1
|
Kuhlmann L, Stritzelberger J, Fietkau R, Distel LV, Hamer HM. Radiosensitivity in individuals with tuberous sclerosis complex. Discov Oncol 2024; 15:525. [PMID: 39367202 PMCID: PMC11452609 DOI: 10.1007/s12672-024-01395-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/24/2024] [Indexed: 10/06/2024] Open
Abstract
Benign tumors, but rarely cancer, are common in patients with tuberous sclerosis complex (TSC). Blood samples from patients undergoing treatment for TSC at our institution were analyzed for their individual sensitivity to ionizing radiation. Blood samples were collected from 13 adult patients with TSC. The samples were irradiated ex vivo and analyzed by 3-color fluorescence in situ hybridization. In each patient, aberrations were analyzed in 200 metaphases of chromosomes 1, 2, and 4 and scored as breaks. Radiosensitivity was determined by mean breaks per metaphase (B/M) and compared to both healthy donors and oncologic patients. The radiosensitivity (B/M) of the TSC patient cohort (n = 13; female: 46.2%, B/M: 0.48 ± 0.11) was clearly increased compared to healthy individuals of similar age (n = 90; female: 54.4%; B/M: 0.40 ± 0.09; p = 0.001). There was no difference compared to age-matched oncological patients (n = 78; female: 67.9%; B/M 0.49 ± 0.14; p = 0.246). Similarly, the proportion of radiosensitive (B/M > 0.5) and distinctly radiosensitive individuals (B/M > 0.6) was increased in the TSC and oncological patient cohorts (TSC: 30.8% and 7.7%, oncological patients: 46.2% and 14.1%) compared to the healthy individuals (11.1% and 2.2%). Although patients with TSC develop mostly benign and rarely malignant tumors, they are similarly sensitive to radiation as patients with malignant tumors.
Collapse
Affiliation(s)
- Lukas Kuhlmann
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Jenny Stritzelberger
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany
| | - Luitpold V Distel
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 27, 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN, 91054, Erlangen, Germany.
| | - Hajo M Hamer
- ERN EpiCARE, Epilepsy Center, Department of Neurology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
2
|
Martin P, Szkop KJ, Robert F, Bhattacharyya S, Beauchamp RL, Brenner J, Redmond NE, Huang S, Erdin S, Larsson O, Ramesh V. TSC2 loss in neural progenitor cells suppresses translation of ASD/NDD-associated transcripts in an mTORC1- and MNK1/2-reversible fashion. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597393. [PMID: 38895292 PMCID: PMC11185676 DOI: 10.1101/2024.06.04.597393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Tuberous sclerosis complex (TSC) is an inherited neurodevelopmental disorder (NDD) with frequent manifestations of epilepsy and autism spectrum disorder (ASD). TSC is caused by inactivating mutations in TSC1 or TSC2 tumor suppressor genes, with encoded proteins hamartin (TSC1) and tuberin (TSC2) forming a functional complex inhibiting mechanistic target of rapamycin complex 1 (mTORC1) signaling. This has led to treatment with allosteric mTORC1 inhibitor rapamycin analogs ("rapalogs") for TSC tumors; however, rapalogs are ineffective for treating neurodevelopmental manifestations. mTORC1 signaling controls protein synthesis by regulating formation of the eIF4F complex, with further modulation by MNK1/2 kinases via phosphorylation of the eIF4F subunit eIF4E. While both these pathways modulate translation, comparing their impact on transcriptome-wide mRNA translation, as well as effects of inhibiting these pathways in TSC has not been explored. Here, employing CRISPR-modified, isogenic TSC2 patient-derived neural progenitor cells (NPCs), we have examined transcriptome-wide changes in mRNA translation upon TSC2 loss. Our results reveal dysregulated translation in TSC2 -Null NPCs, which significantly overlaps with the translatome from TSC1 -Null NPCs. Interestingly, numerous non-monogenic ASD-, NDD-and epilepsy-associated genes identified in patients harboring putative loss-of-function mutations, were translationally suppressed in TSC2 -Null NPCs. Importantly, translation of these ASD- and NDD-associated genes was reversed upon inhibition of either mTORC1 or MNK1/2 signaling using RMC-6272 or eFT-508, respectively. This study establishes the importance of mTORC1-eIF4F- and MNK-eIF4E-sensitive mRNA translation in TSC, ASD and other neurodevelopmental disorders laying the groundwork for evaluating drugs in clinical development that target these pathways as a treatment strategy for these disorders.
Collapse
|
3
|
Roberds SL, Fuchs Z, Cassidy EM, Metzger S, Abi A, Pounders AJ, Aguiar DJ. The role of the TSC Alliance in advancing therapy development: a patient organization perspective. THERAPEUTIC ADVANCES IN RARE DISEASE 2024; 5:26330040241265411. [PMID: 39070094 PMCID: PMC11273576 DOI: 10.1177/26330040241265411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024]
Abstract
Tuberous sclerosis complex (TSC) is a genetic disease leading to malformations, or tubers, in the cerebral cortex and growth of tumors, most frequently in the brain, heart, kidneys, skin, and lungs. Changes in the brain caused by TSC usually have the biggest negative impact on quality of life. Approximately 85% of individuals with TSC have epilepsy, and TSC-associated neuropsychiatric disorders (TAND) affect nearly all individuals with TSC in some way. TSC Alliance's research strategy is built upon both funding and catalyzing research. Through grants, the organization provides funding directly to researchers through a competitive application process. The organization has also built a set of resources available to researchers worldwide, including a Natural History Database, Biosample Repository, and Preclinical Consortium. These resources catalyze research because they are available to qualified academic or industry researchers around the world, enabling an almost unlimited number of scientists to access data and resources to enable and accelerate research on TSC. This research strategy continues to be shaped by the needs and priorities of the TSC community, working toward a future where everyone affected by TSC can live their fullest lives.
Collapse
Affiliation(s)
| | - Zoë Fuchs
- TSC Alliance, Silver Spring, MD, USA
| | | | | | - Ayat Abi
- TSC Alliance, Silver Spring, MD, USA
| | | | | |
Collapse
|
4
|
Aksoylu IS, Martin P, Robert F, Szkop KJ, Redmond NE, Bhattacharyya S, Wang J, Chen S, Beauchamp RL, Nobeli I, Pelletier J, Larsson O, Ramesh V. Translatome analysis of tuberous sclerosis complex 1 patient-derived neural progenitor cells reveals rapamycin-dependent and independent alterations. Mol Autism 2023; 14:39. [PMID: 37880800 PMCID: PMC10601155 DOI: 10.1186/s13229-023-00572-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/13/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is an inherited neurocutaneous disorder caused by mutations in the TSC1 or TSC2 genes, with patients often exhibiting neurodevelopmental (ND) manifestations termed TSC-associated neuropsychiatric disorders (TAND) including autism spectrum disorder (ASD) and intellectual disability. Hamartin (TSC1) and tuberin (TSC2) proteins form a complex inhibiting mechanistic target of rapamycin complex 1 (mTORC1) signaling. Loss of TSC1 or TSC2 activates mTORC1 that, among several targets, controls protein synthesis by inhibiting translational repressor eIF4E-binding proteins. Using TSC1 patient-derived neural progenitor cells (NPCs), we recently reported early ND phenotypic changes, including increased cell proliferation and altered neurite outgrowth in TSC1-null NPCs, which were unaffected by the mTORC1 inhibitor rapamycin. METHODS Here, we used polysome profiling, which quantifies changes in mRNA abundance and translational efficiencies at a transcriptome-wide level, to compare CRISPR-edited TSC1-null with CRISPR-corrected TSC1-WT NPCs generated from one TSC donor (one clone/genotype). To assess the relevance of identified gene expression alterations, we performed polysome profiling in postmortem brains from ASD donors and age-matched controls. We further compared effects on translation of a subset of transcripts and rescue of early ND phenotypes in NPCs following inhibition of mTORC1 using the allosteric inhibitor rapamycin versus a third-generation bi-steric, mTORC1-selective inhibitor RMC-6272. RESULTS Polysome profiling of NPCs revealed numerous TSC1-associated alterations in mRNA translation that were largely recapitulated in human ASD brains. Moreover, although rapamycin treatment partially reversed the TSC1-associated alterations in mRNA translation, most genes related to neural activity/synaptic regulation or ASD were rapamycin-insensitive. In contrast, treatment with RMC-6272 inhibited rapamycin-insensitive translation and reversed TSC1-associated early ND phenotypes including proliferation and neurite outgrowth that were unaffected by rapamycin. CONCLUSIONS Our work reveals ample mRNA translation alterations in TSC1 patient-derived NPCs that recapitulate mRNA translation in ASD brain samples. Further, suppression of TSC1-associated but rapamycin-insensitive translation and ND phenotypes by RMC-6272 unveils potential implications for more efficient targeting of mTORC1 as a superior treatment strategy for TAND.
Collapse
Affiliation(s)
- Inci S Aksoylu
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Pauline Martin
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Francis Robert
- Department of Biochemistry and Goodman Cancer Research Institute, McGill University, Montreal, PQ, H3G1Y6, Canada
| | - Krzysztof J Szkop
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Nicholas E Redmond
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Srirupa Bhattacharyya
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Jennifer Wang
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Shan Chen
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 77, Stockholm, Sweden
| | - Roberta L Beauchamp
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA
| | - Irene Nobeli
- Institute of Structural and Molecular Biology, Department of Biological Sciences,, Birkbeck, University of London, London, WC1E 7HX, UK
| | - Jerry Pelletier
- Department of Biochemistry and Goodman Cancer Research Institute, McGill University, Montreal, PQ, H3G1Y6, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, 171 77, Stockholm, Sweden.
| | - Vijaya Ramesh
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA, 02114, USA.
| |
Collapse
|
5
|
Aksoylu IS, Martin P, Robert F, Szkop KJ, Redmond NE, Chen S, Beauchamp RL, Nobeli I, Pelletier J, Larsson O, Ramesh V. Translatome analysis of Tuberous Sclerosis Complex-1 patient-derived neural progenitor cells reveal rapamycin-dependent and independent alterations. RESEARCH SQUARE 2023:rs.3.rs-2702044. [PMID: 37034588 PMCID: PMC10081384 DOI: 10.21203/rs.3.rs-2702044/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Tuberous sclerosis complex (TSC) is an inherited neurocutaneous disorder caused by mutations in TSC1 or TSC2 genes, with patients often exhibiting neurodevelopmental (ND) manifestations termed TSC-associated neuropsychiatric disorders (TAND) including autism spectrum disorder (ASD). The hamartin-tuberin (TSC1-TSC2) protein complex inactivates mechanistic target of rapamycin complex 1 (mTORC1) signaling, leading to increased protein synthesis via inactivation of translational repressor eIF4E-binding proteins (4E-BPs). In TSC1-null neural progenitor cells (NPCs), we previously reported early ND phenotypic changes, including increased proliferation/altered neurite outgrowth, which were unaffected by mTORC1-inhibitor rapamycin. Here, using polysome-profiling to quantify translational efficiencies at a transcriptome-wide level, we observed numerous TSC1-dependent alterations in NPCs, largely recapitulated in post-mortem brains from ASD donors. Although rapamycin partially reversed TSC1-associated alterations, most neural activity/synaptic- or ASD-related genes remained insensitive but were inhibited by third-generation bi-steric, mTORC1-selective inhibitor RMC-6272, which also reversed altered ND phenotypes. Together these data reveal potential implications for treatment of TAND.
Collapse
Affiliation(s)
- Inci S. Aksoylu
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- These authors contributed equally to this work
| | - Pauline Martin
- Ctr. for Genomic Med., Department of Neurology, Massachusetts Gen. Hosp., Boston, MA
- These authors contributed equally to this work
| | - Francis Robert
- Department of Biochem. and Goodman Cancer Res. Ctr., McGill Univ., Montreal, QC, Canada
- These authors contributed equally to this work
| | - Krzysztof J. Szkop
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
- These authors contributed equally to this work
| | - Nicholas E. Redmond
- Ctr. for Genomic Med., Department of Neurology, Massachusetts Gen. Hosp., Boston, MA
| | - Shan Chen
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Roberta L. Beauchamp
- Ctr. for Genomic Med., Department of Neurology, Massachusetts Gen. Hosp., Boston, MA
| | - Irene Nobeli
- Department of Biol. Sciences, Inst. of Structural and Mol. Biology, Birkbeck, Univ. of London, London, United Kingdom
| | - Jerry Pelletier
- Department of Biochem. and Goodman Cancer Res. Ctr., McGill Univ., Montreal, QC, Canada
| | - Ola Larsson
- Department of Oncology-Pathology, Science for Life Laboratory, Karolinska Institute, Stockholm, Sweden
| | - Vijaya Ramesh
- Ctr. for Genomic Med., Department of Neurology, Massachusetts Gen. Hosp., Boston, MA
| |
Collapse
|
6
|
Fan K, Guo Y, Song Z, Yuan L, Zheng W, Hu X, Gong L, Deng H. The TSC2 c.2742+5G>A variant causes variable splicing changes and clinical manifestations in a family with tuberous sclerosis complex. Front Mol Neurosci 2023; 16:1091323. [PMID: 37152430 PMCID: PMC10157042 DOI: 10.3389/fnmol.2023.1091323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 03/16/2023] [Indexed: 05/09/2023] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a genetic, variably expressed, multisystem disease characterized by benign tumors. It is caused by pathogenic variants of the TSC complex subunit 1 gene (TSC1) and the TSC complex subunit 2 gene (TSC2). Genetic testing allows for early diagnosis, genetic counseling, and improved outcomes, but it did not identify a pathogenic variant in up to 25% of all TSC patients. This study aimed to identify the disease-causing variant in a Han-Chinese family with TSC. Methods A six-member, three-generation Han-Chinese family with TSC and three unrelated healthy women were recruited. A comprehensive medical examination, a 3-year follow-up, whole exome sequencing, Sanger sequencing, and segregation analysis were performed in the family. The splicing analysis results obtained from six in silico tools, minigene assay, and patients' lymphocyte messenger RNA were compared, and quantitative reverse transcription PCR was used to confirm the pathogenicity of the variant. Results Two affected family members had variable clinical manifestations including a rare bilateral cerebellar ataxia symptom. The 3-year follow-up results suggest the effects of a combined treatment of anti-epilepsy drugs and sirolimus for TSC-related epilepsy and cognitive deficits. Whole exome sequencing, Sanger sequencing, segregation analysis, splicing analysis, and quantitative reverse transcription PCR identified the TSC2 gene c.2742+5G>A variant as the genetic cause. This variant inactivated the donor splice site, a cryptic non-canonical splice site was used for different splicing changes in two affected subjects, and the resulting mutant messenger RNA may be degraded by nonsense-mediated decay. The defects of in silico tools and minigene assay in predicting cryptic splice sites were suggested. Conclusions This study identified a TSC2 c.2742+5G>A variant as the genetic cause of a Han-Chinese family with TSC and first confirmed its pathogenicity. These findings expand the phenotypic and genetic spectrum of TSC and may contribute to its diagnosis and treatment, as well as a better understanding of the splicing mechanism.
Collapse
Affiliation(s)
- Kuan Fan
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yi Guo
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Zhi Song
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Lamei Yuan
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wen Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Xiao Hu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lina Gong
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Hao Deng
- Department of Health Management, The Third Xiangya Hospital, Central South University, Changsha, China
- Center for Experimental Medicine, The Third Xiangya Hospital, Central South University, Changsha, China
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hao Deng
| |
Collapse
|
7
|
El Nachef L, Berthel E, Ferlazzo ML, Le Reun E, Al-Choboq J, Restier-Verlet J, Granzotto A, Sonzogni L, Bourguignon M, Foray N. Cancer and Radiosensitivity Syndromes: Is Impaired Nuclear ATM Kinase Activity the Primum Movens? Cancers (Basel) 2022; 14:cancers14246141. [PMID: 36551628 PMCID: PMC9776478 DOI: 10.3390/cancers14246141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
There are a number of genetic syndromes associated with both high cancer risk and clinical radiosensitivity. However, the link between these two notions remains unknown. Particularly, some cancer syndromes are caused by mutations in genes involved in DNA damage signaling and repair. How are the DNA sequence errors propagated and amplified to cause cell transformation? Conversely, some cancer syndromes are caused by mutations in genes involved in cell cycle checkpoint control. How is misrepaired DNA damage produced? Lastly, certain genes, considered as tumor suppressors, are not involved in DNA damage signaling and repair or in cell cycle checkpoint control. The mechanistic model based on radiation-induced nucleoshuttling of the ATM kinase (RIANS), a major actor of the response to ionizing radiation, may help in providing a unified explanation of the link between cancer proneness and radiosensitivity. In the frame of this model, a given protein may ensure its own specific function but may also play additional biological role(s) as an ATM phosphorylation substrate in cytoplasm. It appears that the mutated proteins that cause the major cancer and radiosensitivity syndromes are all ATM phosphorylation substrates, and they generally localize in the cytoplasm when mutated. The relevance of the RIANS model is discussed by considering different categories of the cancer syndromes.
Collapse
Affiliation(s)
- Laura El Nachef
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Elise Berthel
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Mélanie L. Ferlazzo
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Eymeric Le Reun
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Joelle Al-Choboq
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Juliette Restier-Verlet
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Adeline Granzotto
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Laurène Sonzogni
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
| | - Michel Bourguignon
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Department of Biophysics and Nuclear Medicine, Université Paris Saclay (UVSQ), 78035 Versailles, France
| | - Nicolas Foray
- Inserm, U1296 Unit, Radiation: Defense, Health and Environment, Centre Léon-Bérard, 69008 Lyon, France
- Correspondence: ; Tel.: +33-04-7878-2828
| |
Collapse
|
8
|
Wu X, Sosunov AA, Lado W, Teoh JJ, Ham A, Li H, Al-Dalahmah O, Gill BJA, Arancio O, Schevon CA, Frankel WN, McKhann GM, Sulzer D, Goldman JE, Tang G. Synaptic hyperexcitability of cytomegalic pyramidal neurons contributes to epileptogenesis in tuberous sclerosis complex. Cell Rep 2022; 40:111085. [PMID: 35858542 PMCID: PMC9376014 DOI: 10.1016/j.celrep.2022.111085] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 02/15/2022] [Accepted: 06/22/2022] [Indexed: 11/27/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a developmental disorder associated with epilepsy, autism, and cognitive impairment. Despite inactivating mutations in the TSC1 or TSC2 genes and hyperactive mechanistic target of rapamycin (mTOR) signaling, the mechanisms underlying TSC-associated neurological symptoms remain incompletely understood. Here we generate a Tsc1 conditional knockout (CKO) mouse model in which Tsc1 inactivation in late embryonic radial glia causes social and cognitive impairment and spontaneous seizures. Tsc1 depletion occurs in a subset of layer 2/3 cortical pyramidal neurons, leading to development of cytomegalic pyramidal neurons (CPNs) that mimic dysplastic neurons in human TSC, featuring abnormal dendritic and axonal overgrowth, enhanced glutamatergic synaptic transmission, and increased susceptibility to seizure-like activities. We provide evidence that enhanced synaptic excitation in CPNs contributes to cortical hyperexcitability and epileptogenesis. In contrast, astrocytic regulation of synapse formation and synaptic transmission remains unchanged after late embryonic radial glial Tsc1 inactivation, and astrogliosis evolves secondary to seizures. Wu et al. demonstrate that Tsc1 inactivation in late embryonic radial glial cells (RGCs) produces cytomegalic pyramidal neurons that mimic TSC-like dysplastic neurons. They find that enhanced excitatory synaptic transmission in Tsc1-null cytomegalic pyramidal neurons contributes to cortical hyperexcitability and epileptogenesis.
Collapse
Affiliation(s)
- Xiaoping Wu
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Alexander A Sosunov
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wudu Lado
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jia Jie Teoh
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ahrom Ham
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hongyu Li
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Osama Al-Dalahmah
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Brian J A Gill
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Ottavio Arancio
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wayne N Frankel
- Institute for Genomic Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guy M McKhann
- Department of Neurological Surgery, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; The Taub Institute, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Guomei Tang
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
9
|
Vanclooster S, Bissell S, van Eeghen AM, Chambers N, De Waele L, Byars AW, Capal JK, Cukier S, Davis P, Flinn J, Gardner-Lubbe S, Gipson T, Heunis TM, Hook D, Kingswood JC, Krueger DA, Kumm AJ, Sahin M, Schoeters E, Smith C, Srivastava S, Takei M, Waltereit R, Jansen AC, de Vries PJ. The research landscape of tuberous sclerosis complex-associated neuropsychiatric disorders (TAND)-a comprehensive scoping review. J Neurodev Disord 2022; 14:13. [PMID: 35151277 PMCID: PMC8853020 DOI: 10.1186/s11689-022-09423-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC)-associated neuropsychiatric disorders (TAND) is an umbrella term for the behavioural, psychiatric, intellectual, academic, neuropsychological and psychosocial manifestations of TSC. Although TAND affects 90% of individuals with TSC during their lifetime, these manifestations are relatively under-assessed, under-treated and under-researched. We performed a comprehensive scoping review of all TAND research to date (a) to describe the existing TAND research landscape and (b) to identify knowledge gaps to guide future TAND research. METHODS The study was conducted in accordance with stages outlined within the Arksey and O'Malley scoping review framework. Ten research questions relating to study characteristics, research design and research content of TAND levels and clusters were examined. RESULTS Of the 2841 returned searches, 230 articles published between 1987 and 2020 were included (animal studies = 30, case studies = 47, cohort studies = 153), with more than half published since the term TAND was coined in 2012 (118/230; 51%). Cohort studies largely involved children and/or adolescents (63%) as opposed to older adults (16%). Studies were represented across 341 individual research sites from 45 countries, the majority from the USA (89/341; 26%) and the UK (50/341; 15%). Only 48 research sites (14%) were within low-middle income countries (LMICs). Animal studies and case studies were of relatively high/high quality, but cohort studies showed significant variability. Of the 153 cohort studies, only 16 (10%) included interventions. None of these were non-pharmacological, and only 13 employed remote methodologies (e.g. telephone interviews, online surveys). Of all TAND clusters, the autism spectrum disorder-like cluster was the most widely researched (138/230; 60%) and the scholastic cluster the least (53/200; 27%). CONCLUSIONS Despite the recent increase in TAND research, studies that represent participants across the lifespan, LMIC research sites and non-pharmacological interventions were identified as future priorities. The quality of cohort studies requires improvement, to which the use of standardised direct behavioural assessments may contribute. In human studies, the academic level in particular warrants further investigation. Remote technologies could help to address many of the TAND knowledge gaps identified.
Collapse
Affiliation(s)
- Stephanie Vanclooster
- Department of Public Health, Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Stacey Bissell
- Cerebra Network for Neurodevelopmental Disorders, University of Birmingham, Birmingham, UK
| | - Agnies M. van Eeghen
- Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
- TAND Expert Centre, ‘s Heeren Loo, Hoofddorp, The Netherlands
| | - Nola Chambers
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
| | - Liesbeth De Waele
- Department of Paediatric Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Anna W. Byars
- Department of Pediatrics, Division of Neurology, Cincinnati Children’s Hospital Medical Center/University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Jamie K. Capal
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Sebastián Cukier
- Argentine Program for Children, Adolescents and Adults with Autism Spectrum Disorders (PANAACEA), Buenos Aires, Argentina
| | - Peter Davis
- Department of Neurology, Harvard Medical School & Boston Children’s Hospital, Boston, MA USA
| | | | | | - Tanjala Gipson
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN USA
- Le Bonheur Children’s Hospital and Boling Center for Developmental Disabilities, Memphis, TN USA
| | - Tosca-Marie Heunis
- Department of Public Health, Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Darcy A. Krueger
- TSC Clinic Cincinnati Children’s Hospital Medical Center, Cincinnati, OH USA
- Department of Pediatrics, Clinical Pediatrics and Neurology, University of Cincinnati College of Medicine, Cincinnati, OH USA
| | - Aubrey J. Kumm
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
| | - Mustafa Sahin
- Department of Neurology, Translational Neuroscience Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA USA
| | | | | | - Shoba Srivastava
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
- Tuberous Sclerosis Alliance India, Mumbai, India
| | - Megumi Takei
- Japanese Society of Tuberous Sclerosis Complex, Tokyo, Japan
| | - Robert Waltereit
- Child and Adolescent Psychiatry, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Anna C. Jansen
- Department of Public Health, Mental Health and Wellbeing Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Department of Pediatrics, Pediatric Neurology Unit, Antwerp University Hospital, Edegem, Belgium
| | - Petrus J. de Vries
- Division of Child & Adolescent Psychiatry, Centre for Autism Research in Africa (CARA), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
10
|
Aziria A, Chapron T, Martin G, Krystal S, Clement A, Caputo G. Tuberous sclerosis: Diagnosis on ocular fundus examination. J Fr Ophtalmol 2021; 44:e399-e402. [PMID: 33962820 DOI: 10.1016/j.jfo.2020.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 11/20/2022]
Affiliation(s)
- A Aziria
- Service d'ophtalmo-pédiatrie, fondation Adolphe-de-Rothschild, 29, rue Manin, 75019 Paris, France
| | - T Chapron
- Service d'ophtalmo-pédiatrie, fondation Adolphe-de-Rothschild, 29, rue Manin, 75019 Paris, France; University of Paris, Epidemiology and Statistics Research Center/CRESS, INSERM U1153, INRA, 75004 Paris, France.
| | - G Martin
- Service d'ophtalmo-pédiatrie, fondation Adolphe-de-Rothschild, 29, rue Manin, 75019 Paris, France
| | - S Krystal
- Service de radiologie, fondation Adolphe-de-Rothschild, 29, rue Manin, 75019 Paris, France
| | - A Clement
- Service d'ophtalmo-pédiatrie, fondation Adolphe-de-Rothschild, 29, rue Manin, 75019 Paris, France
| | - G Caputo
- Service d'ophtalmo-pédiatrie, fondation Adolphe-de-Rothschild, 29, rue Manin, 75019 Paris, France
| |
Collapse
|
11
|
Reis LB, Filippi-Chiela EC, Ashton-Prolla P, Visioli F, Rosset C. The paradox of autophagy in Tuberous Sclerosis Complex. Genet Mol Biol 2021; 44:e20200014. [PMID: 33821877 PMCID: PMC8022228 DOI: 10.1590/1678-4685-gmb-2020-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 01/17/2021] [Indexed: 12/21/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant genetic disorder caused by germline mutations in TSC1 or TSC2 genes, which leads to the hyperactivation of the mTORC1 pathway, an important negative regulator of autophagy. This leads to the development of hamartomas in multiple organs. The variability in symptoms presents a challenge for the development of completely effective treatments for TSC. One option is the treatment with mTORC1 inhibitors, which are targeted to block cell growth and restore autophagy. However, the therapeutic effect of rapamycin seems to be more efficient in the early stages of hamartoma development, an effect that seems to be associated with the paradoxical role of autophagy in tumor establishment. Under normal conditions, autophagy is directly inhibited by mTORC1. In situations of bioenergetics stress, mTORC1 releases the Ulk1 complex and initiates the autophagy process. In this way, autophagy promotes the survival of established tumors by supplying metabolic precursors during nutrient deprivation; paradoxically, excessive autophagy has been associated with cell death in some situations. In spite of its paradoxical role, autophagy is an alternative therapeutic strategy that could be explored in TSC. This review compiles the findings related to autophagy and the new therapeutic strategies targeting this pathway in TSC.
Collapse
Affiliation(s)
- Larissa Brussa Reis
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Eduardo C Filippi-Chiela
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Instituto de Ciências Básicas da Saúde, Departamento de Ciências Morfológicas, Porto Alegre, RS, Brazil
| | - Patricia Ashton-Prolla
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil.,Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Genética Médica, Porto Alegre, RS, Brazil
| | - Fernanda Visioli
- Universidade Federal do Rio Grande do Sul, Faculdade de Odontologia, Departamento de Patologia Oral, Porto Alegre, RS, Brazil
| | - Clévia Rosset
- Hospital de Clínicas de Porto Alegre (HCPA), Serviço de Pesquisa Experimental, Laboratório de Medicina Genômica, Porto Alegre, RS, Brazil.,Universidade Federal do Rio Grande do Sul (UFRGS), Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
12
|
Ravi K, Paidas MJ, Saad A, Jayakumar AR. Astrocytes in rare neurological conditions: Morphological and functional considerations. J Comp Neurol 2021; 529:2676-2705. [PMID: 33496339 DOI: 10.1002/cne.25118] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/16/2021] [Accepted: 01/19/2021] [Indexed: 01/06/2023]
Abstract
Astrocytes are a population of central nervous system (CNS) cells with distinctive morphological and functional characteristics that differ within specific areas of the brain and are widely distributed throughout the CNS. There are mainly two types of astrocytes, protoplasmic and fibrous, which differ in morphologic appearance and location. Astrocytes are important cells of the CNS that not only provide structural support, but also modulate synaptic activity, regulate neuroinflammatory responses, maintain the blood-brain barrier, and supply energy to neurons. As a result, astrocytic disruption can lead to widespread detrimental effects and can contribute to the pathophysiology of several neurological conditions. The characteristics of astrocytes in more common neuropathologies such as Alzheimer's and Parkinson's disease have significantly been described and continue to be widely studied. However, there still exist numerous rare neurological conditions in which astrocytic involvement is unknown and needs to be explored. Accordingly, this review will summarize functional and morphological changes of astrocytes in various rare neurological conditions based on current knowledge thus far and highlight remaining neuropathologies where astrocytic involvement has yet to be investigated.
Collapse
Affiliation(s)
- Karthik Ravi
- University of Michigan, Ann Arbor, Michigan, USA
| | - Michael J Paidas
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA
| | - Ali Saad
- Pathology and Laboratory Medicine, University of Miami School of Medicine, Miami, Florida, USA
| | - Arumugam R Jayakumar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami School of Medicine, Miami, Florida, USA.,South Florida VA Foundation for Research and Education Inc, Miami, Florida, USA.,General Medical Research Neuropathology Section, R&D Service, Veterans Affairs Medical Centre, Miami, Florida, USA
| |
Collapse
|
13
|
Xu Z, Wu J, Xu G, Luo H. Abdominal ultrasonographic manifestations in pediatric patients with tuberous sclerosis complex. Transl Pediatr 2020; 9:757-767. [PMID: 33457297 PMCID: PMC7804489 DOI: 10.21037/tp-20-150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Tuberous sclerosis complex (TSC) is a rare genetic disease which leads to formation of benign tumors in the brain and other organs of the body. Ultrasound (US) can detect the location, quantity, size and internal echo of TSC-associated renal diseases, liver angiomyolipoma (AML), and co-existing lesions, providing important diagnostic basis for clinical diagnosis. The aim of the present study was to investigate the abdominal ultrasonographic features of pediatric TSC and explore the advantages of abdominal ultrasonography in clinical practice. METHODS Data of children with TSC, who presented to the Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, between January 2016 and November 2018, were analyzed by a retrospective chart review. The cases were identified from electronic medical records (EMR) system and underwent ultrasonography, we yielded a total of 12 patients. RESULTS The 12 pediatric patients, including 5 boys and 7 girls, ranged in age from 9 months to 13 years old. And they all had a history of epilepsy. All the patients underwent brain magnetic resonance imaging (MRI) or computed tomography (CT) examination, which revealed a scattered distribution of multiple hyperintense nodules. Of the 12 patients, 10 had TSC-associated bilateral renal AMLs, 5 had hepatic AML, and 4 had renal cysts. CONCLUSIONS US is a useful and non-invasive tool for the detection of TSC-associated renal and liver lesions and for clinical follow-up among pediatric patients.
Collapse
Affiliation(s)
- Zhihua Xu
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junbo Wu
- Department of Ultrasound Imaging, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guimin Xu
- Department of Anesthesia, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| | - Hongxia Luo
- Department of Ultrasonic Diagnosis, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
14
|
Reis LB, Konzen D, Netto CBO, Braghini PMB, Prolla G, Ashton-Prolla P. Tuberous Sclerosis Complex with rare associated findings in the gastrointestinal system: a case report and review of the literature. BMC Gastroenterol 2020; 20:394. [PMID: 33225890 PMCID: PMC7682061 DOI: 10.1186/s12876-020-01481-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/01/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Tuberous Sclerosis Complex (TSC) is a complex and heterogeneous genetic disease that has well-established clinical diagnostic criteria. These criteria do not include gastrointestinal tumors. CASE PRESENTATION We report a 45-year-old patient with a clinical and molecular diagnosis of TSC and a family history of cancer, presenting two rare associated findings: gastrointestinal polyposis and pancreatic neuroendocrine tumor. This patient was subjected to a genetic test with 80 cancer predisposing genes. The genetic panel revealed the presence of a large pathogenic deletion in the TSC2 gene, covering exons 2 to 16 and including the initiation codon. No changes were identified in the colorectal cancer and colorectal polyposis genes. DISCUSSION AND CONCLUSIONS We describe a case of TSC that presented tumors of the gastro intestinal tract that are commonly unrelated to the disease. The patient described here emphasizes the importance of considering polyposis of the gastrointestinal tract and low grade neuroendocrine tumor as part of the TSC syndromic phenotype.
Collapse
Affiliation(s)
- Larissa Brussa Reis
- Laboratório de Medicina Genômica - Centro de Pesquisa Experimental - Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniele Konzen
- Hospital Mãe de Deus, Porto Alegre, Rio Grande do Sul, Brazil
- Hospital São Lucas, Escola de Medicina da Pontifícia Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Cristina Brinckmann Oliveira Netto
- Serviço de Genética Médica, Hospital de Clinicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, CEP: 90035-903, Brazil
| | | | - Gabriel Prolla
- Hospital São Lucas, Escola de Medicina da Pontifícia Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Patricia Ashton-Prolla
- Laboratório de Medicina Genômica - Centro de Pesquisa Experimental - Hospital de Clinicas de Porto Alegre (HCPA), Porto Alegre, Rio Grande do Sul, Brazil.
- Programa de Pós-graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
- Serviço de Genética Médica, Hospital de Clinicas de Porto Alegre (HCPA), Rua Ramiro Barcelos 2350, Porto Alegre, RS, CEP: 90035-903, Brazil.
| |
Collapse
|
15
|
Turner TJ, Zourray C, Schorge S, Lignani G. Recent advances in gene therapy for neurodevelopmental disorders with epilepsy. J Neurochem 2020; 157:229-262. [PMID: 32880951 PMCID: PMC8436749 DOI: 10.1111/jnc.15168] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/14/2022]
Abstract
Neurodevelopmental disorders can be caused by mutations in neuronal genes fundamental to brain development. These disorders have severe symptoms ranging from intellectually disability, social and cognitive impairments, and a subset are strongly linked with epilepsy. In this review, we focus on those neurodevelopmental disorders that are frequently characterized by the presence of epilepsy (NDD + E). We loosely group the genes linked to NDD + E with different neuronal functions: transcriptional regulation, intrinsic excitability and synaptic transmission. All these genes have in common a pivotal role in defining the brain architecture and function during early development, and when their function is altered, symptoms can present in the first stages of human life. The relationship with epilepsy is complex. In some NDD + E, epilepsy is a comorbidity and in others seizures appear to be the main cause of the pathology, suggesting that either structural changes (NDD) or neuronal communication (E) can lead to these disorders. Furthermore, grouping the genes that cause NDD + E, we review the uses and limitations of current models of the different disorders, and how different gene therapy strategies are being developed to treat them. We highlight where gene replacement may not be a treatment option, and where innovative therapeutic tools, such as CRISPR‐based gene editing, and new avenues of delivery are required. In general this group of genetically defined disorders, supported increasing knowledge of the mechanisms leading to neurological dysfunction serve as an excellent collection for illustrating the translational potential of gene therapy, including newly emerging tools.
Collapse
Affiliation(s)
- Thomas J Turner
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Clara Zourray
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.,Department of Pharmacology, UCL School of Pharmacy, London, UK
| | | | - Gabriele Lignani
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
16
|
Lu Y, Zhang EY, Liu J, Yu JJ. Inhibition of the mechanistic target of rapamycin induces cell survival via MAPK in tuberous sclerosis complex. Orphanet J Rare Dis 2020; 15:209. [PMID: 32807195 PMCID: PMC7433150 DOI: 10.1186/s13023-020-01490-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/05/2020] [Indexed: 01/29/2023] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a genetic disorder that cause tumors to form in many organs. These lesions may lead to epilepsy, autism, developmental delay, renal, and pulmonary failure. Loss of function mutations in TSC1 and TSC2 genes by aberrant activation of the mechanistic target of rapamycin (mTORC1) signaling pathway are the known causes of TSC. Therefore, targeting mTORC1 becomes a most available therapeutic strategy for TSC. Although mTORC1 inhibitor rapamycin and Rapalogs have demonstrated exciting results in the recent clinical trials, however, tumors rebound and upon the discontinuation of the mTORC1 inhibition. Thus, understanding the underlying molecular mechanisms responsible for rapamycin-induced cell survival becomes an urgent need. Identification of additional molecular targets and development more effective remission-inducing therapeutic strategies are necessary for TSC patients. Results We have discovered an Mitogen-activated protein kinase (MAPK)-evoked positive feedback loop that dampens the efficacy of mTORC1 inhibition. Mechanistically, mTORC1 inhibition increased MEK1-dependent activation of MAPK in TSC-deficient cells. Pharmacological inhibition of MAPK abrogated this feedback loop activation. Importantly, the combinatorial inhibition of mTORC1 and MAPK induces the death of TSC2-deficient cells. Conclusions Our results provide a rationale for dual targeting of mTORC1 and MAPK pathways in TSC and other mTORC1 hyperactive neoplasm.
Collapse
Affiliation(s)
- Yiyang Lu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way-ML 0564, Cincinnati, OH, 45267, USA
| | - Erik Y Zhang
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way-ML 0564, Cincinnati, OH, 45267, USA
| | - Jie Liu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way-ML 0564, Cincinnati, OH, 45267, USA.,Department of Pulmonary and Critical Care Medicine, Guangzhou Institute for Respiratory Health, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jane J Yu
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way-ML 0564, Cincinnati, OH, 45267, USA.
| |
Collapse
|
17
|
Modeling Neurodevelopmental Deficits in Tuberous Sclerosis Complex with Stem Cell Derived Neural Precursors and Neurons. ADVANCES IN NEUROBIOLOGY 2020. [PMID: 32578142 DOI: 10.1007/978-3-030-45493-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder that is caused by mutations in TSC1 or TSC2. TSC is a multi-organ disorder characterized by development of non-malignant cellular overgrowths, called hamartomas, in different organs of the body. TSC is also characterized as a neurodevelopmental disorder presenting with epilepsy and autism, and formation of cortical malformations ("tubers"), subependymal giant cell astrocytomas (SEGAs), and subependymal nodules (SENs) in the patient's brain. In this chapter, we are going to give an overview of neural stem cell and neuronal development in TSC. In addition, we will also describe previously developed animal models of TSC that display seizures, autistic-like behaviors, and neuronal cell abnormalities in vivo, and we will compare them to disease phenotypes detected with human stem cell derived neuronal cells in vitro. We will describe the effects of TSC-mutations in different neural cell subtypes, and discuss the mitochondrial function, autophagy, and synaptic development and functional deficits in the neurons. Finally, we will review utilization of these human TSC-patient derived neuronal models for drug screening to develop new treatment options for the neurological phenotypes seen in TSC patients.
Collapse
|
18
|
Afshar Saber W, Sahin M. Recent advances in human stem cell-based modeling of Tuberous Sclerosis Complex. Mol Autism 2020; 11:16. [PMID: 32075691 PMCID: PMC7031912 DOI: 10.1186/s13229-020-0320-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is an autosomal dominant disorder characterized by epilepsy, intellectual disability, and benign tumors of the brain, heart, skin, and kidney. Animal models have contributed to our understanding of normal and abnormal human brain development, but the construction of models that accurately recapitulate a human pathology remains challenging. Recent advances in stem cell biology with the derivation of human-induced pluripotent stem cells (hiPSCs) from somatic cells from patients have opened new avenues to the study of TSC. This approach combined with gene-editing tools such as CRISPR/Cas9 offers the advantage of preserving patient-specific genetic background and the ability to generate isogenic controls by correcting a specific mutation. The patient cell line and the isogenic control can be differentiated into the cell type of interest to model various aspects of TSC. In this review, we discuss the remarkable capacity of these cells to be used as a model for TSC in two- and three-dimensional cultures, the potential variability in iPSC models, and highlight differences between findings reported to date.
Collapse
Affiliation(s)
- Wardiya Afshar Saber
- Department of Neurology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA
| | - Mustafa Sahin
- Department of Neurology, Harvard Medical School, Boston Children's Hospital, 300 Longwood Ave, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Martin P, Wagh V, Reis SA, Erdin S, Beauchamp RL, Shaikh G, Talkowski M, Thiele E, Sheridan SD, Haggarty SJ, Ramesh V. TSC patient-derived isogenic neural progenitor cells reveal altered early neurodevelopmental phenotypes and rapamycin-induced MNK-eIF4E signaling. Mol Autism 2020; 11:2. [PMID: 31921404 PMCID: PMC6945400 DOI: 10.1186/s13229-019-0311-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Background Tuberous sclerosis complex (TSC) is a neurodevelopmental disorder with frequent occurrence of epilepsy, autism spectrum disorder (ASD), intellectual disability (ID), and tumors in multiple organs. The aberrant activation of mTORC1 in TSC has led to treatment with mTORC1 inhibitor rapamycin as a lifelong therapy for tumors, but TSC-associated neurocognitive manifestations remain unaffected by rapamycin. Methods Here, we generated patient-specific, induced pluripotent stem cells (iPSCs) from a TSC patient with a heterozygous, germline, nonsense mutation in exon 15 of TSC1 and established an isogenic set of heterozygous (Het), null and corrected wildtype (Corr-WT) iPSCs using CRISPR/Cas9-mediated gene editing. We differentiated these iPSCs into neural progenitor cells (NPCs) and examined neurodevelopmental phenotypes, signaling and changes in gene expression by RNA-seq. Results Differentiated NPCs revealed enlarged cell size in TSC1-Het and Null NPCs, consistent with mTORC1 activation. TSC1-Het and Null NPCs also revealed enhanced proliferation and altered neurite outgrowth in a genotype-dependent manner, which was not reversed by rapamycin. Transcriptome analyses of TSC1-NPCs revealed differentially expressed genes that display a genotype-dependent linear response, i.e., genes upregulated/downregulated in Het were further increased/decreased in Null. In particular, genes linked to ASD, epilepsy, and ID were significantly upregulated or downregulated warranting further investigation. In TSC1-Het and Null NPCs, we also observed basal activation of ERK1/2, which was further activated upon rapamycin treatment. Rapamycin also increased MNK1/2-eIF4E signaling in TSC1-deficient NPCs. Conclusion MEK-ERK and MNK-eIF4E pathways regulate protein translation, and our results suggest that aberrant translation distinct in TSC1/2-deficient NPCs could play a role in neurodevelopmental defects. Our data showing upregulation of these signaling pathways by rapamycin support a strategy to combine a MEK or a MNK inhibitor with rapamycin that may be superior for TSC-associated CNS defects. Importantly, our generation of isogenic sets of NPCs from TSC patients provides a valuable platform for translatome and large-scale drug screening studies. Overall, our studies further support the notion that early developmental events such as NPC proliferation and initial process formation, such as neurite number and length that occur prior to neuronal differentiation, represent primary events in neurogenesis critical to disease pathogenesis of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Pauline Martin
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Vilas Wagh
- 2MERCK Research Laboratories, Boston, MA 02115 USA
| | - Surya A Reis
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Serkan Erdin
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Roberta L Beauchamp
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Ghalib Shaikh
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Michael Talkowski
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| | - Elizabeth Thiele
- 3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| | - Steven D Sheridan
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,4Center for Quantitative Health, Massachusetts General Hospital, Boston, MA 02114 USA
| | - Stephen J Haggarty
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| | - Vijaya Ramesh
- 1Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114 USA.,3Department of Neurology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
20
|
Gewin LS, Summers ME, Harral JW, Gaskill CF, Khodo SN, Neelisetty S, Sullivan TM, Hopp K, Reese JJ, Klemm DJ, Kon V, Ess KC, Shi W, Majka SM. Inactivation of Tsc2 in Abcg2 lineage-derived cells drives the appearance of polycystic lesions and fibrosis in the adult kidney. Am J Physiol Renal Physiol 2019; 317:F1201-F1210. [PMID: 31461347 PMCID: PMC6879939 DOI: 10.1152/ajprenal.00629.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 08/07/2019] [Accepted: 08/22/2019] [Indexed: 02/08/2023] Open
Abstract
Tuberous sclerosis complex 2 (TSC2), or tuberin, is a pivotal regulator of the mechanistic target of rapamycin signaling pathway that controls cell survival, proliferation, growth, and migration. Loss of Tsc2 function manifests in organ-specific consequences, the mechanisms of which remain incompletely understood. Recent single cell analysis of the kidney has identified ATP-binding cassette G2 (Abcg2) expression in renal proximal tubules of adult mice as well as a in a novel cell population. The impact in adult kidney of Tsc2 knockdown in the Abcg2-expressing lineage has not been evaluated. We engineered an inducible system in which expression of truncated Tsc2, lacking exons 36-37 with an intact 3' region and polycystin 1, is driven by Abcg2. Here, we demonstrate that selective expression of Tsc2fl36-37 in the Abcg2pos lineage drives recombination in proximal tubule epithelial and rare perivascular mesenchymal cells, which results in progressive proximal tubule injury, impaired kidney function, formation of cystic lesions, and fibrosis in adult mice. These data illustrate the critical importance of Tsc2 function in the Abcg2-expressing proximal tubule epithelium and mesenchyme during the development of cystic lesions and remodeling of kidney parenchyma.
Collapse
Affiliation(s)
- Leslie S Gewin
- Division of Nephrology and Hypertension or Allergy, Department of Medicine, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Department of Medicine, Veterans Affairs Hospital, Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Megan E Summers
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Julie W Harral
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
| | - Christa F Gaskill
- Division of Nephrology and Hypertension or Allergy, Department of Medicine, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Stellor Nlandu Khodo
- Division of Nephrology and Hypertension or Allergy, Department of Medicine, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Surekha Neelisetty
- Division of Nephrology and Hypertension or Allergy, Department of Medicine, Pulmonary, and Critical Care Medicine, Vanderbilt University, Nashville, Tennessee
| | - Timothy M Sullivan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Katharina Hopp
- Division of Renal Diseases and Hypertension, Department of Medicine, University of Colorado, Aurora, Colorado
| | - J Jeffrey Reese
- Division of Nephrology or Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Dwight J Klemm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Colorado, Aurora, Colorado
| | - Valentina Kon
- Division of Nephrology or Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Kevin C Ess
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Wei Shi
- Children's Hospital of Los Angeles, Developmental Biology and Regenerative Medicine Program at the Saban Research Institute, Los Angeles, California
| | - Susan M Majka
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado
- Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado, Aurora, Colorado
| |
Collapse
|
21
|
Woodford MR, Hughes M, Sager RA, Backe SJ, Baker-Williams AJ, Bratslavsky MS, Jacob JM, Shapiro O, Wong M, Bratslavsky G, Bourboulia D, Mollapour M. Mutation of the co-chaperone Tsc1 in bladder cancer diminishes Hsp90 acetylation and reduces drug sensitivity and selectivity. Oncotarget 2019; 10:5824-5834. [PMID: 31645902 PMCID: PMC6791385 DOI: 10.18632/oncotarget.27217] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 08/29/2019] [Indexed: 02/06/2023] Open
Abstract
The molecular chaperone Heat shock protein 90 (Hsp90) is essential for the folding, stability, and activity of several drivers of oncogenesis. Hsp90 inhibitors are currently under clinical evaluation for cancer treatment, however their efficacy is limited by lack of biomarkers to optimize patient selection. We have recently identified the tumor suppressor tuberous sclerosis complex 1 (Tsc1) as a new co-chaperone of Hsp90 that affects Hsp90 binding to its inhibitors. Highly variable mutations of TSC1 have been previously identified in bladder cancer and correlate with sensitivity to the Hsp90 inhibitors. Here we showed loss of TSC1 leads to hypoacetylation of Hsp90-K407/K419 and subsequent decreased binding to the Hsp90 inhibitor ganetespib. Pharmacologic inhibition of histone deacetylases (HDACs) restores acetylation of Hsp90 and sensitizes Tsc1-mutant bladder cancer cells to ganetespib, resulting in apoptosis. Our findings suggest that TSC1 status may predict response to Hsp90 inhibitors in patients with bladder cancer, and co-targeting HDACs can sensitize tumors with Tsc1 mutations to Hsp90 inhibitors.
Collapse
Affiliation(s)
- Mark R. Woodford
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Michael Hughes
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Rebecca A. Sager
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
- College of Medicine, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Sarah J. Backe
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Alexander J. Baker-Williams
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Michael S. Bratslavsky
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Joseph M. Jacob
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Oleg Shapiro
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Michael Wong
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO 63110, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University Syracuse, NY 13210, USA
- Upstate Cancer Center, SUNY Upstate Medical University Syracuse, NY 13210, USA
| |
Collapse
|
22
|
Lin S, Zeng JB, Zhao GX, Yang ZZ, Huang HP, Lin MT, Wu ZY, Wang N, Chen WJ, Fang L. Tuberous Sclerosis Complex in Chinese patients: Phenotypic analysis and mutational screening of TSC1/TSC2 genes. Seizure 2019; 71:322-327. [DOI: 10.1016/j.seizure.2019.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 08/18/2019] [Accepted: 08/22/2019] [Indexed: 01/06/2023] Open
|
23
|
Feliciano DM. TSC1 Gene Therapy AAVerts Neurological Associated Mortality. Mol Ther 2019; 27:1527-1528. [PMID: 31439508 PMCID: PMC6732335 DOI: 10.1016/j.ymthe.2019.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- David M Feliciano
- Department of Biological Sciences, Clemson University, Clemson, SC 29634-0314, USA.
| |
Collapse
|
24
|
Malformazioni dello sviluppo corticale. Neurologia 2019. [DOI: 10.1016/s1634-7072(19)42019-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
25
|
Histone deacetylase inhibitors restore normal hippocampal synaptic plasticity and seizure threshold in a mouse model of Tuberous Sclerosis Complex. Sci Rep 2019; 9:5266. [PMID: 30918308 PMCID: PMC6437206 DOI: 10.1038/s41598-019-41744-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 03/15/2019] [Indexed: 01/02/2023] Open
Abstract
Abnormal synaptic plasticity has been implicated in several neurological disorders including epilepsy, dementia and Autism Spectrum Disorder (ASD). Tuberous Sclerosis Complex (TSC) is an autosomal dominant genetic disorder that manifests with seizures, autism, and cognitive deficits. The abnormal intracellular signaling underlying TSC has been the focus of many studies. However, nothing is known about the role of histone modifications in contributing to the neurological manifestations in TSC. Dynamic regulation of chromatin structure via post translational modification of histone tails has been implicated in learning, memory and synaptic plasticity. Histone acetylation and associated gene activation plays a key role in plasticity and so we asked whether histone acetylation might be dysregulated in TSC. In this study, we report a general reduction in hippocampal histone H3 acetylation levels in a mouse model of TSC2. Pharmacological inhibition of Histone Deacetylase (HDAC) activity restores histone H3 acetylation levels and ameliorates the aberrant plasticity in TSC2+/− mice. We describe a novel seizure phenotype in TSC2+/− mice that is also normalized with HDAC inhibitors (HDACis). The results from this study suggest an unanticipated role for chromatin modification in TSC and may inform novel therapeutic strategies for TSC patients.
Collapse
|
26
|
Liang S, Cuellar T, Nowacki M, Nayak BK, Dong L, Li B, Sharma K, Habib SL. A new drug combination significantly reduces kidney tumor progression in kidney mouse model. Oncotarget 2018; 9:32900-32916. [PMID: 30250638 PMCID: PMC6152473 DOI: 10.18632/oncotarget.26004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/27/2018] [Indexed: 11/25/2022] Open
Abstract
Tuberous sclerosis complex (TSC) disease is associated with tumors in many organs, particularly angiomyolipoma (AML) in the kidneys. Loss or inactivation of TSC1/2 results in high levels of HIF-α activity and VEGF expression. mTOR inhibitor (rapamycin) and the AMPK activator 5-aminoimidazole-4-carboxamide (AICA)-riboside (AICAR) are currently used separately to treat cancer patients. Here, we investigated the effect of a novel combination of rapamycin and AICAR on tumor progression. Our data show that treatment of AML human cells with drug combinations resulted in 5-7-fold increase in cell apoptosis compared to each drug alone. In addition, drug combinations resulted in 4-5-fold decrease in cell proliferation compared to each drug alone. We found that drug combinations abolished Akt and HIF activity in AML cells. The drug combinations resulted in decrease in cell invasion and cell immigration by 70% and 84%, respectively in AML cells. The combined drugs also significantly decreased the VEGF expression compare to each drug alone in AML cells. Drug combinations effectively abolished binding of HIF-2α to the putative Akt site in the nuclear extracts isolated from AML cells. Treatment TSC mice with drug combinations resulted in 75% decrease in tumor number and 88% decrease in tumor volume compared to control TSC mice. This is first evidence that drug combinations are effective in reducing size and number of kidney tumors without any toxic effect on kidney. These data will provide evidence for initiating a new clinical trial for treatment of TSC patients.
Collapse
Affiliation(s)
- Sitai Liang
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Tiffanie Cuellar
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Maciej Nowacki
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Bijaya K. Nayak
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Lily Dong
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Boajie Li
- Shanghai Jiao Tong University, Shanghai, China
| | - Kumar Sharma
- Department of Medicine, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
| | - Samy L. Habib
- Department of Cell Systems & Anatomy, University of Texas Health Science Center at San Antonio, Bio-X Institutes, San Antonio, TX, USA
- South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
27
|
Zucco AJ, Pozzo VD, Afinogenova A, Hart RP, Devinsky O, D'Arcangelo G. Neural progenitors derived from Tuberous Sclerosis Complex patients exhibit attenuated PI3K/AKT signaling and delayed neuronal differentiation. Mol Cell Neurosci 2018; 92:149-163. [PMID: 30144504 DOI: 10.1016/j.mcn.2018.08.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/23/2018] [Accepted: 08/20/2018] [Indexed: 12/20/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a disease caused by autosomal dominant mutations in the TSC1 or TSC2 genes, and is characterized by tumor susceptibility, brain lesions, seizures and behavioral impairments. The TSC1 and TSC2 genes encode proteins forming a complex (TSC), which is a major regulator and suppressor of mammalian target of rapamycin complex 1 (mTORC1), a signaling complex that promotes cell growth and proliferation. TSC1/2 loss of heterozygosity (LOH) and the subsequent complete loss of TSC regulatory activity in null cells causes mTORC1 dysregulation and TSC-associated brain lesions or other tissue tumors. However, it is not clear whether TSC1/2 heterozygous brain cells are abnormal and contribute to TSC neuropathology. To investigate this issue, we generated induced pluripotent stem cells (iPSCs) from TSC patients and unaffected controls, and utilized these to obtain neural progenitor cells (NPCs) and differentiated neurons in vitro. These patient-derived TSC2 heterozygous NPCs were delayed in their ability to differentiate into neurons. Patient-derived progenitor cells also exhibited a modest activation of mTORC1 signaling downstream of TSC, and a marked attenuation of upstream PI3K/AKT signaling. We further show that pharmacologic PI3K or AKT inhibition, but not mTORC1 inhibition, causes a neuronal differentiation delay, mimicking the patient phenotype. Together these data suggest that heterozygous TSC2 mutations disrupt neuronal development, potentially contributing to the disease neuropathology, and that this defect may result from dysregulated PI3K/AKT signaling in neural progenitor cells.
Collapse
Affiliation(s)
- Avery J Zucco
- Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States of America; Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America
| | - Valentina Dal Pozzo
- Graduate Program in Neuroscience, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, United States of America; Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America
| | - Alina Afinogenova
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America; Human Genetics Institute of New Jersey, Piscataway, NJ, United States of America
| | - Orrin Devinsky
- NYU Comprehensive Epilepsy Center, NYU Langone School of Medicine, New York, NY, United States of America
| | - Gabriella D'Arcangelo
- Department of Cell Biology and Neuroscience, Rutgers, the State University of New Jersey, Piscataway, NJ, United States of America; Human Genetics Institute of New Jersey, Piscataway, NJ, United States of America.
| |
Collapse
|
28
|
Abstract
Lysosomes support diverse cellular functions by acting as sites of macromolecule degradation and nutrient recycling. The degradative abilities of lysosomes are conferred by a lumen that is characterized by an acidic pH and which contains numerous hydrolases that support the breakdown of major cellular macromolecules to yield cellular building blocks (amino acids, nucleic acids, sugars, lipids and metals) that are transported into the cytoplasm for their re-use. In addition to these important hydrolytic and recycling functions, lysosomes also serve as a signaling platform that integrates nutrient and metabolic cues to control signaling via the mTORC1 pathway. Due to their extreme longevity, polarity, demands of neurotransmission and metabolic activity, neurons are particularly sensitive to perturbations in lysosome function. The dependence of neurons on optimal lysosome function is highlighted by insights from human genetics that link lysosome dysfunction to a wide range of both rare and common neurological diseases. How then is lysosome function adapted to the unique demands of neurons? This review will focus on the roles played by lysosomes in distinct neuronal sub-compartments, the regulation of neuronal lysosome sub-cellular localization and the implications of such neuronal lysosome regulation for both physiology and disease.
Collapse
Affiliation(s)
- Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT, 06510, United States; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT, 06510, United States.
| |
Collapse
|
29
|
Brakemeier S, Vogt L, Adams LC, Zukunft B, Diederichs G, Hamm B, Budde K, Eckardt KU, Makowski MR. Sclerotic bone lesions as a potential imaging biomarker for the diagnosis of tuberous sclerosis complex. Sci Rep 2018; 8:953. [PMID: 29343816 PMCID: PMC5772483 DOI: 10.1038/s41598-018-19399-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 12/29/2017] [Indexed: 01/15/2023] Open
Abstract
Tuberous-sclerosis-complex (TSC) is associated with a high lifetime risk of severe complications. Clinical manifestations are largely variable and diagnosis is often missed. Sclerotic-bone-lesions (SBL) could represent a potential imaging biomarker for the diagnosis of TSC. In this study, computed tomography (CT) data sets of 49 TSC patients (31 females) were included and compared to an age/sex matched control group. Imaging features of SBLs included frequency, size and location pattern. Sensitivities, specificities and cutoff values for the diagnosis of TSC were established for the skull, thorax, and abdomen/pelvis. In TSC patients, 3439 SBLs were detected, including 665 skull SBLs, 1426 thoracal SBLs and 1348 abdominal/pelvic SBLs. In the matched control-collective, 157 SBLs could be found. The frequency of SBLs enabled a reliable differentiation between TSC patients and the control collective with the following sensitivities and specificities. Skull: ≥5 SBLs, 0.783, 1; thorax: ≥4 SBLs, 0.967, 0.967; abdomen/pelvis: ≥5 SBLs: 0.938, 0.906. SBL size was significantly larger compared to controls (p < 0.05). Based on the frequency, size and location pattern of SBLs TSC can be suspected. SBLs may serve as a potential imaging biomarker in the workup of TSC patients.
Collapse
Affiliation(s)
- Susanne Brakemeier
- Department of Nephrology and Medical Intensive Care, Charité, Charitéplatz 1, 10117, Berlin, Germany.
| | - Lars Vogt
- Department of Radiology, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Lisa C Adams
- Department of Radiology, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Bianca Zukunft
- Department of Nephrology and Medical Intensive Care, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Gerd Diederichs
- Department of Radiology, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Klemens Budde
- Department of Nephrology and Medical Intensive Care, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité, Charitéplatz 1, 10117, Berlin, Germany
| | - Marcus R Makowski
- Department of Radiology, Charité, Charitéplatz 1, 10117, Berlin, Germany.,King's College London, Division of Imaging Sciences, Westminster Bridge Road, London, SE1 7EH, United Kingdom
| |
Collapse
|
30
|
Davis PE, Filip-Dhima R, Sideridis G, Peters JM, Au KS, Northrup H, Bebin EM, Wu JY, Krueger D, Sahin M. Presentation and Diagnosis of Tuberous Sclerosis Complex in Infants. Pediatrics 2017; 140:e20164040. [PMID: 29101226 PMCID: PMC5703775 DOI: 10.1542/peds.2016-4040] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/25/2017] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES Tuberous sclerosis complex (TSC) is a neurocutaneous genetic disorder with a high prevalence of epilepsy and neurodevelopmental disorders. TSC can be challenging to diagnose in infants because they often do not show many clinical signs early in life. In this study, we describe the timing and pattern of presenting and diagnostic features in a prospective longitudinal study of infants with TSC. METHODS Two multicenter, prospective studies enrolled 130 infants with definite TSC by clinical or genetic criteria and followed them longitudinally up to 36 months of age. Periodic study visits included medical and seizure histories, physical and neurologic examinations, and developmental assessments. Ages at which major and minor features of TSC and seizures were first identified were analyzed. RESULTS The most common initial presenting features of TSC were cardiac rhabdomyomas (59%) and hypomelanotic macules or other skin findings (39%), and 85% of infants presented with either or both. Ultimately, the most prevalent diagnostic TSC features were hypomelanotic macules (94%), tubers or other cortical dysplasias (94%), subependymal nodules (90%), and cardiac rhabdomyomas (82%). Thirty-five percent of infants presented prenatally, 41% presented at birth or within the first month of life, and 74% met criteria for TSC diagnosis at or within 30 days of presentation. Seizure onset occurred before or at initial presentation in only 15% of infants, but 73% developed epilepsy within the first year of life. CONCLUSIONS Infants with TSC can often be identified early, before the onset of neurologic sequelae, enabling earlier diagnosis, surveillance, and possibly disease-modifying treatment.
Collapse
Affiliation(s)
| | - Rajna Filip-Dhima
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| | | | - Jurriaan M Peters
- Departments of Neurology and
- Division of Epilepsy and Clinical Neurophysiology
| | - Kit Sing Au
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas
| | - E Martina Bebin
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Joyce Y Wu
- Division of Pediatric Neurology, University of California at Los Angeles Mattel Children's Hospital, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California; and
| | - Darcy Krueger
- Department of Neurology and Rehabilitation Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mustafa Sahin
- Departments of Neurology and
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Harvard University, Boston, Massachusetts
| |
Collapse
|
31
|
Armstrong LC, Westlake G, Snow JP, Cawthon B, Armour E, Bowman AB, Ess KC. Heterozygous loss of TSC2 alters p53 signaling and human stem cell reprogramming. Hum Mol Genet 2017; 26:4629-4641. [PMID: 28973543 PMCID: PMC5886307 DOI: 10.1093/hmg/ddx345] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 08/28/2017] [Accepted: 09/01/2017] [Indexed: 12/21/2022] Open
Abstract
Tuberous sclerosis complex (TSC) is a pediatric disorder of dysregulated growth and differentiation caused by loss of function mutations in either the TSC1 or TSC2 genes, which regulate mTOR kinase activity. To study aberrations of early development in TSC, we generated induced pluripotent stem cells using dermal fibroblasts obtained from patients with TSC. During validation, we found that stem cells generated from TSC patients had a very high rate of integration of the reprogramming plasmid containing a shRNA against TP53. We also found that loss of one allele of TSC2 in human fibroblasts is sufficient to increase p53 levels and impair stem cell reprogramming. Increased p53 was also observed in TSC2 heterozygous and homozygous mutant human stem cells, suggesting that the interactions between TSC2 and p53 are consistent across cell types and gene dosage. These results support important contributions of TSC2 heterozygous and homozygous mutant cells to the pathogenesis of TSC and the important role of p53 during reprogramming.
Collapse
Affiliation(s)
- Laura C Armstrong
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, D4105 Medical Center North, Nashville, TN 37232, USA
| | - Grant Westlake
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, D4105 Medical Center North, Nashville, TN 37232, USA
| | - John P Snow
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, D4105 Medical Center North, Nashville, TN 37232, USA
| | - Bryan Cawthon
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, D4105 Medical Center North, Nashville, TN 37232, USA
| | - Eric Armour
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, D4105 Medical Center North, Nashville, TN 37232, USA
| | - Aaron B Bowman
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, D4105 Medical Center North, Nashville, TN 37232, USA
| | - Kevin C Ess
- Division of Pediatric Neurology, Department of Pediatrics, Vanderbilt University Medical Center, D4105 Medical Center North, Nashville, TN 37232, USA
| |
Collapse
|
32
|
Wang YY, Pang LY, Ma SF, Zhang MN, Liu LY, Zou LP. Epilepsy may be the major risk factor of mental retardation in children with tuberous sclerosis: A retrospective cohort study. Epilepsy Behav 2017; 77:13-18. [PMID: 29073472 DOI: 10.1016/j.yebeh.2017.09.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/17/2017] [Accepted: 09/18/2017] [Indexed: 11/15/2022]
Abstract
Mental retardation (MR) is one of the most common cognitive comorbidities in children with tuberous sclerosis, and there are enormous studies about its risk factors. The genetic difference and the severity of epilepsy are the two main factors, but their weight in the occurrence of MR is still unclear. Two hundred twenty-three patients with tuberous sclerosis who received intelligence assessment, genetic mutation analysis, and the epilepsy severity assessment were included in our study. Genotype-neurocognitive phenotype correlations and epilepsy-neurocognitive phenotype correlations were analyzed by binary logistic regression analysis. No statistical significant result was found on genotype-neurocognitive phenotype correlations, which contrasted the previous report. The prevalence of MR was 50.0% for the patients with tuberous sclerosis complex-1 (TSC1) mutation, 54.5% for TSC2 (p=0.561), 54.7% for patients with protein-truncating (PT) and 50.0% for patients with nontruncating (NT) (p=0.791), and 54.3% for patients with family history and 53.7% for patients without family history (p=0.748). Statistical significant results were found on epilepsy-neurocognitive phenotype correlations, both on E-chess score (p=0.01) and the occurrence of infantile spasms (p=0.014), which was consistent to the previous study. For children with tuberous sclerosis, instead of genetic factors, epilepsy may play the main role for the presence of mental retardation. Patients with mental retardation tend to have earlier seizure attack, take more AEDs, have more seizure types, and have higher seizure frequency. Among the four cognitive functions in Denver II, social ability and language ability are more vulnerable to be influenced than fine and gross motor ability.
Collapse
Affiliation(s)
- Yang-Yang Wang
- Department of Paediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Ling-Yu Pang
- Department of Paediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Shu-Fang Ma
- Department of Paediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Meng-Na Zhang
- Department of Paediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Ying Liu
- Department of Paediatrics, Chinese PLA General Hospital, Beijing 100853, China
| | - Li-Ping Zou
- Department of Paediatrics, Chinese PLA General Hospital, Beijing 100853, China; Centre of Epilepsy, Beijing Institute for Brain Disorders, Beijing 100069, China.
| |
Collapse
|
33
|
Abstract
Utilizing the multicenter TSC (tuberous sclerosis complex) Natural History Database including 2034 subjects, this study aimed to identify predictors of drug-resistant epilepsy in TSC. Basic epilepsy data were available for 1965 individuals in the database. Supplemental data were further collected from 1546 of these subjects through directed site queries, addressing additional epilepsy characteristics including the presence of drug-resistant epilepsy, therapies trialed, and outcomes of specific therapies. Epilepsy was reported in 86.4% of individuals with TSC. Infantile spasms were reported in 45.2% of individuals and focal seizures were reported in 84.4% of individuals. In those with focal epilepsy, drug resistance was reported in 59.6%, with focal seizure onset prior to age 1 year (odds ratio [OR] 1.9, confidence interval [CI] 1.4-2.5, P < .001), infantile spasms (OR 2.0, CI 1.5-2.5, P < 0.001), and infantile spasms incompletely responsive to therapy (OR 47.6, CI 6.7-333.3, P < 0.001) being associated with an increased likelihood of drug resistance.
Collapse
Affiliation(s)
- Anna Jeong
- Department of Neurology, Washington University School of Medicine,
St. Louis, MO 63110
| | | | - Michael Wong
- Department of Neurology, Washington University School of Medicine,
St. Louis, MO 63110
- Hope Center for Neurological Disorders, Washington University School
of Medicine, St. Louis, MO 63110
| |
Collapse
|
34
|
Coding and small non-coding transcriptional landscape of tuberous sclerosis complex cortical tubers: implications for pathophysiology and treatment. Sci Rep 2017; 7:8089. [PMID: 28808237 PMCID: PMC5556011 DOI: 10.1038/s41598-017-06145-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/08/2017] [Indexed: 12/21/2022] Open
Abstract
Tuberous Sclerosis Complex (TSC) is a rare genetic disorder that results from a mutation in the TSC1 or TSC2 genes leading to constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1). TSC is associated with autism, intellectual disability and severe epilepsy. Cortical tubers are believed to represent the neuropathological substrates of these disabling manifestations in TSC. In the presented study we used high-throughput RNA sequencing in combination with systems-based computational approaches to investigate the complexity of the TSC molecular network. Overall we detected 438 differentially expressed genes and 991 differentially expressed small non-coding RNAs in cortical tubers compared to autopsy control brain tissue. We observed increased expression of genes associated with inflammatory, innate and adaptive immune responses. In contrast, we observed a down-regulation of genes associated with neurogenesis and glutamate receptor signaling. MicroRNAs represented the largest class of over-expressed small non-coding RNA species in tubers. In particular, our analysis revealed that the miR-34 family (including miR-34a, miR-34b and miR-34c) was significantly over-expressed. Functional studies demonstrated the ability of miR-34b to modulate neurite outgrowth in mouse primary hippocampal neuronal cultures. This study provides new insights into the TSC transcriptomic network along with the identification of potential new treatment targets.
Collapse
|
35
|
Radiobiological Characterization of Tuberous Sclerosis: a Delay in the Nucleo-Shuttling of ATM May Be Responsible for Radiosensitivity. Mol Neurobiol 2017; 55:4973-4983. [PMID: 28786016 DOI: 10.1007/s12035-017-0648-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/07/2017] [Indexed: 01/05/2023]
Abstract
The tuberous sclerosis complex (TSC) syndrome is associated with numerous cutaneous pathologies (notably on the face), epilepsy, intellectual disability and developmental retardation and, overall, high occurrence of benign tumors in several organs, like angiofibromas, giant cell astrocytomas, renal angiomyolipomas, and pulmonary lymphangioleiomyomatosis. TSC is caused by mutations of either of the hamartin or tuberin proteins that are mainly cytoplasmic. Some studies published in the 1980s reported that TSC is associated with radiosensitivity. However, its molecular basis in TSC cells is not documented enough. Here, we examined the functionality of the repair and signaling of radiation-induced DNA double-strand breaks (DSB) in fibroblasts derived from TSC patients. Quiescent TSC fibroblast cells elicited abnormally low rate of recognized DSB reflected by a low yield of nuclear foci formed by phosphorylated H2AX histones. Irradiated TSC cells also presented a delay in the nucleo-shuttling of the ATM kinase, potentially due to a specific binding of ATM to mutated TSC protein in cytoplasm. Lastly, TSC fibroblasts showed abnormally high MRE11 nuclease activity suggesting genomic instability. A combination of biphosphonates and statins complemented these impairments by facilitating the nucleoshuttling of ATM and increasing the yield of recognized DSB. Our results showed that TSC belongs to the group of syndromes associated with low but significant defect of DSB signaling and delay in the ATM nucleo-shuttling associated with radiosensitivity.
Collapse
|
36
|
Bozzi Y, Provenzano G, Casarosa S. Neurobiological bases of autism-epilepsy comorbidity: a focus on excitation/inhibition imbalance. Eur J Neurosci 2017; 47:534-548. [PMID: 28452083 DOI: 10.1111/ejn.13595] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/18/2017] [Accepted: 04/21/2017] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASD) and epilepsy are common neurological diseases of childhood, with an estimated incidence of approximately 0.5-1% of the worldwide population. Several genetic, neuroimaging and neuropathological studies clearly showed that both ASD and epilepsy have developmental origins and a substantial degree of heritability. Most importantly, ASD and epilepsy frequently coexist in the same individual, suggesting a common neurodevelopmental basis for these disorders. Genome-wide association studies recently allowed for the identification of a substantial number of genes involved in ASD and epilepsy, some of which are mutated in syndromes presenting both ASD and epilepsy clinical features. At the cellular level, both preclinical and clinical studies indicate that the different genetic causes of ASD and epilepsy may converge to perturb the excitation/inhibition (E/I) balance, due to the dysfunction of excitatory and inhibitory circuits in various brain regions. Metabolic and immune dysfunctions, as well as environmental causes also contribute to ASD pathogenesis. Thus, an E/I imbalance resulting from neurodevelopmental deficits of multiple origins might represent a common pathogenic mechanism for both diseases. Here, we will review the most significant studies supporting these hypotheses. A deeper understanding of the molecular and cellular determinants of autism-epilepsy comorbidity will pave the way to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Yuri Bozzi
- Neurodevelopmental Disorders Research Group, Centre for Mind/Brain Sciences, University of Trento, via Sommarive 9, 38123, Povo, Trento, Italy.,CNR Neuroscience Institute, Pisa, Italy
| | - Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Simona Casarosa
- CNR Neuroscience Institute, Pisa, Italy.,Laboratory of Neural Development and Regeneration, Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
37
|
Nguyen KA, Syed JS, Shuch B. Hereditary Kidney Cancer Syndromes and Surgical Management of the Small Renal Mass. Urol Clin North Am 2017; 44:155-167. [PMID: 28411908 DOI: 10.1016/j.ucl.2016.12.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The management of patients with hereditary kidney cancers presents unique challenges to clinicians. In addition to an earlier age of onset compared with patients with sporadic kidney cancer, those with hereditary kidney cancer syndromes often present with bilateral and/or multifocal renal tumors and are at risk for multiple de novo lesions. This population of patients may also present with extrarenal manifestations, which adds an additional layer of complexity. Physicians who manage these patients should be familiar with the underlying clinical characteristics of each hereditary kidney cancer syndrome and the suggested surgical approaches and recommendations of genetic testing for at-risk individuals.
Collapse
Affiliation(s)
- Kevin A Nguyen
- Department of Urology, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06520, USA
| | - Jamil S Syed
- Department of Urology, Yale School of Medicine, 789 Howard Avenue, New Haven, CT 06520, USA
| | - Brian Shuch
- Department of Radiology, Yale School of Medicine, PO Box 208058, New Haven, CT 06520-8058, USA; Department of Urology, Yale School of Medicine, PO Box 208058, New Haven, CT 06520-8058, USA.
| |
Collapse
|
38
|
Kaufmann WE. Neurogenetics in Child Neurology: Redefining a Discipline in the Twenty-first Century. Curr Neurol Neurosci Rep 2016; 16:103. [PMID: 27815692 DOI: 10.1007/s11910-016-0703-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Increasing knowledge on genetic etiology of pediatric neurologic disorders is affecting the practice of the specialty. I reviewed here the history of pediatric neurologic disorder classification and the role of genetics in the process. I also discussed the concept of clinical neurogenetics, with its role in clinical practice, education, and research. Finally, I propose a flexible model for clinical neurogenetics in child neurology in the twenty-first century. In combination with disorder-specific clinical programs, clinical neurogenetics can become a home for complex clinical issues, repository of genetic diagnostic advances, educational resource, and research engine in child neurology.
Collapse
Affiliation(s)
- Walter E Kaufmann
- Center for Translational Research, Greenwood Genetic Center & Department of Neurology, Boston Children's Center, 113 Gregor Mendel Circle, Greenwood, SC, 29646, USA.
| |
Collapse
|
39
|
Roach ES. Applying the Lessons of Tuberous Sclerosis: The 2015 Hower Award Lecture. Pediatr Neurol 2016; 63:6-22. [PMID: 27543366 DOI: 10.1016/j.pediatrneurol.2016.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/07/2016] [Indexed: 12/15/2022]
Abstract
Tuberous sclerosis complex is a dominantly inherited disorder that variably affects the brain, skin, kidneys, heart, and other organs. Its neurological manifestations include epilepsy, autism, cognitive and behavioral dysfunction, and giant cell tumors. A mutation of either TSC1 or TSC2 can cause tuberous sclerosis complex. Their two gene products, hamartin and tuberin, form a physical complex which normally inhibits protein synthesis mediated through the mechanistic target of rapamycin, so a TSC1 or TSC2 mutation results in overactivation of the mechanistic target of rapamycin cascade. In addition to their tumor suppressor roles, TSC1 and TSC2 help to regulate cell size, neuronal migration, axon formation, and synaptic plasticity. Clinical trials of two different the mechanistic target of rapamycin inhibitors have demonstrated substantial improvement of tuberous sclerosis complex-related tumors, and a recent trial also showed a benefit from the mechanistic target of rapamycin inhibitor everolimus in the treatment of refractory epilepsy due to tuberous sclerosis complex. Effective mechanism-based therapy is now available for some manifestations of tuberous sclerosis complex.
Collapse
Affiliation(s)
- E Steve Roach
- Division of Child Neurology, Ohio State University College of Medicine, Nationwide Children's Hospital, Columbus, Ohio.
| |
Collapse
|
40
|
Abstract
Investigators from the NINDS and the Tuberous Sclerosis Alliance sponsored a workshop in March 2015, which joined basic scientists and clinicians with expertise in various aspects of Tuberous Sclerosis Complex (TSC), in order to assess the current state of TSC research and to set future goals.
Collapse
Affiliation(s)
- Anna Jeong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|