1
|
Li FKK, Peters SC, Worrall LJ, Sun T, Hu J, Vuckovic M, Farha M, Palacios A, Caveney NA, Brown ED, Strynadka NCJ. Cryo-EM analyses unveil details of mechanism and targocil-II mediated inhibition of S. aureus WTA transporter TarGH. Nat Commun 2025; 16:3224. [PMID: 40185711 PMCID: PMC11971408 DOI: 10.1038/s41467-025-58202-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025] Open
Abstract
Wall teichoic acid (WTA) is a polyol phosphate polymer that covalently decorates peptidoglycan of gram-positive bacteria, including Staphylococcus aureus. Central to WTA biosynthesis is flipping of lipid-linked precursors across the cell membrane by TarGH, a type V ABC transporter. Here, we present cryo-EM structures of S. aureus TarGH in the presence of targocil-II, a promising small-molecule lead with β-lactam antibiotic synergistic action. Targocil-II binds to the extracellular dimerisation interface of TarG, we suggest mimicking flipped but not yet released substrate. In absence of targocil-II and in complex with ATP analogue ATPγS, determined at 2.3 Å resolution, the ATPase active site is allosterically inhibited. This is due to a so far undescribed D-loop conformation, potentially minimizing spurious ATP hydrolysis in the absence of substrate. Targocil-II binding comparatively causes local and remote conformational changes through to the TarH active site, with the D-loop now optimal for ATP hydrolysis. These structures suggest an ability to modulate ATP hydrolysis in a WTA substrate dependent manner and a jammed ATPase cycle as the basis of the observed inhibition by targocil-II. The molecular insights provide an unprecedented basis for development of TarGH targeted therapeutics for treatment of multidrug-resistant S. aureus and other gram-positive bacterial infections.
Collapse
Affiliation(s)
- Franco K K Li
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Shaun C Peters
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Liam J Worrall
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, BC, Canada
| | - Tianjun Sun
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Jinhong Hu
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Marija Vuckovic
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Maya Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Armando Palacios
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
| | - Nathanael A Caveney
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, BC, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada
| | - Natalie C J Strynadka
- Department of Biochemistry and Molecular Biology and the Centre for Blood Research, University of British Columbia, Vancouver, BC, Canada.
- High Resolution Macromolecular Cryo-Electron Microscopy (HRMEM) Facility, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
2
|
Liang S, Zhao D, Liu X, Liu B, Li Y. The stomach, small intestine, and colon-specific gastrointestinal tract delivery systems for bioactive nutrients. Adv Colloid Interface Sci 2025; 341:103503. [PMID: 40209595 DOI: 10.1016/j.cis.2025.103503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 02/13/2025] [Accepted: 03/29/2025] [Indexed: 04/12/2025]
Abstract
Oral administration is a convenient way to deliver bioactive nutrients. However, the complex and dynamic environment of the gastrointestinal (GI) tract poses distinct challenges. These include the acidic environment of the stomach, limited transport across the GI mucosa, and the risk of enzymatic degradation, all of which can compromise the nutritional effectiveness of orally delivered nutrients. In response to these challenges, various GI tract delivery systems have been developed to target specific regions, such as the stomach, small intestine, or colon, to precisely control the release of bioactive nutrients and enhance their health-promoting benefits. This review critically examines the principles underlying stomach-, small intestine-, and colon-targeted delivery systems, highlighting the selection of appropriate wall materials and the interactions between delivery systems and the mucosal epithelial barrier. Moreover, we describe relevant biological models and quantitative analyses to measure these interactions. In particular, we emphasize the significant advantages offered by colon-targeted delivery systems in maintaining a healthy colonic microenvironment. This review aims to inspire novel concepts and stimulate further research into GI tract delivery systems, offering promising avenues for maximizing the therapeutic effects of bioactive nutrients in practical applications.
Collapse
Affiliation(s)
- Shuang Liang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China; Central Laboratory, NMPA Key Laboratory for Dental Materials, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Dongyu Zhao
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiangyu Liu
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Bin Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100193, China
| | - Yuan Li
- Research Center of Food Colloids and Delivery of Functionality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Badiee SA, Isu UH, Khodadadi E, Moradi M. The Alternating Access Mechanism in Mammalian Multidrug Resistance Transporters and Their Bacterial Homologs. MEMBRANES 2023; 13:568. [PMID: 37367772 PMCID: PMC10305233 DOI: 10.3390/membranes13060568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/23/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023]
Abstract
Multidrug resistance (MDR) proteins belonging to the ATP-Binding Cassette (ABC) transporter group play a crucial role in the export of cytotoxic drugs across cell membranes. These proteins are particularly fascinating due to their ability to confer drug resistance, which subsequently leads to the failure of therapeutic interventions and hinders successful treatments. One key mechanism by which multidrug resistance (MDR) proteins carry out their transport function is through alternating access. This mechanism involves intricate conformational changes that enable the binding and transport of substrates across cellular membranes. In this extensive review, we provide an overview of ABC transporters, including their classifications and structural similarities. We focus specifically on well-known mammalian multidrug resistance proteins such as MRP1 and Pgp (MDR1), as well as bacterial counterparts such as Sav1866 and lipid flippase MsbA. By exploring the structural and functional features of these MDR proteins, we shed light on the roles of their nucleotide-binding domains (NBDs) and transmembrane domains (TMDs) in the transport process. Notably, while the structures of NBDs in prokaryotic ABC proteins, such as Sav1866, MsbA, and mammalian Pgp, are identical, MRP1 exhibits distinct characteristics in its NBDs. Our review also emphasizes the importance of two ATP molecules for the formation of an interface between the two binding sites of NBD domains across all these transporters. ATP hydrolysis occurs following substrate transport and is vital for recycling the transporters in subsequent cycles of substrate transportation. Specifically, among the studied transporters, only NBD2 in MRP1 possesses the ability to hydrolyze ATP, while both NBDs of Pgp, Sav1866, and MsbA are capable of carrying out this reaction. Furthermore, we highlight recent advancements in the study of MDR proteins and the alternating access mechanism. We discuss the experimental and computational approaches utilized to investigate the structure and dynamics of MDR proteins, providing valuable insights into their conformational changes and substrate transport. This review not only contributes to an enhanced understanding of multidrug resistance proteins but also holds immense potential for guiding future research and facilitating the development of effective strategies to overcome multidrug resistance, thus improving therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Mahmoud Moradi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA; (S.A.B.); (U.H.I.); (E.K.)
| |
Collapse
|
4
|
Xiao KR, Wu CY, Yang L, Wang J, Song QS, Stanley D, Wei SJ, Zhu JY. Comparative genomic analysis of ABC transporter genes in Tenebrio molitor and four other tenebrionid beetles (Coleoptera: Tenebrionidea). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2022; 111:e21916. [PMID: 35584005 DOI: 10.1002/arch.21916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
ATP-binding cassette (ABC) transporters, one of the largest transmembrane protein families, transport a diverse number of substate across membranes. Details of their diverse physiological functions have not been established. Here, we identified 87 ABC transporter genes in the genomes of Tenebrio molitor along with those from Asbolus verrucosus (104), Hycleus cichorii (65), and Hycleus phaleratus (80). Combining these genes (336 in total) with genes reported in Tribolium castaneum (73), we analyzed the phylogeny of ABC transporter genes in all five Tenebrionids. They are assigned into eight subfamilies (ABCA-H). In comparison to other species, the ABCC subfamily in this group of beetles appears expanded. The expression profiles of the T. molitor genes at different life stages and in various tissues were also investigated using transcriptomic analysis. Most of them display developmental specific expression patterns, suggesting to us their possible roles in development. Most of them are highly expressed in detoxification-related tissues including gut and Malpighian tubule, from which we infer their roles in insecticide resistance. We detected specific or abundant expressions of many ABC transporter genes in various tissues such as salivary gland, ovary, testis, and antenna. This new information helps generate new hypotheses on their biological significance within tissues.
Collapse
Affiliation(s)
- Kai-Ran Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Chao-Yan Wu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Jun Wang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Qi-Sheng Song
- Division of Plant Science and Technology, University of Missouri, Columbia, Missouri, USA
| | - David Stanley
- USDA/ARS Biological Control of Insects Research Laboratory, Columbia, Missouri, USA
| | - Shu-Jun Wei
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China
| |
Collapse
|
5
|
Ramzan R, Virk MS, Chen F. The ABCT31 Transporter Regulates the Export System of Phenylacetic Acid as a Side-Chain Precursor of Penicillin G in Monascus ruber M7. Front Microbiol 2022; 13:915721. [PMID: 35966689 PMCID: PMC9370074 DOI: 10.3389/fmicb.2022.915721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
The biosynthesis of penicillin G (PG) is compartmentalized, and the transportation of the end and intermediate products, and substrates (precursors) such as L-cysteine (L-Cys), L-valine (L-Val) and phenylacetic acid (PAA) requires traversing membrane barriers. However, the transportation system of PAA as a side chain of PG are unclear yet. To discover ABC transporters (ABCTs) involved in the transportation of PAA, the expression levels of 38 ABCT genes in the genome of Monascus ruber M7, culturing with and without PAA, were examined, and found that one abct gene, namely abct31, was considerably up-regulated with PAA, indicating that abct31 may be relative with PAA transportation. Furthermore the disruption of abct31 was carried out, and the effects of two PG substrate's amino acids (L-Cys and L-Val), PAA and some other weak acids on the morphologies and production of secondary metabolites (SMs) of Δabct31 and M. ruber M7, were performed through feeding experiments. The results revealed that L-Cys, L-Val and PAA substantially impacted the morphologies and SMs production of Δabct31 and M. ruber M7. The UPLC-MS/MS analysis findings demonstrated that Δabct31 did not interrupt the synthesis of PG in M. ruber M7. According to the results, it suggests that abct31 is involved in the resistance and detoxification of the weak acids, including the PAA in M. ruber M7.
Collapse
Affiliation(s)
- Rabia Ramzan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- Department of Food Science and Technology, Government College Women University, Faisalabad, Pakistan
| | - Muhammad Safiullah Virk
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
6
|
Lacabanne D, Wiegand T, Di Cesare M, Orelle C, Ernst M, Jault JM, Meier BH, Böckmann A. Solid-State NMR Reveals Asymmetric ATP Hydrolysis in the Multidrug ABC Transporter BmrA. J Am Chem Soc 2022; 144:12431-12442. [PMID: 35776907 PMCID: PMC9284561 DOI: 10.1021/jacs.2c04287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
![]()
The detailed mechanism
of ATP hydrolysis in ATP-binding cassette
(ABC) transporters is still not fully understood. Here, we employed 31P solid-state NMR to probe the conformational changes and
dynamics during the catalytic cycle by locking the multidrug ABC transporter
BmrA in prehydrolytic, transition, and posthydrolytic states, using
a combination of mutants and ATP analogues. The 31P spectra
reveal that ATP binds strongly in the prehydrolytic state to both
ATP-binding sites as inferred from the analysis of the nonhydrolytic
E504A mutant. In the transition state of wild-type BmrA, the symmetry
of the dimer is broken and only a single site is tightly bound to
ADP:Mg2+:vanadate, while the second site is more ‘open’
allowing exchange with the nucleotides in the solvent. In the posthydrolytic
state, weak binding, as characterized by chemical exchange with free
ADP and by asymmetric 31P–31P two-dimensional
(2D) correlation spectra, is observed for both sites. Revisiting the 13C spectra in light of these findings confirms the conformational
nonequivalence of the two nucleotide-binding sites in the transition
state. Our results show that following ATP binding, the symmetry of
the ATP-binding sites of BmrA is lost in the ATP-hydrolysis step,
but is then recovered in the posthydrolytic ADP-bound state.
Collapse
Affiliation(s)
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Margot Di Cesare
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| | - Matthias Ernst
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| | - Beat H Meier
- Physical Chemistry, ETH Zurich, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR5086 CNRS/University of Lyon, 7, passage du Vercors, 69367 Lyon, France
| |
Collapse
|
7
|
Infield DT, Strickland KM, Gaggar A, McCarty NA. The molecular evolution of function in the CFTR chloride channel. J Gen Physiol 2021; 153:212705. [PMID: 34647973 PMCID: PMC8640958 DOI: 10.1085/jgp.202012625] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022] Open
Abstract
The ATP-binding cassette (ABC) transporter superfamily includes many proteins of clinical relevance, with genes expressed in all domains of life. Although most members use the energy of ATP binding and hydrolysis to accomplish the active import or export of various substrates across membranes, the cystic fibrosis transmembrane conductance regulator (CFTR) is the only known animal ABC transporter that functions primarily as an ion channel. Defects in CFTR, which is closely related to ABCC subfamily members that bear function as bona fide transporters, underlie the lethal genetic disease cystic fibrosis. This article seeks to integrate structural, functional, and genomic data to begin to answer the critical question of how the function of CFTR evolved to exhibit regulated channel activity. We highlight several examples wherein preexisting features in ABCC transporters were functionally leveraged as is, or altered by molecular evolution, to ultimately support channel function. This includes features that may underlie (1) construction of an anionic channel pore from an anionic substrate transport pathway, (2) establishment and tuning of phosphoregulation, and (3) optimization of channel function by specialized ligand–channel interactions. We also discuss how divergence and conservation may help elucidate the pharmacology of important CFTR modulators.
Collapse
Affiliation(s)
- Daniel T Infield
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA
| | | | - Amit Gaggar
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL.,Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL.,Program in Protease and Matrix Biology, University of Alabama at Birmingham, Birmingham, AL.,Birmingham Veterans Administration Medical Center, Birmingham, AL
| | - Nael A McCarty
- Department of Pediatrics, Emory University, Atlanta, GA.,Children's Healthcare of Atlanta Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, GA
| |
Collapse
|
8
|
Hu X, Luo K, Ji K, Wang L, Chen W. ABC transporter slr0982 affects response of Synechocystis sp. PCC 6803 to oxidative stress caused by methyl viologen. Res Microbiol 2021; 173:103888. [PMID: 34742881 DOI: 10.1016/j.resmic.2021.103888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/06/2021] [Accepted: 10/14/2021] [Indexed: 11/24/2022]
Abstract
The exposure of methyl viologen (a bipyridine salt) can lead to the production of reactive oxygen species, causing oxidative stress to organisms. ABC transporters have been reported to be involved in multi-drug resistance and have a role in MV detoxification. Here, we performed a protein structure simulation of the Slr0982 protein encoding ABC transporters, and confirmed that the region from Phe57 to Gln257 was the ABC transporter-type domain of the Slr0982 protein. The results of protein sequence alignment showed that Slr0982 protein was similar to Slr2108 protein (polysialic acid transport ATP-binding protein) and Slr0354 protein (ABC transporter). We reported that the mutation of slr0982 reduced the tolerance of Synechocystis sp. PCC 6803 to oxidative stress induced by methyl viologen. The deletion of slr0982 reduced the ability of cells to resist oxidative stress. Our data confirmed that the deletion of slr0982 could affect the concentration of exopolysaccharide and the expression of some genes related to carbohydrate metabolism, thus decreasing polysaccharide transport. Importantly, the exogenous addition of exopolysaccharide extracted from wild type can effectively reduce the oxidative damage to Δslr0982 by methyl viologen. This study expands the role of ABC transporters in MV-induced oxidative stress and provides an insight into the further analysis of the response of cyanobacteria to oxidative stress.
Collapse
Affiliation(s)
- Xinyu Hu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ke Luo
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Kai Ji
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Li Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| |
Collapse
|
9
|
Close K, Marques R, Carvalho VCF, Freitas EB, Reis MAM, Carvalho G, Oehmen A. The storage compounds associated with Tetrasphaera PAO metabolism and the relationship between diversity and P removal. WATER RESEARCH 2021; 204:117621. [PMID: 34500182 DOI: 10.1016/j.watres.2021.117621] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 06/13/2023]
Abstract
In enhanced biological phosphorus removal (EBPR), Tetrasphaera can potentially be an abundant and important polyphosphate accumulating organism (PAO), however ongoing questions remain concerning its storage compounds, phosphorus (P) removal capabilities and metabolic behaviour. This study investigated each of these points in an enriched Tetrasphaera culture (95% biovolume). The enriched Tetrasphaera culture fermented amino acids, while also converting and storing diverse amino acids as aspartic and glutamic acid within cells. Subsequent intracellular consumption of these two amino acids during the aerobic phase supports their importance in the metabolism of Tetrasphaera. Polyhydroxyalkanoate (PHA) cycling was also observed in this study, in contrast to some previous studies on Tetrasphaera. While exhibiting anaerobic phosphorus release and aerobic uptake, the highly enriched Tetrasphaera culture was unable to completely remove phosphorus in sequencing batch reactors (SBR) cycles, with an average removal efficiency of 72.3 ± 7.8%. This is unlike a previous study containing both Tetrasphaera (70%) and Accumulibacter (22%), which regularly performed complete phosphorus removal under otherwise similar operational conditions, at efficiencies of > 99%. Notably, the phylodiversity of organisms belonging to Tetrasphaera was substantially different in the present work, consisting mainly of organisms within Clade 2, likely impacting PHA cycling. These results suggest that the contribution of Tetrasphaera towards P removal is highly dependent on the composition of its Clades within this microbial group and an observed higher abundance of Tetrasphaera in WWTPs does not necessarily imply overall higher P removal. This study improves our understanding of the role of Tetrasphaera within EBPR systems and key factors impacting its metabolism.
Collapse
Affiliation(s)
- Kylie Close
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Ricardo Marques
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Virginia C F Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Elisabete B Freitas
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Maria A M Reis
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Gilda Carvalho
- UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Advanced Water Management Centre (AWMC), The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Adrian Oehmen
- School of Chemical Engineering, The University of Queensland, St Lucia, Queensland, 4072, Australia; UCIBIO-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
10
|
Structural dynamics of ABC transporters: molecular simulation studies. Biochem Soc Trans 2021; 49:405-414. [PMID: 33634827 DOI: 10.1042/bst20200710] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/02/2021] [Accepted: 02/03/2021] [Indexed: 12/31/2022]
Abstract
The biological activities of living organisms involve various inputs and outputs. The ATP-driven substances (biomolecules) responsible for these kinds of activities through membrane (i.e. uptake and efflux of substrates) include ATP-binding cassette (ABC) transporters, some of which play important roles in multidrug resistance. The basic architecture of ABC transporters comprises transmembrane domains (TMDs) and nucleotide-binding domains (NBDs). The functional dynamics (substrate transport) of ABC transporters are realized by concerted motions, such as NBD dimerization, mechanical transmission via coupling helices (CHs), and the translocation of substrates through TMDs, which are induced by the binding and/or hydrolysis of ATP molecules and substrates. In this mini-review, we briefly discuss recent progresses in the structural dynamics as revealed by molecular simulation studies at all-atom (AA), coarse-grained (CG), and quantum mechanics/molecular mechanics (QM/MM) levels.
Collapse
|
11
|
Intestinal membrane transporter-mediated approaches to improve oral drug delivery. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2021. [DOI: 10.1007/s40005-021-00515-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Kabra R, Singh S. ABC Exporters in Pathogenesis: Role of Synthetic Anti-Microbial Peptides. Protein J 2020; 39:657-670. [PMID: 33068233 DOI: 10.1007/s10930-020-09931-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
ABC exporters are involved in diverse cellular processes including lipid trafficking, drug resistance, pathogenesis etc. The greatest thrust has been in the area of drug resistance that explains the underlying well-crafted canonical architecture of its structure. Interestingly, ranging from structural organisation to subsequent design and delivery aspects lays the niche of antimicrobial peptides. One of the major highlight of this paper is the role of synthetic antimicrobial peptides in current scenario.
Collapse
Affiliation(s)
- Ritika Kabra
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, 411007, India
| | - Shailza Singh
- National Centre for Cell Science, NCCS Complex, Ganeshkhind, Pune, 411007, India.
| |
Collapse
|
13
|
Ford RC, Hellmich UA. What monomeric nucleotide binding domains can teach us about dimeric ABC proteins. FEBS Lett 2020; 594:3857-3875. [PMID: 32880928 DOI: 10.1002/1873-3468.13921] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/06/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
The classic conceptualization of ATP binding cassette (ABC) transporter function is an ATP-dependent conformational change coupled to transport of a substrate across a biological membrane via the transmembrane domains (TMDs). The binding of two ATP molecules within the transporter's two nucleotide binding domains (NBDs) induces their dimerization. Despite retaining the ability to bind nucleotides, isolated NBDs frequently fail to dimerize. ABC proteins without a TMD, for example ABCE and ABCF, have NBDs tethered via elaborate linkers, further supporting that NBD dimerization does not readily occur for isolated NBDs. Intriguingly, even in full-length transporters, the NBD-dimerized, outward-facing state is not as frequently observed as might be expected. This leads to questions regarding what drives NBD interaction and the role of the TMDs or linkers. Understanding the NBD-nucleotide interaction and the subsequent NBD dimerization is thus pivotal for understanding ABC transporter activity in general. Here, we hope to provide new insights into ABC protein function by discussing the perplexing issue of (missing) NBD dimerization in isolation and in the context of full-length ABC proteins.
Collapse
Affiliation(s)
- Robert C Ford
- Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Ute A Hellmich
- Department of Chemistry, Johannes Gutenberg-University, Mainz, Germany.,Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Frankfurt, Germany
| |
Collapse
|
14
|
Gouridis G, Hetzert B, Kiosze-Becker K, de Boer M, Heinemann H, Nürenberg-Goloub E, Cordes T, Tampé R. ABCE1 Controls Ribosome Recycling by an Asymmetric Dynamic Conformational Equilibrium. Cell Rep 2020; 28:723-734.e6. [PMID: 31315050 PMCID: PMC6656783 DOI: 10.1016/j.celrep.2019.06.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 02/04/2019] [Accepted: 06/14/2019] [Indexed: 11/04/2022] Open
Abstract
The twin-ATPase ABCE1 has a vital function in mRNA translation by recycling terminated or stalled ribosomes. As for other functionally distinct ATP-binding cassette (ABC) proteins, the mechanochemical coupling of ATP hydrolysis to conformational changes remains elusive. Here, we use an integrated biophysical approach allowing direct observation of conformational dynamics and ribosome association of ABCE1 at the single-molecule level. Our results from FRET experiments show that the current static two-state model of ABC proteins has to be expanded because the two ATP sites of ABCE1 are in dynamic equilibrium across three distinct conformational states: open, intermediate, and closed. The interaction of ABCE1 with ribosomes influences the conformational dynamics of both ATP sites asymmetrically and creates a complex network of conformational states. Our findings suggest a paradigm shift to redefine the understanding of the mechanochemical coupling in ABC proteins: from structure-based deterministic models to dynamic-based systems. Both ATP sites of ABCE1 are in an asymmetric conformational equilibrium Each ATP site can adopt three functionally distinct conformational states These equilibria shift during ribosome recycling depending on interaction partners ATP binding, but not hydrolysis, is required for ribosome splitting
Collapse
Affiliation(s)
- Giorgos Gouridis
- Molecular Microscopy Research Group, Zernike Institute for Advanced Material, University of Groningen, 9747 AG Groningen, the Netherlands; Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany; Department of Microbiology and Immunology, Rega Institute for Medical Research, Laboratory of Molecular Bacteriology, KU Leuven, 3000 Leuven, Belgium
| | - Bianca Hetzert
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Kristin Kiosze-Becker
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Marijn de Boer
- Molecular Microscopy Research Group, Zernike Institute for Advanced Material, University of Groningen, 9747 AG Groningen, the Netherlands
| | - Holger Heinemann
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Elina Nürenberg-Goloub
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany
| | - Thorben Cordes
- Molecular Microscopy Research Group, Zernike Institute for Advanced Material, University of Groningen, 9747 AG Groningen, the Netherlands; Physical and Synthetic Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, 60438 Frankfurt a.M., Germany.
| |
Collapse
|
15
|
Connor KL, Kibschull M, Matysiak-Zablocki E, Nguyen TTTN, Matthews SG, Lye SJ, Bloise E. Maternal malnutrition impacts placental morphology and transporter expression: an origin for poor offspring growth. J Nutr Biochem 2020; 78:108329. [PMID: 32004932 DOI: 10.1016/j.jnutbio.2019.108329] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022]
Abstract
The placenta promotes fetal growth through nutrient transfer and selective barrier systems. An optimally developed placenta can adapt to changes in the pregnancy environment, buffering the fetus from adverse exposures. We hypothesized that the placenta adapts differently to suboptimal maternal diets, evidenced by changes in placental morphology, developmental markers and key transport systems. Mice were fed a control diet (CON) during pregnancy, undernourished (UN) by 30% of control intake from gestational day (GD) 5.5-18.5 or fed 60% high-fat diet (HF) 8 weeks before and during pregnancy. At GD18.5, placental morphometry, development and transport were assessed. Junctional and labyrinthine areas of UN and HF placentae were smaller than CON by >10%. Fetal blood space area and fetal blood space:fetal weight ratios were reduced in HF vs. CON and UN. Trophoblast giant cell marker Ctsq mRNA expression was lower in UN vs. HF, and expression of glycogen cell markers Cx31.1 and Pcdh12 was lower in HF vs. UN. Efflux transporter Abcb1a mRNA expression was lower in HF vs. UN, and Abcg2 expression was lower in UN vs. HF. mRNA expression of fatty acid binding protein Fabppm was higher in UN vs. CON and HF. mRNA and protein levels of the lipid transporter FAT/CD36 were lower in UN, and FATP4 protein levels were lower in HF vs. UN. UN placentae appear less mature with aberrant transport, whereas HF placentae adapt to excessive nutrient supply. Understanding placental adaptations to common nutritional adversities may reveal mechanisms underlying the developmental origins of later disease.
Collapse
Affiliation(s)
- Kristin L Connor
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| | - Mark Kibschull
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | | | | | - Stephen G Matthews
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Stephen J Lye
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada; Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Enrrico Bloise
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada; Department of Morphology, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Abstract
Energy-coupling factor (ECF)-type ATP-binding cassette (ABC) transporters catalyze membrane transport of micronutrients in prokaryotes. Crystal structures and biochemical characterization have revealed that ECF transporters are mechanistically distinct from other ABC transport systems. Notably, ECF transporters make use of small integral membrane subunits (S-components) that are predicted to topple over in the membrane when carrying the bound substrate from the extracellular side of the bilayer to the cytosol. Here, we review the phylogenetic diversity of ECF transporters as well as recent structural and biochemical advancements that have led to the postulation of conceptually different mechanistic models. These models can be described as power stroke and thermal ratchet. Structural data indicate that the lipid composition and bilayer structure are likely to have great impact on the transport function. We argue that study of ECF transporters could lead to generic insight into membrane protein structure, dynamics, and interaction.
Collapse
Affiliation(s)
- S Rempel
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - W K Stanek
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , ,
| | - D J Slotboom
- Gr oningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, The Netherlands; , , .,Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, The Netherlands
| |
Collapse
|
17
|
Adedipe F, Grubbs N, Coates B, Wiegmman B, Lorenzen M. Structural and functional insights into the Diabrotica virgifera virgifera ATP-binding cassette transporter gene family. BMC Genomics 2019; 20:899. [PMID: 31775611 PMCID: PMC6882327 DOI: 10.1186/s12864-019-6218-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The western corn rootworm, Diabrotica virgifera virgifera, is a pervasive pest of maize in North America and Europe, which has adapted to current pest management strategies. In advance of an assembled and annotated D. v. virgifera genome, we developed transcriptomic resources to use in identifying candidate genes likely to be involved in the evolution of resistance, starting with members of the ATP-binding cassette (ABC) transporter family. RESULTS In this study, 65 putative D. v. virgifera ABC (DvvABC) transporters were identified within a combined transcriptome assembly generated from embryonic, larval, adult male, and adult female RNA-sequence libraries. Phylogenetic analysis placed the deduced amino-acid sequences of the DvvABC transporters into eight subfamilies (A to H). To supplement our sequence data with functional analysis, we identified orthologs of Tribolium castaneum ABC genes which had previously been shown to exhibit overt RNA interference (RNAi) phenotypes. We identified eight such D. v. virgifera genes, and found that they were functionally similar to their T. castaneum counterparts. Interestingly, depletion of DvvABCB_39715 and DvvABCG_3712 transcripts in adult females produced detrimental reproductive and developmental phenotypes, demonstrating the potential of these genes as targets for RNAi-mediated insect control tactics. CONCLUSIONS By combining sequence data from four libraries covering three distinct life stages, we have produced a relatively comprehensive de novo transcriptome assembly for D. v. virgifera. Moreover, we have identified 65 members of the ABC transporter family and provided the first insights into the developmental and physiological roles of ABC transporters in this pest species.
Collapse
Affiliation(s)
- Folukemi Adedipe
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7613, 1566 Thomas Hall, Raleigh, NC, 27695-7613, USA
| | - Nathaniel Grubbs
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7613, 1566 Thomas Hall, Raleigh, NC, 27695-7613, USA
| | - Brad Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, 50011, USA
| | - Brian Wiegmman
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7613, 1566 Thomas Hall, Raleigh, NC, 27695-7613, USA
| | - Marcé Lorenzen
- Department of Entomology and Plant Pathology, North Carolina State University, Box 7613, 1566 Thomas Hall, Raleigh, NC, 27695-7613, USA.
| |
Collapse
|
18
|
Genome-Wide Identification and Characterization of ABC Transporters in Nine Rosaceae Species Identifying MdABCG28 as a Possible Cytokinin Transporter linked to Dwarfing. Int J Mol Sci 2019; 20:ijms20225783. [PMID: 31744249 PMCID: PMC6887749 DOI: 10.3390/ijms20225783] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 01/04/2023] Open
Abstract
ATP-binding cassette (ABC) transporters constitute a large, diverse, and ubiquitous superfamily that is involved in a broad range of processes. The completion of genome sequencing provides an opportunity to understand the phylogenetic history of the ABC transporter superfamily among Rosaceae species. This study identified a total of 1323 ABC transporter genes from nine Rosaceae genomes: 191 from Malus domestica, 174 from Pyrus communis, 138 from Prunus persica, 118 from Prunus avium, 141 from Prunus dulcis, 122 from Fragaria vesca, 98 from Rubus occidentalis, 162 from Prunus mume, and 179 from Rosa chinensis. Their chemical characterization, phylogenetic analysis, chromosomal localization, gene structure, gene duplication, and tissue-specific expression were studied. Their subcellular localization, transmembrane structures, and protein motifs were predicted. All the ABC transporter genes were grouped into eight subfamilies on the basis of their phylogenetic relationships and structural features. Furthermore, cis-element and expression analysis of 10 potential phytohormone transporters in MdABCG subfamily genes were also performed. Loss of the W-box in the promoter region of MdABCG28 was found to reduce the gene expression level and was linked to the dwarfing phenotype in apple rootstocks. MdABCG28 overexpression promoted shoot growth of atabcg14 mutants in Arabidopsis.
Collapse
|
19
|
Praest P, Liaci AM, Förster F, Wiertz EJ. New insights into the structure of the MHC class I peptide-loading complex and mechanisms of TAP inhibition by viral immune evasion proteins. Mol Immunol 2019; 113:103-114. [DOI: 10.1016/j.molimm.2018.03.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 01/08/2023]
|
20
|
Yaneff A, Sahores A, Gómez N, Carozzo A, Shayo C, Davio C. MRP4/ABCC4 As a New Therapeutic Target: Meta-Analysis to Determine cAMP Binding Sites as a Tool for Drug Design. Curr Med Chem 2019; 26:1270-1307. [PMID: 29284392 DOI: 10.2174/0929867325666171229133259] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 12/01/2017] [Accepted: 12/14/2017] [Indexed: 02/06/2023]
Abstract
MRP4 transports multiple endogenous and exogenous substances and is critical not only for detoxification but also in the homeostasis of several signaling molecules. Its dysregulation has been reported in numerous pathological disorders, thus MRP4 appears as an attractive therapeutic target. However, the efficacy of MRP4 inhibitors is still controversial. The design of specific pharmacological agents with the ability to selectively modulate the activity of this transporter or modify its affinity to certain substrates represents a challenge in current medicine and chemical biology. The first step in the long process of drug rational design is to identify the therapeutic target and characterize the mechanism by which it affects the given pathology. In order to develop a pharmacological agent with high specific activity, the second step is to systematically study the structure of the target and identify all the possible binding sites. Using available homology models and mutagenesis assays, in this review we recapitulate the up-to-date knowledge about MRP structure and aligned amino acid sequences to identify the candidate MRP4 residues where cyclic nucleotides bind. We have also listed the most relevant MRP inhibitors studied to date, considering drug safety and specificity for MRP4 in particular. This meta-analysis platform may serve as a basis for the future development of inhibitors of MRP4 cAMP specific transport.
Collapse
Affiliation(s)
- Agustín Yaneff
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Sahores
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Gómez
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Alejandro Carozzo
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Carina Shayo
- Instituto de Biologia y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carlos Davio
- Instituto de Investigaciones Farmacologicas (ININFA-UBA-CONICET), Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
21
|
Wu C, Chakrabarty S, Jin M, Liu K, Xiao Y. Insect ATP-Binding Cassette (ABC) Transporters: Roles in Xenobiotic Detoxification and Bt Insecticidal Activity. Int J Mol Sci 2019; 20:ijms20112829. [PMID: 31185645 PMCID: PMC6600440 DOI: 10.3390/ijms20112829] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 01/09/2023] Open
Abstract
ATP-binding cassette (ABC) transporters, a large class of transmembrane proteins, are widely found in organisms and play an important role in the transport of xenobiotics. Insect ABC transporters are involved in insecticide detoxification and Bacillus thuringiensis (Bt) toxin perforation. The complete ABC transporter is composed of two hydrophobic transmembrane domains (TMDs) and two nucleotide binding domains (NBDs). Conformational changes that are needed for their action are mediated by ATP hydrolysis. According to the similarity among their sequences and organization of conserved ATP-binding cassette domains, insect ABC transporters have been divided into eight subfamilies (ABCA–ABCH). This review describes the functions and mechanisms of ABC transporters in insecticide detoxification, plant toxic secondary metabolites transport and insecticidal activity of Bt toxin. With improved understanding of the role and mechanisms of ABC transporter in resistance to insecticides and Bt toxins, we can identify valuable target sites for developing new strategies to control pests and manage resistance and achieve green pest control.
Collapse
Affiliation(s)
- Chao Wu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Swapan Chakrabarty
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Minghui Jin
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| | - Kaiyu Liu
- Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan 430079, China.
| | - Yutao Xiao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
22
|
The extracellular gate shapes the energy profile of an ABC exporter. Nat Commun 2019; 10:2260. [PMID: 31113958 PMCID: PMC6529423 DOI: 10.1038/s41467-019-09892-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 04/04/2019] [Indexed: 11/08/2022] Open
Abstract
ABC exporters harness the energy of ATP to pump substrates across membranes. Extracellular gate opening and closure are key steps of the transport cycle, but the underlying mechanism is poorly understood. Here, we generated a synthetic single domain antibody (sybody) that recognizes the heterodimeric ABC exporter TM287/288 exclusively in the presence of ATP, which was essential to solve a 3.2 Å crystal structure of the outward-facing transporter. The sybody binds to an extracellular wing and strongly inhibits ATPase activity by shifting the transporter's conformational equilibrium towards the outward-facing state, as shown by double electron-electron resonance (DEER). Mutations that facilitate extracellular gate opening result in a comparable equilibrium shift and strongly reduce ATPase activity and drug transport. Using the sybody as conformational probe, we demonstrate that efficient extracellular gate closure is required to dissociate the NBD dimer after ATP hydrolysis to reset the transporter back to its inward-facing state.
Collapse
|
23
|
Lacabanne D, Orelle C, Lecoq L, Kunert B, Chuilon C, Wiegand T, Ravaud S, Jault JM, Meier BH, Böckmann A. Flexible-to-rigid transition is central for substrate transport in the ABC transporter BmrA from Bacillus subtilis. Commun Biol 2019; 2:149. [PMID: 31044174 PMCID: PMC6488656 DOI: 10.1038/s42003-019-0390-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/15/2019] [Indexed: 01/15/2023] Open
Abstract
ATP-binding-cassette (ABC) transporters are molecular pumps that translocate molecules across the cell membrane by switching between inward-facing and outward-facing states. To obtain a detailed understanding of their mechanism remains a challenge to structural biology, as these proteins are notoriously difficult to study at the molecular level in their active, membrane-inserted form. Here we use solid-state NMR to investigate the multidrug ABC transporter BmrA reconstituted in lipids. We identify the chemical-shift differences between the inward-facing, and outward-facing state induced by ATP:Mg2+:Vi addition. Analysis of an X-loop mutant, for which we show that ATPase and transport activities are uncoupled, reveals an incomplete transition to the outward-facing state upon ATP:Mg2+:Vi addition, notably lacking the decrease in dynamics of a defined set of residues observed in wild-type BmrA. This suggests that this stiffening is required for an efficient transmission of the conformational changes to allow proper transport of substrate by the pump.
Collapse
Affiliation(s)
- Denis Lacabanne
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Cédric Orelle
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Lauriane Lecoq
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Britta Kunert
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Claire Chuilon
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Thomas Wiegand
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Stéphanie Ravaud
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Jean-Michel Jault
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| | - Beat H. Meier
- Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Anja Böckmann
- Molecular Microbiology and Structural Biochemistry, UMR 5086 CNRS/Université de Lyon, Labex Ecofect, 7, passage de Vercors, 69367 Lyon, France
| |
Collapse
|
24
|
Mares L, Vilchis F, Chávez B, Ramos L. Isolation and sex steroid effects on the expression of the ATP-binding cassette transporter ABCB6 in Harderian glands of hamster (Mesocricetus auratus). Comp Biochem Physiol A Mol Integr Physiol 2019; 232:40-46. [PMID: 30878759 DOI: 10.1016/j.cbpa.2019.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 10/27/2022]
Abstract
ATP-Binding Cassette, subfamily B, member 6 (ABCB6) is a transporter that is upregulated by elevated intracellular porphyrin concentrations. In the Harderian gland (HG), the synthesis of porphyrins appears to be under the influence of gonadal steroids and to exhibit a dimorphic pattern. To explore whether ABCB6 is also influenced by sex steroids, we isolated its specific cDNA sequence and investigated its mRNA levels in the HGs of hamsters. ABCB6's cDNA sequence presents an open reading frame (ORF) of 2529 bp that encodes a predicted 842-amino acid (aa) protein with a molecular weight of 93 kDa. Multiple sequence alignments showed that ABCB6's aa sequence is highly conserved and shares the highest homology (93%) with mouse ABCB6. RT-qPCR analysis indicated that ABCB6 is expressed in all the tissues examined, exhibiting high expression levels in the liver, adrenal glands, and testis. The mRNA concentrations of ABCB6 in HGs were very similar between males and in females; similarly, gonadectomy and treatment with sex steroids appear to scarcely affect ABCB6 mRNA levels. The intraglandular content of ABCB6 mRNA showed discrete, though non-significant, variations through the estrous cycle. The results provide evidence that gonadal steroids have a minimal physiological role on the regulation of ABCB6 expression and might indicate that this transporter has a small effect on porphyrin trafficking in the HGs of hamsters.
Collapse
Affiliation(s)
- L Mares
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - F Vilchis
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - B Chávez
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México
| | - L Ramos
- Department of Reproductive Biology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, México City, México.
| |
Collapse
|
25
|
Mishra AK, Choi J, Rabbee MF, Baek KH. In Silico Genome-Wide Analysis of the ATP-Binding Cassette Transporter Gene Family in Soybean ( Glycine max L.) and Their Expression Profiling. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8150523. [PMID: 30766888 PMCID: PMC6350567 DOI: 10.1155/2019/8150523] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 12/10/2018] [Indexed: 02/07/2023]
Abstract
ATP-binding cassette (ABC) transporters constitute one of the largest gene families in all living organisms, most of which mediate transport across biological membranes by hydrolyzing ATP. However, detailed studies of ABC transporter genes in the important oil crop, soybean, are still lacking. In the present study, we carried out genome-wide identification and phylogenetic and transcriptional analyses of the ABC gene family in G. max. A total of 261 G. max ABC (GmABCs) genes were identified and unevenly localized onto 20 chromosomes. Referring to protein-domain orientation and phylogeny, the GmABC family could be classified into eight (ABCA-ABCG and ABCI) subfamilies and ABCG were the most abundantly present. Further, investigation of whole genome duplication (WGD) signifies the role of segmental duplication in the expansion of the ABC transporter gene family in soybean. The Ka/Ks ratio indicates that several duplicated genes are governed by intense purifying selection during evolution. In addition, in silico expression analysis based on RNA-sequence using publicly available database revealed that ABC transporters are differentially expressed in tissues and developmental stages and in dehydration. Overall, we provide an extensive overview of the GmABC transporter gene family and it promises the primary basis for the study in development and response to dehydration tolerance.
Collapse
Affiliation(s)
- Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Jinhee Choi
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Muhammad Fazle Rabbee
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
26
|
Abstract
The transport of specific molecules across lipid membranes is an essential function of all living organisms. The processes are usually mediated by specific transporters. One of the largest transporter families is the ATP-binding cassette (ABC) family. More than 40 ABC transporters have been identified in human, which are divided into 7 subfamilies (ABCA to ABCG) based on their gene structure, amino acid sequence, domain organization, and phylogenetic analysis. Of them, at least 11 ABC transporters including P-glycoprotein (P-GP/ABCB1), multidrug resistance-associated proteins (MRPs/ABCCs), and breast cancer resistance protein (BCRP/ABCG2) are involved in multidrug resistance (MDR) development. These ABC transporters are expressed in various tissues such as the liver, intestine, kidney, and brain, playing important roles in absorption, distribution, and excretion of drugs. Some ABC transporters are also involved in diverse cellular processes such as maintenance of osmotic homeostasis, antigen processing, cell division, immunity, cholesterol, and lipid trafficking. Several human diseases such as cystic fibrosis, sitosterolemia, Tangier disease, intrahepatic cholestasis, and retinal degeneration are associated with mutations in corresponding transporters. This chapter will describe function and expression of several ABC transporters (such as P-GP, BCRP, and MRPs), their substrates and inhibitors, as well as their clinical significance.
Collapse
Affiliation(s)
- Xiaodong Liu
- China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
27
|
Liu Y, Feng C, Sheng Y, Dong S, Chen N, Hao C. Effect of Fe(II) on reactivity of heterotrophic denitrifiers in the remediation of nitrate- and Fe(II)-contaminated groundwater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 166:437-445. [PMID: 30292110 DOI: 10.1016/j.ecoenv.2018.09.104] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/07/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
Heterotrophic denitrifiers, capable of simultaneous nitrate reduction and Fe(II) oxidation, can be applied for the remediation of nitrate and Fe(II) combined contamination in groundwater. Under strictly anaerobic condition, denitrifying microbial communities were enriched with the coexistence of soluble nitrate, Fe(II) and associated nutrient elements to monitor the denitrification process. Low abundance of Fe(II) (e.g., 10 mg L-1 in this study) tended to stimulate the activity of denitrifying microbial communities. However, elevated Fe(II) concentration (50 and 100 mg L-1 in this study), acted as a stress, strongly inhibited the activity and reproduction of denitrifiers. Besides, through thermodynamics calculations, methanol rather than Fe(II) was proved to be the preferable electron donors for both energy metabolism and anabolism. Betaproteobacteria was found to be the most predominant (sub)phylum in all enriched microbial assemblages. Methylovesartilis was the most predominant group mainly catalyzed for methanol based denitrification, and others denitrifiers included Methylophilaceae, Dechloromonas and Denitratisoma. Excessive Fe(II) in the solution greatly reduced the proportions of these denitrifying groups, while the influence seemed to be less apparent on functional genes composition. As such, a conceptional metabolism pathway of the most dominant genus (i.e., Methylovesartilis) for nitrate reducing as well as methanol and Fe(II) oxidation confirmed that biotic nitrate reducing and Fe(II) oxidizing were potentially proceeded in cytoplasm by enzymes such as NarGHI. The Fe(II) oxidation rate depended on the rate of Fe(II) entering into the cell. These findings provide a clear mechanistic understanding of heterotrophic denitrification coupling with Fe(II) oxidation, and environmental implication for the bioremediation of nitrate and Fe(II) contaminated groundwater.
Collapse
Affiliation(s)
- Ying Liu
- Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences (Beijing)), Ministry of Education, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Chuanping Feng
- Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences (Beijing)), Ministry of Education, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China.
| | - Yizhi Sheng
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Shanshan Dong
- Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences (Beijing)), Ministry of Education, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Nan Chen
- Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences (Beijing)), Ministry of Education, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Chunbo Hao
- Key Laboratory of Groundwater Circulation and Environmental Evolution (China University of Geosciences (Beijing)), Ministry of Education, Beijing 100083, China; School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
28
|
Substrate polyspecificity and conformational relevance in ABC transporters: new insights from structural studies. Biochem Soc Trans 2018; 46:1475-1484. [PMID: 30514765 DOI: 10.1042/bst20180146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/09/2018] [Accepted: 10/30/2018] [Indexed: 12/17/2022]
Abstract
Transport of molecules and ions across biological membranes is an essential process in all organisms. It is carried out by a range of evolutionarily conserved primary and secondary transporters. A significant portion of the primary transporters belong to the ATP-binding cassette (ABC) superfamily, which utilise the free-energy from ATP hydrolysis to shuttle many different substrates across various biological membranes, and consequently, are involved in both normal and abnormal physiology. In humans, ABC transporter-associated pathologies are perhaps best exemplified by multidrug-resistance transporters that efflux many xenobiotic compounds due to their remarkable substrate polyspecificity. Accordingly, understanding the transport mechanism(s) is of great significance, and indeed, much progress has been made in recent years, particularly from structural studies on ABC exporters. Consequently, the general mechanism of 'alternate access' has been modified to describe individual transporter nuances, though some aspects of the transport process remain unclear. Moreover, as new information has emerged, the physiological relevance of the 'open-apo' conformation of MsbA (a bacterial exporter) has been questioned and, by extension, its contribution to mechanistic models. We present here a comprehensive overview of the most recently solved structures of ABC exporters, focusing on new insights regarding the nature of substrate polyspecificity and the physiological relevance of the 'open-apo' conformation. This review evaluates the claim that the latter may be an artefact of detergent solubilisation, and we hypothesise that the biophysical properties of the membrane play a key role in the function of ABC exporters allowing them to behave like a 'spring-hinge' during their transport cycle.
Collapse
|
29
|
Csizmadia G, Farkas B, Spagina Z, Tordai H, Hegedűs T. Quantitative comparison of ABC membrane protein type I exporter structures in a standardized way. Comput Struct Biotechnol J 2018; 16:396-403. [PMID: 30425800 PMCID: PMC6222291 DOI: 10.1016/j.csbj.2018.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/12/2018] [Accepted: 10/13/2018] [Indexed: 12/24/2022] Open
Abstract
An increasing number of ABC membrane protein structures are determined by cryo-electron microscopy and X-ray crystallography, consequently identifying differences between their conformations has become an arising issue. Therefore, we propose to define standardized measures for ABC Type I exporter structure characterization. We set conformational vectors, conftors, which describe the relative orientation of domains and can highlight structural differences. In addition, continuum electrostatics calculations were performed to characterize the energetics of membrane insertion illuminating functionally crucial regions. In summary, the proposed metrics contribute to deeper understanding of ABC membrane proteins' structural features, structure validation, and analysis of movements observed in a molecular dynamics trajectory. Moreover, the concept of standardized metrics can be applied not only to ABC membrane protein structures (http://conftors.hegelab.org).
Collapse
Key Words
- ABC proteins
- ABC, ATP binding cassette
- CFTR, cystic fibrosis transmembrane conductance regulator
- CG, coarse grained
- CH, coupling helix
- COG, center of geometry
- ICD, intracellular domain
- Membrane proteins
- NBD, nucleotide binding domain
- Quantitative structural properties
- Structure comparison
- Structure validation
- TH, transmembrane helix
- TM, transmembrane
- TMD, transmembrane domain
Collapse
Affiliation(s)
- Georgina Csizmadia
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Bianka Farkas
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Zoltán Spagina
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.,Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Hedvig Tordai
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| | - Tamás Hegedűs
- MTA-SE Molecular Biophysics Research Group, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
30
|
Targeting Nucleotide Binding Domain of Multidrug Resistance-associated Protein-1 (MRP1) for the Reversal of Multi Drug Resistance in Cancer. Sci Rep 2018; 8:11973. [PMID: 30097643 PMCID: PMC6086895 DOI: 10.1038/s41598-018-30420-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/25/2018] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistance (MDR) is the major cause, by which cancer cells expel the drugs out, developing a challenge against the current chemotherapeutic drugs regime. This mechanism is attributed to the over expression of ABC transporters like MRP1 on the surface of cells. Since nucleotide binding domains (NBD) of ABC transporters are the site of ATP binding and hydrolysis, thereby in this study we have targeted NBD1 of MRP1using molecular docking and molecular dynamic simulations (MDS). The compounds present in the FDA approved library were docked against NBD1 of the human multidrug resistance associated protein 1 (PDB ID: 2CBZ). For the docking studies, Standard Precision and Extra Precision methods were employed. After the EP docking studies, ligands showed an extremely low docking score that was indicative of very high binding affinity of the ligands to the NBD. Apart from the low docking score, another short listing criterion in simulation studies was the interaction of incoming ligand with the desired conserved residues of NDB involved in ATP binding and hydrolysis. Based on these measures, potassium citrate (DB09125) and technetium Tc-99m medronate (DB09138) were chosen and subjected to 100 ns simulation studies. From the MDS study we concluded that between these two compounds, potassium citrate is a better candidate for targeting MRP1.
Collapse
|
31
|
Neuberger A, Du D, Luisi BF. Structure and mechanism of bacterial tripartite efflux pumps. Res Microbiol 2018; 169:401-413. [PMID: 29787834 DOI: 10.1016/j.resmic.2018.05.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Revised: 02/20/2018] [Accepted: 05/14/2018] [Indexed: 12/22/2022]
Abstract
Efflux pumps are membrane proteins which contribute to multi-drug resistance. In Gram-negative bacteria, some of these pumps form complex tripartite assemblies in association with an outer membrane channel and a periplasmic membrane fusion protein. These tripartite machineries span both membranes and the periplasmic space, and they extrude from the bacterium chemically diverse toxic substrates. In this chapter, we summarise current understanding of the structural architecture, functionality, and regulation of tripartite multi-drug efflux assemblies.
Collapse
Affiliation(s)
- Arthur Neuberger
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Dijun Du
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | - Ben F Luisi
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK.
| |
Collapse
|
32
|
Guerreiro DD, de Lima LF, Mbemya GT, Maside CM, Miranda AM, Tavares KCS, Alves BG, Faustino LR, Smitz J, de Figueiredo JR, Rodrigues APR. ATP-binding cassette (ABC) transporters in caprine preantral follicles: gene and protein expression. Cell Tissue Res 2018; 372:611-620. [DOI: 10.1007/s00441-018-2804-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/18/2018] [Indexed: 12/27/2022]
|
33
|
Acharya PC, Fernandes C, Mallik S, Mishra B, Tekade RK. Physiologic Factors Related to Drug Absorption. DOSAGE FORM DESIGN CONSIDERATIONS 2018:117-147. [DOI: 10.1016/b978-0-12-814423-7.00004-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
34
|
Arai N, Furuta T, Sakurai M. Analysis of an ATP-induced conformational transition of ABC transporter MsbA using a coarse-grained model. Biophys Physicobiol 2017; 14:161-171. [PMID: 29362701 PMCID: PMC5774416 DOI: 10.2142/biophysico.14.0_161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 11/02/2017] [Indexed: 01/24/2023] Open
Abstract
Upon the binding of ATP molecules to nucleotide binding domains (NBDs), ATP-binding cassette (ABC) exporters undergo a conformational transition from an inward-facing (IF) to an outward-facing (OF) state. This molecular event is a typical example of chemo-mechanical coupling. However, the underlying mechanism remains unclear. In this study, we analyzed the IF→OF transition of a representative ABC exporter, MsbA, by solving the equation of motion under an elastic network model (ENM). ATP was represented as a single node in ENM or replaced by external forces. When two ATP nodes were added to the ENM of the IF state protein, the two NBDs dimerized; subsequently, the two transmembrane domains opened toward the extracellular side, resulting in the formation of the OF structure. Such a conformational transition was also reproduced by applying external forces, which caused the rotational motion of the NBDs instead of the addition of ATP nodes. The process of the conformational transition was analyzed in detail using cross-correlation maps for node-node interactions. More importantly, it was revealed that the ATP binding energy is converted into distortion energy of several transmembrane helices. These results are useful for understanding the chemo-mechanical coupling in ABC transporters.
Collapse
Affiliation(s)
- Naoki Arai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology, Yokohama, Kanagawa 226-8501, Japan
| |
Collapse
|
35
|
Pan X, Zhang Q, Qu S, Huang S, Wang H, Mei H. Allosteric effects of ATP binding on the nucleotide-binding domain of a heterodimeric ATP-binding cassette transporter. Integr Biol (Camb) 2017; 8:1158-1169. [PMID: 27731447 DOI: 10.1039/c6ib00136j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ATP-binding cassette (ABC) exporters mediate vital transport of a variety of molecules across the lipid bilayer in all organisms. To explore the allosteric effect of ATP binding at the asymmetric ATPase sites, molecular dynamics simulations were performed on the nucleotide-binding domains (NBDs) of a heterodimeric exporter TM287/288 in 4 different ATP-bound states. The results showed that ATP bound at the degenerate site can maintain a semi-open conformation of NBD1-NBD2, which may be defective in ATP hydrolysis. By contrast, when bound at the consensus site, ATP can induce an intra-domain rotation of the α-helical subdomain towards the RecA-like subdomain of NBD2 at the degenerate site. The rotation of the α-helical subdomain rearranged the hydrogen bond networks at the NBD1-NBD2 interface, induced a significant conformational change in the D-loop at the degenerate site and inter- and intra-domain communications at both sites, and eventually elicited dimerization of NBD1-NBD2. These findings indicate that the asymmetric ATPase sites of the heterodimeric exporter are structurally and functionally distinct.
Collapse
Affiliation(s)
- Xianchao Pan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. and College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Qiaoxia Zhang
- Chongqing Research Institute of Chemical Industry, Chongqing 400021, China
| | - Sujun Qu
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Shuheng Huang
- College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Huicong Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. and College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hu Mei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, Chongqing University, Chongqing 400044, China. and College of Bioengineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
36
|
Simhaev L, McCarty NA, Ford RC, Senderowitz H. Molecular Dynamics Flexible Fitting Simulations Identify New Models of the Closed State of the Cystic Fibrosis Transmembrane Conductance Regulator Protein. J Chem Inf Model 2017; 57:1932-1946. [DOI: 10.1021/acs.jcim.7b00091] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Luba Simhaev
- Department
of Chemistry, Bar Ilan University, Ramat-Gan 5290002, Israel
| | - Nael A. McCarty
- Division
of Pulmonology, Allergy/Immunology, Cystic Fibrosis, and Sleep, Department
of Pediatrics, Emory + Children’s Center for Cystic Fibrosis
and Airways Disease Research, Emory University School of Medicine and Children’s Healthcare of Atlanta, 2015 Uppergate Drive, Atlanta, Georgia 30322, United States
| | - Robert C. Ford
- Faculty
of Biology Medicine and Health, University of Manchester, Oxford
Road, Manchester, M13 9PL, U.K
| | | |
Collapse
|
37
|
Collauto A, Mishra S, Litvinov A, Mchaourab HS, Goldfarb D. Direct Spectroscopic Detection of ATP Turnover Reveals Mechanistic Divergence of ABC Exporters. Structure 2017; 25:1264-1274.e3. [PMID: 28712805 DOI: 10.1016/j.str.2017.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/05/2017] [Accepted: 06/15/2017] [Indexed: 12/27/2022]
Abstract
We have applied high-field (W-band) pulse electron-nuclear double resonance (ENDOR) and electron-electron double resonance (ELDOR)-detected nuclear magnetic resonance (EDNMR) to characterize the coordination sphere of the Mn2+ co-factor in the nucleotide binding sites (NBSs) of ABC transporters. MsbA and BmrCD are two efflux transporters hypothesized to represent divergent catalytic mechanisms. Our results reveal distinct coordination of Mn2+ to ATP and transporter residues in the consensus and degenerate NBSs of BmrCD. In contrast, the coordination of Mn2+ at the two NBSs of MsbA is similar, which provides a mechanistic rationale for its higher rate constant of ATP hydrolysis relative to BmrCD. Direct detection of vanadate ion, trapped in a high-energy post-hydrolysis intermediate, further supports the notion of asymmetric hydrolysis by the two NBSs of BmrCD. The integrated spectroscopic approach presented here, which link energy input to conformational dynamics, can be applied to a variety of systems powered by ATP turnover.
Collapse
Affiliation(s)
- Alberto Collauto
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Smriti Mishra
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA
| | - Aleksei Litvinov
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Hassane S Mchaourab
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA.
| | - Daniella Goldfarb
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
38
|
Locher KP. Mechanistic diversity in ATP-binding cassette (ABC) transporters. Nat Struct Mol Biol 2017; 23:487-93. [PMID: 27273632 DOI: 10.1038/nsmb.3216] [Citation(s) in RCA: 556] [Impact Index Per Article: 69.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 03/30/2016] [Indexed: 12/18/2022]
Abstract
ABC transporters catalyze transport reactions, such as the high-affinity uptake of micronutrients into bacteria and the export of cytotoxic compounds from mammalian cells. Crystal structures of ABC domains and full transporters have provided a framework for formulating reaction mechanisms of ATP-driven substrate transport, but recent studies have suggested remarkable mechanistic diversity within this protein family. This review evaluates the differing mechanistic proposals and outlines future directions for the exploration of ABC-transporter-catalyzed reactions.
Collapse
Affiliation(s)
- Kaspar P Locher
- Institute of Molecular Biology and Biophysics, Department of Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
39
|
Ferreira RJ, Bonito CA, Ferreira MJU, dos Santos DJ. About P-glycoprotein: a new drugable domain is emerging from structural data. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2017. [DOI: 10.1002/wcms.1316] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Ricardo J. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Cátia A. Bonito
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| | - Maria José U. Ferreira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
| | - Daniel J.V.A. dos Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy; Universidade de Lisboa; Lisboa Portugal
- LAQV@REQUIMTE/Department of Chemistry and Biochemistry, Faculty of Sciences; University of Porto; Porto Portugal
| |
Collapse
|
40
|
The Synergetic Effects of Combining Structural Biology and EPR Spectroscopy on Membrane Proteins. CRYSTALS 2017. [DOI: 10.3390/cryst7040117] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein structures as provided by structural biology such as X-ray crystallography, cryo-electron microscopy and NMR spectroscopy are key elements to understand the function of a protein on the molecular level. Nonetheless, they might be error-prone due to crystallization artifacts or, in particular in case of membrane-imbedded proteins, a mostly artificial environment. In this review, we will introduce different EPR spectroscopy methods as powerful tools to complement and validate structural data gaining insights in the dynamics of proteins and protein complexes such that functional cycles can be derived. We will highlight the use of EPR spectroscopy on membrane-embedded proteins and protein complexes ranging from receptors to secondary active transporters as structural information is still limited in this field and the lipid environment is a particular challenge.
Collapse
|
41
|
Bugde P, Biswas R, Merien F, Lu J, Liu DX, Chen M, Zhou S, Li Y. The therapeutic potential of targeting ABC transporters to combat multi-drug resistance. Expert Opin Ther Targets 2017; 21:511-530. [DOI: 10.1080/14728222.2017.1310841] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Piyush Bugde
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Riya Biswas
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Fabrice Merien
- School of Science, Auckland University of Technology, Auckland, New Zealand
- School of Science, AUT Roche Diagnostic Laboratory, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- School of Science, Auckland University of Technology, Auckland, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland, New Zealand
| | - Dong-Xu Liu
- School of Science, Auckland University of Technology, Auckland, New Zealand
| | - Mingwei Chen
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shufeng Zhou
- Department of Biotechnology and Bioengineering, College of Chemical Engineering, Huaqiao University, Xiamen, China
| | - Yan Li
- School of Science, Auckland University of Technology, Auckland, New Zealand
- School of Interprofessional Health Studies, Auckland University of Technology, Auckland, New Zealand
| |
Collapse
|
42
|
Jones PM, George AM. How Intrinsic Dynamics Mediates the Allosteric Mechanism in the ABC Transporter Nucleotide Binding Domain Dimer. J Chem Theory Comput 2017; 13:1712-1722. [PMID: 28240893 DOI: 10.1021/acs.jctc.6b00839] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A protein's architecture facilitates specific motions-intrinsic dynamic modes-that are employed to effect function. Here we used molecular dynamics (MD) simulations to investigate the dynamics of the MJ0796 ABC transporter nucleotide-binding domain (NBD). ABC transporter NBDs form a rotationally symmetric dimer whereby two equivalent active sites are formed at their interface; in complex with a dimer of transmembrane domains they hydrolyze ATP to energize translocation of substrates across cellular membranes. Our data suggest the ABC NBD's ensemble of functional states can be understood predominately in terms of conformational changes between its major subdomains, occurring along two orthogonal dynamic modes. The data show that ligands and oligomeric interactions modulate the equilibrium conformation of the NBD with respect to these motions, suggesting that allostery is achieved by affecting the energetic profile along these two modes. The observed dynamics and allostery integrate consonantly and logically within a mechanistic framework for the ABC NBD dimer, which is supported by a large body of experimental and theoretical data, providing a higher resolution view of the enzyme's dynamic cycle. Our study shows how valuable mechanistic inferences can be derived from accessible short-time scale MD simulations of an enzyme's substructures.
Collapse
Affiliation(s)
- Peter M Jones
- School of Life Sciences, University of Technology Sydney , P.O. Box 123, Broadway, New South Wales 2007, Australia
| | - Anthony M George
- School of Life Sciences, University of Technology Sydney , P.O. Box 123, Broadway, New South Wales 2007, Australia
| |
Collapse
|
43
|
Timachi MH, Hutter CA, Hohl M, Assafa T, Böhm S, Mittal A, Seeger MA, Bordignon E. Exploring conformational equilibria of a heterodimeric ABC transporter. eLife 2017; 6. [PMID: 28051765 PMCID: PMC5216877 DOI: 10.7554/elife.20236] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 12/01/2016] [Indexed: 01/04/2023] Open
Abstract
ABC exporters pump substrates across the membrane by coupling ATP-driven movements of nucleotide binding domains (NBDs) to the transmembrane domains (TMDs), which switch between inward- and outward-facing (IF, OF) orientations. DEER measurements on the heterodimeric ABC exporter TM287/288 from Thermotoga maritima, which contains a non-canonical ATP binding site, revealed that in the presence of nucleotides the transporter exists in an IF/OF equilibrium. While ATP binding was sufficient to partially populate the OF state, nucleotide trapping in the pre- or post-hydrolytic state was required for a pronounced conformational shift. At physiologically high temperatures and in the absence of nucleotides, the NBDs disengage asymmetrically while the conformation of the TMDs remains unchanged. Nucleotide binding at the degenerate ATP site prevents complete NBD separation, a molecular feature differentiating heterodimeric from homodimeric ABC exporters. Our data suggest hydrolysis-independent closure of the NBD dimer, which is further stabilized as the consensus site nucleotide is committed to hydrolysis. DOI:http://dx.doi.org/10.7554/eLife.20236.001
Collapse
Affiliation(s)
- M Hadi Timachi
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Cedric Aj Hutter
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Hohl
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Tufa Assafa
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Simon Böhm
- Laboratory of Physical Chemistry, ETH Zurich, Zurich, Switzerland
| | - Anshumali Mittal
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Enrica Bordignon
- Faculty of Chemistry and Biochemistry, Ruhr-Universität Bochum, Bochum, Germany.,Department of Physics, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
44
|
Weng J, Gu S, Gao X, Huang X, Wang W. Maltose-binding protein effectively stabilizes the partially closed conformation of the ATP-binding cassette transporter MalFGK2. Phys Chem Chem Phys 2017; 19:9366-9373. [DOI: 10.1039/c6cp07943a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Maltose transporter MalFGK2is a type-I importer in the ATP-binding cassette (ABC) transporter superfamily.
Collapse
Affiliation(s)
- Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry, and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- P. R. China
| | - Shuo Gu
- Department of Chemistry
- Institute for Advance Study and School of Science
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Xin Gao
- Computer, Electrical and Mathematical Sciences and Engineering Division
- King Abdullah University of Science and Technology
- Thuwal
- Saudi Arabia
| | - Xuhui Huang
- Department of Chemistry
- Institute for Advance Study and School of Science
- The Hong Kong University of Science and Technology
- Kowloon
- China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Department of Chemistry, and Institutes of Biomedical Sciences
- Fudan University
- Shanghai
- P. R. China
| |
Collapse
|
45
|
Yan C, Duan W, Lyu S, Li Y, Hou X. Genome-Wide Identification, Evolution, and Expression Analysis of the ATP-Binding Cassette Transporter Gene Family in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2017; 8:349. [PMID: 28367152 PMCID: PMC5355449 DOI: 10.3389/fpls.2017.00349] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 02/28/2017] [Indexed: 05/18/2023]
Abstract
ATP-binding cassette (ABC) proteins can act as transporters of different substrates across biological membranes by hydrolyzing ATP. However, little information is available about ABC transporters in Brassica rapa, an important leafy vegetable. In the present study, we carried out genome-wide identification, characterization and molecular evolution analyses of ABC gene family in B. rapa and 9 other plant species. A total of 179 B. rapa ABC genes (BraABCs) were identified. Among them, 173 BraABCs were identified on 10 chromosomes. Based on phylogenetic analysis and domain organization, the BraABC family could be grouped into eight subfamilies. BraABCs in the same subfamily showed similar motif composition and exon-intron organization. Common and unique cis-elements involved in the transcriptional regulation were also identified in the promoter regions of BraABCs. Tissue-expression analysis of BraABCs demonstrated their diverse spatiotemporal expression profiles. Influences of the whole genome triplication (WGT) on the evolution of BraABCs were studied in detail. BraABCs were preferentially retained compared with their neighboring genes during diploidization after WGT. Synteny analysis identified 76 pairs of syntenic BraABC paralogs among the three subgenomes of B. rapa, and 10 paralog pairs underwent positive selection with ω (= Ka/Ks) ratios greater than 1. Analyses of the expression patterns of syntenic BraABC paralogs pairs across five tissues and under stress treatments revealed their functional conservation, sub-functionalization, neo-functionalization and pseudogenization during evolution. Our study presents a comprehensive overview of the ABC gene family in B. rapa and will be helpful for the further functional study of BraABCs in plant growth, development, and stress responses.
Collapse
Affiliation(s)
- Chao Yan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Weike Duan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- School of Life Science and Food Engineering, Huaiyin Institute of TechnologyHuaian, China
| | - Shanwu Lyu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, Ministry of Agriculture, Nanjing Agricultural UniversityNanjing, China
- *Correspondence: Xilin Hou
| |
Collapse
|
46
|
Furuta T, Sato Y, Sakurai M. Structural Dynamics of the Heterodimeric ABC Transporter TM287/288 Induced by ATP and Substrate Binding. Biochemistry 2016; 55:6730-6738. [PMID: 27933796 DOI: 10.1021/acs.biochem.6b00947] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
TM287/288 is a heterodimeric ATP-binding cassette (ABC) transporter, which harnesses the energy of ATP binding and hydrolysis at the nucleotide-binding domains (NBDs) to transport a wide variety of molecules through the transmembrane domains (TMDs) by alternating inward- and outward-facing conformations. Here, we conducted multiple 100 ns molecular dynamics simulations of TM287/288 in different ATP- and substrate-bound states to elucidate the effects of ATP and substrate binding. As a result, the binding of two ATP molecules to the NBDs induced the formation of the consensus ATP-binding pocket (ABP2) or the NBD dimerization, whereas these processes did not occur in the presence of a single ATP molecule or when the protein was in its apo state. Moreover, binding of the substrate to the TMDs enhanced the formation of ABP2 through allosteric TMD-NBD communication. Furthermore, in the apo state, α-helical subdomains of the NBDs approached each other, acquiring a conformation with core half-pockets exposed to the solvent, appropriate for ATP binding. We propose a "core-exposed" model for this novel conformation found in the apo state of ABC transporters. These findings provide important insights into the structural dynamics of ABC transporters.
Collapse
Affiliation(s)
- Tadaomi Furuta
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Yukiko Sato
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| | - Minoru Sakurai
- Center for Biological Resources and Informatics, Tokyo Institute of Technology , B-62 4259 Nagatsuta-cho, Midori-ku, Yokohama 226-8501, Japan
| |
Collapse
|
47
|
Pan C, Weng J, Wang W. ATP Hydrolysis Induced Conformational Changes in the Vitamin B12 Transporter BtuCD Revealed by MD Simulations. PLoS One 2016; 11:e0166980. [PMID: 27870912 PMCID: PMC5117765 DOI: 10.1371/journal.pone.0166980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/07/2016] [Indexed: 12/17/2022] Open
Abstract
ATP binding cassette (ABC) transporters utilize the energy of ATP hydrolysis to uni-directionally transport substrates across cell membrane. ATP hydrolysis occurs at the nucleotide-binding domain (NBD) dimer interface of ABC transporters, whereas substrate translocation takes place at the translocation pathway between the transmembrane domains (TMDs), which is more than 30 angstroms away from the NBD dimer interface. This raises the question of how the hydrolysis energy released at NBDs is "transmitted" to trigger the conformational changes at TMDs. Using molecular dynamics (MD) simulations, we studied the post-hydrolysis state of the vitamin B12 importer BtuCD. Totally 3-μs MD trajectories demonstrate a predominantly asymmetric arrangement of the NBD dimer interface, with the ADP-bound site disrupted and the ATP-bound site preserved in most of the trajectories. TMDs response to ATP hydrolysis by separation of the L-loops and opening of the cytoplasmic gate II, indicating that hydrolysis of one ATP could facilitate substrate translocation by opening the cytoplasmic end of translocation pathway. It was also found that motions of the L-loops and the cytoplasmic gate II are coupled with each other through a contiguous interaction network involving a conserved Asn83 on the extended stretch preceding TM3 helix plus the cytoplasmic end of TM2/6/7 helix bundle. These findings entail a TMD-NBD communication mechanism for type II ABC importers.
Collapse
Affiliation(s)
- Chao Pan
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Jingwei Weng
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| | - Wenning Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, and Institutes of Biomedical Sciences, Fudan University, Shanghai, P. R. China
| |
Collapse
|
48
|
Kiosze-Becker K, Ori A, Gerovac M, Heuer A, Nürenberg-Goloub E, Rashid UJ, Becker T, Beckmann R, Beck M, Tampé R. Structure of the ribosome post-recycling complex probed by chemical cross-linking and mass spectrometry. Nat Commun 2016; 7:13248. [PMID: 27824037 PMCID: PMC5105147 DOI: 10.1038/ncomms13248] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 09/15/2016] [Indexed: 02/03/2023] Open
Abstract
Ribosome recycling orchestrated by the ATP binding cassette (ABC) protein ABCE1 can be considered as the final—or the first—step within the cyclic process of protein synthesis, connecting translation termination and mRNA surveillance with re-initiation. An ATP-dependent tweezer-like motion of the nucleotide-binding domains in ABCE1 transfers mechanical energy to the ribosome and tears the ribosome subunits apart. The post-recycling complex (PRC) then re-initiates mRNA translation. Here, we probed the so far unknown architecture of the 1-MDa PRC (40S/30S·ABCE1) by chemical cross-linking and mass spectrometry (XL-MS). Our study reveals ABCE1 bound to the translational factor-binding (GTPase) site with multiple cross-link contacts of the helix–loop–helix motif to the S24e ribosomal protein. Cross-linking of the FeS cluster domain to the ribosomal protein S12 substantiates an extreme lever-arm movement of the FeS cluster domain during ribosome recycling. We were thus able to reconstitute and structurally analyse a key complex in the translational cycle, resembling the link between translation initiation and ribosome recycling. Ribosome recycling orchestrated by ABCE1 connects translation termination and mRNA surveillance mechanisms with re-initiation. Using a cross-linking and mass spectrometry approach, Kiosze-Becker et al. provide new information on the large conformational rearrangements that occur during ribosome recycling.
Collapse
Affiliation(s)
- Kristin Kiosze-Becker
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - Alessandro Ori
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Milan Gerovac
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - André Heuer
- Gene Center and Center for Integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Elina Nürenberg-Goloub
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - Umar Jan Rashid
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| | - Thomas Becker
- Gene Center and Center for Integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich (CiPSM), Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, 81377 Munich, Germany
| | - Martin Beck
- Structural and Computational Biology Unit, EMBL Heidelberg, Meyerhofstr. 1, 69117 Heidelberg, Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438 Frankfurt a.M., Germany
| |
Collapse
|
49
|
Roggenbeck BA, Banerjee M, Leslie EM. Cellular arsenic transport pathways in mammals. J Environ Sci (China) 2016; 49:38-58. [PMID: 28007179 DOI: 10.1016/j.jes.2016.10.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/07/2016] [Accepted: 10/08/2016] [Indexed: 06/06/2023]
Abstract
Natural contamination of drinking water with arsenic results in the exposure of millions of people world-wide to unacceptable levels of this metalloid. This is a serious global health problem because arsenic is a Group 1 (proven) human carcinogen and chronic exposure is known to cause skin, lung, and bladder tumors. Furthermore, arsenic exposure can result in a myriad of other adverse health effects including diseases of the cardiovascular, respiratory, neurological, reproductive, and endocrine systems. In addition to chronic environmental exposure to arsenic, arsenic trioxide is approved for the clinical treatment of acute promyelocytic leukemia, and is in clinical trials for other hematological malignancies as well as solid tumors. Considerable inter-individual variability in susceptibility to arsenic-induced disease and toxicity exists, and the reasons for such differences are incompletely understood. Transport pathways that influence the cellular uptake and export of arsenic contribute to regulating its cellular, tissue, and ultimately body levels. In the current review, membrane proteins (including phosphate transporters, aquaglyceroporin channels, solute carrier proteins, and ATP-binding cassette transporters) shown experimentally to contribute to the passage of inorganic, methylated, and/or glutathionylated arsenic species across cellular membranes are discussed. Furthermore, what is known about arsenic transporters in organs involved in absorption, distribution, and metabolism and how transport pathways contribute to arsenic elimination are described.
Collapse
Affiliation(s)
- Barbara A Roggenbeck
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada.
| | - Mayukh Banerjee
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada
| | - Elaine M Leslie
- Department of Physiology and Membrane Protein Disease Research Group, University of Alberta, Edmonton, AB, T6G 2H7, Canada; Division of Analytical and Environmental Toxicology, Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, T6G 2G3, Canada.
| |
Collapse
|
50
|
Bernabò N, Agostino RD, Ordinelli A, Mattioli M, Barboni B. The maturation of murine spermatozoa membranes within the epididymis, a computational biology perspective. Syst Biol Reprod Med 2016; 62:299-308. [PMID: 27586844 DOI: 10.1080/19396368.2016.1205679] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To become fertile, mammalian spermatozoa require completing a complex biochemical maturation that begins in the testis and ends within the female oviduct. Here, we paid attention to the events occurring at the membrane level during the epididymal transit. Indeed, in the epididymis, the molecular composition and the physical-chemical proprieties of sperm membranes markedly change, with functional cross talking among the spermatozoa, the epithelium, and the luminal content (particularly the epididymosomes). To study this process, we undertook a biological networks study, representing the involved molecules as nodes and their interactions as links. The analysis of network topology revealed that it has a scale free and small world architecture and it is robust against random failure. That assures a fast and efficient transmission of information and it leads to identifying the molecules exerting a higher level of control on the system, among which cholesterol plays a pivotal role. The reactome enrichment analysis allowed the reconstruction of the biochemical pathways involved in sperm epididymal maturation and STRING analysis permitted the identification of molecular events possibly involved in that process. In conclusion, this approach allows inferring interesting information, thus contributing to the knowledge on this process and suggesting staring points for further research.
Collapse
Affiliation(s)
- Nicola Bernabò
- a Faculty of Veterinary Medicine , University of Teramo , Teramo , Italy
| | | | | | - Mauro Mattioli
- a Faculty of Veterinary Medicine , University of Teramo , Teramo , Italy
| | - Barbara Barboni
- a Faculty of Veterinary Medicine , University of Teramo , Teramo , Italy
| |
Collapse
|