1
|
Li Y, Huang W, Gao H, Yi G, Yan S. Regulation of starch metabolism in banana fruit: Mechanisms shaping the nutritional quality. CURRENT OPINION IN PLANT BIOLOGY 2025; 84:102698. [PMID: 39999603 DOI: 10.1016/j.pbi.2025.102698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Bananas are nutrient-rich fruits that provide starch, essential vitamins, and minerals and play significant importance in the global economy through extensive production, trade, and consumption. Nutrient metabolic processes, such as starch-to-sugar conversion, are fundamental in shaping the quality of banana fruits. Starch accounts for 15%-35% of fresh fruit weight, and its degradation mediated by ethylene signaling components can increase sweetness, soften texture, and increase the palatability of banana fruit. This review summarizes recent advances in the regulatory mechanism underlying starch metabolism in banana fruits, highlights key research questions for future investigation, and proposes promising strategies to manipulate starch levels to develop new banana varieties with enhanced nutritional quality.
Collapse
Affiliation(s)
- Yaoyao Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China
| | - Wenjie Huang
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Huijun Gao
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China
| | - Ganjun Yi
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Science and Technology Research on Fruit Tree, Guangzhou, 510640, China
| | - Shijuan Yan
- Guangdong Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Fettke J, Fernie AR. Do storage reserves contribute to plant phenotypic plasticity? TRENDS IN PLANT SCIENCE 2025; 30:364-372. [PMID: 39562239 DOI: 10.1016/j.tplants.2024.10.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/22/2024] [Accepted: 10/23/2024] [Indexed: 11/21/2024]
Abstract
The widespread colonization of diverse habitats by plants is attributed to their ability to adapt to changing environments through environmental phenotypic plasticity. This flexibility, particularly in carbon turnover, allows plants to adjust their physiology and development. Plants store carbon reserves as a metabolic strategy to overcome adversity, with a variety of isozymes evolving to enhance metabolic plasticity. Among these isoforms, some with entirely new functions have emerged, involved in novel metabolic pathways for carbon storage. Here, we discuss the role of these carbon stores, their impact on plant plasticity, methods by which such metabolic plasticity can be analyzed, and evolutionary aspects that have led to well-characterized as well as less well-known molecular mechanisms underlying carbon storage.
Collapse
Affiliation(s)
- Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
| | - Alisdair R Fernie
- Central Metabolism, Max-Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| |
Collapse
|
3
|
Zhang W, Meng Z, Yu P, Wang L, Liu W, Song X, Yao Y, Liu X, Meng X. Metabolomics-based analysis of nitric oxide regulation of ginseng herb quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:2800-2810. [PMID: 39659278 DOI: 10.1002/jsfa.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
BACKGROUND Ginsenosides, the primary active ingredients in Panax ginseng, are secondary metabolites. However, their content varies significantly across batches due to differences in environmental conditions and production methods. Ecological stress can increase the levels of reactive oxygen species (ROS) in plants, and ROS can enhance secondary metabolism. Nitric oxide (NO) can promote the production of O2 ·- and H2O2. This study utilized physiological and non-targeted metabolomics to investigate how NO regulates ginseng quality and how P. ginseng adapts to adversity. RESULTS Sodium nitroprusside (SNP, an NO donor) at 0.5 mmol·L-1 significantly increased ROS levels, with O2 ·- increasing by 64.3% (P < 0.01) and H2O2 by 79.2% (P < 0.01). Nitric oxide influenced P. ginseng metabolism, with 24 metabolites showing significant differences. Rotenone, lactic acid, and gluconic acid, which are involved in ROS metabolism, increased significantly, whereas tyrosine decreased. Metabolites involved in secondary metabolic pathways, including campesterol, ginsenosides Rh1, Rb1, Rc, Rd, Rg3, phenylalanine, and tryptophan, increased markedly, whereas 2,3-oxidosqualene, glucose 1-phosphate, ferulic acid, and pyrogallol decreased. Isocitric acid, succinic acid, and 3-isopropylmalic acid, associated with respiratory metabolism, showed significant increases, but pyruvic acid decreased. Finally, 18:0 Lyso PC and 9-hydroxy-10E,12Z-octadecadienoic acid, linked to cell membrane protection, increased significantly, and mannose and raffinose decreased. CONCLUSION Sodium nitroprusside enhances the physiological resilience of P. ginseng under stress and improves its quality. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhaoping Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Pengcheng Yu
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liyang Wang
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wenfei Liu
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiaowen Song
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yao Yao
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xiubo Liu
- Jiamusi College, Heilongjiang University of Chinese Medicine, Jiamusi, China
| | - Xiangcai Meng
- Department of Pharmacognosy, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
4
|
Heutinck AJM, Camenisch S, Fischer-Stettler M, Sharma M, Pfister B, Eicke S, Liu C, Zeeman SC. Branched oligosaccharides cause atypical starch granule initiation in Arabidopsis chloroplasts. PLANT PHYSIOLOGY 2025; 197:kiaf002. [PMID: 39787343 PMCID: PMC11809589 DOI: 10.1093/plphys/kiaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/25/2024] [Accepted: 11/25/2024] [Indexed: 01/12/2025]
Abstract
Plant chloroplasts store starch during the day, which acts as a source of carbohydrates and energy at night. Starch granule initiation relies on the elongation of malto-oligosaccharide primers. In Arabidopsis thaliana, PROTEIN TARGETING TO STARCH 2 (PTST2) and STARCH SYNTHASE 4 (SS4) are essential for the selective binding and elongation of malto-oligosaccharide primers, respectively, and very few granules are initiated in their absence. However, the precise origin and metabolism of the primers remain unknown. Potential origins of malto-oligosaccharide primers include de novo biosynthesis or their release from existing starch granules. For example, the endoamylase α-AMYLASE 3 (AMY3) can cleave a range of malto-oligosaccharides from the granule surface during starch degradation at night, some of which are branched. In the Arabidopsis double mutant deficient in the two debranching enzymes ISOAMYLASE 3 (ISA3) and LIMIT DEXTRINASE (LDA), branched malto-oligosaccharides accumulate in the chloroplast stroma. Here, we reveal that the isa3 lda double mutant shows a substantial increase in granule number per chloroplast, caused by these branched malto-oligosaccharides. The amy3 isa3 lda triple mutant, which lacks branched malto-oligosaccharides, has far fewer granules than isa3 lda, and its granule numbers are barely higher than in the wild type. Plants lacking both ISA3 and LDA and either PTST2 or SS4 show granule over-initiation, indicating that this process occurs independently of the recently described granule initiation pathway. Our findings provide insight into how and where starch granules are initiated. This knowledge can be used to alter granule number and morphological characteristics, traits known to affect starch properties.
Collapse
Affiliation(s)
- Arvid J M Heutinck
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Selina Camenisch
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | | | - Mayank Sharma
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Barbara Pfister
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Chun Liu
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
5
|
Peng X, Bai Q, Chen G, Yu X, Zhang X. Mechanism of Bacillus cooperating with silicon to re-balance chlorophyll metabolism and restore carbon metabolism of Glycyrrhiza uralensis Fisch. Seedlings exposed to salt-drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109337. [PMID: 39616804 DOI: 10.1016/j.plaphy.2024.109337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/09/2024] [Accepted: 11/25/2024] [Indexed: 02/05/2025]
Abstract
Salt-drought is a major environmental event affecting crop productivity and quality by causing chlorophyll (Chl) and carbon balance disorder. There has been growing interest in the application of endophyte and silicon (Si), as inoculants for saline and drought land restoration. This study investigates the impact of Bacillus (Bs), Si, and Bs + Si on the disorder of Chl metabolism and carbon balance of G. uralensis seedlings under salt-drought stress (SD). Results showed that both Bs and Si treatments enhanced Chl and carbon metabolism, with the combined Bs and Si treatment showing a synergistic effect. Specifically, Bs + Si enhanced the mutual conversion of Chl a and Chl b, restored the equilibrium in Chl a and Chl b content, and increased RuBisco activity by 31.07%, thereby promoting carbon fixation. Subsequently, Bs + Si re-balanced the carbohydrate content, by increasing the sucrose synthase (SS), and β-amylase (BMY) activities by 49.57%, and 83.59% respectively, and decreasing sucrose phosphate synthase (SPS), and granule-bound starch synthase (GBSS) activities by 38.93%, 40.93% respectively etc involved in the metabolism of sucrose and starch. Furthermore, Bs + Si facilitated the restoration of the typical progression of the tricarboxylic acid (TCA) cycle and glycolysis pathway (EMP). These findings highlight the synergistic role of Bs and Si in enhancing the salt and drought resilience of G. uralensis seedlings, offering promising strategies for sustainable agriculture, improving crop resilience to climate change, and achieving the "dual carbon" goals of carbon peaking and carbon neutrality.
Collapse
Affiliation(s)
- Xueying Peng
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China
| | - Qiuxian Bai
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China
| | - Guohui Chen
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China
| | - Xiangjuan Yu
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China
| | - Xinhui Zhang
- College of Pharmacy, Ningxia Engineering and Technology Research Center of Regional Characterizistic Traditional Chinese Medicine, Ningxia Collaborative Innovation Center of Regional Characterizistic Traditional Chinese Medicine, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
6
|
Chen J, Chen Y, Watson-Lazowski A, Hawkins E, Barclay JE, Fahy B, Denley Bowers R, Corbin K, Warren FJ, Blennow A, Uauy C, Seung D. Wheat MYOSIN-RESEMBLING CHLOROPLAST PROTEIN controls B-type starch granule initiation timing during endosperm development. PLANT PHYSIOLOGY 2024; 196:1980-1996. [PMID: 39158075 PMCID: PMC11531834 DOI: 10.1093/plphys/kiae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Molecular factors that contribute to the diverse spatial and temporal patterns of starch granule initiation between species and organs are poorly understood. Wheat (Triticum sp.) endosperm contains both large A-type granules initiated during early grain development and small B-type granules that initiate about 10 to 15 days later. Here, we identify that the MYOSIN-RESEMBLING CHLOROPLAST PROTEIN (MRC) is required for the correct timing of B-type granule initiation in wheat endosperm during grain development. MRC is expressed in the endosperm exclusively in early grain development, before B-type granule initiation. We isolated three independent TILLING mutants of tetraploid wheat (Triticum turgidum cv. 'Kronos') with premature stop or missense mutations in the A-genome homeolog, which we showed to be the only active homeolog in tetraploid wheat due to a disruption of the B-genome homeolog. The mrc mutants had significantly smaller A-type granules and a higher relative volume of B-type granules in the endosperm than the wild type. Whereas B-type granules initiated 15 to 20 days post-anthesis (dpa) in the wild type, they appeared as early as 10 dpa in the mrc-1 mutant. These results suggest a temporal role for MRC in repressing B-type granule initiation, providing insight into how the distinct biochemical mechanisms that control A- and B-type granule initiation are regulated. This role of MRC in the wheat endosperm is distinct from the previously described role of Arabidopsis (Arabidopsis thaliana) MRC in promoting granule initiation in leaves, providing an example of functional diversification among granule initiation proteins.
Collapse
Affiliation(s)
- Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Yi Chen
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Alexander Watson-Lazowski
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
- Harper Adams University, Newport TF10 8NB, UK
| | - Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Kendall Corbin
- Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK
- Department of Horticulture, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546-0312, USA
| | | | - Andreas Blennow
- Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg, Copenhagen 1871, Denmark
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - David Seung
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| |
Collapse
|
7
|
Huang J, Liu F, Ren R, Deng J, Zhu L, Li H, Cai F, Meng Z, Chen Q, Shi T. QTL Mapping and Candidate Gene Analysis for Starch-Related Traits in Tartary Buckwheat ( Fagopyrum tataricum (L.) Gaertn). Int J Mol Sci 2024; 25:9243. [PMID: 39273191 PMCID: PMC11395678 DOI: 10.3390/ijms25179243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Starch is the main component that determines the yield and quality of Tartary buckwheat. As a quantitative trait, using quantitative trait locus (QTL) mapping to excavate genes associated with starch-related traits is crucial for understanding the genetic mechanisms involved in starch synthesis and molecular breeding of Tartary buckwheat varieties with high-quality starch. Employing a recombinant inbred line population as research material, this study used QTL mapping to investigate the amylose, amylopectin, and total starch contents across four distinct environments. The results identified a total of 20 QTLs spanning six chromosomes, which explained 4.07% to 14.41% of the phenotypic variation. One major QTL cluster containing three stable QTLs governing both amylose and amylopectin content, qClu-4-1, was identified and located in the physical interval of 39.85-43.34 Mbp on chromosome Ft4. Within this cluster, we predicted 239 candidate genes and analyzed their SNP/InDel mutations, expression patterns, and enriched KEGG pathways. Ultimately, five key candidate genes, namely FtPinG0004897100.01, FtPinG0002636200.01, FtPinG0009329200.01, FtPinG0007371600.01, and FtPinG0005109900.01, were highlighted, which are potentially involved in starch synthesis and regulation, paving the way for further investigative studies. This study, for the first time, utilized QTL mapping to detect major QTLs controlling amylose, amylopectin, and total starch contents in Tartary buckwheat. The QTLs and candidate genes would provide valuable insights into the genetic mechanisms underlying starch synthesis and improving starch-related traits of Tartary buckwheat.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Fei Liu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Rongrong Ren
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Liwei Zhu
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Hongyou Li
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Fang Cai
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Ziye Meng
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, College of Life Science, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
8
|
Dong N, Jiao G, Cao R, Li S, Zhao S, Duan Y, Ma L, Li X, Lu F, Wang H, Wang S, Shao G, Sheng Z, Hu S, Tang S, Wei X, Hu P. OsLESV and OsESV1 promote transitory and storage starch biosynthesis to determine rice grain quality and yield. PLANT COMMUNICATIONS 2024; 5:100893. [PMID: 38581128 PMCID: PMC11287174 DOI: 10.1016/j.xplc.2024.100893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/07/2024] [Accepted: 04/01/2024] [Indexed: 04/08/2024]
Abstract
Transitory starch is an important carbon source in leaves, and its biosynthesis and metabolism are closely related to grain quality and yield. The molecular mechanisms controlling leaf transitory starch biosynthesis and degradation and their effects on rice (Oryza sativa) quality and yield remain unclear. Here, we show that OsLESV and OsESV1, the rice orthologs of AtLESV and AtESV1, are associated with transitory starch biosynthesis in rice. The total starch and amylose contents in leaves and endosperms are significantly reduced, and the final grain quality and yield are compromised in oslesv and osesv1 single and oslesv esv1 double mutants. Furthermore, we found that OsLESV and OsESV1 bind to starch, and this binding depends on a highly conserved C-terminal tryptophan-rich region that acts as a starch-binding domain. Importantly, OsLESV and OsESV1 also interact with the key enzymes of starch biosynthesis, granule-bound starch synthase I (GBSSI), GBSSII, and pyruvate orthophosphote dikiase (PPDKB), to maintain their protein stability and activity. OsLESV and OsESV1 also facilitate the targeting of GBSSI and GBSSII from plastid stroma to starch granules. Overexpression of GBSSI, GBSSII, and PPDKB can partly rescue the phenotypic defects of the oslesv and osesv1 mutants. Thus, we demonstrate that OsLESV and OsESV1 play a key role in regulating the biosynthesis of both leaf transitory starch and endosperm storage starch in rice. These findings deepen our understanding of the molecular mechanisms underlying transitory starch biosynthesis in rice leaves and reveal how the transitory starch metabolism affects rice grain quality and yield, providing useful information for the genetic improvement of rice grain quality and yield.
Collapse
Affiliation(s)
- Nannan Dong
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Sanfeng Li
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaolu Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Yingqing Duan
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Liuyang Ma
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xinwei Li
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Feifei Lu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Hong Wang
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shiwen Wang
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
9
|
Scholtysek L, Poetsch A, Hofmann E, Hemschemeier A. The activation of Chlamydomonas reinhardtii alpha amylase 2 by glutamine requires its N-terminal aspartate kinase-chorismate mutase-tyrA (ACT) domain. PLANT DIRECT 2024; 8:e609. [PMID: 38911017 PMCID: PMC11190351 DOI: 10.1002/pld3.609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/08/2024] [Accepted: 05/16/2024] [Indexed: 06/25/2024]
Abstract
The coordination of assimilation pathways for all the elements that make up cellular components is a vital task for every organism. Integrating the assimilation and use of carbon (C) and nitrogen (N) is of particular importance because of the high cellular abundance of these elements. Starch is one of the most important storage polymers of photosynthetic organisms, and a complex regulatory network ensures that biosynthesis and degradation of starch are coordinated with photosynthetic activity and growth. Here, we analyzed three starch metabolism enzymes of Chlamydomonas reinhardtii that we captured by a cyclic guanosine monophosphate (cGMP) affinity chromatography approach, namely, soluble starch synthase STA3, starch-branching enzyme SBE1, and α-amylase AMA2. While none of the recombinant enzymes was directly affected by the presence of cGMP or other nucleotides, suggesting an indirect binding to cGMP, AMA2 activity was stimulated in the presence of L-glutamine (Gln). This activating effect required the enzyme's N-terminal aspartate kinase-chorismate mutase-tyrA domain. Gln is the first N assimilation product and not only a central compound for the biosynthesis of N-containing molecules but also a recognized signaling molecule for the N status. Our observation suggests that AMA2 might be a means to coordinate N and C metabolism at the enzymatic level, increasing the liberation of C skeletons from starch when high Gln levels signal an abundance of assimilated N.
Collapse
Affiliation(s)
- Lisa Scholtysek
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| | - Ansgar Poetsch
- Faculty of Biology and Biotechnology, Department for Plant BiochemistryRuhr University BochumBochumGermany
- School of Basic Medical SciencesNanchang UniversityNanchangChina
| | - Eckhard Hofmann
- Faculty of Biology and Biotechnology, Protein CrystallographyRuhr University BochumBochumGermany
| | - Anja Hemschemeier
- Faculty of Biology and Biotechnology, PhotobiotechnologyRuhr University BochumBochumGermany
| |
Collapse
|
10
|
Yan H, Zhang W, Wang Y, Jin J, Xu H, Fu Y, Shan Z, Wang X, Teng X, Li X, Wang Y, Hu X, Zhang W, Zhu C, Zhang X, Zhang Y, Wang R, Zhang J, Cai Y, You X, Chen J, Ge X, Wang L, Xu J, Jiang L, Liu S, Lei C, Zhang X, Wang H, Ren Y, Wan J. Rice LIKE EARLY STARVATION1 cooperates with FLOURY ENDOSPERM6 to modulate starch biosynthesis and endosperm development. THE PLANT CELL 2024; 36:1892-1912. [PMID: 38262703 PMCID: PMC11062441 DOI: 10.1093/plcell/koae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
In cereal grains, starch is synthesized by the concerted actions of multiple enzymes on the surface of starch granules within the amyloplast. However, little is known about how starch-synthesizing enzymes access starch granules, especially for amylopectin biosynthesis. Here, we show that the rice (Oryza sativa) floury endosperm9 (flo9) mutant is defective in amylopectin biosynthesis, leading to grains exhibiting a floury endosperm with a hollow core. Molecular cloning revealed that FLO9 encodes a plant-specific protein homologous to Arabidopsis (Arabidopsis thaliana) LIKE EARLY STARVATION1 (LESV). Unlike Arabidopsis LESV, which is involved in starch metabolism in leaves, OsLESV is required for starch granule initiation in the endosperm. OsLESV can directly bind to starch by its C-terminal tryptophan (Trp)-rich region. Cellular and biochemical evidence suggests that OsLESV interacts with the starch-binding protein FLO6, and loss-of-function mutations of either gene impair ISOAMYLASE1 (ISA1) targeting to starch granules. Genetically, OsLESV acts synergistically with FLO6 to regulate starch biosynthesis and endosperm development. Together, our results identify OsLESV-FLO6 as a non-enzymatic molecular module responsible for ISA1 localization on starch granules, and present a target gene for use in biotechnology to control starch content and composition in rice endosperm.
Collapse
Affiliation(s)
- Haigang Yan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Jin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Hancong Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yushuang Fu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuangzhuang Shan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xuan Teng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongxiang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoqing Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenxiang Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Changyuan Zhu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiao Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongqi Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoman You
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyuan Ge
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Liang Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahuan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| | - Cailin Lei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Zhongshan Biological Breeding Laboratory, Nanjing 210095, China
| |
Collapse
|
11
|
Atkinson N, Stringer R, Mitchell SR, Seung D, McCormick AJ. SAGA1 and SAGA2 promote starch formation around proto-pyrenoids in Arabidopsis chloroplasts. Proc Natl Acad Sci U S A 2024; 121:e2311013121. [PMID: 38241434 PMCID: PMC10823261 DOI: 10.1073/pnas.2311013121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/21/2024] Open
Abstract
The pyrenoid is a chloroplastic microcompartment in which most algae and some terrestrial plants condense the primary carboxylase, Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) as part of a CO2-concentrating mechanism that improves the efficiency of CO2 capture. Engineering a pyrenoid-based CO2-concentrating mechanism (pCCM) into C3 crop plants is a promising strategy to enhance yield capacities and resilience to the changing climate. Many pyrenoids are characterized by a sheath of starch plates that is proposed to act as a barrier to limit CO2 diffusion. Recently, we have reconstituted a phase-separated "proto-pyrenoid" Rubisco matrix in the model C3 plant Arabidopsis thaliana using proteins from the alga with the most well-studied pyrenoid, Chlamydomonas reinhardtii [N. Atkinson, Y. Mao, K. X. Chan, A. J. McCormick, Nat. Commun. 11, 6303 (2020)]. Here, we describe the impact of introducing the Chlamydomonas proteins StArch Granules Abnormal 1 (SAGA1) and SAGA2, which are associated with the regulation of pyrenoid starch biogenesis and morphology. We show that SAGA1 localizes to the proto-pyrenoid in engineered Arabidopsis plants, which results in the formation of atypical spherical starch granules enclosed within the proto-pyrenoid condensate and adjacent plate-like granules that partially cover the condensate, but without modifying the total amount of chloroplastic starch accrued. Additional expression of SAGA2 further increases the proportion of starch synthesized as adjacent plate-like granules that fully encircle the proto-pyrenoid. Our findings pave the way to assembling a diffusion barrier as part of a functional pCCM in vascular plants, while also advancing our understanding of the roles of SAGA1 and SAGA2 in starch sheath formation and broadening the avenues for engineering starch morphology.
Collapse
Affiliation(s)
- Nicky Atkinson
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - Rhea Stringer
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Stephen R. Mitchell
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| | - David Seung
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, NorwichNR4 7UH, United Kingdom
| | - Alistair J. McCormick
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
- Centre of Engineering Biology, University of Edinburgh, EdinburghEH9 3BF, United Kingdom
| |
Collapse
|
12
|
Sharma M, Abt MR, Eicke S, Ilse TE, Liu C, Lucas MS, Pfister B, Zeeman SC. MFP1 defines the subchloroplast location of starch granule initiation. Proc Natl Acad Sci U S A 2024; 121:e2309666121. [PMID: 38190535 PMCID: PMC10801857 DOI: 10.1073/pnas.2309666121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 12/07/2023] [Indexed: 01/10/2024] Open
Abstract
Starch is one of the major carbohydrate storage compounds in plants. The biogenesis of starch granules starts with the formation of initials, which subsequently expand into granules. Several coiled-coil domain-containing proteins have been previously implicated with the initiation process, but the mechanisms by which they act remain largely elusive. Here, we demonstrate that one of these proteins, the thylakoid-associated MAR-BINDING FILAMENT-LIKE PROTEIN 1 (MFP1), specifically determines the subchloroplast location of initial formation. The expression of MFP1 variants "mis"-targeted to specific locations within chloroplasts in Arabidopsis results in distinctive shifts in not only how many but also where starch granules are formed. Importantly, "re" localizing MFP1 to the stromal face of the chloroplast's inner envelope is sufficient to generate starch granules in this aberrant position. These findings provide compelling evidence that a single protein MFP1 possesses the capacity to direct the initiation and biosynthesis machinery of starch granules.
Collapse
Affiliation(s)
- Mayank Sharma
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Melanie R. Abt
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Theresa E. Ilse
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Chun Liu
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Miriam S. Lucas
- Scientific Center for Optical and Electron Microscopy, ETH Zurich, 8093 Zurich, Switzerland
| | - Barbara Pfister
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Samuel C. Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
13
|
Chang H, Bai J, Zhang H, Huang R, Chu H, Wang Q, Liu H, Cheng J, Jiang H. Origin and evolution of the main starch biosynthetic enzymes. Synth Syst Biotechnol 2023; 8:462-468. [PMID: 37692203 PMCID: PMC10485787 DOI: 10.1016/j.synbio.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 09/12/2023] Open
Abstract
Starch, a semi-crystalline energy storage form primarily found in plant plastids plays a crucial role in various food or no-food applications. Despite the starch biosynthetic pathway's main enzymes have been characterized, their origin and evolution remained a subject of debate. In this study, we conducted the comprehensive phylogenetic and structural analysis of three types of starch biosynthetic enzymes: starch synthase (SS), starch branching enzyme (SBE) and isoamylase-type debranching enzyme (ISA) from 51,151 annotated genomes. Our findings provide valuable insights into the possible scenario for the origin and evolution of the starch biosynthetic pathway. Initially, the ancestor of SBE can be traced back to an unidentified bacterium that existed before the formation of the last eukaryotic common ancestor (LECA) via horizontal gene transfer (HGT). This transfer event likely provided the eukaryote ancestor with the ability to synthesize glycogen. Furthermore, during the emergence of Archaeplastida, one clade of SS was transferred from Deltaproteobacteria by HGT, while ISA and the other clade of SS originated from Chlamydiae through endosymbiosis gene transfer (EGT). Both these transfer events collectively contributed to the establishment of the original starch biosynthetic pathway. Subsequently, after the divergence of Viridiplantae from Rhodophyta, all three enzymes underwent multiple duplications and N-terminus extension domain modifications, resulting in the formation of functionally specialized isoforms and ultimately leading to the complete starch biosynthetic pathway. By shedding light on the evolutionary origins of key enzymes involved in the starch biosynthetic pathway, this study provides important insights into the evolutionary events of plants.
Collapse
Affiliation(s)
- Hong Chang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jie Bai
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hejian Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Rong Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Huanyu Chu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Qian Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Hao Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Jian Cheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Huifeng Jiang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| |
Collapse
|
14
|
Araniti F, Talarico E, Madeo ML, Greco E, Minervino M, Álvarez-Rodríguez S, Muto A, Ferrari M, Chiappetta A, Bruno L. Short-term exposition to acute Cadmium toxicity induces the loss of root gravitropic stimuli perception through PIN2-mediated auxin redistribution in Arabidopsis thaliana (L.) Heynh. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111726. [PMID: 37149227 DOI: 10.1016/j.plantsci.2023.111726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/31/2023] [Accepted: 05/02/2023] [Indexed: 05/08/2023]
Abstract
Cadmium (Cd), one of the most widespread and water-soluble polluting heavy metals, has been widely studied on plants, even if the mechanisms underlying its phytotoxicity remain elusive. Indeed, most experiments are performed using extensive exposure time to the toxicants, not observing the primary targets affected. The present work studied Cd effects on Arabidopsis thaliana (L.) Heynh's root apical meristem (RAM) exposed for short periods (24h and 48h) to acute phytotoxic concentrations (100 and 150µM). The effects were studied through integrated morpho-histological, molecular, pharmacological and metabolomic analyses, highlighting that Cd inhibited primary root elongation by affecting the meristem zone via altering cell expansion. Moreover, Cd altered Auxin accumulation in RAM and affected PINs polar transporters particularly PIN2. In addition, we observed that high Cd concentration induced accumulation of reactive oxygen species (ROS) in roots, which resulted in an altered organization of cortical microtubules and the starch and sucrose metabolism, altering the statolith formation and, consequently, the gravitropic root response. Our results demonstrated that short Cd exposition (24h) affected cell expansion preferentially, altering auxin distribution and inducing ROS accumulation, which resulted in an alteration of gravitropic response and microtubules orientation pattern.
Collapse
Affiliation(s)
- Fabrizio Araniti
- Department of Agricultural and Environmental Sciences, University of Milano, Milan 20133, Italy
| | - Emanuela Talarico
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Maria Letizia Madeo
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Eleonora Greco
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Marco Minervino
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Sara Álvarez-Rodríguez
- Universidade de Vigo, Departamento de Bioloxía Vexetal e Ciencias do Solo, Facultade de Bioloxía, Campus Lagoas-Marcosende s/n, 36310, Vigo, Spain
| | - Antonella Muto
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Michele Ferrari
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Adriana Chiappetta
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy
| | - Leonardo Bruno
- Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata of Rende, CS 87036, Italy.
| |
Collapse
|
15
|
Efficient Accumulation of Amylopectin and Its Molecular Mechanism in the Submerged Duckweed Mutant. Int J Mol Sci 2023; 24:ijms24032934. [PMID: 36769258 PMCID: PMC9917893 DOI: 10.3390/ijms24032934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Large-scale use of fossil fuels has brought about increasingly serious problems of environmental pollution, development and utilization of renewable energy is one of the effective solutions. Duckweed has the advantages of fast growth, high starch content and no occupation of arable land, so it is a promising starchy energy plant. A new submerged duckweed mutant (sub-1) with abundant starch accumulation was obtained, whose content of amylopectin accounts for 84.04% of the starch granules. Compared with the wild type (Lemna aequinoctialis), the branching degree of starch in sub-1 mutant was significantly increased by 19.6%. Chain length DP 6-12, DP 25-36 and DP > 36 of amylopectin significantly decreased, while chain length DP 13-24 significantly increased. Average chain length of wild-type and sub-1 mutant starches were greater than DP 22. Moreover, the crystal structure and physical properties of starch have changed markedly in sub-1 mutant. For example, the starch crystallinity of sub-1 mutant was only 8.94%, while that of wild-type was 22.3%. Compared with wild type, water solubility of starch was significantly reduced by 29.42%, whereas swelling power significantly increased by 97.07% in sub-1 mutant. In order to further analyze the molecular mechanism of efficient accumulation of amylopectin in sub-1 mutant, metabolome and transcriptome were performed. The results showed that glucose accumulated in sub-1 mutant, then degradation of starch to glucose mainly depends on α-amylase. At night, the down-regulated β-amylase gene resulted in the inhibition of starch degradation. The starch and sucrose metabolism pathways were significantly enriched. Up-regulated expression of SUS, AGPase2, AGPase3, PYG, GPI and GYS provide sufficient substrate for starch synthesis in sub-1 mutant. From the 0H to 16H light treatment, granule-bound starch synthase (GBSS1) gene was inhibited, on the contrary, the starch branching enzyme (SBE) gene was induced. Differential expression of GBSS1 and SBE may be an important reason for the decrease ratio of amylose/amylopectin in sub-1 mutant. Taken together, our results indicated that the sub-1 mutant can accumulate the amylopectin efficiently, potentially through altering the differential expression of AGPase, GBSS1, SBE, and BAM. This study also provides theoretical guidance for creating crop germplasm with high amylopectin by means of synthetic biology in the future.
Collapse
|
16
|
Wang Z, Zhou Y, Ren XY, Wei K, Fan XL, Huang LC, Zhao DS, Zhang L, Zhang CQ, Liu QQ, Li QF. Co-Overexpression of Two Key Source Genes, OsBMY4 and OsISA3, Improves Multiple Key Traits of Rice Seeds. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:615-625. [PMID: 36537359 DOI: 10.1021/acs.jafc.2c06039] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Optimized source-sink interactions are determinants of both rice yield and quality. However, most source genes have not been well studied in rice, a major grain crop. In this study, OsBMY4 and OsISA3, the key β-amylase and debranching enzymes that control transient starch degradation in rice leaves, were co-overexpressed in rice in order to accelerate starch degradation efficiency and increase the sugar supply for sink organs. Systematic analyses of the transgenic rice indicated that co-overexpression of OsBMY4 and OsISA3 not only promoted rice yield and quality, but also improved seed germination and stress tolerance. Moreover, since the OsBMY4 gene has not been characterized, we generated osbmy4 mutants using CRIPSR/Cas9 gene editing, which helped to reveal the roles of β-amylase in rice yield and quality. This study demonstrated that specific modulation of the expression of some key source genes improves the source-sink balance and leads to improvements in multiple key traits of rice seeds.
Collapse
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Yu Zhou
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xin-Yu Ren
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Ke Wei
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Xiao-Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Li-Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Dong-Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Lin Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
17
|
Thieme M, Hochmuth A, Ilse TE, Cuesta-Seijo JA, Stoma S, Meier R, Nørrelykke SF, Pedas PR, Braumann I, Zeeman SC. Detecting variation in starch granule size and morphology by high-throughput microscopy and flow cytometry. Carbohydr Polym 2023; 299:120169. [PMID: 36876784 DOI: 10.1016/j.carbpol.2022.120169] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/29/2022] [Accepted: 09/25/2022] [Indexed: 10/14/2022]
Abstract
Starch forms semi-crystalline, water-insoluble granules, the size and morphology of which vary according to biological origin. These traits, together with polymer composition and structure, determine the physicochemical properties of starch. However, screening methods to identify differences in starch granule size and shape are lacking. Here, we present two approaches for high-throughput starch granule extraction and size determination using flow cytometry and automated, high-throughput light microscopy. We evaluated the practicality of both methods using starch from different species and tissues and demonstrated their effectiveness by screening for induced variation in starch extracted from over 10,000 barley lines, yielding four with heritable changes in the ratio of large A-granules to small B-granules. Analysis of Arabidopsis lines altered in starch biosynthesis further demonstrates the applicability of these approaches. Identifying variation in starch granule size and shape will enable identification of trait-controlling genes for developing crops with desired properties, and could help optimise starch processing.
Collapse
Affiliation(s)
- Mercedes Thieme
- Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland; Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Anton Hochmuth
- Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland; Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | | | - Jose A Cuesta-Seijo
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark
| | | | - Roger Meier
- ScopeM, ETH Zurich, 8093 Zurich, Switzerland.
| | | | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Ilka Braumann
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, 1799 Copenhagen V, Denmark.
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
18
|
Huang J, Tang B, Ren R, Wu M, Liu F, Lv Y, Shi T, Deng J, Chen Q. Understanding the Potential Gene Regulatory Network of Starch Biosynthesis in Tartary Buckwheat by RNA-Seq. Int J Mol Sci 2022; 23:ijms232415774. [PMID: 36555415 PMCID: PMC9779217 DOI: 10.3390/ijms232415774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/12/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
Starch is a major component of crop grains, and its content affects food quality and taste. Tartary buckwheat is a traditional pseudo-cereal used in food as well as medicine. Starch content, granule morphology, and physicochemical properties have been extensively studied in Tartary buckwheat. However, the complex regulatory network related to its starch biosynthesis needs to be elucidated. Here, we performed RNA-seq analyses using seven Tartary buckwheat varieties differing in starch content and combined the RNA-seq data with starch content by weighted correlation network analysis (WGCNA). As a result, 10,873 differentially expressed genes (DEGs) were identified and were functionally clustered to six hierarchical clusters. Fifteen starch biosynthesis genes had higher expression level in seeds. Four trait-specific modules and 3131 hub genes were identified by WGCNA, with the lightcyan and brown modules positively correlated with starch-related traits. Furthermore, two potential gene regulatory networks were proposed, including the co-expression of FtNAC70, FtPUL, and FtGBSS1-3 in the lightcyan module and FtbHLH5, C3H, FtBE2, FtISA3, FtSS3-5, and FtSS1 in the brown. All the above genes were preferentially expressed in seeds, further suggesting their role in seed starch biosynthesis. These results provide crucial guidance for further research on starch biosynthesis and its regulatory network in Tartary buckwheat.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Bin Tang
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Rongrong Ren
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Min Wu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Fei Liu
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Yong Lv
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Taoxiong Shi
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Jiao Deng
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| | - Qingfu Chen
- Research Center of Buckwheat Industry Technology, Guizhou Normal University, Guiyang 550001, China
| |
Collapse
|
19
|
Herburger K, Głazowska S, Mravec J. Bricks out of the wall: polysaccharide extramural functions. TRENDS IN PLANT SCIENCE 2022; 27:1231-1241. [PMID: 35989161 DOI: 10.1016/j.tplants.2022.07.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/07/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Plant polysaccharides are components of plant cell walls and/or store energy. However, this oversimplified classification neglects the fact that some cell wall polysaccharides and glycoproteins can localize outside the relatively sharp boundaries of the apoplastic moiety, where they adopt functions not directly related to the cell wall. Such polysaccharide multifunctionality (or 'moonlighting') is overlooked in current research, and in most cases the underlying mechanisms that give rise to unconventional ex muro trafficking, targeting, and functions of polysaccharides and glycoproteins remain elusive. This review highlights major examples of the extramural occurrence of various glycan cell wall components, discusses the possible significance and implications of these phenomena for plant physiology, and lists exciting open questions to be addressed by future research.
Collapse
Affiliation(s)
- Klaus Herburger
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Sylwia Głazowska
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark.
| |
Collapse
|
20
|
Shen L, Li J, Li Y. Resistant starch formation in rice: Genetic regulation and beyond. PLANT COMMUNICATIONS 2022; 3:100329. [PMID: 35576157 PMCID: PMC9251435 DOI: 10.1016/j.xplc.2022.100329] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 05/07/2023]
Abstract
Resistant starch (RS), a healthy dietary fiber, is a particular type of starch that has attracted much research attention in recent years. RS has important roles in reducing glycemic index, postprandial blood glucose levels, and serum cholesterol levels, thereby improving and preventing many diseases, such as diabetes, obesity, and cardiovascular disease. The formation of RS is influenced by intrinsic properties of starch (e.g., starch granule structure, starch crystal structure, and amylose-to-amylopectin ratio) and non-starch components (e.g., proteins, lipids, and sugars), as well as storage and processing conditions. Recent studies have revealed that several starch-synthesis-related genes (SSRGs) are crucial for the formation of RS during seed development. Several transcription factors and mRNA splicing factors have been shown to affect the expression or splicing of SSRGs that regulate RS content, suggesting their potential roles in RS formation. This review focuses mainly on recent research progress on the genetic regulation of RS content and discusses the emerging genetic and molecular mechanisms of RS formation in rice.
Collapse
Affiliation(s)
- Lisha Shen
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, CAS Centre for Excellence in Molecular Plant Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; The Innovative Academy of Seed Design, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Science, Beijing 100039, China.
| |
Collapse
|
21
|
Matiolli CC, Soares RC, Alves HLS, Abreu IA. Turning the Knobs: The Impact of Post-translational Modifications on Carbon Metabolism. FRONTIERS IN PLANT SCIENCE 2022; 12:781508. [PMID: 35087551 PMCID: PMC8787203 DOI: 10.3389/fpls.2021.781508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Plants rely on the carbon fixed by photosynthesis into sugars to grow and reproduce. However, plants often face non-ideal conditions caused by biotic and abiotic stresses. These constraints impose challenges to managing sugars, the most valuable plant asset. Hence, the precise management of sugars is crucial to avoid starvation under adverse conditions and sustain growth. This review explores the role of post-translational modifications (PTMs) in the modulation of carbon metabolism. PTMs consist of chemical modifications of proteins that change protein properties, including protein-protein interaction preferences, enzymatic activity, stability, and subcellular localization. We provide a holistic view of how PTMs tune resource distribution among different physiological processes to optimize plant fitness.
Collapse
|
22
|
Chromosome-Level Genome Assembly Provides New Insights into Genome Evolution and Tuberous Root Formation of Potentilla anserina. Genes (Basel) 2021; 12:genes12121993. [PMID: 34946942 PMCID: PMC8700974 DOI: 10.3390/genes12121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/06/2021] [Accepted: 12/13/2021] [Indexed: 12/11/2022] Open
Abstract
Potentilla anserina is a perennial stoloniferous plant with edible tuberous roots in Rosaceae, served as important food and medicine sources for Tibetans in the Qinghai-Tibetan Plateau (QTP), China, over thousands of years. However, a lack of genome information hindered the genetic study. Here, we presented a chromosome-level genome assembly using single-molecule long-read sequencing, and the Hi-C technique. The assembled genome was 454.28 Mb, containing 14 chromosomes, with contig N50 of 2.14 Mb. A total of 46,495 protein-coding genes, 169.74 Mb repeat regions, and 31.76 Kb non-coding RNA were predicted. P. anserina diverged from Potentilla micrantha ∼28.52 million years ago (Mya). Furthermore, P. anserina underwent a recent tetraploidization ∼6.4 Mya. The species-specific genes were enriched in Starch and sucrose metabolism and Galactose metabolism pathways. We identified the sub-genome structures of P. anserina, with A sub-genome was larger than B sub-genome and closer to P. micrantha phylogenetically. Despite lacking significant genome-wide expression dominance, the A sub-genome had higher homoeologous gene expression in shoot apical meristem, flower and tuberous root. The resistance genes was contracted in P. anserina genome. Key genes involved in starch biosynthesis were expanded and highly expressed in tuberous roots, which probably drives the tuber formation. The genomics and transcriptomics data generated in this study advance our understanding of the genomic landscape of P. anserina, and will accelerate genetic studies and breeding programs.
Collapse
|
23
|
Wang Z, Wei K, Xiong M, Wang J, Zhang C, Fan X, Huang L, Zhao D, Liu Q, Li Q. Glucan, Water-Dikinase 1 (GWD1), an ideal biotechnological target for potential improving yield and quality in rice. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:2606-2618. [PMID: 34416068 PMCID: PMC8633486 DOI: 10.1111/pbi.13686] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 05/07/2023]
Abstract
The source-sink relationship determines the overall agronomic performance of rice. Cloning and characterizing key genes involved in the regulation of source and sink dynamics is imperative for improving rice yield. However, few source genes with potential application in rice have been identified. Glucan, Water-Dikinase 1 (GWD1) is an essential enzyme that plays a pivotal role in the first step of transitory starch degradation in source tissues. In the present study, we successfully generated gwd1 weak mutants by promoter editing using CRISPR/Cas9 system, and also leaf-dominant overexpression lines of GWD1 driven by Osl2 promoter. Analysis of the gwd1 plants indicated that promoter editing mediated down-regulation of GWD1 caused no observable effects on rice growth and development, but only mildly modified its grain transparency and seed germination. However, the transgenic pOsl2::GWD1 overexpression lines showed improvements in multiple key traits, including rice yield, grain shape, rice quality, seed germination and stress tolerance. Therefore, our study shows that GWD1 is not only involved in transitory starch degradation in source tissues, but also plays key roles in the seeds, which is a sink tissue. In conclusion, we find that GWD1 is an ideal biotechnological target with promising potential for the breeding of elite rice cultivars via genetic engineering.
Collapse
Affiliation(s)
- Zhen Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Ke Wei
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Min Xiong
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Jin‐Dong Wang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
| | - Chang‐Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Xiao‐Lei Fan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Li‐Chun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Dong‐Sheng Zhao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Qiao‐Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| | - Qian‐Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding /Key Laboratory of Plant Functional Genomics of the Ministry of EducationCollege of AgricultureYangzhou UniversityYangzhouJiangsuChina
- Co‐Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province / Jiangsu Key Laboratory of Crop Genetics and PhysiologyYangzhou UniversityYangzhouJiangsuChina
| |
Collapse
|
24
|
Bürgy L, Eicke S, Kopp C, Jenny C, Lu KJ, Escrig S, Meibom A, Zeeman SC. Coalescence and directed anisotropic growth of starch granule initials in subdomains of Arabidopsis thaliana chloroplasts. Nat Commun 2021; 12:6944. [PMID: 34836943 PMCID: PMC8626487 DOI: 10.1038/s41467-021-27151-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 11/01/2021] [Indexed: 12/29/2022] Open
Abstract
Living cells orchestrate enzyme activities to produce myriads of biopolymers but cell-biological understanding of such processes is scarce. Starch, a plant biopolymer forming discrete, semi-crystalline granules within plastids, plays a central role in glucose storage, which is fundamental to life. Combining complementary imaging techniques and Arabidopsis genetics we reveal that, in chloroplasts, multiple starch granules initiate in stromal pockets between thylakoid membranes. These initials coalesce, then grow anisotropically to form lenticular granules. The major starch polymer, amylopectin, is synthesized at the granule surface, while the minor amylose component is deposited internally. The non-enzymatic domain of STARCH SYNTHASE 4, which controls the protein's localization, is required for anisotropic growth. These results present us with a conceptual framework for understanding the biosynthesis of this key nutrient.
Collapse
Affiliation(s)
- Léo Bürgy
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Simona Eicke
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Christophe Kopp
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Camilla Jenny
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Kuan Jen Lu
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland
| | - Stephane Escrig
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Anders Meibom
- Laboratory for Biological Geochemistry, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Centre for Advanced Surface Analysis, University of Lausanne, Lausanne, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland.
| |
Collapse
|
25
|
Liu Q, Zhou Y, Fettke J. Starch Granule Size and Morphology of Arabidopsis thaliana Starch-Related Mutants Analyzed during Diurnal Rhythm and Development. Molecules 2021; 26:molecules26195859. [PMID: 34641402 PMCID: PMC8510473 DOI: 10.3390/molecules26195859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
Transitory starch plays a central role in the life cycle of plants. Many aspects of this important metabolism remain unknown; however, starch granules provide insight into this persistent metabolic process. Therefore, monitoring alterations in starch granules with high temporal resolution provides one significant avenue to improve understanding. Here, a previously established method that combines LCSM and safranin-O staining for in vivo imaging of transitory starch granules in leaves of Arabidopsis thaliana was employed to demonstrate, for the first time, the alterations in starch granule size and morphology that occur both throughout the day and during leaf aging. Several starch-related mutants were included, which revealed differences among the generated granules. In ptst2 and sex1-8, the starch granules in old leaves were much larger than those in young leaves; however, the typical flattened discoid morphology was maintained. In ss4 and dpe2/phs1/ss4, the morphology of starch granules in young leaves was altered, with a more rounded shape observed. With leaf development, the starch granules became spherical exclusively in dpe2/phs1/ss4. Thus, the presented data provide new insights to contribute to the understanding of starch granule morphogenesis.
Collapse
Affiliation(s)
- Qingting Liu
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25 Building 20, 14476 Potsdam-Golm, Germany;
| | - Yuan Zhou
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476 Potsdam, Germany;
| | - Joerg Fettke
- Biopolymer Analytics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25 Building 20, 14476 Potsdam-Golm, Germany;
- Correspondence: ; Tel.: +49-331-977-2653
| |
Collapse
|
26
|
Cai T, Sun H, Qiao J, Zhu L, Zhang F, Zhang J, Tang Z, Wei X, Yang J, Yuan Q, Wang W, Yang X, Chu H, Wang Q, You C, Ma H, Sun Y, Li Y, Li C, Jiang H, Wang Q, Ma Y. Cell-free chemoenzymatic starch synthesis from carbon dioxide. Science 2021; 373:1523-1527. [PMID: 34554807 DOI: 10.1126/science.abh4049] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Tao Cai
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Hongbing Sun
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jing Qiao
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Leilei Zhu
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Fan Zhang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Jie Zhang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Zijing Tang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xinlei Wei
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiangang Yang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qianqian Yuan
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Wangyin Wang
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xue Yang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Huanyu Chu
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qian Wang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Chun You
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Hongwu Ma
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yuanxia Sun
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yin Li
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Can Li
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Huifeng Jiang
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Qinhong Wang
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanhe Ma
- Department of Strategic and Integrative Research, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.,National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China.,National Engineering Laboratory for Industrial Enzymes, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
27
|
Huang L, Tan H, Zhang C, Li Q, Liu Q. Starch biosynthesis in cereal endosperms: An updated review over the last decade. PLANT COMMUNICATIONS 2021; 2:100237. [PMID: 34746765 PMCID: PMC8554040 DOI: 10.1016/j.xplc.2021.100237] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 05/13/2023]
Abstract
Starch is a vital energy source for living organisms and is a key raw material and additive in the food and non-food industries. Starch has received continuous attention in multiple research fields. The endosperm of cereals (e.g., rice, corn, wheat, and barley) is the most important site for the synthesis of storage starch. Around 2010, several excellent reviews summarized key progress in various fields of starch research, serving as important references for subsequent research. In the past 10 years, many achievements have been made in the study of starch synthesis and regulation in cereals. The present review provides an update on research progress in starch synthesis of cereal endosperms over the past decade, focusing on new enzymes and non-enzymatic proteins involved in starch synthesis, regulatory networks of starch synthesis, and the use of elite alleles of starch synthesis-related genes in cereal breeding programs. We also provide perspectives on future research directions that will further our understanding of cereal starch biosynthesis and regulation to support the rational design of ideal quality grain.
Collapse
Affiliation(s)
- Lichun Huang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Hongyan Tan
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Changquan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qianfeng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| | - Qiaoquan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province, Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
28
|
|
29
|
Hawkins E, Chen J, Watson-Lazowski A, Ahn-Jarvis J, Barclay JE, Fahy B, Hartley M, Warren FJ, Seung D. STARCH SYNTHASE 4 is required for normal starch granule initiation in amyloplasts of wheat endosperm. THE NEW PHYTOLOGIST 2021; 230:2371-2386. [PMID: 33714222 DOI: 10.1111/nph.17342] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 03/05/2021] [Indexed: 05/26/2023]
Abstract
Starch granule initiation is poorly understood at the molecular level. The glucosyltransferase, STARCH SYNTHASE 4 (SS4), plays a central role in granule initiation in Arabidopsis leaves, but its function in cereal endosperms is unknown. We investigated the role of SS4 in wheat, which has a distinct spatiotemporal pattern of granule initiation during grain development. We generated TILLING mutants in tetraploid wheat (Triticum turgidum) that are defective in both SS4 homoeologs. The morphology of endosperm starch was examined in developing and mature grains. SS4 deficiency led to severe alterations in endosperm starch granule morphology. During early grain development, while the wild-type initiated single 'A-type' granules per amyloplast, most amyloplasts in the mutant formed compound granules due to multiple initiations. This phenotype was similar to mutants deficient in B-GRANULE CONTENT 1 (BGC1). SS4 deficiency also reduced starch content in leaves and pollen grains. We propose that SS4 and BGC1 are required for the proper control of granule initiation during early grain development that leads to a single A-type granule per amyloplast. The absence of either protein results in a variable number of initiations per amyloplast and compound granule formation.
Collapse
Affiliation(s)
- Erica Hawkins
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jiawen Chen
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | | | | | - Brendan Fahy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Matthew Hartley
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - David Seung
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
30
|
Cvetkovic J, Haferkamp I, Rode R, Keller I, Pommerrenig B, Trentmann O, Altensell J, Fischer-Stettler M, Eicke S, Zeeman SC, Neuhaus HE. Ectopic maltase alleviates dwarf phenotype and improves plant frost tolerance of maltose transporter mutants. PLANT PHYSIOLOGY 2021; 186:315-329. [PMID: 33650638 PMCID: PMC8154053 DOI: 10.1093/plphys/kiab082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/25/2021] [Indexed: 05/06/2023]
Abstract
Maltose, the major product of starch breakdown in Arabidopsis (Arabidopsis thaliana) leaves, exits the chloroplast via the maltose exporter1 MEX1. Consequently, mex1 loss-of-function plants exhibit substantial maltose accumulation, a starch-excess phenotype and a specific chlorotic phenotype during leaf development. Here, we investigated whether the introduction of an alternative metabolic route could suppress the marked developmental defects typical for mex1 loss-of-function mutants. To this end, we ectopically expressed in mex1 chloroplasts a functional maltase (MAL) from baker's yeast (Saccharomyces cerevisiae, chloroplastidial MAL [cpMAL] mutants). Remarkably, the stromal MAL activity substantially alleviates most phenotypic peculiarities typical for mex1 plants. However, the cpMAL lines contained only slightly less maltose than parental mex1 plants and their starch levels were, surprisingly, even higher. These findings point to a threshold level of maltose responsible for the marked developmental defects in mex1. While growth and flowering time were only slightly retarded, cpMAL lines exhibited a substantially improved frost tolerance, when compared to wild-types. In summary, these results demonstrate the possibility to bypass the MEX1 transporter, allow us to differentiate between possible starch-excess and maltose-excess responses, and demonstrate that stromal maltose accumulation prevents frost defects. The latter insight may be instrumental for the development of crop plants with improved frost tolerance.
Collapse
Affiliation(s)
- Jelena Cvetkovic
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Ilka Haferkamp
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Regina Rode
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Isabel Keller
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Benjamin Pommerrenig
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Oliver Trentmann
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | - Jacqueline Altensell
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
| | | | - Simona Eicke
- Institute of Molecular Plant Biology, ETH Zürich, Universitätsstr. 2, 8092 Zurich, Switzerland
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, ETH Zürich, Universitätsstr. 2, 8092 Zurich, Switzerland
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str., D-67653 Kaiserslautern, Germany
- Author for communication:
| |
Collapse
|
31
|
Abstract
Carbohydrates are a large class of natural products that play key roles in a number of biological processes such as in cellular communication or disease progression. Carbohydrates are also used as vaccines and pharmaceuticals. Their synthesis through glycosylation reactions is challenging, and often stoichiometric amounts of promoters are required. Transition metal catalyzed glycosylation reactions are far less common, but can have advantages with respect to reaction conditions and selectivity. The review intends to approach the topic from the catalysis and carbohydrate perspective to encourage researchers from both the fields to perform research in the area. The article covers the basics in glycosylation and catalysis chemistry. The catalysts for the reaction can be roughly divided into two groups. In one group, the catalysts serve as Lewis acids. In the other group, the catalysts play a higher sophisticated role, are involved in all elementary steps of the mechanism and remain coordinated to the substrate throughout the whole catalytic cycle. Based on selected examples, the main trends in transition metal catalyzed glycosylation reactions are explained. Lewis acid catalysts tend to require a somewhat higher catalyst load compared to other organometallic catalysts. The reaction conditions such as the temperature and time depend in many cases on the leaving group employed. An outlook is also presented. The article is not meant to be comprehensive; it outlines the most common transition metal catalyzed processes with the intention to bring the catalysis and carbohydrate communities together and to inspire research activities in both areas.
Collapse
Affiliation(s)
- Eike B Bauer
- University of Missouri - St Louis, Department of Chemistry and Biochemistry, One University Boulevard, St Louis, MO 63121, USA.
| |
Collapse
|
32
|
Shi HD, Zhang WQ, Lu HY, Zhang WQ, Ye H, Liu DD. Functional characterization of a starch synthesis-related gene AmAGP in Amorphophallus muelleri. PLANT SIGNALING & BEHAVIOR 2020; 15:1805903. [PMID: 32799608 PMCID: PMC7588197 DOI: 10.1080/15592324.2020.1805903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/23/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
has attracted tremendous interest because of its high contents of glucomannan and starch. Very few genes regulating glucomannan and starch were reported in Amorphophallus. In this study, an ADP-glucose pyrophosphorylase (AGP) gene that plays a significant role in plant starch synthesis was cloned from Amorphophallus muelleri. It was shown that it encoded a predicted protein containing a conserved plant ADP-Glucose-PP repeat domain and seven potential ligand-binding sites. The real-time quantitative PCR showed that AmAGP was most abundant in tubers, and it was positively correlated with starch content. Additionally, its influencers about temperature and exogenous plant hormone were also discussed, showing that AmAGP expressed highly in tubers under treatments using 25°C and IAA. Furthermore, starch content was closely related to AmAGP expression level, suggesting that AmAGP was involved in the regulation of starch synthesis in A. muelleri. Therefore, identifying the sequence of AmAGP and its expression pattern during tuber enlarging and the changes of its transcript levels in response to temperature and plant hormones would contribute to a better understanding of starch synthesis, and also providing a reference information for future preferable breeding for obtaining more starch or more glucomannan in Amorphophallus.
Collapse
Affiliation(s)
- Hong-Di Shi
- School of Agriculture, Yunnan University, Kunming, China
| | - Wan-Qiao Zhang
- School of Agriculture, Yunnan University, Kunming, China
| | - Hong-Ye Lu
- School of International Education, Baise University, Baise, China
| | - Wen-Qian Zhang
- Department of Science and Education, Xintai Modern Agricultural Development Service Center, Xintai, China
| | - Hui Ye
- School of Agriculture, Yunnan University, Kunming, China
| | - Dan-Dan Liu
- School of Agriculture, Yunnan University, Kunming, China
| |
Collapse
|