1
|
Ehrt C, Schulze T, Graef J, Diedrich K, Pletzer-Zelgert J, Rarey M. ProteinsPlus: a publicly available resource for protein structure mining. Nucleic Acids Res 2025:gkaf377. [PMID: 40326518 DOI: 10.1093/nar/gkaf377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/07/2025] Open
Abstract
The openly accessible ProteinsPlus web server at https://proteins.plus is a unique resource enabling protein structure mining and modeling, focussing on protein-ligand interactions. Since its launch in 2017, the number of tools is steadily increasing. Currently, the server comprises six methods for protein structure analysis, four tools for mining the Protein Data Bank (PDB), and five prediction approaches regarding protein-ligand complex modeling. Users can use experimental structures from the PDB or computationally predicted structures from the AlphaFold Protein Structure Database as starting points. Alternatively, they can upload individual structure files. Recent updates include novel methods for detecting binding sites and predicting solvent channels in crystallographic structures, as well as updates of tools for protein-ligand interaction depiction in 2D and binding site mining. Given these updates, we present a real-life application scenario that underpins the novelties and applicability of the web server's tools for modern structure-based design projects. It also highlights the next steps for the web server, which will be redesigned using a different technology stack to improve the inter-usability of the tools, ease maintainability, and make it future-proof.
Collapse
Affiliation(s)
- Christiane Ehrt
- University of Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany
| | - Thorben Schulze
- University of Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany
| | - Joel Graef
- University of Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany
| | - Konrad Diedrich
- University of Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany
| | - Jonathan Pletzer-Zelgert
- University of Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany
| | - Matthias Rarey
- University of Hamburg, ZBH - Center for Bioinformatics, Albert-Einstein-Ring 8-10, 22761 Hamburg, Germany
| |
Collapse
|
2
|
Gonzalez A, Krojer T, Nan J, Bjelčić M, Aggarwal S, Gorgisyan I, Milas M, Eguiraun M, Casadei C, Chenchiliyan M, Jurgilaitis A, Kroon D, Ahn B, Ekström JC, Aurelius O, Lang D, Ursby T, Thunnissen MMGM. Status and perspective of protein crystallography at the first multi-bend achromat based synchrotron MAX IV. JOURNAL OF SYNCHROTRON RADIATION 2025; 32:779-791. [PMID: 40184323 PMCID: PMC12067333 DOI: 10.1107/s1600577525002255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/12/2025] [Indexed: 04/06/2025]
Abstract
The first multi-bend achromat based synchrotron MAX IV operates two protein crystallography beamlines, BioMAX and MicroMAX. BioMAX is designed as a versatile, stable, high-throughput beamline catering for most protein crystallography experiments. MicroMAX is a more ambitious beamline dedicated to serial crystallography including time-resolved experiments. Both beamlines exploit the special characteristics of fourth-generation beamlines provided by the 3 GeV ring of MAX IV. In addition, the fragment-based drug discovery platform, FragMAX, is hosted and, at the FemtoMAX beamline, protein diffraction experiments exploring ultrafast time resolution can be performed. A technical and operational overview of the different beamlines and the platform is given as well as an outlook for protein crystallography embedded in the wider possibilities that MAX IV offers to users in the life sciences.
Collapse
Affiliation(s)
- Ana Gonzalez
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | - Tobias Krojer
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | - Jie Nan
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | - Monika Bjelčić
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | - Swati Aggarwal
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | | | - Mirko Milas
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | - Mikel Eguiraun
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | - Cecilia Casadei
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | | | | | - David Kroon
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | - Byungnam Ahn
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | | | - Oskar Aurelius
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | - Dean Lang
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | - Thomas Ursby
- MAX IV LaboratoryLund UniversityFotongatan 2Lund224 84Sweden
| | | |
Collapse
|
3
|
Bütikofer M, Torres F, Kadavath H, Gämperli N, Abi Saad MJ, Zindel D, Coudevylle N, Riek R, Orts J. NMR 2-Based Drug Discovery Pipeline Presented on the Oncogenic Protein KRAS. J Am Chem Soc 2025; 147:13200-13209. [PMID: 40228104 PMCID: PMC12022975 DOI: 10.1021/jacs.4c16762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/16/2025]
Abstract
Fragment-based drug discovery has emerged as a powerful approach for developing therapeutics against challenging targets, including the GTPase KRAS. Here, we report an NMR-based screening campaign employing state-of-the-art techniques to evaluate a library of 890 fragments against the oncogenic KRAS G12V mutant bound to GMP-PNP. Further HSQC titration experiments identified hits with low millimolar affinities binding within the SI/SII switch region, which forms the binding interface for the effector proteins. To elucidate the binding modes, we applied NMR molecular replacement (NMR2) structure calculations, bypassing the need for a conventional protein resonance assignment. Traditionally, NMR2 relies on isotope-filtered nuclear Overhauser effect spectroscopy experiments requiring double-labeled [13C,15N]-protein. We introduce a cost-efficient alternative using a relaxation-based filter that eliminates isotope labeling while preserving structural accuracy. Validation against standard isotopically labeled workflows confirmed the equivalence of the derived protein-ligand structures. This approach enabled the determination of 12 NMR2 KRAS-fragment complex structures, providing critical insights into structure-activity relationships to guide ligand optimization. These results demonstrate the streamlined integration of NMR2 into a fragment-based drug discovery pipeline composed of screening, binding characterization, and rapid structural elucidation with or without isotopic labeling.
Collapse
Affiliation(s)
- Matthias Bütikofer
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 2F 353, Vienna, A-1090, Austria
- Institute
for Molecular Physical Science, Vladimir Prelog Weg 2, Zürich, 8093, Switzerland
| | - Felix Torres
- Institute
for Molecular Physical Science, Vladimir Prelog Weg 2, Zürich, 8093, Switzerland
- NexMR
AG, Wiesenstrasse 10A, Schlieren, 8952, Switzerland
| | - Harindranath Kadavath
- Institute
for Molecular Physical Science, Vladimir Prelog Weg 2, Zürich, 8093, Switzerland
- St. Jude
Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee, 38105, United States
| | - Nina Gämperli
- Institute
for Molecular Physical Science, Vladimir Prelog Weg 2, Zürich, 8093, Switzerland
| | - Marie Jose Abi Saad
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 2F 353, Vienna, A-1090, Austria
| | - Daniel Zindel
- Institute
for Molecular Physical Science, Vladimir Prelog Weg 2, Zürich, 8093, Switzerland
| | - Nicolas Coudevylle
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 2F 353, Vienna, A-1090, Austria
| | - Roland Riek
- Institute
for Molecular Physical Science, Vladimir Prelog Weg 2, Zürich, 8093, Switzerland
| | - Julien Orts
- Department
of Pharmaceutical Sciences, University of
Vienna, Josef-Holaubek-Platz 2, 2F 353, Vienna, A-1090, Austria
| |
Collapse
|
4
|
Zhang K, Zhang YJ, Li M, Pannecouque C, De Clercq E, Wang S, Chen FE. Deciphering the enigmas of non-nucleoside reverse transcriptase inhibitors (NNRTIs): A medicinal chemistry expedition towards combating HIV drug resistance. Med Res Rev 2025; 45:426-483. [PMID: 39188075 DOI: 10.1002/med.22080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
The pivotal involvement of reverse transcriptase activity in the pathogenesis of the progressive HIV virus has stimulated gradual advancements in drug discovery initiatives spanning three decades. Consequently, nonnucleoside reverse transcriptase inhibitors (NNRTIs) have emerged as a preeminent category of therapeutic agents for HIV management. Academic institutions and pharmaceutical companies have developed numerous NNRTIs, an essential component of antiretroviral therapy. Six NNRTIs have received Food and Drug Administration approval and are widely used in clinical practice, significantly improving the quality of HIV patients. However, the rapid emergence of drug resistance has limited the effectiveness of these medications, underscoring the necessity for perpetual research and development of novel therapeutic alternatives. To supplement the existing literatures on NNRTIs, a comprehensive review has been compiled to synthesize this extensive dataset into a comprehensible format for the medicinal chemistry community. In this review, a thorough investigation and meticulous analysis were conducted on the progressions achieved in NNRTIs within the past 8 years (2016-2023), and the experiences and insights gained in the development of inhibitors with varying chemical structures were also summarized. The provision of a crucial point of reference for the development of wide-ranging anti-HIV medications is anticipated.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Yu-Jie Zhang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Min Li
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | - Christophe Pannecouque
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Erik De Clercq
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Shuai Wang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
| | - Fen-Er Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai, China
- Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai, China
- Institute of Pharmaceutical Research and School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Vlahakis NW, Flowers CW, Liu M, Agdanowski M, Johnson S, Summers JA, Keyser C, Russell P, Rose S, Orlans J, Adhami N, Chen Y, Sawaya MR, Basu S, de Sanctis D, Wakatsuki S, Nelson HM, Loo JA, Tang Y, Rodriguez JA. Combining MicroED and native mass spectrometry for structural discovery of enzyme-biosynthetic inhibitor complexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.638743. [PMID: 40060639 PMCID: PMC11888187 DOI: 10.1101/2025.02.20.638743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
With the goal of accelerating the discovery of small molecule-protein complexes, we leverage fast, low-dose, event based electron counting microcrystal electron diffraction (MicroED) data collection and native mass spectrometry. This approach resolves structures of the epoxide-based cysteine protease inhibitor, and natural product, E-64, and its biosynthetic analogs bound to the model cysteine protease, papain. The combined structural power of MicroED and the analytical capabilities of native mass spectrometry (ED-MS) allows assignment of papain structures bound to E-64-like ligands with data obtained from crystal slurries soaked with mixtures of known inhibitors, and crude biosynthetic reactions. ED-MS further discriminates the highest-affinity ligand soaked into microcrystals from a broad inhibitor cocktail, and identifies multiple similarly high-affinity ligands soaked into microcrystals simultaneously. This extends to libraries of printed ligands dispensed directly onto TEM grids and later soaked with papain microcrystal slurries. ED-MS identifies papain binding to its preferred natural products, by showing that two analogues of E-64 outcompete others in binding to papain crystals, and by detecting papain bound to E-64 and an analogue from crude biosynthetic reactions, without purification. This illustrates the utility of ED-MS for natural product ligand discovery and for structure-based screening of small molecule binders to macromolecular targets.
Collapse
Affiliation(s)
- Niko W. Vlahakis
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Cameron W. Flowers
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Mengting Liu
- Department of Chemical and Biomolecular Engineering; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Matthew Agdanowski
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Samuel Johnson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Jacob A. Summers
- Department of Structural Biology, Stanford University School of Medicine; Stanford, CA 94304, USA
- Biological Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Catherine Keyser
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Phoebe Russell
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Samuel Rose
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Julien Orlans
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Nima Adhami
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Yu Chen
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Michael R. Sawaya
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Shibom Basu
- European Molecular Biology Laboratory, 71 Avenue des Martyrs, Grenoble, France
| | - Daniele de Sanctis
- ESRF – The European Synchrotron, 71 Avenue des Martyrs, Grenoble, France
| | - Soichi Wakatsuki
- Department of Structural Biology, Stanford University School of Medicine; Stanford, CA 94304, USA
- Biological Sciences Division, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Hosea M. Nelson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California, 91125, USA
| | - Joseph A. Loo
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| | - Jose A. Rodriguez
- Department of Chemistry and Biochemistry; UCLA-DOE Institute for Genomics and Proteomics; STROBE, NSF Science and Technology Center; University of California, Los Angeles (UCLA); Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Lin J, Gallenito MJ, Hattne J, Gonen T. Ligand Screening and Discovery using Cocktail Soaking and Automated MicroED. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638921. [PMID: 40027750 PMCID: PMC11870483 DOI: 10.1101/2025.02.18.638921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Cocktail soaking using single-crystal X-ray diffraction (SC-XRD) has previously allowed high-throughput crystallographic screening of ligands against protein targets. However, protein microcrystals are not amenable to this approach if they are too small to yield strong diffraction patterns. In this study, we developed a workflow integrating cocktail soaking with automated microcrystal electron diffraction (MicroED) to allow rapid ligand screening, structure determination, and binding analysis directly from microcrystals. This can improve the successful hit rate, because binding is often more efficient when smaller crystals are soaked in the ligand. The approach was validated with known ligands of thermolysin and identified novel binding interactions for ligands of proteinase K. The structures of multiple protein-ligand complexes, including ligands with weak binding affinities, could be solved quickly. Their estimated relative binding affinities are in good agreement with previous work and independent microscale thermophoresis (MST) measurements.
Collapse
Affiliation(s)
- Jieye Lin
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
| | - Marc J. Gallenito
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
| | - Johan Hattne
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Tamir Gonen
- Department of Biological Chemistry, University of California, Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
- Department of Physiology, University of California, Los Angeles, 615 Charles E. Young Drive South, Los Angeles, California 90095, United States
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
7
|
Wu J, Baranowski MR, Aleshin AE, Isiorho EA, Lambert LJ, De Backer LJS, Han YN, Das R, Sheffler DJ, Bobkov AA, Lemberikman AM, Keedy DA, Cosford NDP, Tautz L. Fragment Screening Identifies Novel Allosteric Binders and Binding Sites in the VHR ( DUSP3) Phosphatase. ACS OMEGA 2025; 10:4912-4926. [PMID: 39959108 PMCID: PMC11822521 DOI: 10.1021/acsomega.4c10321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 02/18/2025]
Abstract
The human Vaccinia H1-related phosphatase (VHR; DUSP3) is a critical positive regulator of the innate immune response. Recent studies suggest that inhibiting VHR could be beneficial in treating sepsis and septic shock. VHR belongs to the superfamily of protein tyrosine phosphatases (PTPs), a large class of enzymes that are notoriously difficult to target with small molecules. Fragment-based drug discovery (FBDD) has emerged as an effective strategy for generating potent ligands, even for challenging drug targets. Here, we present a fluorine NMR-based discovery platform for identifying fragments that bind to VHR. This platform encompasses automated library assembly, mixture formation, quantitative material transfer, fluorine NMR screening, and biophysical hit confirmation. We demonstrate that this streamlined, integrated screening workflow produces validated hits with diverse chemical matter and tangible structure-activity relationships (SAR). Crystal structures yielded detailed information on the fragment-protein interactions and provide a basis for future structurally enabled ligand optimization. Notably, we discovered novel ligand binding sites on VHR, distant from the conserved active site, facilitating the generation of selective VHR modulators. This fragment discovery platform can be applied to other PTPs and holds significant potential for identifying potent and selective ligands.
Collapse
Affiliation(s)
- Jiaqian Wu
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Marek R. Baranowski
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
- Division
of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Ludwika Pasteura 5, 02-093 Warsaw, Poland
| | - Alexander E. Aleshin
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Eta A. Isiorho
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
| | - Lester J. Lambert
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Laurent J. S. De Backer
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Ye Na Han
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Ranajit Das
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Douglas J. Sheffler
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Andrey A. Bobkov
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Alexis M. Lemberikman
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
| | - Daniel A. Keedy
- Structural
Biology Initiative, CUNY Advanced Science
Research Center, New York, New York 10016, United States
- Department
of Chemistry and Biochemistry, City College
of New York, New York, New York 10031, United States
- PhD
Programs in Biochemistry, Biology, and Chemistry, CUNY Graduate Center, New York, New York 10016, United States
| | - Nicholas D. P. Cosford
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| | - Lutz Tautz
- Cancer
Molecular Therapeutics Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 N Torrey Pines Rd, La Jolla, California 92037, United States
| |
Collapse
|
8
|
Dubianok Y, Kumar A, Rak A. Structural Biology for Target Identification and Validation. Methods Mol Biol 2025; 2905:17-49. [PMID: 40163296 DOI: 10.1007/978-1-0716-4418-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Structural biology is catalyzing a paradigm shift in drug discovery towards rational approaches in target identification and validation. Leveraging structural insights obtained through cryo-EM or X-ray crystallography not only enhances the efficiency of drug discovery projects in terms of time and cost, but also significantly improves the likelihood of achieving market approval.Initiating a successful project necessitates more than just a robust package for target credentialing; it demands a comprehensive strategy for the identification and optimization of potential drugs. The critical evaluation of target druggability is markedly enhanced when supported by experimentally derived structural information. This nuanced approach ensures a more thorough understanding of the technical feasibility of drug development from the project's inception.
Collapse
Affiliation(s)
- Yuliya Dubianok
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Anand Kumar
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France
| | - Alexey Rak
- Sanofi R&D, Bio Structure and Biophysics at Integrated Drug Discovery, Vitry-sur-Seine, France.
| |
Collapse
|
9
|
Zhang M, Wang Z, Su Y, Yan W, Ouyang Y, Fan Y, Huang Y, Yang H. TDP1 represents a promising therapeutic target for overcoming tumor resistance to chemotherapeutic agents: progress and potential. Bioorg Chem 2025; 154:108072. [PMID: 39705934 DOI: 10.1016/j.bioorg.2024.108072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 12/08/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Tyrosyl-DNA phosphodiesterase 1 (TDP1) is an enzyme that plays a crucial role in repairing DNA lesions caused by the entrapment of DNA topoisomerase IB (TOP1)-DNA break-associated crosslinks. TDP1 inhibitors exhibit synergistic effects with TOP1 inhibitors in cancer cells, effectively overcoming resistance to TOP1 inhibitors. Therefore, this approach presents a promising strategy for reversing tumor resistance to TOP1 inhibitors. This review comprehensively outlines the structural and biological features of TDP1, the substrates involved in its catalytic hydrolysis, and its potential as a therapeutic target in oncology. Additionally, we summarize the various screening methods used to identify TDP1 inhibitors, alongside the latest advancements in TDP1 inhibitor research.
Collapse
Affiliation(s)
- Meimei Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Ziqiang Wang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yan Su
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Wenbo Yan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China
| | - Yifan Ouyang
- Fujian Key Laboratory of Toxicant and Drug Toxicology, School of Medicine, Ningde Normal University, Ningde, Fujian 352100, People's Republic of China.
| | - Yanru Fan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Yu Huang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| | - Hao Yang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, PR China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China; Collaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Ningxia Characteristic Traditional Chinese Medicine Modern Engineering and Technique Research Center, Ningxia Key Laboratory of Drug Development and Generic Drug Research, Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Yinchuan 750004, PR China.
| |
Collapse
|
10
|
Sudhir Kolpe M, Sardarsinh Suryawanshi V, Eldesoky GE, Hossain D, Chunarkar Patil P, Bhowmick S. Identification of Potent CHK2 Inhibitors‐Modulators for Therapeutic Application in Cancer: A Machine Learning Integrated Fragment‐Based Drug Design Approach. ChemistrySelect 2024; 9. [DOI: 10.1002/slct.202403302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/14/2024] [Indexed: 01/04/2025]
Abstract
AbstractThe CHK2 protein regulates the cell division cycle and responds to DNA damage. Additionally, it facilitates the repair of DNA damage and maintains the integrity of its biological processes. Dysregulation of the CHK2 protein is associated with a predisposition to harmful diseases. The current research protocol was designed to identify novel hit molecules as CHK2 inhibitors and disrupt the normal biological function of the CHK2 protein via a fragment‐based drug discovery approach. The protocol involved generating fragments using the MacFrag tool, followed by a chemical similarity search utilizing RDKit to identify fragment molecules analogous to previously established CHK2 inhibitor scaffolds. The bioactive molecules were constructed using the Fragmenstein tool, followed by molecular docking simulations to investigate their binding affinity. In addition, pharmacokinetic properties were analyzed, and a molecular dynamics simulation study was conducted to assess the stability of selected compounds with CHK2 protein. Finally, five novel compounds were identified as excellent CHK2 inhibitors through the FBDD and show good binding interactions at active sites of CHK2 with beneficial ADMET properties. This research work presents novel CHK2 inhibitor molecules that have the potential to be utilized in drug discovery, serving as key leads for future advancements in healthcare industries and sectors.
Collapse
Affiliation(s)
- Mahima Sudhir Kolpe
- SilicoScientia Private Limited Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block Bengaluru 560041 India
| | - Vikramsinh Sardarsinh Suryawanshi
- SilicoScientia Private Limited Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block Bengaluru 560041 India
| | - Gaber E. Eldesoky
- Chemistry Department College of Science King Saud University Riyadh 11451 Saudi Arabia
| | - Dilnawaz Hossain
- SilicoScientia Private Limited Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block Bengaluru 560041 India
| | - Pritee Chunarkar Patil
- Department of Bioinformatics Rajiv Gandhi Institute of IT and Biotechnology Bharati Vidyapeeth Deemed to be University Pune-Satara Road Pune India
| | - Shovonlal Bhowmick
- SilicoScientia Private Limited Nagananda Commercial Complex, No. 07/3, 15/1, 18th Main Road, Jayanagar 9th Block Bengaluru 560041 India
| |
Collapse
|
11
|
Aschenbrenner JC, de Godoy AS, Fairhead M, Tomlinson CW, Winokan M, Balcomb BH, Capkin E, Chandran AV, Golding M, Koekemoer L, Lithgo RM, Marples PG, Ni X, Thompson W, Wild C, Xavier MAE, Fearon D, von Delft F. Identifying novel chemical matter against the Chikungunya virus nsP3 macrodomain through crystallographic fragment screening. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.23.609196. [PMID: 39229067 PMCID: PMC11370605 DOI: 10.1101/2024.08.23.609196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Chikungunya virus (CHIKV) causes severe fever, rash and debilitating joint pain that can last for months1,2or even years. Millions of people have been infected with CHIKV, mostly in low and middle-income countries, and the virus continues to spread into new areas due to the geographical expansion of its mosquito hosts. Its genome encodes a macrodomain, which functions as an ADP-ribosyl hydrolase, removing ADPr from viral and host-cell proteins interfering with the innate immune response. Mutational studies have shown that the CHIKV nsP3 macrodomain is necessary for viral replication, making it a potential target for the development of antiviral therapeutics. We, therefore, performed a high-throughput crystallographic fragment screen against the CHIKV nsP3 macrodomain, yielding 109 fragment hits covering the ADPr-binding site and two adjacent subsites that are absent in the homologous macrodomain of SARS-CoV-2 but may be present in other alphaviruses, such as Venezuelan equine encephalitis virus (VEEV) and eastern equine encephalitis virus (EEEV). Finally, a subset of overlapping fragments was used to manually design three fragment merges covering the adenine and oxyanion subsites. The rich dataset of chemical matter and structural information discovered from this fragment screen is publicly available and can be used as a starting point for developing a CHIKV nsP3 macrodomain inhibitor.
Collapse
Affiliation(s)
- Jasmin C. Aschenbrenner
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | | | - Michael Fairhead
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Charles W.E. Tomlinson
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Max Winokan
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Blake H. Balcomb
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Eda Capkin
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Anu V. Chandran
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Mathew Golding
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Lizbe Koekemoer
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Ryan M. Lithgo
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Peter G. Marples
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Xiaomin Ni
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
| | - Warren Thompson
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Conor Wild
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Mary-Ann E. Xavier
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Daren Fearon
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
| | - Frank von Delft
- Diamond Light Source, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Research Complex at Harwell, Harwell Science & Innovation Campus, Didcot, United Kingdom
- Centre for Medicines Discovery, University of Oxford, Oxford, United Kingdom
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
12
|
Werner AD, Krapoth N, Norris MJ, Heine A, Klebe G, Saphire EO, Becker S. Development of a Crystallographic Screening to Identify Sudan Virus VP40 Ligands. ACS OMEGA 2024; 9:33193-33203. [PMID: 39100314 PMCID: PMC11292656 DOI: 10.1021/acsomega.4c04829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/05/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024]
Abstract
The matrix protein VP40 of the highly pathogenic Sudan virus (genus Orthoebolavirus) is a multifunctional protein responsible for the recruitment of viral nucleocapsids to the plasma membrane and the budding of infectious virions. In addition to its role in assembly, VP40 also downregulates viral genome replication and transcription. VP40's existence in various homo-oligomeric states is presumed to underpin its diverse functional capabilities during the viral life cycle. Given the absence of licensed therapeutics targeting the Sudan virus, our study focused on inhibiting VP40 dimers, the structural precursors to critical higher-order oligomers, as a novel antiviral strategy. We have established a crystallographic screening pipeline for the identification of small-molecule fragments capable of binding to VP40. Dimeric VP40 of the Sudan virus was recombinantly expressed in bacteria, purified, crystallized, and soaked in a solution of 96 different preselected fragments. Salicylic acid was identified as a crystallographic hit with clear electron density in the pocket between the N- and the C-termini of the VP40 dimer. The binding interaction is predominantly coordinated by amino acid residues leucine 158 (L158) and arginine 214 (R214), which are key in stabilizing salicylic acid within the binding pocket. While salicylic acid displayed minimal impact on the functional aspects of VP40, we delved deeper into characterizing the druggability of the identified binding pocket. We analyzed the influence of residues L158 and R214 on the formation of virus-like particles and viral RNA synthesis. Site-directed mutagenesis of these residues to alanine markedly affected both VP40's budding activity and its effect on viral RNA synthesis, underscoring the potential of the salicylic acid binding pocket as a drug target. In summary, our findings lay the foundation for structure-guided drug design to provide lead compounds against Sudan virus VP40.
Collapse
Affiliation(s)
| | - Nils Krapoth
- Institute
for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany
- Institut
für Molekulare Biologie gGmbH, D-55128 Mainz, Rheinland-Pfalz, Germany
| | - Michael J. Norris
- Department
of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Andreas Heine
- Institute
of Pharmaceutical Chemistry, University
of Marburg, D-35032 Marburg, Hessen, Germany
| | - Gerhard Klebe
- Institute
of Pharmaceutical Chemistry, University
of Marburg, D-35032 Marburg, Hessen, Germany
| | | | - Stephan Becker
- Institute
for Virology, University of Marburg, D-35043 Marburg, Hessen, Germany
- Partnersite
Giessen-Marburg-Langen, German Centre for
Infection Research, D-35043 Marburg, Hessen, Germany
| |
Collapse
|
13
|
Sternicki LM, Poulsen SA. Fragment-based drug discovery campaigns guided by native mass spectrometry. RSC Med Chem 2024; 15:2270-2285. [PMID: 39026646 PMCID: PMC11253872 DOI: 10.1039/d4md00273c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/19/2024] [Indexed: 07/20/2024] Open
Abstract
Native mass spectrometry (nMS) is well established as a biophysical technique for characterising biomolecules and their interactions with endogenous or investigational small molecule ligands. The high sensitivity mass measurements make nMS particularly well suited for applications in fragment-based drug discovery (FBDD) screening campaigns where the detection of weakly binding ligands to a target biomolecule is crucial. We first reviewed the contributions of nMS to guiding FBDD hit identification in 2013, providing a comprehensive perspective on the early adoption of nMS for fragment screening. Here we update this initial progress with a focus on contributions of nMS that have guided FBDD for the period 2014 until end of 2023. We highlight the development of nMS adoption in FBDD in the context of other biophysical fragment screening techniques. We also discuss the roadmap for increased adoption of nMS for fragment screening beyond soluble proteins, including for guiding the discovery of fragments supporting advances in PROTAC discovery, RNA-binding small molecules and covalent therapeutic drug discovery.
Collapse
Affiliation(s)
- Louise M Sternicki
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| | - Sally-Ann Poulsen
- Griffith Institute for Drug Discovery, Griffith University Nathan Brisbane Queensland 4111 Australia
- ARC Centre for Fragment-Based Design Australia
| |
Collapse
|
14
|
Meeks KR, Ji J, Protopopov MV, Tarkhanova OO, Moroz YS, Tanner JJ. Novel Fragment Inhibitors of PYCR1 from Docking-Guided X-ray Crystallography. J Chem Inf Model 2024; 64:1704-1718. [PMID: 38411104 PMCID: PMC11058006 DOI: 10.1021/acs.jcim.3c01879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The proline biosynthetic enzyme Δ1-pyrroline-5-carboxylate (P5C) reductase 1 (PYCR1) is one of the most consistently upregulated enzymes across multiple cancer types and central to the metabolic rewiring of cancer cells. Herein, we describe a fragment-based, structure-first approach to the discovery of PYCR1 inhibitors. Thirty-seven fragment-like carboxylic acids in the molecular weight range of 143-289 Da were selected from docking and then screened using X-ray crystallography as the primary assay. Strong electron density was observed for eight compounds, corresponding to a crystallographic hit rate of 22%. The fragments are novel compared to existing proline analog inhibitors in that they block both the P5C substrate pocket and the NAD(P)H binding site. Four hits showed inhibition of PYCR1 in kinetic assays, and one has lower apparent IC50 than the current best proline analog inhibitor. These results show proof-of-concept for our inhibitor discovery approach and provide a basis for fragment-to-lead optimization.
Collapse
Affiliation(s)
- Kaylen R Meeks
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Juan Ji
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
| | | | - Olga O Tarkhanova
- Chemspace LLC, 85 Chervonotkatska Street, Suite 1, Kyïv 02094, Ukraine
| | - Yurii S Moroz
- Chemspace LLC, 85 Chervonotkatska Street, Suite 1, Kyïv 02094, Ukraine
- Department of Chemistry, Taras Shevchenko National University of Kyïv, Kyïv 01601, Ukraine
| | - John J Tanner
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, United States
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
15
|
de Souza Neto LR, Montoya BO, Brandão-Neto J, Verma A, Bowyer S, Moreira-Filho JT, Dantas RF, Neves BJ, Andrade CH, von Delft F, Owens RJ, Furnham N, Silva-Jr FP. Fragment library screening by X-ray crystallography and binding site analysis on thioredoxin glutathione reductase of Schistosoma mansoni. Sci Rep 2024; 14:1582. [PMID: 38238498 PMCID: PMC10796382 DOI: 10.1038/s41598-024-52018-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
Schistosomiasis is caused by parasites of the genus Schistosoma, which infect more than 200 million people. Praziquantel (PZQ) has been the main drug for controlling schistosomiasis for over four decades, but despite that it is ineffective against juvenile worms and size and taste issues with its pharmaceutical forms impose challenges for treating school-aged children. It is also important to note that PZQ resistant strains can be generated in laboratory conditions and observed in the field, hence its extensive use in mass drug administration programs raises concerns about resistance, highlighting the need to search for new schistosomicidal drugs. Schistosomes survival relies on the redox enzyme thioredoxin glutathione reductase (TGR), a validated target for the development of new anti-schistosomal drugs. Here we report a high-throughput fragment screening campaign of 768 compounds against S. mansoni TGR (SmTGR) using X-ray crystallography. We observed 49 binding events involving 35 distinct molecular fragments which were found to be distributed across 16 binding sites. Most sites are described for the first time within SmTGR, a noteworthy exception being the "doorstop pocket" near the NADPH binding site. We have compared results from hotspots and pocket druggability analysis of SmTGR with the experimental binding sites found in this work, with our results indicating only limited coincidence between experimental and computational results. Finally, we discuss that binding sites at the doorstop/NADPH binding site and in the SmTGR dimer interface, should be prioritized for developing SmTGR inhibitors as new antischistosomal drugs.
Collapse
Affiliation(s)
- Lauro Ribeiro de Souza Neto
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bogar Omar Montoya
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - José Brandão-Neto
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
| | - Anil Verma
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Sebastian Bowyer
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - José Teófilo Moreira-Filho
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Rafael Ferreira Dantas
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | - Bruno Junior Neves
- Laboratory of Cheminformatics, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
| | - Carolina Horta Andrade
- LabMol - Laboratory for Molecular Modeling and Design, Faculty of Pharmacy, Universidade Federal de Goiás, Goiânia, Brazil
- CRAFT - Center for Research and Advancement of Fragments and Molecular Targets, University of São Paulo, São Paulo, Brazil
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, Harwell, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Harwell, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Raymond J Owens
- Division of Structural Biology, The Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK.
- Structural Biology, Rosalind Franklin Institute, Harwell, UK.
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| | - Floriano Paes Silva-Jr
- LaBECFar - Laboratory of Experimental and Computational Biochemistry of Drugs, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil.
| |
Collapse
|
16
|
Powers A, Yu HH, Suriana P, Koodli RV, Lu T, Paggi JM, Dror RO. Geometric Deep Learning for Structure-Based Ligand Design. ACS CENTRAL SCIENCE 2023; 9:2257-2267. [PMID: 38161364 PMCID: PMC10755842 DOI: 10.1021/acscentsci.3c00572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/03/2024]
Abstract
A pervasive challenge in drug design is determining how to expand a ligand-a small molecule that binds to a target biomolecule-in order to improve various properties of the ligand. Adding single chemical groups, known as fragments, is important for lead optimization tasks, and adding multiple fragments is critical for fragment-based drug design. We have developed a comprehensive framework that uses machine learning and three-dimensional protein-ligand structures to address this challenge. Our method, FRAME, iteratively determines where on a ligand to add fragments, selects fragments to add, and predicts the geometry of the added fragments. On a comprehensive benchmark, FRAME consistently improves predicted affinity and selectivity relative to the initial ligand, while generating molecules with more drug-like chemical properties than docking-based methods currently in widespread use. FRAME learns to accurately describe molecular interactions despite being given no prior information on such interactions. The resulting framework for quality molecular hypothesis generation can be easily incorporated into the workflows of medicinal chemists for diverse tasks, including lead optimization, fragment-based drug discovery, and de novo drug design.
Collapse
Affiliation(s)
- Alexander
S. Powers
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Institute
for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - Helen H. Yu
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Institute
for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - Patricia Suriana
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Institute
for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - Rohan V. Koodli
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Institute
for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
- Biomedical
Informatics Program, Stanford University
School of Medicine, Stanford, California 94305, United States
| | - Tianyu Lu
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Institute
for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Joseph M. Paggi
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Institute
for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| | - Ron O. Dror
- Department
of Computer Science, Stanford University, Stanford, California 94305, United States
- Department
of Molecular and Cellular Physiology, Stanford
University School of Medicine, Stanford, California 94305, United States
- Department
of Structural Biology, Stanford University
School of Medicine, Stanford, California 94305, United States
- Institute
for Computational and Mathematical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
17
|
Hocking B, Armstrong A, Mann DJ. Covalent fragment libraries in drug discovery-Design, synthesis, and screening methods. PROGRESS IN MEDICINAL CHEMISTRY 2023; 62:105-146. [PMID: 37981350 DOI: 10.1016/bs.pmch.2023.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
As the development of drugs with a covalent mode of action is becoming increasingly popular, well-validated covalent fragment-based drug discovery (FBDD) methods have been comparatively slow to keep up with the demand. In this chapter the principles of covalent fragment reactivity, library design, synthesis, and screening methods are explored in depth, focussing on literature examples with direct applications to practical covalent fragment library design and screening. Further, questions about the future of the field are explored and potential useful advances are proposed.
Collapse
Affiliation(s)
- Brad Hocking
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alan Armstrong
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, London, United Kingdom
| | - David J Mann
- Department of Life Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|
18
|
Torres F, Stadler G, Kwiatkowski W, Orts J. A Benchmark Study of Protein-Fragment Complex Structure Calculations with NMR 2. Int J Mol Sci 2023; 24:14329. [PMID: 37762631 PMCID: PMC10531959 DOI: 10.3390/ijms241814329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Protein-fragment complex structures are particularly sought after in medicinal chemistry to rationally design lead molecules. These structures are usually derived using X-ray crystallography, but the failure rate is non-neglectable. NMR is a possible alternative for the calculation of weakly interacting complexes. Nevertheless, the time-consuming protein signal assignment step remains a barrier to its routine application. NMR Molecular Replacement (NMR2) is a versatile and rapid method that enables the elucidation of a protein-ligand complex structure. It has been successfully applied to peptides, drug-like molecules, and more recently to fragments. Due to the small size of the fragments, ca < 300 Da, solving the structures of the protein-fragment complexes is particularly challenging. Here, we present the expected performances of NMR2 when applied to protein-fragment complexes. The NMR2 approach has been benchmarked with the SERAPhic fragment library to identify the technical challenges in protein-fragment NMR structure calculation. A straightforward strategy is proposed to increase the method's success rate further. The presented work confirms that NMR2 is an alternative method to X-ray crystallography for solving protein-fragment complex structures.
Collapse
Affiliation(s)
- Felix Torres
- Institute of Molecular Physical Science, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zurich, Switzerland (G.S.); (W.K.)
| | - Gabriela Stadler
- Institute of Molecular Physical Science, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zurich, Switzerland (G.S.); (W.K.)
| | - Witek Kwiatkowski
- Institute of Molecular Physical Science, Swiss Federal Institute of Technology, ETH-Hönggerberg, 8093 Zurich, Switzerland (G.S.); (W.K.)
| | - Julien Orts
- Department of Pharmaceutical Sciences, Faculty of Life Sciences, University of Vienna, Josef-Holaubek-Platz 2, 1090 Vienna, Austria
| |
Collapse
|
19
|
Stegmann DP, Steuber J, Fritz G, Wojdyla JA, Sharpe ME. Fast fragment and compound screening pipeline at the Swiss Light Source. Methods Enzymol 2023; 690:235-284. [PMID: 37858531 DOI: 10.1016/bs.mie.2023.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Crystallography-based fragment screening is a highly effective technique employed in structure-based drug discovery to expand the range of lead development opportunities. It allows screening and sorting of weakly binding, low molecular mass fragments, which can be developed into larger high-affinity lead compounds. Technical improvements at synchrotron beamlines, design of innovative libraries mapping chemical space efficiently, effective soaking methods and enhanced data analysis have enabled the implementation of high-throughput fragment screening pipelines at multiple synchrotron facilities. This widened access to CBFS beyond the pharma industry has allowed academic users to rapidly screen large quantities of fragment-soaked protein crystals. The positive outcome of a CBFS campaign is a set of structures that present the three-dimensional arrangement of fragment-protein complexes in detail, thereby providing information on the location and the mode of interaction of bound fragments. Through this review, we provide users with a comprehensive guide that sets clear expectations before embarking on a crystallography-based fragment screening campaign. We present a list of essential pre-requirements that must be assessed, including the suitability of your current crystal system for a fragment screening campaign. Furthermore, we extensively discuss the available methodological options, addressing their limitations and providing strategies to overcome them. Additionally, we provide a brief perspective on how to proceed once hits are obtained. Notably, we emphasize the solutions we have implemented for instrumentation and software development within our Fast Fragment and Compound Screening pipeline. We also highlight third-party software options that can be utilized for rapid refinement and hit assessment.
Collapse
Affiliation(s)
| | - Julia Steuber
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany
| | - Günter Fritz
- Institute of Biology, Department of Cellular Microbiology, University of Hohenheim, Stuttgart, Germany.
| | | | | |
Collapse
|
20
|
Pletzer-Zelgert J, Ehrt C, Fender I, Griewel A, Flachsenberg F, Klebe G, Rarey M. LifeSoaks: a tool for analyzing solvent channels in protein crystals and obstacles for soaking experiments. Acta Crystallogr D Struct Biol 2023; 79:837-856. [PMID: 37561404 PMCID: PMC10478636 DOI: 10.1107/s205979832300582x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/03/2023] [Indexed: 08/11/2023] Open
Abstract
Due to the structural complexity of proteins, their corresponding crystal arrangements generally contain a significant amount of solvent-occupied space. These areas allow a certain degree of intracrystalline protein flexibility and mobility of solutes. Therefore, knowledge of the geometry of solvent-filled channels and cavities is essential whenever the dynamics inside a crystal are of interest. Especially in soaking experiments for structure-based drug design, ligands must be able to traverse the crystal solvent channels and reach the corresponding binding pockets. Unsuccessful screenings are sometimes attributed to the geometry of the crystal packing, but the underlying causes are often difficult to understand. This work presents LifeSoaks, a novel tool for analyzing and visualizing solvent channels in protein crystals. LifeSoaks uses a Voronoi diagram-based periodic channel representation which can be efficiently computed. The size and location of channel bottlenecks, which might hinder molecular diffusion, can be directly derived from this representation. This work presents the calculated bottleneck radii for all crystal structures in the PDB and the analysis of a new, hand-curated data set of structures obtained by soaking experiments. The results indicate that the consideration of bottleneck radii and the visual inspection of channels are beneficial for planning soaking experiments.
Collapse
Affiliation(s)
| | - Christiane Ehrt
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Inken Fender
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Axel Griewel
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Florian Flachsenberg
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| | - Gerhard Klebe
- Institut für Pharmazeutische Chemie, Universität Marburg, Marbacher Weg 6-10, 35032 Marburg, Germany
| | - Matthias Rarey
- Center for Bioinformatics, Universität Hamburg, Bundesstrasse 43, 20146 Hamburg, Germany
| |
Collapse
|
21
|
Chopra A, Bauman JD, Ruiz FX, Arnold E. Halo Library, a Tool for Rapid Identification of Ligand Binding Sites on Proteins Using Crystallographic Fragment Screening. J Med Chem 2023; 66:6013-6024. [PMID: 37115705 PMCID: PMC10184123 DOI: 10.1021/acs.jmedchem.2c01681] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
X-ray crystallographic fragment screening (XCFS) uses fragment-sized molecules (∼60 to 300 Da) to access binding sites on proteins that may be inaccessible to larger drug-like molecules (>300 Da). Previous studies have shown that fragments containing halogen atoms bind more often to proteins than non-halogenated fragments. Here, we designed the Halo Library containing 46 halogenated fragments (including the "universal fragment" 4-bromopyrazole), a majority of which have been reported to bind to or inhibit one or more targets. The library was screened against the crystals of HIV-1 reverse transcriptase with the drug rilpivirine, yielding an overall hit rate of 26%. Two new binding sites were discovered, and several hot spots were identified. This small library may thus provide a convenient tool for rapidly assessing the feasibility of a target for XCFS, mapping hot spots and cryptic sites, as well as finding fragment binders that can be useful for developing drug leads.
Collapse
Affiliation(s)
- Ashima Chopra
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Joseph D Bauman
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Francesc X Ruiz
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Eddy Arnold
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
22
|
Molecular-evaluated and explainable drug repurposing for COVID-19 using ensemble knowledge graph embedding. Sci Rep 2023; 13:3643. [PMID: 36871056 PMCID: PMC9985643 DOI: 10.1038/s41598-023-30095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023] Open
Abstract
The search for an effective drug is still urgent for COVID-19 as no drug with proven clinical efficacy is available. Finding the new purpose of an approved or investigational drug, known as drug repurposing, has become increasingly popular in recent years. We propose here a new drug repurposing approach for COVID-19, based on knowledge graph (KG) embeddings. Our approach learns "ensemble embeddings" of entities and relations in a COVID-19 centric KG, in order to get a better latent representation of the graph elements. Ensemble KG-embeddings are subsequently used in a deep neural network trained for discovering potential drugs for COVID-19. Compared to related works, we retrieve more in-trial drugs among our top-ranked predictions, thus giving greater confidence in our prediction for out-of-trial drugs. For the first time to our knowledge, molecular docking is then used to evaluate the predictions obtained from drug repurposing using KG embedding. We show that Fosinopril is a potential ligand for the SARS-CoV-2 nsp13 target. We also provide explanations of our predictions thanks to rules extracted from the KG and instanciated by KG-derived explanatory paths. Molecular evaluation and explanatory paths bring reliability to our results and constitute new complementary and reusable methods for assessing KG-based drug repurposing.
Collapse
|
23
|
Moinul M, Khatun S, Amin SA, Jha T, Gayen S. Recent trends in fragment-based anticancer drug design strategies against different targets: A mini-review. Biochem Pharmacol 2022; 206:115301. [DOI: 10.1016/j.bcp.2022.115301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 11/02/2022]
|
24
|
Martin MP, Noble MEM. Exiting the tunnel of uncertainty: crystal soak to validated hit. Acta Crystallogr D Struct Biol 2022; 78:1294-1302. [PMID: 36322414 PMCID: PMC9629488 DOI: 10.1107/s2059798322009986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/12/2022] [Indexed: 11/28/2022] Open
Abstract
Crystallographic fragment screens provide an efficient and effective way to identify small-molecule ligands of a crystallized protein. Due to their low molecular weight, such hits tend to have low, often unquantifiable, affinity for their target, complicating the twin challenges of validating the hits as authentic solution-phase ligands of the target and identifying the `best' hit(s) for further elaboration. In this article, approaches that address these challenges are assessed. Using retrospective analysis of a recent ATAD2 hit-identification campaign, alongside other examples of successful fragment-screening campaigns, it is suggested that hit validation and prioritization are best achieved by a `triangulation' approach in which the results of multiple available biochemical and biophysical techniques are correlated to develop qualitative structure-activity relationships (SARs). Such qualitative SARs may indeed be the only means by which to navigate a project through the tunnel of uncertainty that prevails before on-scale biophysical, biochemical and/or biological measurements become possible.
Collapse
Affiliation(s)
- Mathew P. Martin
- Cancer Research UK Drug Discovery Unit, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | - Martin E. M. Noble
- Cancer Research UK Drug Discovery Unit, Newcastle University, Paul O’Gorman Building, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| |
Collapse
|
25
|
Vasconcelos D, Chaves B, Albuquerque A, Andrade L, Henriques A, Sartori G, Savino W, Caffarena E, Martins-Da-Silva JH. Development of New Potential Inhibitors of β1 Integrins through In Silico Methods-Screening and Computational Validation. LIFE (BASEL, SWITZERLAND) 2022; 12:life12070932. [PMID: 35888022 PMCID: PMC9325263 DOI: 10.3390/life12070932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/08/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Integrins are transmembrane receptors that play a critical role in many biological processes which can be therapeutically modulated using integrin blockers, such as peptidomimetic ligands. This work aimed to develop new potential β1 integrin antagonists using modeled receptors based on the aligned crystallographic structures and docked with three lead compounds (BIO1211, BIO5192, and TCS2314), widely known as α4β1 antagonists. Lead-compound complex optimization was performed by keeping intact the carboxylate moiety of the ligand, adding substituents in two other regions of the molecule to increase the affinity with the target. Additionally, pharmacokinetic predictions were performed for the ten best ligands generated, with the lowest docking interaction energy obtained for α4β1 and BIO5192. Results revealed an essential salt bridge between the BIO5192 carboxylate group and the Mg2+ MIDAS ion of the integrin. We then generated more than 200 new BIO5192 derivatives, some with a greater predicted affinity to α4β1. Furthermore, the significance of retaining the pyrrolidine core of the ligand and increasing the therapeutic potential of the new compounds is emphasized. Finally, one novel molecule (1592) was identified as a potential drug candidate, with appropriate pharmacokinetic profiles, similar dynamic behavior at the integrin interaction site compared with BIO5192, and a higher predicted affinity to VLA-4.
Collapse
Affiliation(s)
- Disraeli Vasconcelos
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Beatriz Chaves
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Aline Albuquerque
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Luca Andrade
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Andrielly Henriques
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Geraldo Sartori
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
| | - Wilson Savino
- Laboratório de Pesquisa sobre o Timo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil;
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisa em Neuroimunomodulação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Ernesto Caffarena
- Grupo de Biofísica Computacional e Modelagem Molecular, Programa de Computação Científica (PROCC), Fundação Oswaldo Cruz, Rio de Janeiro 21040-222, Brazil;
| | - João Herminio Martins-Da-Silva
- Laboratório de Biologia Estrutural e Funcional em Biofármacos, Fundação Oswaldo Cruz Ceara, Eusebio 61773-270, Brazil; (D.V.); (B.C.); (A.A.); (L.A.); (A.H.); (G.S.)
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Correspondence:
| |
Collapse
|
26
|
Grosjean H, Işık M, Aimon A, Mobley D, Chodera J, von Delft F, Biggin PC. SAMPL7 protein-ligand challenge: A community-wide evaluation of computational methods against fragment screening and pose-prediction. J Comput Aided Mol Des 2022; 36:291-311. [PMID: 35426591 PMCID: PMC9010448 DOI: 10.1007/s10822-022-00452-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/22/2022] [Indexed: 11/01/2022]
Abstract
A novel crystallographic fragment screening data set was generated and used in the SAMPL7 challenge for protein-ligands. The SAMPL challenges prospectively assess the predictive power of methods involved in computer-aided drug design. Application of various methods to fragment molecules are now widely used in the search for new drugs. However, there is little in the way of systematic validation specifically for fragment-based approaches. We have performed a large crystallographic high-throughput fragment screen against the therapeutically relevant second bromodomain of the Pleckstrin-homology domain interacting protein (PHIP2) that revealed 52 different fragments bound across 4 distinct sites, 47 of which were bound to the pharmacologically relevant acetylated lysine (Kac) binding site. These data were used to assess computational screening, binding pose prediction and follow-up enumeration. All submissions performed randomly for screening. Pose prediction success rates (defined as less than 2 Å root mean squared deviation against heavy atom crystal positions) ranged between 0 and 25% and only a very few follow-up compounds were deemed viable candidates from a medicinal-chemistry perspective based on a common molecular descriptors analysis. The tight deadlines imposed during the challenge led to a small number of submissions suggesting that the accuracy of rapidly responsive workflows remains limited. In addition, the application of these methods to reproduce crystallographic fragment data still appears to be very challenging. The results show that there is room for improvement in the development of computational tools particularly when applied to fragment-based drug design.
Collapse
Affiliation(s)
- Harold Grosjean
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, South Parks Road, OX1 3QU, Oxford, UK
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0QX, Didcot, UK
| | - Mehtap Işık
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Anthony Aimon
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0QX, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA, Didcot, UK
| | - David Mobley
- Department of Pharmaceutical Sciences, Department of Chemistry, University of California, 92617, Irvine, California, USA
| | - John Chodera
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 10065, New York, NY, USA
| | - Frank von Delft
- Diamond Light Source Ltd, Harwell Science and Innovation Campus, OX11 0QX, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, OX11 0FA, Didcot, UK
- Centre for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ, Headington, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, OX3 7DQ, Headington, UK
| | - Philip C Biggin
- Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, South Parks Road, OX1 3QU, Oxford, UK.
| |
Collapse
|
27
|
Arif SM, Floto RA, Blundell TL. Using Structure-guided Fragment-Based Drug Discovery to Target Pseudomonas aeruginosa Infections in Cystic Fibrosis. Front Mol Biosci 2022; 9:857000. [PMID: 35433835 PMCID: PMC9006449 DOI: 10.3389/fmolb.2022.857000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 02/23/2022] [Indexed: 11/13/2022] Open
Abstract
Cystic fibrosis (CF) is progressive genetic disease that predisposes lungs and other organs to multiple long-lasting microbial infections. Pseudomonas aeruginosa is the most prevalent and deadly pathogen among these microbes. Lung function of CF patients worsens following chronic infections with P. aeruginosa and is associated with increased mortality and morbidity. Emergence of multidrug-resistant, extensively drug-resistant and pandrug-resistant strains of P. aeruginosa due to intrinsic and adaptive antibiotic resistance mechanisms has failed the current anti-pseudomonal antibiotics. Hence new antibacterials are urgently needed to treat P. aeruginosa infections. Structure-guided fragment-based drug discovery (FBDD) is a powerful approach in the field of drug development that has succeeded in delivering six FDA approved drugs over the past 20 years targeting a variety of biological molecules. However, FBDD has not been widely used in the development of anti-pseudomonal molecules. In this review, we first give a brief overview of our structure-guided FBDD pipeline and then give a detailed account of FBDD campaigns to combat P. aeruginosa infections by developing small molecules having either bactericidal or anti-virulence properties. We conclude with a brief overview of the FBDD efforts in our lab at the University of Cambridge towards targeting P. aeruginosa infections.
Collapse
Affiliation(s)
| | - R. Andres Floto
- Molecular Immunity Unit, Department of Medicine University of Cambridge, MRC-Laboratory of Molecular Biology, Cambridge, United Kingdom
- Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, United Kingdom
| | - Tom L. Blundell
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Tom L. Blundell,
| |
Collapse
|
28
|
Smilova MD, Curran PR, Radoux CJ, von Delft F, Cole JC, Bradley AR, Marsden BD. Fragment Hotspot Mapping to Identify Selectivity-Determining Regions between Related Proteins. J Chem Inf Model 2022; 62:284-294. [PMID: 35020376 PMCID: PMC8790751 DOI: 10.1021/acs.jcim.1c00823] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
![]()
Selectivity is a
crucial property in small molecule development.
Binding site comparisons within a protein family are a key piece of
information when aiming to modulate the selectivity profile of a compound.
Binding site differences can be exploited to confer selectivity for
a specific target, while shared areas can provide insights into polypharmacology.
As the quantity of structural data grows, automated methods are needed
to process, summarize, and present these data to users. We present
a computational method that provides quantitative and data-driven
summaries of the available binding site information from an ensemble
of structures of the same protein. The resulting ensemble maps identify
the key interactions important for ligand binding in the ensemble.
The comparison of ensemble maps of related proteins enables the identification
of selectivity-determining regions within a protein family. We applied
the method to three examples from the well-researched human bromodomain
and kinase families, demonstrating that the method is able to identify
selectivity-determining regions that have been used to introduce selectivity
in past drug discovery campaigns. We then illustrate how the resulting
maps can be used to automate comparisons across a target protein family.
Collapse
Affiliation(s)
- Mihaela D Smilova
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K
| | - Peter R Curran
- The Cambridge Crystallographic Data Centre (CCDC), Cambridge CB2 1EZ, U.K.,Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Chris J Radoux
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Frank von Delft
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.,Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot OX11 0DE, U.K.,Research Complex at Harwell. Harwell Science and Innovation Campus, Didcot OX11 0FA, U.K.,Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa
| | - Jason C Cole
- The Cambridge Crystallographic Data Centre (CCDC), Cambridge CB2 1EZ, U.K
| | - Anthony R Bradley
- Exscientia Ltd., The Schrödinger Building, Oxford Science Park, Oxford OX4 4GE, U.K
| | - Brian D Marsden
- Centre for Medicines Discovery, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Headington, Oxford OX3 7DQ, U.K.,Kennedy Institute of Rheumatology, NDORMS, University of Oxford, Oxford OX3 7DQ, U.K
| |
Collapse
|
29
|
Lundquist KP, Panchal V, Gotfredsen CH, Brenk R, Clausen MH. Fragment-Based Drug Discovery for RNA Targets. ChemMedChem 2021; 16:2588-2603. [PMID: 34101375 DOI: 10.1002/cmdc.202100324] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 12/26/2022]
Abstract
Rapid development within the fields of both fragment-based drug discovery (FBDD) and medicinal targeting of RNA provides possibilities for combining technologies and methods in novel ways. This review provides an overview of fragment-based screening (FBS) against RNA targets, including a discussion of the most recently used screening and hit validation methods such as NMR spectroscopy, X-ray crystallography, and virtual screening methods. A discussion of fragment library design based on research from small-molecule RNA binders provides an overview on both the currently limited guidelines within RNA-targeting fragment library design, and future possibilities. Finally, future perspectives are provided on screening and hit validation methods not yet used in combination with both fragment screening and RNA targets.
Collapse
Affiliation(s)
- Kasper P Lundquist
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Vipul Panchal
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Charlotte H Gotfredsen
- NMR Center ⋅ DTU, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| | - Ruth Brenk
- Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020, Bergen, Norway
| | - Mads H Clausen
- Center for Nanomedicine and Theranostics, Department of Chemistry, Technical University of Denmark, Kemitorvet 207, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
30
|
Fata F, Silvestri I, Ardini M, Ippoliti R, Di Leandro L, Demitri N, Polentarutti M, Di Matteo A, Lyu H, Thatcher GR, Petukhov PA, Williams DL, Angelucci F. Probing the Surface of a Parasite Drug Target Thioredoxin Glutathione Reductase Using Small Molecule Fragments. ACS Infect Dis 2021; 7:1932-1944. [PMID: 33950676 DOI: 10.1021/acsinfecdis.0c00909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fragment screening is a powerful drug discovery approach particularly useful for enzymes difficult to inhibit selectively, such as the thiol/selenol-dependent thioredoxin reductases (TrxRs), which are essential and druggable in several infectious diseases. Several known inhibitors are reactive electrophiles targeting the selenocysteine-containing C-terminus and thus often suffering from off-target reactivity in vivo. The lack of structural information on the interaction modalities of the C-terminus-targeting inhibitors, due to the high mobility of this domain and the lack of alternative druggable sites, prevents the development of selective inhibitors for TrxRs. In this work, fragments selected from actives identified in a large screen carried out against Thioredoxin Glutathione Reductase from Schistosoma mansoni (SmTGR) were probed by X-ray crystallography. SmTGR is one of the most promising drug targets for schistosomiasis, a devastating, neglected disease. Utilizing a multicrystal method to analyze electron density maps, structural analysis, and functional studies, three binding sites were characterized in SmTGR: two sites are close to or partially superposable with the NADPH binding site, while the third one is found between two symmetry related SmTGR subunits of the crystal lattice. Surprisingly, one compound bound to this latter site stabilizes, through allosteric effects mediated by the so-called guiding bar residues, the crucial redox active C-terminus of SmTGR, making it finally visible at high resolution. These results further promote fragments as small molecule probes for investigating functional aspects of the target protein, exemplified by the allosteric effect on the C-terminus, and providing fundamental chemical information exploitable in drug discovery.
Collapse
Affiliation(s)
- Francesca Fata
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Ilaria Silvestri
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Matteo Ardini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Rodolfo Ippoliti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Luana Di Leandro
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Nicola Demitri
- Elettra − Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza − Trieste, Italy
| | - Maurizio Polentarutti
- Elettra − Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149 Basovizza − Trieste, Italy
| | - Adele Di Matteo
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biochemical Sciences “A Rossi Fanelli” - Sapienza University of Rome, 00185 Rome, Italy
| | - Haining Lyu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Gregory R.J. Thatcher
- Department of Pharmacology & Toxicology, College of Pharmacy, the University of Arizona, Tucson, Arizona 85721, United States
| | - Pavel A. Petukhov
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - David L. Williams
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, Illinois 60612, United States
| | - Francesco Angelucci
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
31
|
Sprenger J, Lawson CL, von Wachenfeldt C, Lo Leggio L, Carey J. Crystal structures of Val58Ile tryptophan repressor in a domain-swapped array in the presence and absence of L-tryptophan. Acta Crystallogr F Struct Biol Commun 2021; 77:215-225. [PMID: 34196612 PMCID: PMC8248821 DOI: 10.1107/s2053230x21006142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/14/2021] [Indexed: 11/12/2022] Open
Abstract
The crystal structures of domain-swapped tryptophan repressor (TrpR) variant Val58Ile before and after soaking with the physiological ligand L-tryptophan (L-Trp) indicate that L-Trp occupies the same location in the domain-swapped form as in native dimeric TrpR and makes equivalent residue contacts. This result is unexpected because the ligand binding-site residues arise from three separate polypeptide chains in the domain-swapped form. This work represents the first published structure of a domain-swapped form of TrpR with L-Trp bound. The presented structures also show that the protein amino-terminus, whether or not it bears a disordered extension of about 20 residues, is accessible in the large solvent channels of the domain-swapped crystal form, as in the structures reported previously in this form for TrpR without N-terminal extensions. These findings inspire the exploration of L-Trp analogs and N-terminal modifications as labels to orient guest proteins that cannot otherwise be crystallized in the solvent channels of crystalline domain-swapped TrpR hosts for potential diffraction analysis.
Collapse
Affiliation(s)
- Janina Sprenger
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
- Center for Molecular Protein Science, Lund University, SE-221 00 Lund, Sweden
| | - Catherine L. Lawson
- Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Leila Lo Leggio
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Jannette Carey
- Chemistry Department, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
32
|
Mühlethaler T, Gioia D, Prota AE, Sharpe ME, Cavalli A, Steinmetz MO. Comprehensive Analysis of Binding Sites in Tubulin. Angew Chem Int Ed Engl 2021; 60:13331-13342. [PMID: 33951246 PMCID: PMC8251789 DOI: 10.1002/anie.202100273] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Indexed: 01/01/2023]
Abstract
Tubulin plays essential roles in vital cellular activities and is the target of a wide range of proteins and ligands. Here, using a combined computational and crystallographic fragment screening approach, we addressed the question of how many binding sites exist in tubulin. We identified 27 distinct sites, of which 11 have not been described previously, and analyzed their relationship to known tubulin-protein and tubulin-ligand interactions. We further observed an intricate pocket communication network and identified 56 chemically diverse fragments that bound to 10 distinct tubulin sites. Our results offer a unique structural basis for the development of novel small molecules for use as tubulin modulators in basic research applications or as drugs. Furthermore, our method lays down a framework that may help to discover new pockets in other pharmaceutically important targets and characterize them in terms of chemical tractability and allosteric modulation.
Collapse
Affiliation(s)
- Tobias Mühlethaler
- Laboratory of Biomolecular ResearchDepartment of Biology and ChemistryPaul Scherrer Institut5232Villigen PSISwitzerland
| | - Dario Gioia
- Computational & Chemical BiologyIstituto Italiano di Tecnologiavia Morego, 3016163GenovaItaly
| | - Andrea E. Prota
- Laboratory of Biomolecular ResearchDepartment of Biology and ChemistryPaul Scherrer Institut5232Villigen PSISwitzerland
| | - May E. Sharpe
- Swiss Light SourcePaul Scherrer Institut5232Villigen PSISwitzerland
| | - Andrea Cavalli
- Computational & Chemical BiologyIstituto Italiano di Tecnologiavia Morego, 3016163GenovaItaly
- Department of Pharmacy and BiotechnologyAlma Mater StudiorumUniversity of Bolognavia Belmeloro 640126BolognaItaly
| | - Michel O. Steinmetz
- Laboratory of Biomolecular ResearchDepartment of Biology and ChemistryPaul Scherrer Institut5232Villigen PSISwitzerland
- University of BaselBiozentrum4056BaselSwitzerland
| |
Collapse
|
33
|
Bajusz D, Wade WS, Satała G, Bojarski AJ, Ilaš J, Ebner J, Grebien F, Papp H, Jakab F, Douangamath A, Fearon D, von Delft F, Schuller M, Ahel I, Wakefield A, Vajda S, Gerencsér J, Pallai P, Keserű GM. Exploring protein hotspots by optimized fragment pharmacophores. Nat Commun 2021; 12:3201. [PMID: 34045440 PMCID: PMC8159961 DOI: 10.1038/s41467-021-23443-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 02/04/2023] Open
Abstract
Fragment-based drug design has introduced a bottom-up process for drug development, with improved sampling of chemical space and increased effectiveness in early drug discovery. Here, we combine the use of pharmacophores, the most general concept of representing drug-target interactions with the theory of protein hotspots, to develop a design protocol for fragment libraries. The SpotXplorer approach compiles small fragment libraries that maximize the coverage of experimentally confirmed binding pharmacophores at the most preferred hotspots. The efficiency of this approach is demonstrated with a pilot library of 96 fragment-sized compounds (SpotXplorer0) that is validated on popular target classes and emerging drug targets. Biochemical screening against a set of GPCRs and proteases retrieves compounds containing an average of 70% of known pharmacophores for these targets. More importantly, SpotXplorer0 screening identifies confirmed hits against recently established challenging targets such as the histone methyltransferase SETD2, the main protease (3CLPro) and the NSP3 macrodomain of SARS-CoV-2.
Collapse
Affiliation(s)
- Dávid Bajusz
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
| | | | - Grzegorz Satała
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Andrzej J Bojarski
- Maj Institute of Pharmacology Polish Academy of Sciences, Kraków, Poland
| | - Janez Ilaš
- Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Jessica Ebner
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Florian Grebien
- Institute for Medical Biochemistry, University of Veterinary Medicine, Vienna, Austria
| | - Henrietta Papp
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Ferenc Jakab
- National Laboratory of Virology, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Alice Douangamath
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Daren Fearon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus, Didcot, UK
- Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, OX11 0FA, UK
- Structural Genomics Consortium, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Centre for Medicines Discovery, University of Oxford, Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, UK
- Department of Biochemistry, University of Johannesburg, Auckland Park, 2006, South Africa
| | - Marion Schuller
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ivan Ahel
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Amanda Wakefield
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sándor Vajda
- Department of Chemistry, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | | | - György M Keserű
- Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
34
|
Mühlethaler T, Gioia D, Prota AE, Sharpe ME, Cavalli A, Steinmetz MO. Comprehensive Analysis of Binding Sites in Tubulin. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100273] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Tobias Mühlethaler
- Laboratory of Biomolecular Research Department of Biology and Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Dario Gioia
- Computational & Chemical Biology Istituto Italiano di Tecnologia via Morego, 30 16163 Genova Italy
| | - Andrea E. Prota
- Laboratory of Biomolecular Research Department of Biology and Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - May E. Sharpe
- Swiss Light Source Paul Scherrer Institut 5232 Villigen PSI Switzerland
| | - Andrea Cavalli
- Computational & Chemical Biology Istituto Italiano di Tecnologia via Morego, 30 16163 Genova Italy
- Department of Pharmacy and Biotechnology Alma Mater Studiorum University of Bologna via Belmeloro 6 40126 Bologna Italy
| | - Michel O. Steinmetz
- Laboratory of Biomolecular Research Department of Biology and Chemistry Paul Scherrer Institut 5232 Villigen PSI Switzerland
- University of Basel Biozentrum 4056 Basel Switzerland
| |
Collapse
|
35
|
Mackinnon S, Krojer T, Foster WR, Diaz-Saez L, Tang M, Huber KVM, von Delft F, Lai K, Brennan PE, Arruda Bezerra G, Yue WW. Fragment Screening Reveals Starting Points for Rational Design of Galactokinase 1 Inhibitors to Treat Classic Galactosemia. ACS Chem Biol 2021; 16:586-595. [PMID: 33724769 PMCID: PMC8056384 DOI: 10.1021/acschembio.0c00498] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 02/18/2021] [Indexed: 11/28/2022]
Abstract
Classic galactosemia is caused by loss-of-function mutations in galactose-1-phosphate uridylyltransferase (GALT) that lead to toxic accumulation of its substrate, galactose-1-phosphate. One proposed therapy is to inhibit the biosynthesis of galactose-1-phosphate, catalyzed by galactokinase 1 (GALK1). Existing inhibitors of human GALK1 (hGALK1) are primarily ATP-competitive with limited clinical utility to date. Here, we determined crystal structures of hGALK1 bound with reported ATP-competitive inhibitors of the spiro-benzoxazole series, to reveal their binding mode in the active site. Spurred by the need for additional chemotypes of hGALK1 inhibitors, desirably targeting a nonorthosteric site, we also performed crystallography-based screening by soaking hundreds of hGALK1 crystals, already containing active site ligands, with fragments from a custom library. Two fragments were found to bind close to the ATP binding site, and a further eight were found in a hotspot distal from the active site, highlighting the strength of this method in identifying previously uncharacterized allosteric sites. To generate inhibitors of improved potency and selectivity targeting the newly identified binding hotspot, new compounds were designed by merging overlapping fragments. This yielded two micromolar inhibitors of hGALK1 that were not competitive with respect to either substrate (ATP or galactose) and demonstrated good selectivity over hGALK1 homologues, galactokinase 2 and mevalonate kinase. Our findings are therefore the first to demonstrate inhibition of hGALK1 from an allosteric site, with potential for further development of potent and selective inhibitors to provide novel therapeutics for classic galactosemia.
Collapse
Affiliation(s)
- Sabrina
R. Mackinnon
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - Tobias Krojer
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - William R. Foster
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - Laura Diaz-Saez
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Target
Discovery Institute, University of Oxford, Oxford, United Kingdom, OX3 7FZ
| | - Manshu Tang
- Department
of Pediatrics, University of Utah, Salt Lake City, Utah 84108-6500, United States
| | - Kilian V. M. Huber
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Target
Discovery Institute, University of Oxford, Oxford, United Kingdom, OX3 7FZ
| | - Frank von Delft
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Diamond
Light Source, Harwell Science and Innovation
Campus, Didcot, Oxfordshire, United Kingdom, OX11 0DE
| | - Kent Lai
- Department
of Pediatrics, University of Utah, Salt Lake City, Utah 84108-6500, United States
| | - Paul E. Brennan
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
- Target
Discovery Institute, University of Oxford, Oxford, United Kingdom, OX3 7FZ
| | - Gustavo Arruda Bezerra
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| | - Wyatt W. Yue
- Structural
Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom, OX3 7DQ
| |
Collapse
|
36
|
Cilento ME, Kirby KA, Sarafianos SG. Avoiding Drug Resistance in HIV Reverse Transcriptase. Chem Rev 2021; 121:3271-3296. [PMID: 33507067 DOI: 10.1021/acs.chemrev.0c00967] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
HIV reverse transcriptase (RT) is an enzyme that plays a major role in the replication cycle of HIV and has been a key target of anti-HIV drug development efforts. Because of the high genetic diversity of the virus, mutations in RT can impart resistance to various RT inhibitors. As the prevalence of drug resistance mutations is on the rise, it is necessary to design strategies that will lead to drugs less susceptible to resistance. Here we provide an in-depth review of HIV reverse transcriptase, current RT inhibitors, novel RT inhibitors, and mechanisms of drug resistance. We also present novel strategies that can be useful to overcome RT's ability to escape therapies through drug resistance. While resistance may not be completely avoidable, designing drugs based on the strategies and principles discussed in this review could decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Maria E Cilento
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Karen A Kirby
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| | - Stefan G Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, United States.,Children's Healthcare of Atlanta, Atlanta, Georgia 30307, United States
| |
Collapse
|
37
|
Balobanov V, Lekontseva N, Mikhaylina A, Nikulin A. Use of Fluorescent Nucleotides to Map RNA-Binding Sites on Protein Surface. Methods Mol Biol 2021; 2113:251-262. [PMID: 32006319 DOI: 10.1007/978-1-0716-0278-2_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Currently, studies of RNA/protein interactions occupy a prominent place in molecular biology and medicine. The structures of RNA-protein complexes may be determined by X-ray crystallography or NMR for further analyses. These methods are time-consuming and difficult due to the versatility and dynamics of the RNA structure. Furthermore, due to the need to solve the "phase problem" for each dataset in crystallography, crystallographic structures of RNA are still underrepresented. Structure determination of single ribonucleotide-protein complexes is a useful tool to identify the position of single-stranded RNA-binding sites in proteins. We describe here a structural approach that incorporates affinity measurement of a protein for various single ribonucleotides, ranking the RNA/protein complexes according to their stability. This chapter describes how to perform these measurements, including a perspective for the analysis of RNA-binding sites in protein and single-nucleotide crystal soaking.
Collapse
Affiliation(s)
- V Balobanov
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia.
| | - N Lekontseva
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - A Mikhaylina
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | - A Nikulin
- Institute of Protein Research Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| |
Collapse
|
38
|
St Denis JD, Hall RJ, Murray CW, Heightman TD, Rees DC. Fragment-based drug discovery: opportunities for organic synthesis. RSC Med Chem 2020; 12:321-329. [PMID: 34041484 PMCID: PMC8130625 DOI: 10.1039/d0md00375a] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/01/2020] [Indexed: 12/28/2022] Open
Abstract
This Review describes the increasing demand for organic synthesis to facilitate fragment-based drug discovery (FBDD), focusing on polar, unprotected fragments. In FBDD, X-ray crystal structures are used to design target molecules for synthesis with new groups added onto a fragment via specific growth vectors. This requires challenging synthesis which slows down drug discovery, and some fragments are not progressed into optimisation due to synthetic intractability. We have evaluated the output from Astex's fragment screenings for a number of programs, including urokinase-type plasminogen activator, hematopoietic prostaglandin D2 synthase, and hepatitis C virus NS3 protease-helicase, and identified fragments that were not elaborated due, in part, to a lack of commercially available analogues and/or suitable synthetic methodology. This represents an opportunity for the development of new synthetic research to enable rapid access to novel chemical space and fragment optimisation.
Collapse
Affiliation(s)
| | - Richard J Hall
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | | | - Tom D Heightman
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| | - David C Rees
- Astex Pharmaceuticals 436 Cambridge Science Park Cambridge CB4 0QA UK
| |
Collapse
|
39
|
Leissing TM, Luh LM, Cromm PM. Structure driven compound optimization in targeted protein degradation. DRUG DISCOVERY TODAY. TECHNOLOGIES 2020; 37:73-82. [PMID: 34895657 DOI: 10.1016/j.ddtec.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 06/14/2023]
Abstract
Small molecule induced protein degradation has created tremendous excitement in drug discovery within recent years. Not being confined to target inhibition and being able to remove disease-causing protein targets via engagement and subsequent ubiquitination has provided scientists with a powerful tool to expand the druggable space. At the center of this approach sits the ternary complex formed between an E3 ubiquitin ligase, the small molecule degrader, and the target protein. A productive ternary complex is pivotal for a ubiquitin to be transferred to a surface lysine of the target protein resulting in poly-ubiquitination which enables recognition and finally degradation by the proteasome. As understanding the ternary complex means understanding the degradation process, many efforts are put into obtaining structural information of the ternary complex and getting a snapshot of the underlying conformations and molecular contacts. Locking this transient trimeric intermediate in a crystalline state has proven to be very demanding but the obtained results have tremendously improved our understanding of small molecule degraders. This review discusses target protein degradation from a structural perspective and highlights the evolution of certain degraders based on the obtained structural insights.
Collapse
Affiliation(s)
| | - Laura M Luh
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany
| | - Philipp M Cromm
- Research and Development, Pharmaceuticals, Bayer AG, 13353 Berlin, Germany.
| |
Collapse
|
40
|
Barthels F, Schirmeister T, Kersten C. BANΔIT: B'-Factor Analysis for Drug Design and Structural Biology. Mol Inform 2020; 40:e2000144. [PMID: 32830452 PMCID: PMC7461025 DOI: 10.1002/minf.202000144] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 08/21/2020] [Indexed: 12/02/2022]
Abstract
The analysis of B‐factor profiles from X‐ray protein structures can be utilized for structure‐based drug design since protein mobility changes have been associated with the quality of protein‐ligand interactions. With the BANΔIT (B’‐factor analysis and ΔB’ interpretation toolkit), we have developed a JavaScript‐based browser application that provides a graphical user interface for the normalization and analysis of B’‐factor profiles. To emphasize the usability for rational drug design applications, we have analyzed a selection of crystallographic protein‐ligand complexes and have given exemplary conclusions for further drug optimization including the development of a B’‐factor‐supported pharmacophore model for SARS CoV‐2 main protease inhibitors. BANΔIT is available online at https://bandit.uni‐mainz.de. The source code can be downloaded from https://github.com/FBarthels/BANDIT.
Collapse
Affiliation(s)
- Fabian Barthels
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Tanja Schirmeister
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128, Mainz, Germany
| | - Christian Kersten
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-Universität Mainz, Staudingerweg 5, 55128, Mainz, Germany
| |
Collapse
|
41
|
Kidd SL, Fowler E, Reinhardt T, Compton T, Mateu N, Newman H, Bellini D, Talon R, McLoughlin J, Krojer T, Aimon A, Bradley A, Fairhead M, Brear P, Díaz-Sáez L, McAuley K, Sore HF, Madin A, O'Donovan DH, Huber KVM, Hyvönen M, von Delft F, Dowson CG, Spring DR. Demonstration of the utility of DOS-derived fragment libraries for rapid hit derivatisation in a multidirectional fashion. Chem Sci 2020; 11:10792-10801. [PMID: 34094333 PMCID: PMC8162264 DOI: 10.1039/d0sc01232g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
Organic synthesis underpins the evolution of weak fragment hits into potent lead compounds. Deficiencies within current screening collections often result in the requirement of significant synthetic investment to enable multidirectional fragment growth, limiting the efficiency of the hit evolution process. Diversity-oriented synthesis (DOS)-derived fragment libraries are constructed in an efficient and modular fashion and thus are well-suited to address this challenge. To demonstrate the effective nature of such libraries within fragment-based drug discovery, we herein describe the screening of a 40-member DOS library against three functionally distinct biological targets using X-Ray crystallography. Firstly, we demonstrate the importance for diversity in aiding hit identification with four fragment binders resulting from these efforts. Moreover, we also exemplify the ability to readily access a library of analogues from cheap commercially available materials, which ultimately enabled the exploration of a minimum of four synthetic vectors from each molecule. In total, 10-14 analogues of each hit were rapidly accessed in three to six synthetic steps. Thus, we showcase how DOS-derived fragment libraries enable efficient hit derivatisation and can be utilised to remove the synthetic limitations encountered in early stage fragment-based drug discovery.
Collapse
Affiliation(s)
- Sarah L Kidd
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Elaine Fowler
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Till Reinhardt
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Thomas Compton
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Natalia Mateu
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Hector Newman
- School of Life Sciences, University of Warwick Coventry UK
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Dom Bellini
- School of Life Sciences, University of Warwick Coventry UK
| | - Romain Talon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
| | - Joseph McLoughlin
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Tobias Krojer
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford UK
| | - Anthony Aimon
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
| | - Anthony Bradley
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Michael Fairhead
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
| | - Paul Brear
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Laura Díaz-Sáez
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford UK
| | - Katherine McAuley
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
| | - Hannah F Sore
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| | - Andrew Madin
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca Cambridge UK
| | | | - Kilian V M Huber
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford Oxford UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| | - Frank von Delft
- Diamond Light Source Ltd., Harwell Science and Innovation Campus Didcot OX11 0QX UK
- Structural Genomics Consortium (SGC), University of Oxford Oxford OX3 7DQ UK
- Department of Biochemistry, University of Johannesburg Auckland Park 2006 South Africa
| | | | - David R Spring
- Department of Chemistry, University of Cambridge Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
42
|
Torres F, Ghosh D, Strotz D, Chi CN, Davis B, Orts J. Protein-fragment complex structures derived by NMR molecular replacement. RSC Med Chem 2020; 11:591-596. [PMID: 33479661 PMCID: PMC7649837 DOI: 10.1039/d0md00068j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/23/2020] [Indexed: 01/16/2023] Open
Abstract
Recently we have established an NMR molecular replacement method, which is capable of solving the structure of the interaction site of protein-ligand complexes in a fully automated manner. While the method was successfully applied for ligands with strong and weak binding affinities, including small molecules and peptides, its applicability on ligand fragments remains to be shown. Structures of fragment-protein complexes are more challenging for the method since fragments contain only few protons. Here we show a successful application of the NMR molecular replacement method in solving structures of complexes between three derivatives of a ligand fragment and the protein receptor PIN1. We anticipate that this approach will find a broad application in fragment-based lead discovery.
Collapse
Affiliation(s)
- Felix Torres
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Dhiman Ghosh
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Dean Strotz
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Celestine N Chi
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| | - Ben Davis
- Vernalis , Granta Park , Cambridge , UK
| | - Julien Orts
- Laboratory of Physical Chemistry , ETH , Swiss Federal Institute of Technology , HCI F217, Vladimir-Prelog-Weg 2 , 8093 Zürich , Switzerland .
| |
Collapse
|
43
|
Zhao Y, Ren J, Hillier J, Jones M, Lu W, Jones EY. Structural characterization of melatonin as an inhibitor of the Wnt deacylase Notum. J Pineal Res 2020; 68:e12630. [PMID: 31876313 PMCID: PMC7027535 DOI: 10.1111/jpi.12630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 12/18/2019] [Accepted: 12/20/2019] [Indexed: 12/21/2022]
Abstract
The hormone melatonin, secreted from the pineal gland, mediates multiple physiological effects including modulation of Wnt/β-catenin signalling. The Wnt palmitoleate lipid modification is essential for its signalling activity, while the carboxylesterase Notum can remove the lipid from Wnt and inactivate it. Notum enzyme inhibition can therefore upregulate Wnt signalling. While searching for Notum inhibitors by crystallographic fragment screening, a hit compound N-[2-(5-fluoro-1H-indol-3-yl)ethyl]acetamide that is structurally similar to melatonin came to our attention. We then soaked melatonin and its precursor N-acetylserotonin into Notum crystals and obtained high-resolution structures (≤1.5 Å) of their complexes. In each of the structures, two compound molecules bind with Notum: one at the enzyme's catalytic pocket, overlapping the space occupied by the acyl tail of the Wnt palmitoleate lipid, and the other at the edge of the pocket opposite the substrate entrance. Although the inhibitory activity of melatonin shown by in vitro enzyme assays is low (IC50 75 µmol/L), the structural information reported here provides a basis for the design of potent and brain accessible drugs for neurodegenerative diseases such as Alzheimer's disease, in which upregulation of Wnt signalling may be beneficial.
Collapse
Affiliation(s)
- Yuguang Zhao
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Jingshan Ren
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - James Hillier
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Margaret Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Weixian Lu
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| | - Edith Yvonne Jones
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
| |
Collapse
|
44
|
de Souza Neto LR, Moreira-Filho JT, Neves BJ, Maidana RLBR, Guimarães ACR, Furnham N, Andrade CH, Silva FP. In silico Strategies to Support Fragment-to-Lead Optimization in Drug Discovery. Front Chem 2020; 8:93. [PMID: 32133344 PMCID: PMC7040036 DOI: 10.3389/fchem.2020.00093] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/30/2020] [Indexed: 12/16/2022] Open
Abstract
Fragment-based drug (or lead) discovery (FBDD or FBLD) has developed in the last two decades to become a successful key technology in the pharmaceutical industry for early stage drug discovery and development. The FBDD strategy consists of screening low molecular weight compounds against macromolecular targets (usually proteins) of clinical relevance. These small molecular fragments can bind at one or more sites on the target and act as starting points for the development of lead compounds. In developing the fragments attractive features that can translate into compounds with favorable physical, pharmacokinetics and toxicity (ADMET-absorption, distribution, metabolism, excretion, and toxicity) properties can be integrated. Structure-enabled fragment screening campaigns use a combination of screening by a range of biophysical techniques, such as differential scanning fluorimetry, surface plasmon resonance, and thermophoresis, followed by structural characterization of fragment binding using NMR or X-ray crystallography. Structural characterization is also used in subsequent analysis for growing fragments of selected screening hits. The latest iteration of the FBDD workflow employs a high-throughput methodology of massively parallel screening by X-ray crystallography of individually soaked fragments. In this review we will outline the FBDD strategies and explore a variety of in silico approaches to support the follow-up fragment-to-lead optimization of either: growing, linking, and merging. These fragment expansion strategies include hot spot analysis, druggability prediction, SAR (structure-activity relationships) by catalog methods, application of machine learning/deep learning models for virtual screening and several de novo design methods for proposing synthesizable new compounds. Finally, we will highlight recent case studies in fragment-based drug discovery where in silico methods have successfully contributed to the development of lead compounds.
Collapse
Affiliation(s)
- Lauro Ribeiro de Souza Neto
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - José Teófilo Moreira-Filho
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Bruno Junior Neves
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
- Laboratory of Cheminformatics, Centro Universitário de Anápolis – UniEVANGÉLICA, Anápolis, Brazil
| | - Rocío Lucía Beatriz Riveros Maidana
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Ana Carolina Ramos Guimarães
- Laboratório de Genômica Funcional e Bioinformática, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Nicholas Furnham
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carolina Horta Andrade
- LabMol – Laboratory for Molecular Modeling and Drug Design, Faculdade de Farmácia, Universidade Federal de Goiás, Goiânia, Brazil
| | - Floriano Paes Silva
- LaBECFar – Laboratório de Bioquímica Experimental e Computacional de Fármacos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
45
|
Gao K, Oerlemans R, Groves MR. Theory and applications of differential scanning fluorimetry in early-stage drug discovery. Biophys Rev 2020; 12:85-104. [PMID: 32006251 PMCID: PMC7040159 DOI: 10.1007/s12551-020-00619-2] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/08/2020] [Indexed: 02/06/2023] Open
Abstract
Differential scanning fluorimetry (DSF) is an accessible, rapid, and economical biophysical technique that has seen many applications over the years, ranging from protein folding state detection to the identification of ligands that bind to the target protein. In this review, we discuss the theory, applications, and limitations of DSF, including the latest applications of DSF by ourselves and other researchers. We show that DSF is a powerful high-throughput tool in early drug discovery efforts. We place DSF in the context of other biophysical methods frequently used in drug discovery and highlight their benefits and downsides. We illustrate the uses of DSF in protein buffer optimization for stability, refolding, and crystallization purposes and provide several examples of each. We also show the use of DSF in a more downstream application, where it is used as an in vivo validation tool of ligand-target interaction in cell assays. Although DSF is a potent tool in buffer optimization and large chemical library screens when it comes to ligand-binding validation and optimization, orthogonal techniques are recommended as DSF is prone to false positives and negatives.
Collapse
Affiliation(s)
- Kai Gao
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Rick Oerlemans
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands
| | - Matthew R Groves
- Structure Biology in Drug Design, Drug Design Group XB20, Departments of Pharmacy, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
46
|
Lountos GT, Zhao XZ, Kiselev E, Tropea JE, Needle D, Pommier Y, Burke TR, Waugh DS. Identification of a ligand binding hot spot and structural motifs replicating aspects of tyrosyl-DNA phosphodiesterase I (TDP1) phosphoryl recognition by crystallographic fragment cocktail screening. Nucleic Acids Res 2019; 47:10134-10150. [PMID: 31199869 DOI: 10.1093/nar/gkz515] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 05/20/2019] [Accepted: 06/11/2019] [Indexed: 02/02/2023] Open
Abstract
Tyrosyl DNA-phosphodiesterase I (TDP1) repairs type IB topoisomerase (TOP1) cleavage complexes generated by TOP1 inhibitors commonly used as anticancer agents. TDP1 also removes DNA 3' end blocking lesions generated by chain-terminating nucleosides and alkylating agents, and base oxidation both in the nuclear and mitochondrial genomes. Combination therapy with TDP1 inhibitors is proposed to synergize with topoisomerase targeting drugs to enhance selectivity against cancer cells exhibiting deficiencies in parallel DNA repair pathways. A crystallographic fragment screening campaign against the catalytic domain of TDP1 was conducted to identify new lead compounds. Crystal structures revealed two fragments that bind to the TDP1 active site and exhibit inhibitory activity against TDP1. These fragments occupy a similar position in the TDP1 active site as seen in prior crystal structures of TDP1 with bound vanadate, a transition state mimic. Using structural insights into fragment binding, several fragment derivatives have been prepared and evaluated in biochemical assays. These results demonstrate that fragment-based methods can be a highly feasible approach toward the discovery of small-molecule chemical scaffolds to target TDP1, and for the first time, we provide co-crystal structures of small molecule inhibitors bound to TDP1, which could serve for the rational development of medicinal TDP1 inhibitors.
Collapse
Affiliation(s)
- George T Lountos
- Basic Science Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Xue Zhi Zhao
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Evgeny Kiselev
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Joseph E Tropea
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Danielle Needle
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Yves Pommier
- Developmental Therapeutics Branch & Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Terrence R Burke
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - David S Waugh
- Macromolecular Crystallography Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| |
Collapse
|
47
|
Carter AJ, Kraemer O, Zwick M, Mueller-Fahrnow A, Arrowsmith CH, Edwards AM. Target 2035: probing the human proteome. Drug Discov Today 2019; 24:2111-2115. [PMID: 31278990 DOI: 10.1016/j.drudis.2019.06.020] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/11/2019] [Accepted: 06/27/2019] [Indexed: 11/29/2022]
Abstract
Biomedical scientists tend to focus on only a small fraction of the proteins encoded by the human genome despite overwhelming genetic evidence that many understudied proteins are important for human disease. One of the best ways to interrogate the function of a protein and to determine its relevance as a drug target is by using a pharmacological modulator, such as a chemical probe or an antibody. If these tools were available for most human proteins, it should be possible to translate the tremendous advances in genomics into a greater understanding of human health and disease, and catalyze the creation of innovative new medicines. Target 2035 is a global federation for developing and applying new technologies with the goal of creating chemogenomic libraries, chemical probes, and/or functional antibodies for the entire proteome.
Collapse
Affiliation(s)
- Adrian J Carter
- Discovery Research Coordination, Boehringer Ingelheim, 55216 Ingelheim am Rhein, Germany.
| | - Oliver Kraemer
- Discovery Research Coordination, Boehringer Ingelheim, 55216 Ingelheim am Rhein, Germany
| | - Matthias Zwick
- Computational Biology, Boehringer Ingelheim, 88400 Biberach an der Riß, Germany
| | | | - Cheryl H Arrowsmith
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada; Princess Margaret Cancer Centre, Toronto, Ontario, M5G 1L7, Canada
| | - Aled M Edwards
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, M5G 1L7, Canada
| |
Collapse
|
48
|
Tatum N, Duarte F, Kamerlin SCL, Pohl E. Relative Binding Energies Predict Crystallographic Binding Modes of Ethionamide Booster Lead Compounds. J Phys Chem Lett 2019; 10:2244-2249. [PMID: 30965004 PMCID: PMC6503467 DOI: 10.1021/acs.jpclett.9b00741] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Transcriptional repressor EthR from Mycobacterium tuberculosis is a valuable target for antibiotic booster drugs. We previously reported a virtual screening campaign to identify EthR inhibitors for development. Two ligand binding orientations were often proposed, though only the top scoring pose was utilized for filtering of the large data set. We obtained biophysically validated hits, some of which yielded complex crystal structures. In some cases, the crystallized binding mode and top scoring mode agree, while for others an alternate ligand binding orientation was found. In this contribution, we combine rigid docking, molecular dynamics simulations, and the linear interaction energy method to calculate binding free energies and derive relative binding energies for a number of EthR inhibitors in both modes. This strategy allowed us to correctly predict the most favorable orientation. Therefore, this widely applicable approach will be suitable to triage multiple binding modes within EthR and other potential drug targets with similar characteristics.
Collapse
Affiliation(s)
- Natalie
J. Tatum
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
| | - Fernanda Duarte
- Department
of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA, U.K.
| | - Shina C. L. Kamerlin
- Department
of Chemistry - BMC, Uppsala University, BMC Box 576, S-751 23 Uppsala, Sweden
| | - Ehmke Pohl
- Department
of Chemistry, Durham University, South Road, Durham DH1 3LE, U.K.
- Department
of Biosciences, Durham University, Durham DH1 3LE, U.K.
- Biophysical
Sciences Institute, Durham University, Durham DH1 3LE, U.K.
| |
Collapse
|
49
|
Discovery of a new class of MTH1 inhibitor by X-ray crystallographic screening. Eur J Med Chem 2019; 167:153-160. [DOI: 10.1016/j.ejmech.2019.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 02/04/2019] [Accepted: 02/04/2019] [Indexed: 11/19/2022]
|
50
|
Robson-Tull J. Biophysical screening in fragment-based drug design: a brief overview. ACTA ACUST UNITED AC 2019. [DOI: 10.1093/biohorizons/hzy015] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Jacob Robson-Tull
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| |
Collapse
|