1
|
Ebert MLA, Schmidt VF, Öcal O, von Thaden A, Dietrich O, Popper B, Elges S, Seidensticker M, Ricke J, Kimm MA, Jeibmann A, Wildgruber M. A minimally invasive animal model of atherosclerosis and neointimal hyperplasia for translational research. Eur Radiol Exp 2025; 9:14. [PMID: 39913036 PMCID: PMC11802948 DOI: 10.1186/s41747-025-00558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/20/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND A variety of animal models has been developed for research on atherosclerosis and neointimal hyperplasia. While small animal models contain limits for translational research, we aimed to develop an atherosclerosis model with lumen-narrowing plaques to foster basic research in vascular biology, the development of new angioplasty devices, and vessel wall imaging approaches. METHODS Endothelial denudation was performed via a minimally invasive approach through the auricular artery, followed by stent-retriever mediated endothelial injury in New Zealand White rabbits (n = 10). Along with a high-fat diet, the rabbits developed lumen-narrowing atherosclerosis and neointimal hyperplasia of the iliac arteries within a 6-week period after mechanical injury. The stent-retriever method was compared with a conventional rabbit model (n = 10) using balloon denudation via surgical access, and both models were analyzed with a particular focus on animal welfare. Fisher's exact, Mann-Whitney U, and unpaired t-tests were used. RESULTS The average time for the entire procedure was 62 min for the balloon group and 31 min for the stent-retriever group (p < 0.001). The stent-retriever model resulted in less periprocedural morbidity (including expenditure, intubation time, anesthetics, and end-tidal CO2 level) and mortality (40% mortality in the conventional group compared to 0% in the stent-retriever model, p = 0.011), while generating lumen-narrowing atherosclerotic lesions with key features as compared to humans as revealed by time-of-flight magnetic resonance imaging and histology. CONCLUSION We developed a minimally invasive model of iliac atherosclerosis with high reproducibility and improved animal welfare for translational research. RELEVANCE STATEMENT This advanced rabbit model could allow for translational research in atherosclerosis, including pharmacological investigations as well as research on interventional angioplasty procedures. KEY POINTS Rabbit models show similar lipid metabolism as humans. Stent-retriever mediated endothelial denudation causes neointimal hyperplasia and lumen narrowing. This minimal invasive model allows for clinical translation, including pharmacological investigations and vessel wall imaging.
Collapse
Affiliation(s)
- Max L A Ebert
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Vanessa F Schmidt
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Osman Öcal
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Olaf Dietrich
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Bastian Popper
- Biomedical Center, Core Facility Animal Models, Faculty of Medicine, Ludwig-Maximilians-Universität München, Großhaderner Straße 9, 82152, Planegg-Martinsried, Germany
| | - Sandra Elges
- Gerhard-Domagk-Institute of Pathology, Münster University Hospital, Münster, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Jens Ricke
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Melanie A Kimm
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany.
| | - Astrid Jeibmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
2
|
Dong Z, Zhao Y, Chen Y, Liu Z, Song H, Li H, Shi D, Zhou C, Zhou J, Liu R. Evaluating Atherosclerosis of the Abdominal Aorta in Rabbits Using 2-D Strain Imaging. ULTRASOUND IN MEDICINE & BIOLOGY 2022; 48:2199-2206. [PMID: 35953348 DOI: 10.1016/j.ultrasmedbio.2022.05.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 05/05/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
After establishment of an animal model of atherosclerosis, speckle tracking imaging was performed to analyze the correlation between ultrasound characteristics and pathological manifestations. Rabbits were divided into the normal control (NC) and atherosclerosis (AS) groups. Rabbits in the AS group were subjected to ultrasound-guided balloon injury of the abdominal aorta and fed a high-fat diet for 16 wk. Rabbits in the NC group were fed a normal diet for the same period. After 16 wk, all animals underwent serological tests, ultrasound and speckle tracking circumferential strain analysis. In the AS group, 28 hypo-echoic plaques had formed. The circumferential strain of six segments at the short axis of plaques in the AS group was lower than that in the NC group (p < 0.001), and global circumferential strain (GCS) in the AS group was significantly reduced compared with the NC group (p < 0.001). In the AS group, the area ratio of type I to type III collagen fibers was smaller than that in the NC group. The GCS of atherosclerotic plaques was positively correlated with the area ratio of type I to type III collagen fibers in plaques (r = 0.7181, p < 0.001). In conclusion, there is a significant positive correlation between the decreased circumferential strain and the decreased area ratio of type I to type III collagen fibers in hypo-echoic plaques.
Collapse
Affiliation(s)
- Zhizhi Dong
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; Central Laboratory, First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Yun Zhao
- Medical College of China Three Gorges University, Yichang, China
| | - Yue Chen
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; Central Laboratory, First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Zulin Liu
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Haiying Song
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Hao Li
- Department of Gastrointestinal Surgery, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Douzi Shi
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China; Central Laboratory, First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Chang Zhou
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Jun Zhou
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China
| | - Rong Liu
- Department of Ultrasound, First College of Clinical Medical Sciences, China Three Gorges University & Yichang Central People's Hospital, Yichang, China.
| |
Collapse
|
3
|
Vayssettes-Courchay C, Ragonnet C, Isabelle M, Bourguignon MP, Chimenti S. In vivo Evidence of Arterial Dynamic Properties Alteration in Atherosclerotic Rabbit. J Vasc Res 2022; 59:239-250. [PMID: 35439760 DOI: 10.1159/000523898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES Atherosclerosis severely damages the arterial wall. The aim of this study was to assess in vivo, for the first time, arterial dynamic properties, reactivity, and stiffness in atherosclerotic (ATH) rabbits. METHODS The rabbits were fed with 0.3% cholesterol diet. Femoral artery (FA) or abdominal aorta (AA) diameter was recorded by echotracking, together with blood pressure. Arterial reactivity after local administration of agents and stiffness were measured as diameter or pulsatile diameter changes. RESULTS FA dilation induced by acetylcholine was reduced in the function of diet duration (9-65 weeks). With mid-term diet duration (35-45 weeks), the dilation to nitroprusside was greatly reduced; the constriction to norepinephrine was reduced but not that to serotonin, thromboxane agonist, or angiotensin II. After 17- and 28-week diet AA and FA stiffness were increased while distensibility was reduced. Arterial stiffness measured by regional pulse wave velocity was unaltered. We observed that after 28-week diet, FA exhibited a stiffened wall at the plaque level and higher distensibility at the upstream site. DISCUSSION/CONCLUSION Arterial reactivity and compliance were greatly modified by atherosclerosis, at various degrees dependent on diet duration. ATH rabbit is therefore a suitable model for in vivo investigations of treatments targeting dynamic properties of arterial wall.
Collapse
|
4
|
Animal Models of Neointimal Hyperplasia and Restenosis: Species-Specific Differences and Implications for Translational Research. JACC Basic Transl Sci 2021; 6:900-917. [PMID: 34869956 PMCID: PMC8617545 DOI: 10.1016/j.jacbts.2021.06.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 12/29/2022]
Abstract
Neointimal hyperplasia is the major factor contributing to restenosis after angioplasty procedures. Multiple animal models exist to study basic and translational aspects of restenosis formation. Animal models differ substantially, and species-specific differences have major impact on the pathophysiology of the model. Genetic, dietary, and mechanical interventions determine the translational potential of the animal model used and have to be considered when choosing the model.
The process of restenosis is based on the interplay of various mechanical and biological processes triggered by angioplasty-induced vascular trauma. Early arterial recoil, negative vascular remodeling, and neointimal formation therefore limit the long-term patency of interventional recanalization procedures. The most serious of these processes is neointimal hyperplasia, which can be traced back to 4 main mechanisms: endothelial damage and activation; monocyte accumulation in the subintimal space; fibroblast migration; and the transformation of vascular smooth muscle cells. A wide variety of animal models exists to investigate the underlying pathophysiology. Although mouse models, with their ease of genetic manipulation, enable cell- and molecular-focused fundamental research, and rats provide the opportunity to use stent and balloon models with high throughput, both rodents lack a lipid metabolism comparable to humans. Rabbits instead build a bridge to close the gap between basic and clinical research due to their human-like lipid metabolism, as well as their size being accessible for clinical angioplasty procedures. Every different combination of animal, dietary, and injury model has various advantages and disadvantages, and the decision for a proper model requires awareness of species-specific biological properties reaching from vessel morphology to distinct cellular and molecular features.
Collapse
Key Words
- Apo, apolipoprotein
- CETP, cholesteryl ester transferase protein
- ECM, extracellular matrix
- FGF, fibroblast growth factor
- HDL, high-density lipoprotein
- LDL, low-density lipoprotein
- LDLr, LDL receptor
- PDGF, platelet-derived growth factor
- TGF, transforming growth factor
- VLDL, very low-density lipoprotein
- VSMC, vascular smooth muscle cell
- angioplasty
- animal model
- neointimal hyperplasia
- restenosis
Collapse
|
5
|
Martínez-Beamonte R, Sánchez-Marco J, Felices MJ, Barranquero C, Gascón S, Arnal C, Burillo JC, Lasheras R, Busto R, Lasunción MA, Rodríguez-Yoldi MJ, Osada J. Dietary squalene modifies plasma lipoproteins and hepatic cholesterol metabolism in rabbits. Food Funct 2021; 12:8141-8153. [PMID: 34291245 DOI: 10.1039/d0fo01836h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
To evaluate the effects of squalene, the main unsaponifiable component of virgin olive oil, on lipid metabolism, two groups of male New Zealand rabbits were fed a 1% sunflower oil-enriched regular diet or the same diet containing 0.5% squalene for 4 weeks. Plasma triglycerides, total- and HDL-cholesterol and their lipoproteins were assayed. Analyses of hepatic lipid droplets, triglycerides, total- and non-esterified cholesterol, squalene, protein and gene expression, and cholesterol precursors were carried out. In the jejunum, the squalene content and mRNA and protein APOB expressions were measured. Finally, we studied the effect of cholesterol precursors in AML12 cells. Squalene administration significantly increased plasma total cholesterol, mainly carried as non-esterified cholesterol in IDL and large LDL, and corresponded to an increased number of APOB100-containing particles without accumulation of triglycerides and decreased reactive oxygen species. Despite no significant changes in the APOB content in the jejunum, the latter displayed increased APOB mRNA and squalene levels. Increases in the amounts of non-esterified cholesterol, squalene, lanosterol, dihydrolanosterol, lathosterol, cholestanol, zymostenol, desmosterol and caspase 1 were also observed in the liver. Incubation of AML12 cells in the presence of lanosterol increased caspase 1. In conclusion, squalene administration in rabbits increases the number of modified APOB-containing lipoproteins, and hepatic cholesterol biosynthesis is linked to caspase 1 probably through lanosterol.
Collapse
Affiliation(s)
- Roberto Martínez-Beamonte
- CIBER de Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III, Spain.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zhao L, Zhang S, Su Q, Li S. Effects of withdrawing an atherogenic diet on the atherosclerotic plaque in rabbits. Exp Ther Med 2021; 22:751. [PMID: 34035848 PMCID: PMC8135140 DOI: 10.3892/etm.2021.10183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/11/2020] [Indexed: 02/05/2023] Open
Abstract
Lifestyle interventions and pharmacotherapy are the most common of non-invasive treatments for atherosclerosis, but the individual effect of diet on plaques remains unclear. The current study aimed to investigate the effect of withdrawing the atherogenic diet on plaque in the aortas of rabbits. Experimental atheroma was induced in 33 rabbits using a 1% high cholesterol diet for 30 days (H-30 d) or 90 days (H-90 d, baseline group). After 90 days of the atherogenic diet, the remaining animals were divided into four groups: A total of 10 rabbits continued to consume the atherogenic diet for 50 days (H-90 d & H-50 d; n=5) or 140 days (H-90 d & H-140 d; n=5). Another 13 rabbits were switched to a chow diet for 50 days (H-90 d & C-50 d; n=7) or 140 days (H-90 d & C-140 d; n=6). A total of 10 age-matched rabbits in the control groups were fed a chow diet for 90 and 230 days, respectively. The en face or cross-sectional plaque areas were determined using oil red O staining and elastic van Gieson staining. Immunohistochemistry analyses were used to assess the macrophages or smooth muscle cell contents. When fed an atherogenic diet for 90 days, the rabbits' abdominal aortas exhibited severe atherosclerotic lesions (the median en face plaque area was 63.6%). After withdrawing the atherogenic diet, the plaque area did not shrink with feeding the chow diet compared with the baseline, but increased to 71.8 or 80.5% after 50 or 140 days, respectively. After removing cholesterol from the diet, the lipids content in the plaques increased during the first 50 days, and then decreased compared with the baseline group. Furthermore, withdrawing the atherogenic diet increased the total collagen content and the percentage of the smooth muscle cells, alleviated macrophage infiltration, decreased the vulnerable index and promoted the cross-linking of collagen. Feeding the rabbits an atherogenic diet followed by removal of cholesterol from the diet did not lead to the regression of established lesions but instead delayed the progression of the lesions and promoted the stabilization of the plaque.
Collapse
Affiliation(s)
- Lijun Zhao
- Department of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shifang Zhang
- Department of Pulmonary Disease, Institute of Respiratory Disease, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| | - Qiaoli Su
- Department of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Shuangqing Li
- Department of General Practice, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
7
|
Poznyak AV, Silaeva YY, Orekhov AN, Deykin AV. Animal models of human atherosclerosis: current progress. ACTA ACUST UNITED AC 2020; 53:e9557. [PMID: 32428130 PMCID: PMC7266502 DOI: 10.1590/1414-431x20209557] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/20/2020] [Indexed: 12/24/2022]
Abstract
Atherosclerosis retains the leading position among the causes of global morbidity and mortality worldwide, especially in the industrialized countries. Despite the continuing efforts to investigate disease pathogenesis and find the potential points of effective therapeutic intervention, our understanding of atherosclerosis mechanisms remains limited. This is partly due to the multifactorial nature of the disease pathogenesis, when several factors so different as altered lipid metabolism, increased oxidative stress, and chronic inflammation act together leading to the formation and progression of atherosclerotic plaques. Adequate animal models are currently indispensable for studying these processes and searching for novel therapies. Animal models based on rodents, such as mice and rats, and rabbits represent important tools for studying atherosclerosis. Currently, genetically modified animals allow for previously unknown possibilities in modelling the disease and its most relevant aspects. In this review, we describe the recent progress made in creating such models and discuss the most important findings obtained with them to date.
Collapse
Affiliation(s)
- A V Poznyak
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Y Y Silaeva
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - A N Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - A V Deykin
- Core Facility Centre, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
8
|
Plasma Metabolic Signature of Atherosclerosis Progression and Colchicine Treatment in Rabbits. Sci Rep 2020; 10:7072. [PMID: 32341369 PMCID: PMC7184732 DOI: 10.1038/s41598-020-63306-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 01/02/2023] Open
Abstract
Balloon catheter endothelial denudation in New Zealand white rabbits fed high cholesterol diet is a validated atherosclerosis model. Well-characterized in terms of atherosclerosis induction and progression, the metabolic changes associated with the atherosclerosis progression remain indeterminate. Non-targeted metabolomics permits to develop such elucidation and allows to evaluate the metabolic consequences of colchicine treatment, an anti-inflammatory drug that could revert these changes. 16 rabbits underwent 18 weeks of atherosclerosis induction by diet and aortic denudation. Thereafter animals were randomly assigned to colchicine treatment or placebo for 18 weeks while on diet. Plasma samples were obtained before randomization and at 36 weeks. Multiplatform (GC/MS, CE/MS, RP-HPLC/MS) metabolomics was applied. Plasma fingerprints were pre-processed, and the resulting matrixes analyzed to unveil differentially expressed features. Different chemical annotation strategies were accomplished for those significant features. We found metabolites associated with either atherosclerosis progression, or colchicine treatment, or both. Atherosclerosis was profoundly associated with an increase in circulating bile acids. Most of the changes associated with sterol metabolism could not be reverted by colchicine treatment. However, the variations in lysine, tryptophan and cysteine metabolism among others, have shown new potential mechanisms of action of the drug, also related to atherosclerosis progression, but not previously described.
Collapse
|
9
|
Wu Y, Su SA, Xie Y, Shen J, Zhu W, Xiang M. Murine models of vascular endothelial injury: Techniques and pathophysiology. Thromb Res 2018; 169:64-72. [PMID: 30015230 DOI: 10.1016/j.thromres.2018.07.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 06/08/2018] [Accepted: 07/08/2018] [Indexed: 12/13/2022]
Abstract
Vascular endothelial injury (VEI) triggers pathological processes in various cardiovascular diseases, such as coronary heart disease and hypertension. To further elucidate the in vivo pathological mechanisms of VEI, many animal models have been established. For the easiness of genetic manipulation and feeding, murine models become most commonly applied for investigating VEI. Subsequently, countless valuable information concerning pathogenesis has been obtained and therapeutic strategies for VEI have been developed. This review will highlight some typical murine VEI models from the perspectives of pharmacological intervention, surgery and genetic manipulation. The techniques, pathophysiology, advantages, disadvantages and the experimental purpose of each model will also be discussed.
Collapse
Affiliation(s)
- Yue Wu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Sheng-An Su
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Yao Xie
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Jian Shen
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China
| | - Wei Zhu
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| | - Meixiang Xiang
- Cardiovascular Key Lab of Zhejiang Province, Department of Cardiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hang Zhou 310009, Zhejiang Province, China.
| |
Collapse
|
10
|
Wacker BK, Bi L, Dichek DA. In Vivo Gene Transfer to the Rabbit Common Carotid Artery Endothelium. J Vis Exp 2018. [PMID: 29782016 DOI: 10.3791/56982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The goal of this method is to introduce a transgene into the endothelium of isolated segments of both rabbit common carotid arteries. The method achieves focal endothelial-selective transgenesis, thereby allowing an investigator to determine the biological roles of endothelial-expressed transgenes and to quantify the in vivo transcriptional activity of DNA sequences in large artery endothelial cells. The method uses surgical isolation of rabbit common carotid arteries and an arteriotomy to deliver a transgene-expressing viral vector into the arterial lumen. A short incubation period of the vector in the lumen, with subsequent aspiration of the lumen contents, is sufficient to achieve efficient and durable expression of the transgene in the endothelium, with no detectable transduction or expression outside of the isolated arterial segment. The method allows assessment of the biological activities of transgene products both in normal arteries and in models of human vascular disease, while avoiding systemic effects that could be caused either by targeting gene delivery to other sites (e.g. the liver) or by the alternative approach of delivering genetic constructs to the endothelium by germ line transgenesis. Application of the method is limited by the need for a skilled surgeon and anesthetist, a well-equipped operating room, the costs of purchasing and housing rabbits, and the need for expertise in gene-transfer vector construction and use. Results obtained with this method include: transgene-related alterations in arterial structure, cellularity, extracellular matrix, or vasomotor function; increases or reductions in arterial inflammation; alterations in vascular cell apoptosis; and progression, retardation, or regression of diseases such as intimal hyperplasia or atherosclerosis. The method also allows measurement of the ability of native and synthetic DNA regulatory sequences to alter transgene expression in endothelial cells, providing results that include: levels of transgene mRNA, levels of transgene protein, and levels of transgene enzymatic activity.
Collapse
Affiliation(s)
| | - Lianxiang Bi
- Department of Medicine, University of Washington
| | | |
Collapse
|
11
|
Animal models of atherosclerosis. Eur J Pharmacol 2017; 816:3-13. [DOI: 10.1016/j.ejphar.2017.05.010] [Citation(s) in RCA: 296] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 04/07/2017] [Accepted: 05/04/2017] [Indexed: 12/31/2022]
|
12
|
Tao L, Nie Y, Wang G, Ding Y, Ding J, Xiong F, Tang S, Wang Y, Zhou B, Zhu H. All‑trans retinoic acid reduces endothelin‑1 expression and increases endothelial nitric oxide synthase phosphorylation in rabbits with atherosclerosis. Mol Med Rep 2017; 17:2619-2625. [PMID: 29207193 DOI: 10.3892/mmr.2017.8156] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 10/24/2017] [Indexed: 11/06/2022] Open
Abstract
All-trans retinoic acid (ATRA) is a natural derivative of vitamin A that ameliorates atherosclerosis (AS) by regulating inflammatory factors. However, studies concerning the role of retinoic acid in artery endothelial function are rare. Therefore, the present study investigated its role in regulating the production of endothelin‑1 (ET‑1) and nitric oxide (NO) in rabbits with AS. The rabbits were randomly divided into 3 groups: The control group was administered an ordinary diet, while the high fat group and the ATRA drug intervention group were administered a high fat diet. After 12 weeks, the blood lipid levels of rabbits, the morphological structure of the arterial wall, the arterial intimal permeability, the activity of blood endothelial nitric oxide synthase (eNOS) and the level of plasma NO were investigated. Western blot analysis was used to detect the levels of ET‑1, eNOS and eNOS phosphorylation at Ser‑1177 (p‑eNOS), and a radioimmunoassay was performed to detect the level of ET‑1 in the plasma. It was identified that plaque formation was alleviated in the ATRA group compared with the high fat group, as revealed by hematoxylin and eosin and oil red O staining, and a similar trend was reflected in the immunofluorescence results for endothelial permeability. Western blotting demonstrated significantly decreased ET‑1 expression levels in the arterial tissue of rabbits in the ATRA group compared with the high fat group, together with increased p‑eNOS level (P<0.05), however, no difference was observed in the expression of eNOS (P>0.05). The trends observed for ET‑1 and the activity of eNOS in plasma were similar to those for arterial tissue. Therefore, the present study demonstrated that ATRA may regulate the grade of AS by the reduction of ET‑1 secretion and increased NO formation via increased phosphorylation of eNOS. ATRA provides a potential novel method for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Linlin Tao
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Yumei Nie
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Ganxian Wang
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yanhui Ding
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Junli Ding
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Fangyuan Xiong
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Songtao Tang
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Yuan Wang
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| | - Birong Zhou
- Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, P.R. China
| | - Huaqing Zhu
- Laboratory of Molecular Biology, Anhui Medical University, Hefei, Anhui 230032, P.R. China
| |
Collapse
|
13
|
Beierfuß A, Dietrich H, Kremser C, Hunjadi M, Ritsch A, Rülicke T, Thomé C, Mern DS. Knockout of Apolipoprotein E in rabbit promotes premature intervertebral disc degeneration: A new in vivo model for therapeutic approaches of spinal disc disorders. PLoS One 2017; 12:e0187564. [PMID: 29099857 PMCID: PMC5669473 DOI: 10.1371/journal.pone.0187564] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2017] [Accepted: 10/23/2017] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration that accelerates the loss of disc structural and functional integrities is recognized as one of the major factors of chronic back pain. Cardiovascular risk factors, such as deficits of apolipoproteins that elevate the levels of cholesterol and triglycerides, are considered critical for the progress of atherosclerosis; notably in the abdominal aorta and its lumbar branching arteries that supply lumbar vertebrae and IVDs. Obstruction of the lumbar arteries by atherosclerosis is presumed to promote lumbar disc degeneration and low back pain. APOE-knockout rabbits have recently been shown to generate hyperlipidemia with increased levels of cholesterol and triglycerides that mimic the symptoms of atherosclerosis in humans. Here, we analysed IVD degeneration in the lumbar spines of ten homozygous APOE-knockout and four wild-type New Zealand White rabbits of matching age to prove accelerated IVD degeneration in APOE-knockout rabbits, since APOE-knockout rabbits could be a beneficial model for therapeutic approaches of degenerative IVD disorders. Experiments were performed using T1/T2-weighted magnetic resonance imaging, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, glucose-oxidase assay, enzyme-linked immunosorbent assay, quantitative reverse transcription PCR and western blot. APOE-knockout lumbar spines showed more advanced IVD degeneration, obstructed lumbar arteries and lower enhancement of contrast agent in IVDs. Moreover, lower concentration of glucose, lower number of viable cells and lower concentrations of aggrecan, collagen II and higher concentration of collagen I were detected in APOE-knockout IVDs (p < 0.0001). APOE-knockout in rabbits could induce structurally deteriorating premature IVD degeneration that mimics the symptoms of accelerated IVD degeneration in humans. APOE-knockout rabbits could be used as beneficial model, as they can bypass the standard surgical interventions that are commonly applied in research animals for the induction of enhanced IVD degeneration. Their parallel use in therapeutic approaches of IVD disorders and atherosclerosis could reduce the number of research animals to be used and contribute to the principles of 3Rs (Replacement, Reduction and Refinement).
Collapse
Affiliation(s)
- Anja Beierfuß
- Central Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Hermann Dietrich
- Central Laboratory Animal Facility, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Kremser
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Monika Hunjadi
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Ritsch
- Department of Internal Medicine I, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Rülicke
- Institute of Laboratory Animal Science, University of Veterinary Medicine Vienna, Veterinaerplatz 1, Vienna, Austria
| | - Claudius Thomé
- Department of Neurosurgery, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
14
|
Kaminiotis VV, Agrogiannis G, Konstantopoulos P, Androutsopoulou V, Korou LM, Vlachos IS, Dontas IA, Perrea D, Iliopoulos DC. Per os colchicine administration in cholesterol fed rabbits: Triglycerides lowering effects without affecting atherosclerosis progress. Lipids Health Dis 2017; 16:184. [PMID: 28950870 PMCID: PMC5615463 DOI: 10.1186/s12944-017-0573-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 09/20/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Atherosclerosis is a chronic inflammatory disease that is promoted, among others, by pro-inflammatory cytokines such as IL-1β and IL-18 produced by NLRP 3 inflammasome. Development of atherosclerotic lesions is also affected by leptin. Furthermore, inflammasome's action is interfered with other inflammatory diseases, like diabetes. On the other hand, colchicine is reported to act as anti-inflammatory agent inhibiting inflammasome's action and stabilizing atherosclerotic lesions. The purpose of this study is to investigate the effect of per os colchicine on the de novo formation of atherosclerotic lesions and on the levels of IL-18, leptin and insulin in cholesterol-fed rabbits. METHODS Twenty-three male, 2 months old New Zealand White rabbits, were seperated in 3 groups and were fed with different types of diet for 7 weeks: standard, cholesterol 1% w/w and cholesterol 1% w/w plus colchicine 2 mg/kg body weight. Blood was collected for biochemical measurements and conduction of ELISA for leptin, IL-18 and insulin. Histologic examination of stained with eosin and hematoxylin aorta specimens was performed. Aortic intimal thickness was evaluated using image analysis. The statistical analysis included non-parametric tests: a) paired-sample Wilcoxon test, b) Spearman correlation coefficient and c) Kruscal-Wallis test. RESULTS Triglerycide levels were decreased in cholesterol plus colchicine group in the end of the experiment (p < 0.05), whereas the cholesterol group had increased levels. No statistical differences were observed in the levels of IL-18, leptin and insulin between groups. Likewise, there was neither any correlation between IL-18, leptin and intima thickness nor between IL-18 and glucose and between leptin and weight. In cholesterol and colchicine group there was a strong positive correlation between IL-18 and insulin levels in the 4th week (r s = .66, n = 10, p < 0.05), whereas in the 7th week this correlation became strong negative (r s = -.86, n = 10, p < 0.05). Finally, intima thickness in the ascending and thoracic aorta of the cholesterol and colchicine group was significantly greater than that of the other groups (p < 0.05). CONCLUSIONS Per os administration of colchicine did not influence atherosclerosis progression in cholesterol-fed rabbits, levels of IL-18, insulin and leptin. We encountered the attenuating role of colchicine on TG levels.
Collapse
Affiliation(s)
- Vaios Vasileios Kaminiotis
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 15B, Goudi, 115 27 Athens, Greece
| | - George Agrogiannis
- First Department of Pathology, National and Kapodistrian University of Athens School of Medicine, Agiou Thoma 17, Goudi, 115 27 Athens, Greece
| | - Panagiotis Konstantopoulos
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 15B, Goudi, 115 27 Athens, Greece
| | - Vasiliki Androutsopoulou
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 15B, Goudi, 115 27 Athens, Greece
| | - Laskarina Maria Korou
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 15B, Goudi, 115 27 Athens, Greece
| | - Ioannis S. Vlachos
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 15B, Goudi, 115 27 Athens, Greece
| | - Ismene A. Dontas
- Laboratory for Research of the Musculoskeletal System “Th. Garofalides”, School of Medicine, National and Kapodistrian University of Athens School of Medicine, Nikis 2, Kifissia, 145 61 Athens, Greece
| | - Despina Perrea
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 15B, Goudi, 115 27 Athens, Greece
| | - Dimitrios C. Iliopoulos
- Laboratory for Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, Agiou Thoma 15B, Goudi, 115 27 Athens, Greece
| |
Collapse
|
15
|
de Brito FCF. Inhibition of inflammatory pathways promotes an improving effect on endothelial dysfunction: The effects of Longxuetongluo capsule in an experimental model of atherosclerosis. Atherosclerosis 2016; 255:111-112. [DOI: 10.1016/j.atherosclerosis.2016.10.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 10/21/2016] [Indexed: 12/19/2022]
|
16
|
Gaspar D, Zeugolis DI. Engineering in vitro complex pathophysiologies for drug discovery purposes. Drug Discov Today 2016; 21:1341-1344. [DOI: 10.1016/j.drudis.2016.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Odening KE, Kohl P. Follow the white rabbit. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:75-6. [DOI: 10.1016/j.pbiomolbio.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
18
|
Teh I, Burton RAB, McClymont D, Capel RA, Aston D, Kohl P, Schneider JE. Mapping cardiac microstructure of rabbit heart in different mechanical states by high resolution diffusion tensor imaging: A proof-of-principle study. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:85-96. [PMID: 27320383 PMCID: PMC4959513 DOI: 10.1016/j.pbiomolbio.2016.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/13/2016] [Indexed: 01/27/2023]
Abstract
Myocardial microstructure and its macroscopic materialisation are fundamental to the function of the heart. Despite this importance, characterisation of cellular features at the organ level remains challenging, and a unifying description of the structure of the heart is still outstanding. Here, we optimised diffusion tensor imaging data to acquire high quality data in ex vivo rabbit hearts in slack and contractured states, approximating diastolic and systolic conditions. The data were analysed with a suite of methods that focused on different aspects of the myocardium. In the slack heart, we observed a similar transmural gradient in helix angle of the primary eigenvector of up to 23.6°/mm in the left ventricle and 24.2°/mm in the right ventricle. In the contractured heart, the same transmural gradient remained largely linear, but was offset by up to +49.9° in the left ventricle. In the right ventricle, there was an increase in the transmural gradient to 31.2°/mm and an offset of up to +39.0°. The application of tractography based on each eigenvector enabled visualisation of streamlines that depict cardiomyocyte and sheetlet organisation over large distances. We observed multiple V- and N-shaped sheetlet arrangements throughout the myocardium, and insertion of sheetlets at the intersection of the left and right ventricle. This study integrates several complementary techniques to visualise and quantify the heart's microstructure, projecting parameter representations across different length scales. This represents a step towards a more comprehensive characterisation of myocardial microstructure at the whole organ level.
Collapse
Affiliation(s)
- Irvin Teh
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca A B Burton
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Darryl McClymont
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rebecca A Capel
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Daniel Aston
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Peter Kohl
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; Institute for Experimental Cardiovascular Medicine, University Heart Centre Freiburg - Bad Krozingen, Medical School of the University of Freiburg, Germany
| | - Jürgen E Schneider
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
19
|
Lang CN, Koren G, Odening KE. Transgenic rabbit models to investigate the cardiac ion channel disease long QT syndrome. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 121:142-56. [PMID: 27210307 DOI: 10.1016/j.pbiomolbio.2016.05.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 05/01/2016] [Indexed: 12/13/2022]
Abstract
Long QT syndrome (LQTS) is a rare inherited channelopathy caused mainly by different mutations in genes encoding for cardiac K(+) or Na(+) channels, but can also be caused by commonly used ion-channel-blocking and QT-prolonging drugs, thus affecting a much larger population. To develop novel diagnostic and therapeutic strategies to improve the clinical management of these patients, a thorough understanding of the pathophysiological mechanisms of arrhythmogenesis and potential pharmacological targets is needed. Drug-induced and genetic animal models of various species have been generated and have been instrumental for identifying pro-arrhythmic triggers and important characteristics of the arrhythmogenic substrate in LQTS. However, due to species differences in features of cardiac electrical function, these different models do not entirely recapitulate all aspects of the human disease. In this review, we summarize advantages and shortcomings of different drug-induced and genetically mediated LQTS animal models - focusing on mouse and rabbit models since these represent the most commonly used small animal models for LQTS that can be subjected to genetic manipulation. In particular, we highlight the different aspects of arrhythmogenic mechanisms, pro-arrhythmic triggering factors, anti-arrhythmic agents, and electro-mechanical dysfunction investigated in transgenic LQTS rabbit models and their translational application for the clinical management of LQTS patients in detail. Transgenic LQTS rabbits have been instrumental to increase our understanding of the role of spatial and temporal dispersion of repolarization to provide an arrhythmogenic substrate, genotype-differences in the mechanisms for early afterdepolarization formation and arrhythmia maintenance, mechanisms of hormonal modification of arrhythmogenesis and regional heterogeneities in electro-mechanical dysfunction in LQTS.
Collapse
Affiliation(s)
- C N Lang
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany
| | - G Koren
- Cardiovascular Research Center, Division of Cardiology, Rhode Island Hospital, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - K E Odening
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Medical Center - University of Freiburg, Germany; Faculty of Medicine, University of Freiburg, Germany.
| |
Collapse
|