materials. Therefore, reversal of maturity is often necessary in order to obtain materials in which rooting ability has been restored. Micrografting has been developed for trees to address reinvigoration/rejuvenation of elite selections to facilitate vegetative propagation. Generally, shoots obtained after serial grafting have increased rooting competence and develop juvenile traits; in some cases, graft-derived shoots show enhanced in vitro proliferation. Recent advances in graft signaling have shown that several factors, e.g., plant hormones, proteins, and different types of RNA, could be responsible for changes in the scion. The focus of this review includes (1) a discussion of the differences between the juvenile and mature growth phases in trees, (2) successful restoration of juvenile traits through micrografting, and (3) the nature of the different signals passing through the graft union.
Collapse
|
31
|
Gioppato HA, Dornelas MC. Plant design gets its details: Modulating plant architecture by phase transitions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:1-14. [PMID: 33799013 DOI: 10.1016/j.plaphy.2021.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Plants evolved different strategies to better adapt to the environmental conditions in which they live: the control of their body architecture and the timing of phase change are two important processes that can improve their fitness. As they age, plants undergo two major phase changes (juvenile to adult and adult to reproductive) that are a response to environmental and endogenous signals. These phase transitions are accompanied by alterations in plant morphology and also by changes in physiology and the behavior of gene regulatory networks. Six main pathways involving environmental and endogenous cues that crosstalk with each other have been described as responsible for the control of plant phase transitions: the photoperiod pathway, the autonomous pathway, the vernalization pathway, the temperature pathway, the GA pathway, and the age pathway. However, studies have revealed that sugar is also involved in phase change and the control of branching behavior. In this review, we discuss recent advances in plant biology concerning the genetic and molecular mechanisms that allow plants to regulate phase transitions in response to the environment. We also propose connections between phase transition and plant architecture control.
Collapse
Affiliation(s)
- Helena Augusto Gioppato
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil
| | - Marcelo Carnier Dornelas
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil.
| |
Collapse
|
32
|
Qin F, Yu B, Li W. Heat shock protein 101 (HSP101) promotes flowering under nonstress conditions. PLANT PHYSIOLOGY 2021; 186:407-419. [PMID: 33561259 PMCID: PMC8154077 DOI: 10.1093/plphys/kiab052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 01/10/2021] [Indexed: 05/13/2023]
Abstract
Heat shock proteins (HSPs) are stress-responsive proteins that are conserved across all organisms. Heat shock protein 101 (HSP101) has an important role in thermotolerance owing to its chaperone activity. However, if and how it functions in development under nonstress conditions is not yet known. By using physiological, molecular, and genetic methods, we investigated the role of HSP101 in the control of flowering in Arabidopsis (Arabidopsis thaliana (L.) Heynh.) under nonstress conditions. Knockout and overexpression of HSP101 cause late and early flowering, respectively. Late flowering can be restored by rescue of HSP101. HSP101 regulates the expression of genes involved in the six known flowering pathways; the most negatively regulated genes are FLOWERING LOCUS C (FLC) and SHORT VEGETATIVE PHASE (SVP); downstream integrators of the flowering pathways are positively regulated. The late-flowering phenotype of loss-of-HSP101 mutants is suppressed by both the mutations of FLC and SVP. The responses of flowering time to exogenous signals do not change in HSP101 mutants. HSP101 is also found in nonspecific regions according to subcellular localization. We found that HSP101 promotes flowering under nonstress conditions and that this promotion depends on FLC and SVP. Our data suggest that this promotion could occur through a multiple gene regulation mechanism.
Collapse
Affiliation(s)
- Feng Qin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Buzhu Yu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Yuxi Normal University, Yuxi 653100, China
| | - Weiqi Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Author for communication:
| |
Collapse
|
33
|
Sun L, Zhu Z. The Molecular Basis of Age-Modulated Plant De Novo Root Regeneration Decline in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2021; 62:3-7. [PMID: 33079183 DOI: 10.1093/pcp/pcaa134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 10/07/2020] [Indexed: 06/11/2023]
Abstract
Plants possess a regeneration capacity that enables them to survive after wounding. For example, detached Arabidopsis thaliana leaves are able to form adventitious roots from their cutting sites even in the absence of exogenous hormone supplements, as process termed de novo root regeneration (DNRR). Wounding rapidly induces auxin biosynthesis at the cutting sites and then elicits a signaling cascade to promote cell fate transitions and finally generate the adventitious roots. However, rooting rates in older plants are much lower than in younger leaf explants. In this review, we highlight the recent breakthroughs in the understanding of DNRR decay in older plants from at least two independent signaling routes: (i) via the accumulation of EIN3 protein in older plants, which directly suppresses expression of WUSCHEL RELATED HOMEOBOX (WOX) genes to inhibit rooting; (ii) the miR156-SPLs-AP2/ERFs pathway, which modulates root regeneration by reducing auxin biosynthesis.
Collapse
Affiliation(s)
- Lili Sun
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Ziqiang Zhu
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
34
|
Lian H, Wang L, Ma N, Zhou CM, Han L, Zhang TQ, Wang JW. Redundant and specific roles of individual MIR172 genes in plant development. PLoS Biol 2021; 19:e3001044. [PMID: 33529193 PMCID: PMC7853526 DOI: 10.1371/journal.pbio.3001044] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 12/10/2020] [Indexed: 02/04/2023] Open
Abstract
Evolutionarily conserved microRNAs (miRNAs) usually have high copy numbers in the genome. The redundant and specific roles of each member of a multimember miRNA gene family are poorly understood. Previous studies have shown that the miR156-SPL-miR172 axis constitutes a signaling cascade in regulating plant developmental transitions. Here, we report the feasibility and utility of CRISPR-Cas9 technology to investigate the functions of all 5 MIR172 family members in Arabidopsis. We show that an Arabidopsis plant devoid of miR172 is viable, although it displays pleiotropic morphological defects. MIR172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching, and floral competence. In particular, we find that the miR156-SPL-miR172 cascade is bifurcated into specific flowering responses by matching pairs of coexpressed SPL and MIR172 genes in different tissues. Our results thus highlight the spatiotemporal changes in gene expression that underlie evolutionary novelties of a miRNA gene family in nature. The expansion of MIR172 genes in the Arabidopsis genome provides molecular substrates for the integration of diverse floral inductive cues, which ensures that plants flower at the optimal time to maximize seed yields. This study uses CRISPR-Cas9 technology to investigate the functions of all five miR172 genes in Arabidopsis, finding that miRNA172 family members exhibit distinct expression pattern and exert functional specificity in regulating meristem size, trichome initiation, stem elongation, shoot branching and floral competence.
Collapse
Affiliation(s)
- Heng Lian
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Long Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ning Ma
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- School of Life Science, Henan University, Kaifeng, China
| | - Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lin Han
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Shanghai, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- ShanghaiTech University, Shanghai, China
- * E-mail:
| |
Collapse
|
35
|
Molecular and genetic pathways for optimizing spikelet development and grain yield. ABIOTECH 2020; 1:276-292. [PMID: 36304128 PMCID: PMC9590455 DOI: 10.1007/s42994-020-00026-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/11/2020] [Indexed: 01/25/2023]
Abstract
The spikelet is a unique structure of inflorescence in grasses that generates one to many flowers depending on its determinate or indeterminate meristem activity. The growth patterns and number of spikelets, furthermore, define inflorescence architecture and yield. Therefore, understanding the molecular mechanisms underlying spikelet development and evolution are attractive to both biologists and breeders. Based on the progress in rice and maize, along with increasing numbers of genetic mutants and genome sequences from other grass families, the regulatory networks underpinning spikelet development are becoming clearer. This is particularly evident for domesticated traits in agriculture. This review focuses on recent progress on spikelet initiation, and spikelet and floret fertility, by comparing results from Arabidopsis with that of rice, sorghum, maize, barley, wheat, Brachypodium distachyon, and Setaria viridis. This progress may benefit genetic engineering and molecular breeding to enhance grain yield.
Collapse
|
36
|
Zhang Z, Sun Y, Li Y. Plant rejuvenation: from phenotypes to mechanisms. PLANT CELL REPORTS 2020; 39:1249-1262. [PMID: 32780162 DOI: 10.1007/s00299-020-02577-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 06/11/2023]
Abstract
Plant rejuvenation refers to the reversal of the adult phase in plants and the recovery of part or all of juvenile plant characteristics. The growth and reproductive vitality of plants can be increased after rejuvenation. In recent years, research has successfully reversed the development clock in plants by certain methods; created rejuvenated plants and revealed the basic rules of plant morphology, physiology and reproduction. Here, we reconstitute the changes at the morphological and macromolecular levels, including those in RNA, phytohormones and DNA, during plant rejuvenation. In addition, the characteristics of plant phase changes that can be used as references for plant rejuvenation are also summarized. We further propose possible mechanisms for plant rejuvenation, methods for reversing plant development and problems that should be avoided. Overall, this study highlights the physiological and molecular events involved in plant rejuvenation.
Collapse
Affiliation(s)
- Zijie Zhang
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yuhan Sun
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Yun Li
- Beijing Advanced Innovation Center for Tree Breeding By Molecular Design, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Laboratory For Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
| |
Collapse
|
37
|
Sobral R, Silva HG, Laranjeira S, Magalhães J, Andrade L, Alhinho AT, Costa MMR. Unisexual flower initiation in the monoecious Quercus suber L.: a molecular approach. TREE PHYSIOLOGY 2020; 40:1260-1276. [PMID: 32365206 DOI: 10.1093/treephys/tpaa061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
Several plant species display a temporal separation of the male and female flower organ development to enhance outbreeding; however, little is known regarding the genetic mechanisms controlling this temporal separation. Quercus suber is a monoecious oak tree with accentuated protandry: in late winter, unisexual male flowers emerge adjacent to the swollen buds, whereas unisexual female flowers emerge in the axils of newly formed leaves formed during spring (4-8 weeks after male flowering). Here, a phylogenetic profiling has led to the identification of cork oak homologs of key floral regulatory genes. The role of these cork oak homologs during flower development was identified with functional studies in Arabidopsis thaliana. The expression profile throughout the year of flower regulators (inducers and repressors), in leaves and buds, suggests that the development of male and female flowers may be preceded by separated induction events. Female flowers are most likely induced during the vegetative flush occurring in spring, whereas male flowers may be induced in early summer. Male flowers stay enclosed within the pre-dormant buds, but complete their development before the vegetative flush of the following year, displaying a long period of anthesis that spans the dormant period. Our results portray a genetic mechanism that may explain similar reproductive habits in other monoecious tree species.
Collapse
Affiliation(s)
- Rómulo Sobral
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Helena Gomes Silva
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Sara Laranjeira
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Joana Magalhães
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Luís Andrade
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Teresa Alhinho
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Maria Manuela Ribeiro Costa
- Biosystems and Integrative Sciences Institute (BioISI), Plant Functional Biology Centre, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
38
|
Zhao H, Lin K, Ma L, Chen Q, Gan S, Li G. Arabidopsis NUCLEAR FACTOR Y A8 inhibits the juvenile-to-adult transition by activating transcription of MIR156s. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4890-4902. [PMID: 32445333 DOI: 10.1093/jxb/eraa197] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/21/2020] [Indexed: 06/11/2023]
Abstract
Vegetative (juvenile-to-adult) and flowering (vegetative-to-reproductive) phase changes are crucial in the life cycle of higher plants. MicroRNA156 (miR156) and its target SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) genes are master regulators that determine vegetative phase changes. The miR156 level gradually declines as a plant ages and its expression is rapidly repressed by sugar. However, the underlying regulatory mechanism of transcriptional regulation of the MIR156 gene remains largely unknown. In this study, we demonstrated that Arabidopsis NUCLEAR FACTOR Y A8 (NF-YA8) binds directly to CCAAT cis-elements in the promoters of multiple MIR156 genes, thus activating their transcription and inhibiting the juvenile-to-adult transition. NF-YA8 was highly expressed in juvenile-stage leaves, and significantly repressed with developmental age and by sugar signals. Our results suggest that NF-YA8 acts as a signaling hub, integrating internal developmental age and sugar signals to regulate the transcription of MIR156s, thus affecting the juvenile-to-adult and flowering transitions.
Collapse
Affiliation(s)
- Hang Zhao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Ke Lin
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Lin Ma
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Qingshuai Chen
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Shuo Gan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, P. R. China
| |
Collapse
|
39
|
Cui L, Zheng F, Wang J, Zhang C, Xiao F, Ye J, Li C, Ye Z, Zhang J. miR156a-targeted SBP-Box transcription factor SlSPL13 regulates inflorescence morphogenesis by directly activating SFT in tomato. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1670-1682. [PMID: 31916387 PMCID: PMC7336387 DOI: 10.1111/pbi.13331] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 12/18/2019] [Accepted: 12/21/2019] [Indexed: 05/05/2023]
Abstract
The inflorescences and lateral branches of higher plants are generated by lateral meristems. The structure of the inflorescence has a direct effect on fruit yield in tomato (Solanum lycopersicum). We previously demonstrated that miR156a plays important roles in determining the structures of the inflorescences and lateral branches in tomato by suppressing the expression of the SQUAMOSA PROMOTER BINDING PROTEIN LIKE (SPL) transcription factor gene family. However, information on regulatory pathways associated with inflorescence morphogenesis is still lacking. In this study, we demonstrate that SPL13 is the major SPL involved in miR156a-regulated tomato inflorescence structure determination and lateral branch production. Suppressing the expression of SPL13 in tomato increases the number of inflorescences on vegetative branches and lateral branches, decreases the number of flowers and fruit, and reduces fruit size and yield. Genetic and biochemical evidence indicate that SPL13 controls inflorescence development by positively regulating the expression of the tomato inflorescence-associated gene SINGLE FLOWER TRUSS (SFT) by directly binding to its promoter region. Thus, our findings provide a major advance to our understanding of the miR156a-SlSPL-based mechanism that regulates plant architecture and yield in tomato.
Collapse
Affiliation(s)
- Long Cui
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Fangyan Zheng
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Jiafa Wang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Chunli Zhang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Fangming Xiao
- Department of Plant SciencesUniversity of IdahoMoscowIDUSA
| | - Jie Ye
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Changxing Li
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant BiologyMinistry of EducationHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
40
|
Ye BB, Zhang K, Wang JW. The role of miR156 in rejuvenation in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:550-555. [PMID: 31305005 DOI: 10.1111/jipb.12855] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rejuvenation refers to the process enabling plants to regain physiological and molecular characteristics lost after entering the adult phase. The underlying molecular mechanism is poorly understood. Previous studies have revealed that microRNA156 (miR156) is highly accumulated at juvenile stage and maintains juvenile traits by repressing a group of SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factors. Here, we found that induction of miR156 expression in adult leaves can only restore some aspects of juvenile traits, such as loss of epidermal leaf hairs on the lower side of leaves and absence of serration at the leaf edges, but is incapable of delaying flowering and promoting adventitious root production.
Collapse
Affiliation(s)
- Bin-Bin Ye
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), the Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Beijing, 100049, Beijing
| | - Ke Zhang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), the Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), the Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 200031, China
| |
Collapse
|
41
|
Xing L, Qi S, Zhou H, Zhang W, Zhang C, Ma W, Zhang Q, Shah K, Han M, Zhao J. Epigenomic Regulatory Mechanism in Vegetative Phase Transition of Malus hupehensis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4812-4829. [PMID: 32227940 DOI: 10.1021/acs.jafc.0c00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In woody plants, phase transitions substantially affect growth and development. Although there has been considerable interest in the regulatory mechanisms underlying phase changes, the associated epigenetic modifications remain relatively uncharacterized. We examined the DNA methylation changes and the transcriptional responses in adult and juvenile Malus hupehensis leaves. The DNA methylations were 66.61% and 68.3% in the CG context, 49.12% and 52.44% in the CHG context, and 7.02% and 8.22% in the CHH context for the adult and juvenile leaves, respectively. The number of differentially methylated regions in all contexts distributed in the genic regions varied. Additionally, inhibited DNA methylation in adult leaves activated the transcription of indole-3-acetic acid related genes in the signaling, response, and transport pathways. Moreover, the opposite methylation and expression patterns were observed for the SPL and AP2 family genes between the adult and juvenile leaves. Both gene families contribute to the M. hupehensis vegetative phase transition. Furthermore, the hyper-/hypomethylation of the gene body or promoter of transcription factor genes may lead to up-/downregulated gene expression. The methylation levels of the WRKY (22), NAC (21), ERF (8), WOX (2), KNAT (6), EIN3 (2), SCL (7), ZAT (7), and HSF (4) genes were higher in the adult leaves than in the juvenile leaves, whereas the opposite pattern was observed for the TCP (2), MADS-box (11), and DOF (3) genes. An analysis of the correlation between methylation and transcription indicated the methylation of the gene body in all contexts and the methylation of the promoter in the CG and CHG contexts are negatively correlated with gene expression. However, the methylation of the promoter in the CHH context is positively correlated with gene expression. These findings reflect the diversity in the epigenetic regulation of gene expression and may be useful for elucidating the epigenetic regulatory mechanism underlying the M. hupehensis vegetative phase transition.
Collapse
Affiliation(s)
- Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Hua Zhou
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wei Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Chenguang Zhang
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Wenchun Ma
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Qingwei Zhang
- College of Life Science, Southwest University, Chongqing, People's Republic of China
| | - Kamran Shah
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Yangling, Shaanxi, People's Republic of China
| | - Juan Zhao
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Yangling, Shaanxi, People's Republic of China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Yangling, Shaanxi, People's Republic of China
- College of Mechanical and Electronic Engineering, Northwest A & F University, 712100 Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
42
|
Wang Z, Zhu T, Ma W, Fan E, Lu N, Ouyang F, Wang N, Yang G, Kong L, Qu G, Zhang S, Wang J. Potential function of CbuSPL and gene encoding its interacting protein during flowering in Catalpa bungei. BMC PLANT BIOLOGY 2020; 20:105. [PMID: 32143577 PMCID: PMC7060540 DOI: 10.1186/s12870-020-2303-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 02/24/2020] [Indexed: 05/27/2023]
Abstract
BACKGROUND "Bairihua", a variety of the Catalpa bungei, has a large amount of flowers and a long flowering period which make it an excellent material for flowering researches in trees. SPL is one of the hub genes that regulate both flowering transition and development. RESULTS SPL homologues CbuSPL9 was cloned using degenerate primers with RACE. Expression studies during flowering transition in "Bairihua" and ectopic expression in Arabidopsis showed that CbuSPL9 was functional similarly with its Arabidopsis homologues. In the next step, we used Y2H to identify the proteins that could interact with CbuSPL9. HMGA, an architectural transcriptional factor, was identified and cloned for further research. BiFC and BLI showed that CbuSPL9 could form a heterodimer with CbuHMGA in the nucleus. The expression analysis showed that CbuHMGA had a similar expression trend to that of CbuSPL9 during flowering in "Bairihua". Intriguingly, ectopic expression of CbuHMGA in Arabidopsis would lead to aberrant flowers, but did not effect flowering time. CONCLUSIONS Our results implied a novel pathway that CbuSPL9 regulated flowering development, but not flowering transition, with the participation of CbuHMGA. Further investments need to be done to verify the details of this pathway.
Collapse
Affiliation(s)
- Zhi Wang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Tianqing Zhu
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Wenjun Ma
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Erqin Fan
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
- Present address: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 People’s Republic of China
| | - Nan Lu
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Fangqun Ouyang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Nan Wang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Guijuan Yang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Lisheng Kong
- Present address: Department of Biology Centre for Forest Biology, University of Victoria, Victoria 11, BC Canada
| | - Guanzheng Qu
- Present address: State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 26 Hexing Road, Harbin, 150040 People’s Republic of China
| | - Shougong Zhang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| | - Junhui Wang
- Present address: State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091 People’s Republic of China
| |
Collapse
|
43
|
Toriba T, Tokunaga H, Nagasawa K, Nie F, Yoshida A, Kyozuka J. Suppression of Leaf Blade Development by BLADE-ON-PETIOLE Orthologs Is a Common Strategy for Underground Rhizome Growth. Curr Biol 2020; 30:509-516.e3. [PMID: 31956025 DOI: 10.1016/j.cub.2019.11.055] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/11/2019] [Accepted: 11/18/2019] [Indexed: 01/17/2023]
Abstract
Rhizomes are modified stems that grow horizontally underground in various perennial species, a growth habit that is advantageous for vigorous asexual proliferation. In Oryza longistaminata, a rhizomatous wild relative of cultivated rice (Oryza sativa), leaves in the aerial shoots consist of a distal leaf blade and a proximal leaf sheath [1]. Leaf blade formation is, however, suppressed in rhizome leaves. In O. sativa, BLADE-ON-PETIOLE (BOP) genes are the main regulators of proximal-distal leaf patterning [2]. During the juvenile phase of O. sativa, BOP expression is maintained at high levels by the small regulatory RNA microRNA156 (miR156), leading to formation of leaves consisting predominantly of the sheath. Here, we show that in O. longistaminata, high expression of BOPs caused by miR156 was responsible for suppression of the blade in rhizomes and that bop loss-of-function mutants produced leaves consisting of the leaf blade only. Rhizome growth in soil was also hampered in the mutants due to a severe reduction in rhizome tip stiffness. Leaf blade formation is also suppressed in the stolons of Zoysia matrella, a monocot species, and in the rhizomes of Houttuynia cordata, a dicot species, indicating that leaf blade suppression is widely conserved. We also show that strong expression of BOP homologs in both rhizome and stolon leaves rather than in aerial leaves is another conserved feature. We propose that suppression of the leaf blade by BOP is an evolutionary strategy that has been commonly recruited by both rhizomatous and stoloniferous species to establish their unique growth habit.
Collapse
Affiliation(s)
- Taiyo Toriba
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Hiroki Tokunaga
- Center for Sustainable Resource Science, RIKEN, Yokohama 230-0045, Japan
| | - Kazuma Nagasawa
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Fanyu Nie
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Akiko Yoshida
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai 980-8577, Japan.
| |
Collapse
|
44
|
Zheng C, Ye M, Sang M, Wu R. A Regulatory Network for miR156-SPL Module in Arabidopsis thaliana. Int J Mol Sci 2019; 20:ijms20246166. [PMID: 31817723 PMCID: PMC6940959 DOI: 10.3390/ijms20246166] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023] Open
Abstract
Vegetative phase changes in plants describes the transition between juvenile and adult phases of vegetative growth before flowering. It is one of the most fundamental mechanisms for plants to sense developmental signals, presenting a complex process involving many still-unknown determinants. Several studies in annual and perennial plants have identified the conservative roles of miR156 and its targets, SBP/SPL genes, in guiding the switch of plant growth from juvenile to adult phases. Here, we review recent progress in understanding the regulation of miR156 expression and how miR156-SPLs mediated plant age affect other processes in Arabidopsis. Powerful high-throughput sequencing techniques have provided rich data to systematically study the regulatory mechanisms of miR156 regulation network. From this data, we draw an expanded miR156-regulated network that links plant developmental transition and other fundamental biological processes, gaining novel and broad insight into the molecular mechanisms of plant-age-related processes in Arabidopsis.
Collapse
Affiliation(s)
- Chenfei Zheng
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (M.Y.); (M.S.)
| | - Meixia Ye
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (M.Y.); (M.S.)
| | - Mengmeng Sang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (M.Y.); (M.S.)
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (C.Z.); (M.Y.); (M.S.)
- Center for Statistical Genetics, Pennsylvania State University, Hershey, PA 17033, USA
- Correspondence: ; Tel.: +86-10-6322-6264
| |
Collapse
|
45
|
Solomon CU, Drea S. Besides and Beyond Flowering: Other roles of EuAP2 Genes in Plant Development. Genes (Basel) 2019; 10:genes10120994. [PMID: 31805740 PMCID: PMC6947164 DOI: 10.3390/genes10120994] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/27/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
EuAP2 genes are well-known for their role in flower development, a legacy of the founding member of this subfamily of transcription factors, whose mutants lacked petals in Arabidopsis. However, studies of euAP2 genes in several species have accumulated evidence highlighting the diverse roles of euAP2 genes in other aspects of plant development. Here, we emphasize other developmental roles of euAP2 genes in various species and suggest a shift from regarding euAP2 genes as just flowering genes to consider the global role they may be playing in plant development. We hypothesize that their almost universal expression profile and pleiotropic effects of their mutation suggest their involvement in fundamental plant development processes.
Collapse
Affiliation(s)
- Charles U. Solomon
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu 441107, Nigeria
- Correspondence:
| | - Sinéad Drea
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
46
|
Jameson PE, Clemens J. Phase change and flowering in woody plants of the New Zealand flora. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:e6488-e6495. [PMID: 26512056 PMCID: PMC6859511 DOI: 10.1093/jxb/erv472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Heteroblastic and homoblastic woody plants from the New Zealand flora provide a rich playground for testing hypotheses relating to phase change and flowering.
Collapse
Affiliation(s)
- Paula E Jameson
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - John Clemens
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
- Christchurch Botanic Gardens, Christchurch City Council, Christchurch, New Zealand
| |
Collapse
|
47
|
Ahsan MU, Hayward A, Alam M, Bandaralage JH, Topp B, Beveridge CA, Mitter N. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC PLANT BIOLOGY 2019; 19:382. [PMID: 31481026 PMCID: PMC6724330 DOI: 10.1186/s12870-019-1994-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Grafting is the common propagation method for avocado and primarily benefits orchard production by reducing the time to tree productivity. It also allows use of scions and rootstocks specifically selected for improved productivity and commercial acceptance. Rootstocks in avocado may be propagated from mature tree cuttings ('mature'), or from seed ('juvenile'). While the use of mature scion material hastens early bearing/maturity and economic return, the molecular factors involved in the role of the scion and/or rootstock in early bearing/reduced juvenility of the grafted tree are still unknown. RESULTS Here, we utilized juvenility and flowering associated miRNAs; miR156 and miR172 and their putative target genes to screen pre-graft and post-graft material in different combinations from avocado. The abundance of mature miR156, miR172 and the miR156 target gene SPL4, showed a strong correlation to the maturity of the scion and rootstock material in avocado. Graft transmissibility of miR156 and miR172 has been explored in annual plants. Here, we show that the scion may be responsible for grafted tree maturity involving these factors, while the rootstock maturity does not significantly influence miRNA abundance in the scion. We also demonstrate that the presence of leaves on cutting rootstocks supports graft success and contributes towards intergraft signalling involving the carbohydrate-marker TPS1. CONCLUSION Here, we suggest that the scion largely controls the molecular 'maturity' of grafted avocado trees, however, leaves on the rootstock not only promote graft success, but can influence miRNA and mRNA abundance in the scion. This constitutes the first study on scion and rootstock contribution towards grafted tree maturity using the miR156-SPL4-miR172 regulatory module as a marker for juvenility and reproductive competence.
Collapse
Affiliation(s)
- Muhammad Umair Ahsan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Jayeni Hiti Bandaralage
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Christine Anne Beveridge
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland 4072 Australia
| |
Collapse
|
48
|
Ahsan MU, Hayward A, Alam M, Bandaralage JH, Topp B, Beveridge CA, Mitter N. Scion control of miRNA abundance and tree maturity in grafted avocado. BMC PLANT BIOLOGY 2019; 19:382. [PMID: 31481026 DOI: 10.1186/s12870-019-1994-1995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Grafting is the common propagation method for avocado and primarily benefits orchard production by reducing the time to tree productivity. It also allows use of scions and rootstocks specifically selected for improved productivity and commercial acceptance. Rootstocks in avocado may be propagated from mature tree cuttings ('mature'), or from seed ('juvenile'). While the use of mature scion material hastens early bearing/maturity and economic return, the molecular factors involved in the role of the scion and/or rootstock in early bearing/reduced juvenility of the grafted tree are still unknown. RESULTS Here, we utilized juvenility and flowering associated miRNAs; miR156 and miR172 and their putative target genes to screen pre-graft and post-graft material in different combinations from avocado. The abundance of mature miR156, miR172 and the miR156 target gene SPL4, showed a strong correlation to the maturity of the scion and rootstock material in avocado. Graft transmissibility of miR156 and miR172 has been explored in annual plants. Here, we show that the scion may be responsible for grafted tree maturity involving these factors, while the rootstock maturity does not significantly influence miRNA abundance in the scion. We also demonstrate that the presence of leaves on cutting rootstocks supports graft success and contributes towards intergraft signalling involving the carbohydrate-marker TPS1. CONCLUSION Here, we suggest that the scion largely controls the molecular 'maturity' of grafted avocado trees, however, leaves on the rootstock not only promote graft success, but can influence miRNA and mRNA abundance in the scion. This constitutes the first study on scion and rootstock contribution towards grafted tree maturity using the miR156-SPL4-miR172 regulatory module as a marker for juvenility and reproductive competence.
Collapse
Affiliation(s)
- Muhammad Umair Ahsan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Alice Hayward
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Mobashwer Alam
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Jayeni Hiti Bandaralage
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Bruce Topp
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Christine Anne Beveridge
- School of Biological Sciences, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
49
|
Silva PO, Batista DS, Cavalcanti JHF, Koehler AD, Vieira LM, Fernandes AM, Barrera-Rojas CH, Ribeiro DM, Nogueira FTS, Otoni WC. Leaf heteroblasty in Passiflora edulis as revealed by metabolic profiling and expression analyses of the microRNAs miR156 and miR172. ANNALS OF BOTANY 2019; 123:1191-1203. [PMID: 30861065 PMCID: PMC6612941 DOI: 10.1093/aob/mcz025] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 02/07/2019] [Indexed: 05/16/2023]
Abstract
BACKGROUND AND AIMS Juvenile-to-adult phase transition is marked by changes in leaf morphology, mostly due to the temporal development of the shoot apical meristem, a phenomenon known as heteroblasty. Sugars and microRNA-controlled modules are components of the heteroblastic process in Arabidopsis thaliana leaves. However, our understanding about their roles during phase-changing in other species, such as Passiflora edulis, remains limited. Unlike Arabidopsis, P. edulis (a semi-woody perennial climbing vine) undergoes remarkable changes in leaf morphology throughout juvenile-to-adult transition. Nonetheless, the underlying molecular mechanisms are unknown. METHODS Here we evaluated the molecular mechanisms underlying the heteroblastic process by analysing the temporal expression of microRNAs and targets in leaves as well as the leaf metabolome during P. edulis development. KEY RESULTS Metabolic profiling revealed a unique composition of metabolites associated with leaf heteroblasty. Increasing levels of glucose and α-trehalose were observed during juvenile-to-adult phase transition. Accumulation of microRNA156 (miR156) correlated with juvenile leaf traits, whilst miR172 transcript accumulation was associated with leaf adult traits. Importantly, glucose may mediate adult leaf characteristics during de novo shoot organogenesis by modulating miR156-targeted PeSPL9 expression levels at early stages of shoot development. CONCLUSIONS Altogether, our results suggest that specific sugars may act as co-regulators, along with two microRNAs, leading to leaf morphological modifications throughout juvenile-to-adult phase transition in P. edulis.
Collapse
Affiliation(s)
- Priscila O Silva
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Diego S Batista
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Universidade Estadual do Maranhão, São Luís, MA, Brazil
| | - João Henrique F Cavalcanti
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
- Instituto de Educação, Agricultura e Ambiente, Universidade Federal do Amazonas, Humaitá, Amazonas, Brazil
| | - Andréa D Koehler
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Lorena M Vieira
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Amanda M Fernandes
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Carlos Hernan Barrera-Rojas
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- Instituto de Biociências, Universidade Estadual de São Paulo, Botucatu, São Paulo, Brazil
| | | | - Fabio T S Nogueira
- Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, São Paulo, Brazil
- For correspondence. E-mail:
| | - Wagner C Otoni
- Departamento de Biologia Vegetal/Instituto de Biotecnologia Aplicada a Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
50
|
Wu Y, Shi L, Li L, Fu L, Liu Y, Xiong Y, Sheen J. Integration of nutrient, energy, light, and hormone signalling via TOR in plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2227-2238. [PMID: 30715492 PMCID: PMC6463029 DOI: 10.1093/jxb/erz028] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/08/2019] [Indexed: 05/04/2023]
Abstract
The multidomain target of rapamycin (TOR) is an atypical serine/threonine protein kinase resembling phosphatidylinositol lipid kinases, but retains high sequence identity and serves a remarkably conserved role as a master signalling integrator in yeasts, plants, and humans. TOR dynamically orchestrates cell metabolism, biogenesis, organ growth, and development transitions in response to nutrient, energy, hormone, and environmental cues. Here we review recent findings on the versatile and complex roles of TOR in transcriptome reprogramming, seedling, root, and shoot growth, and root hair production activated by sugar and energy signalling. We explore how co-ordination of TOR-mediated light and hormone signalling is involved in root and shoot apical meristem activation, proliferation of leaf primordia, cotyledon/leaf greening, and hypocotyl elongation. We also discuss the emerging TOR functions in response to sulfur assimilation and metabolism and consider potential molecular links and positive feedback loops between TOR, sugar, energy, and other essential macronutrients.
Collapse
Affiliation(s)
- Yue Wu
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lin Shi
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Lei Li
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Liwen Fu
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province, PR China
| | - Yanlin Liu
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province, PR China
| | - Yan Xiong
- Basic Forestry and Proteomics Research Centre, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fujian Province, PR China
| | - Jen Sheen
- Department of Molecular Biology and Centre for Computational and Integrative Biology, Massachusetts General Hospital, and Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|