1
|
De Baets J, De Paepe B, De Mey M. Delaying production with prokaryotic inducible expression systems. Microb Cell Fact 2024; 23:249. [PMID: 39272067 PMCID: PMC11401332 DOI: 10.1186/s12934-024-02523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Engineering bacteria with the purpose of optimizing the production of interesting molecules often leads to a decrease in growth due to metabolic burden or toxicity. By delaying the production in time, these negative effects on the growth can be avoided in a process called a two-stage fermentation. MAIN TEXT During this two-stage fermentation process, the production stage is only activated once sufficient cell mass is obtained. Besides the possibility of using external triggers, such as chemical molecules or changing fermentation parameters to induce the production stage, there is a renewed interest towards autoinducible systems. These systems, such as quorum sensing, do not require the extra interference with the fermentation broth to start the induction. In this review, we discuss the different possibilities of both external and autoinduction methods to obtain a two-stage fermentation. Additionally, an overview is given of the tuning methods that can be applied to optimize the induction process. Finally, future challenges and prospects of (auto)inducible expression systems are discussed. CONCLUSION There are numerous methods to obtain a two-stage fermentation process each with their own advantages and disadvantages. Even though chemically inducible expression systems are well-established, an increasing interest is going towards autoinducible expression systems, such as quorum sensing. Although these newer techniques cannot rely on the decades of characterization and applications as is the case for chemically inducible promoters, their advantages might lead to a shift in future inducible expression systems.
Collapse
Affiliation(s)
- Jasmine De Baets
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Brecht De Paepe
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Centre for Synthetic Biology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
2
|
Liu Y, Xu C, Zhou H, Wang W, Liu B, Li Y, Hu X, Yu F, He J. The crystal structures of Sau3AI with and without bound DNA suggest a self-activation-based DNA cleavage mechanism. Structure 2023; 31:1463-1472.e2. [PMID: 37652002 DOI: 10.1016/j.str.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 06/12/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023]
Abstract
The type II restriction endonuclease Sau3AI cleaves the sequence 5'-GATC-3' in double-strand DNA producing two sticky ends. Sau3AI cuts both DNA strands regardless of methylation status. Here, we report the crystal structures of the active site mutant Sau3AI-E64A and the C-terminal domain Sau3AI-C with a bound GATC substrate. Interestingly, the catalytic site of the N-terminal domain (Sau3AI-N) is spatially blocked by the C-terminal domain, suggesting a potential self-inhibition of the enzyme. Interruption of Sau3AI-C binding to substrate DNA disrupts Sau3AI function, suggesting a functional linkage between the N- and C-terminal domains. We propose that Sau3AI-C behaves as an allosteric effector binding one GATC substrate, which triggers a conformational change to open the N-terminal catalytic site, resulting in the subsequent GATC recognition by Sau3AI-N and cleavage of the second GATC site. Our data indicate that Sau3AI and UbaLAI might represent a new subclass of type IIE restriction enzymes.
Collapse
Affiliation(s)
- Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Chunyan Xu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Huan Zhou
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Weiwei Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Bing Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaojian Hu
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China.
| | - Jianhua He
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
3
|
Hall BW, Bingman CA, Fox BG, Noguera DR, Donohue TJ. A broad specificity β-propeller enzyme from Rhodopseudomonas palustris that hydrolyzes many lactones including γ-valerolactone. J Biol Chem 2023; 299:102782. [PMID: 36502920 PMCID: PMC9843451 DOI: 10.1016/j.jbc.2022.102782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Lactones are prevalent in biological and industrial settings, yet there is a lack of information regarding enzymes used to metabolize these compounds. One compound, γ-valerolactone (GVL), is used as a solvent to dissolve plant cell walls into sugars and aromatic molecules for subsequent microbial conversion to fuels and chemicals. Despite the promise of GVL as a renewable solvent for biomass deconstruction, residual GVL can be toxic to microbial fermentation. Here, we identified a Ca2+-dependent enzyme from Rhodopseudomonas palustris (Rpa3624) and showed that it can hydrolyze aliphatic and aromatic lactones and esters, including GVL. Maximum-likelihood phylogenetic analysis of other related lactonases with experimentally determined substrate preferences shows that Rpa3624 separates by sequence motifs into a subclade with preference for hydrophobic substrates. Additionally, we solved crystal structures of this β-propeller enzyme separately with either phosphate, an inhibitor, or a mixture of GVL and products to define an active site where calcium-bound water and calcium-bound aspartic and glutamic acid residues make close contact with substrate and product. Our kinetic characterization of WT and mutant enzymes combined with structural insights inform a reaction mechanism that centers around activation of a calcium-bound water molecule promoted by general base catalysis and close contacts with substrate and a potential intermediate. Similarity of Rpa3624 with other β-propeller lactonases suggests this mechanism may be relevant for other members of this emerging class of versatile catalysts.
Collapse
Affiliation(s)
- Benjamin W Hall
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA; Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Craig A Bingman
- Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Brian G Fox
- Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA; Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel R Noguera
- Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA; Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Donohue
- Department of Energy Great Lakes Bioenergy Research Center, Madison, Wisconsin, USA; Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
4
|
Dual genetic selection of the theophylline riboswitch with altered aptamer specificity for caffeine. Biochem Biophys Res Commun 2021; 579:105-109. [PMID: 34597992 DOI: 10.1016/j.bbrc.2021.09.058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 11/21/2022]
Abstract
The aptamer domain of the theophylline riboswitch was randomized to generate a library containing millions of different variants. Dual genetic selection utilizing the cat-upp fusion gene was performed for the library, which successfully led to the identification of a caffeine-specific synthetic riboswitch. When a chloramphenicol-resistance gene was expressed under control of this riboswitch, E. coli cells showed chloramphenicol resistance only in the presence of caffeine. When inserted upstream of the gfpuv or lacZ gene, the caffeine riboswitch induced the expression of green fluorescent protein or β-galactosidase in the presence of caffeine, respectively. When tested with various concentrations of caffeine, the β-galactosidase activity was proportional to the amount of caffeine, clearly indicating the caffeine-dependent gene regulation by the caffeine riboswitch.
Collapse
|
5
|
Fan Q, Neubauer P, Gimpel M. Production of soluble regulatory hydrogenase from Ralstonia eutropha in Escherichia coli using a fed-batch-based autoinduction system. Microb Cell Fact 2021; 20:201. [PMID: 34663324 PMCID: PMC8522226 DOI: 10.1186/s12934-021-01690-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 09/27/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Autoinduction systems can regulate protein production in Escherichia coli without the need to monitor cell growth or add inducer at the proper time following culture growth. Compared to classical IPTG induction, autoinduction provides a simple and fast way to obtain high protein yields. In the present study, we report on the optimization process for the enhanced heterologous production of the Ralstonia eutropha regulatory hydrogenase (RH) in E. coli using autoinduction. These autoinduction methods were combined with the EnPresso B fed-batch like growth system, which applies slow in situ enzymatic glucose release from a polymer to control cell growth and protein synthesis rate. RESULTS We were able to produce 125 mg L-1 RH corresponding to a productivity averaged over the whole process time of 3 mg (L h)-1 in shake flasks using classic single-shot IPTG induction. IPTG autoinduction resulted in a comparable volumetric RH yield of 112 mg L-1 and due to the shorter overall process time in a 1.6-fold higher productivity of 5 mg (L h)-1. In contrast, lactose autoinduction increased the volumetric yield more than 2.5-fold and the space time yield fourfold reaching 280 mg L-1 and 11.5 mg (L h)-1, respectively. Furthermore, repeated addition of booster increased RH production to 370 mg L-1, which to our knowledge is the highest RH concentration produced in E. coli to date. CONCLUSIONS The findings of this study confirm the general feasibility of the developed fed-batch based autoinduction system and provide an alternative to conventional induction systems for efficient recombinant protein production. We believe that the fed-batch based autoinduction system developed herein will favor the heterologous production of larger quantities of difficult-to-express complex enzymes to enable economical production of these kinds of proteins.
Collapse
Affiliation(s)
- Qin Fan
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Peter Neubauer
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany
| | - Matthias Gimpel
- Chair of Bioprocess Engineering, Technische Universität Berlin, Straße des 17. Juni 135, 10623, Berlin, Germany.
| |
Collapse
|
6
|
Coombes D, Davies JS, Newton-Vesty MC, Horne CR, Setty TG, Subramanian R, Moir JWB, Friemann R, Panjikar S, Griffin MDW, North RA, Dobson RCJ. The basis for non-canonical ROK family function in the N-acetylmannosamine kinase from the pathogen Staphylococcus aureus. J Biol Chem 2020; 295:3301-3315. [PMID: 31949045 DOI: 10.1074/jbc.ra119.010526] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/31/2019] [Indexed: 12/31/2022] Open
Abstract
In environments where glucose is limited, some pathogenic bacteria metabolize host-derived sialic acid as a nutrient source. N-Acetylmannosamine kinase (NanK) is the second enzyme of the bacterial sialic acid import and degradation pathway and adds phosphate to N-acetylmannosamine using ATP to prime the molecule for future pathway reactions. Sequence alignments reveal that Gram-positive NanK enzymes belong to the Repressor, ORF, Kinase (ROK) family, but many lack the canonical Zn-binding motif expected for this function, and the sugar-binding EXGH motif is altered to EXGY. As a result, it is unclear how they perform this important reaction. Here, we study the Staphylococcus aureus NanK (SaNanK), which is the first characterization of a Gram-positive NanK. We report the kinetic activity of SaNanK along with the ligand-free, N-acetylmannosamine-bound and substrate analog GlcNAc-bound crystal structures (2.33, 2.20, and 2.20 Å resolution, respectively). These demonstrate, in combination with small-angle X-ray scattering, that SaNanK is a dimer that adopts a closed conformation upon substrate binding. Analysis of the EXGY motif reveals that the tyrosine binds to the N-acetyl group to select for the "boat" conformation of N-acetylmannosamine. Moreover, SaNanK has a stacked arginine pair coordinated by negative residues critical for thermal stability and catalysis. These combined elements serve to constrain the active site and orient the substrate in lieu of Zn binding, representing a significant departure from canonical NanK binding. This characterization provides insight into differences in the ROK family and highlights a novel area for antimicrobial discovery to fight Gram-positive and S. aureus infections.
Collapse
Affiliation(s)
- David Coombes
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - James S Davies
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Michael C Newton-Vesty
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Christopher R Horne
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand
| | - Thanuja G Setty
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India; The University of Trans-Disciplinary Health Sciences and Technology (TDU), Bangalore, KA 560064, India
| | - Ramaswamy Subramanian
- Institute for Stem Cell Biology and Regenerative Medicine, NCBS, GKVK Campus, Bellary Road, Bangalore, Karnataka 560 065, India
| | - James W B Moir
- Department of Biology, University of York, Helsington, York YO10 5DD, United Kingdom
| | - Rosmarie Friemann
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Guldhedsgatan 10A, 413 46 Gothenburg, Sweden; Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, 40530 Gothenburg, Sweden
| | - Santosh Panjikar
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia; Australian Synchrotron, ANSTO, Victoria 3168, Australia
| | - Michael D W Griffin
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rachel A North
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, Christchurch 8140, New Zealand; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
7
|
Crowley EL, Rafferty SP. Review of lactose-driven auto-induction expression of isotope-labelled proteins. Protein Expr Purif 2019; 157:70-85. [PMID: 30708035 DOI: 10.1016/j.pep.2019.01.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 01/18/2019] [Indexed: 02/06/2023]
Abstract
NMR is an important method in the structural and functional characterization of proteins, but such experiments typically require isotopic labelling because of the low natural abundance of the nuclei of interest. Isotope-labelled protein for NMR experiments is typically obtained from IPTG-inducible bacterial expression systems in a minimal media that contains labelled carbon or nitrogen sources. Optimization of expression conditions is crucial yet challenging; large amounts of labelled protein are desired, yet protein yields are lower in minimal media, while the labelled precursors are expensive. Faced with these challenges there is a growing body of literature that apply innovative methods of induction to optimize the yield of isotope-labelled protein. A promising technique is lactose-driven auto-induction as it mitigates user intervention and can lead to higher protein yields. This review assesses the current advances and limitations surrounding the ability of researchers to isotope label proteins using auto-induction, and it identifies key components for optimization.
Collapse
Affiliation(s)
- Erika L Crowley
- Environmental and Life Sciences Graduate Program, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| | - Steven P Rafferty
- Department of Chemistry, Trent University, 1600 West Bank Drive, Peterborough, ON, K9J 0G2, Canada.
| |
Collapse
|
8
|
Muzika M, Muskat NH, Sarid S, Ben-David O, Mehl RA, Arbely E. Chemically-defined lactose-based autoinduction medium for site-specific incorporation of non-canonical amino acids into proteins. RSC Adv 2018; 8:25558-25567. [PMID: 30713681 PMCID: PMC6333248 DOI: 10.1039/c8ra04359k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 07/08/2018] [Indexed: 11/21/2022] Open
Abstract
Genetic code expansion technology enables the site-specific incorporation of dozens of non-canonical amino acids (NCAAs) into proteins expressed in live cells. The NCAAs can introduce various chemical functionalities into proteins, ranging from natural post-translational modifications, to spectroscopic probes and chemical handles for bioorthogonal reactions. These chemical groups provide powerful tools for structural, biochemical, and biophysical studies, which may require significant quantities of recombinantly expressed proteins. NCAAs are usually encoded by an in-frame stop codon, such as the TAG (amber) stop codon, which leads to the expression of C-terminally truncated proteins. In addition, the incubation medium should be supplemented with the NCAA at a final concentration of 1-10 mM, which may be challenging when the availability of the NCAA is limited. Hence, bacterial expression of proteins carrying NCAAs can benefit from improvement in protein yield per given amount of added NCAA. Here, we demonstrate the applicability of an optimized chemically-defined lactose-based autoinduction (AI) medium to the expression of proteins carrying a NCAA, using the archaeal pyrrolysyl-tRNA synthetase/tRNA pair from the Methanosarcina genus. Per given amount of added NCAA, the use of AI medium improved protein expression levels by up to 3-fold, compared to IPTG induction, without an increase in misincorporation of canonical amino acids in response to the in-frame stop codon. The suggested medium composition can be used with various Escherichia coli variants transformed with different expression vectors and incubated at different temperatures.
Collapse
Affiliation(s)
- Michael Muzika
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Natali H Muskat
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Shani Sarid
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Oshrit Ben-David
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, 97331, Oregon, USA
| | - Eyal Arbely
- Department of Chemistry and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel. ; ; Tel: +972-(0)8-6428739
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
9
|
Ahmad I, Nawaz N, Darwesh NM, ur Rahman S, Mustafa MZ, Khan SB, Patching SG. Overcoming challenges for amplified expression of recombinant proteins using Escherichia coli. Protein Expr Purif 2018; 144:12-18. [DOI: 10.1016/j.pep.2017.11.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 11/15/2017] [Accepted: 11/21/2017] [Indexed: 11/28/2022]
|
10
|
Chang CY, Lohman JR, Huang T, Michalska K, Bigelow L, Rudolf JD, Jedrzejczak R, Yan X, Ma M, Babnigg G, Joachimiak A, Phillips GN, Shen B. Structural Insights into the Free-Standing Condensation Enzyme SgcC5 Catalyzing Ester-Bond Formation in the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027. Biochemistry 2018. [PMID: 29533601 DOI: 10.1021/acs.biochem.8b00174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
C-1027 is a chromoprotein enediyne antitumor antibiotic, consisting of the CagA apoprotein and the C-1027 chromophore. The C-1027 chromophore features a nine-membered enediyne core appended with three peripheral moieties, including an ( S)-3-chloro-5-hydroxy-β-tyrosine. In a convergent biosynthesis of the C-1027 chromophore, the ( S)-3-chloro-5-hydroxy-β-tyrosine moiety is appended to the enediyne core by the free-standing condensation enzyme SgcC5. Unlike canonical condensation domains from the modular nonribosomal peptide synthetases that catalyze amide-bond formation, SgcC5 catalyzes ester-bond formation, as demonstrated in vitro, between SgcC2-tethered ( S)-3-chloro-5-hydroxy-β-tyrosine and ( R)-1-phenyl-1,2-ethanediol, a mimic of the enediyne core as an acceptor substrate. Here, we report that (i) genes encoding SgcC5 homologues are widespread among both experimentally confirmed and bioinformatically predicted enediyne biosynthetic gene clusters, forming a new clade of condensation enzymes, (ii) SgcC5 shares a similar overall structure with the canonical condensation domains but forms a homodimer in solution, the active site of which is located in a cavity rather than a tunnel typically seen in condensation domains, and (iii) the catalytic histidine of SgcC5 activates the 2-hydroxyl group, while a hydrogen-bond network in SgcC5 prefers the R-enantiomer of the acceptor substrate, accounting for the regio- and stereospecific ester-bond formation between SgcC2-tethered ( S)-3-chloro-5-hydroxy-β-tyrosine and ( R)-1-phenyl-1,2-ethanediol upon acid-base catalysis. These findings expand the catalytic repertoire and reveal new insights into the structure and mechanism of condensation enzymes.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Jeremy R Lohman
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Tingting Huang
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Karolina Michalska
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Lance Bigelow
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Jeffrey D Rudolf
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Robert Jedrzejczak
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Xiaohui Yan
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Ming Ma
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.,Center for Structural Genomics of Infectious Diseases , University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States.,Center for Structural Genomics of Infectious Diseases , University of Chicago , Chicago , Illinois 60637 , United States.,Structural Biology Center, Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - George N Phillips
- BioSciences at Rice and Department of Chemistry , Rice University , Houston , Texas 77251 , United States
| | - Ben Shen
- Department of Chemistry , The Scripps Research Institute , Jupiter , Florida 33458 , United States.,Department of Molecular Medicine , The Scripps Research Institute , Jupiter , Florida 33458 , United States.,Natural Products Library Initiative at The Scripps Research Institute , The Scripps Research Institute , Jupiter , Florida 33458 , United States
| |
Collapse
|
11
|
Mori T, Ito T, Liu S, Ando H, Sakamoto S, Yamaguchi Y, Tokunaga E, Shibata N, Handa H, Hakoshima T. Structural basis of thalidomide enantiomer binding to cereblon. Sci Rep 2018; 8:1294. [PMID: 29358579 PMCID: PMC5778007 DOI: 10.1038/s41598-018-19202-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/22/2017] [Indexed: 11/09/2022] Open
Abstract
Thalidomide possesses two optical isomers which have been reported to exhibit different pharmacological and toxicological activities. However, the precise mechanism by which the two isomers exert their different activities remains poorly understood. Here, we present structural and biochemical studies of (S)- and (R)-enantiomers bound to the primary target of thalidomide, cereblon (CRBN). Our biochemical studies employed deuterium-substituted thalidomides to suppress optical isomer conversion, and established that the (S)-enantiomer exhibited ~10-fold stronger binding to CRBN and inhibition of self-ubiquitylation compared to the (R)-enantiomer. The crystal structures of the thalidomide-binding domain of CRBN bound to each enantiomer show that both enantiomers bind the tri-Trp pocket, although the bound form of the (S)-enantiomer exhibited a more relaxed glutarimide ring conformation. The (S)-enantiomer induced greater teratogenic effects on fins of zebrafish compared to the (R)-enantiomer. This study has established a mechanism by which thalidomide exerts its effects in a stereospecific manner at the atomic level.
Collapse
Affiliation(s)
- Tomoyuki Mori
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan
| | - Takumi Ito
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, 160-8402, Japan.,PRESTO, JST, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012, Japan
| | - Shujie Liu
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Hideki Ando
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Satoshi Sakamoto
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Yuki Yamaguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Etsuko Tokunaga
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Norio Shibata
- Department of Nanopharmaceutical Sciences, Nagoya Institute of Technology, Gokiso, Showa-ku, Nagoya, 466-8555, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo, 160-8402, Japan.
| | - Toshio Hakoshima
- Structural Biology Laboratory, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara, 630-0192, Japan.
| |
Collapse
|
12
|
Pandey A, Shin K, Patterson RE, Liu XQ, Rainey JK. Current strategies for protein production and purification enabling membrane protein structural biology. Biochem Cell Biol 2016; 94:507-527. [PMID: 27010607 PMCID: PMC5752365 DOI: 10.1139/bcb-2015-0143] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Membrane proteins are still heavily under-represented in the protein data bank (PDB), owing to multiple bottlenecks. The typical low abundance of membrane proteins in their natural hosts makes it necessary to overexpress these proteins either in heterologous systems or through in vitro translation/cell-free expression. Heterologous expression of proteins, in turn, leads to multiple obstacles, owing to the unpredictability of compatibility of the target protein for expression in a given host. The highly hydrophobic and (or) amphipathic nature of membrane proteins also leads to challenges in producing a homogeneous, stable, and pure sample for structural studies. Circumventing these hurdles has become possible through the introduction of novel protein production protocols; efficient protein isolation and sample preparation methods; and, improvement in hardware and software for structural characterization. Combined, these advances have made the past 10-15 years very exciting and eventful for the field of membrane protein structural biology, with an exponential growth in the number of solved membrane protein structures. In this review, we focus on both the advances and diversity of protein production and purification methods that have allowed this growth in structural knowledge of membrane proteins through X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy, and cryo-electron microscopy (cryo-EM).
Collapse
Affiliation(s)
- Aditya Pandey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Kyungsoo Shin
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Robin E. Patterson
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Xiang-Qin Liu
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Jan K. Rainey
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
- Department of Chemistry, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| |
Collapse
|
13
|
Chang CY, Lohman JR, Cao H, Tan K, Rudolf JD, Ma M, Xu W, Bingman CA, Yennamalli RM, Bigelow L, Babnigg G, Yan X, Joachimiak A, Phillips GN, Shen B. Crystal Structures of SgcE6 and SgcC, the Two-Component Monooxygenase That Catalyzes Hydroxylation of a Carrier Protein-Tethered Substrate during the Biosynthesis of the Enediyne Antitumor Antibiotic C-1027 in Streptomyces globisporus. Biochemistry 2016; 55:5142-54. [PMID: 27560143 PMCID: PMC5024704 DOI: 10.1021/acs.biochem.6b00713] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
![]()
C-1027
is a chromoprotein enediyne antitumor antibiotic produced
by Streptomyces globisporus. In the last step of
biosynthesis of the (S)-3-chloro-5-hydroxy-β-tyrosine
moiety of the C-1027 enediyne chromophore, SgcE6 and SgcC compose
a two-component monooxygenase that hydroxylates the C-5 position of
(S)-3-chloro-β-tyrosine. This two-component
monooxygenase is remarkable for two reasons. (i) SgcE6 specifically
reacts with FAD and NADH, and (ii) SgcC is active with only the peptidyl
carrier protein (PCP)-tethered substrate. To address the molecular
details of substrate specificity, we determined the crystal structures
of SgcE6 and SgcC at 1.66 and 2.63 Å resolution, respectively.
SgcE6 shares a similar β-barrel fold with the class I HpaC-like
flavin reductases. A flexible loop near the active site of SgcE6 plays
a role in FAD binding, likely by providing sufficient space to accommodate
the AMP moiety of FAD, when compared to that of FMN-utilizing homologues.
SgcC shows structural similarity to a few other known FADH2-dependent monooxygenases and sheds light on some biochemically but
not structurally characterized homologues. The crystal structures
reported here provide insights into substrate specificity, and comparison
with homologues provides a catalytic mechanism of the two-component,
FADH2-dependent monooxygenase (SgcE6 and SgcC) that catalyzes
the hydroxylation of a PCP-tethered substrate.
Collapse
Affiliation(s)
- Chin-Yuan Chang
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Jeremy R Lohman
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Hongnan Cao
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Kemin Tan
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jeffrey D Rudolf
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Ming Ma
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Weijun Xu
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Craig A Bingman
- Department of Biochemistry, University of Wisconsin-Madison , Madison, Wisconsin 53705, United States
| | - Ragothaman M Yennamalli
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States.,Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology , Waknaghat, Himachal Pradesh, India 173234
| | - Lance Bigelow
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Gyorgy Babnigg
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Xiaohui Yan
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| | - Andrzej Joachimiak
- Midwest Center for Structural Genomics and Structural Biology Center, Biosciences Division, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - George N Phillips
- BioScience at Rice and Department of Chemistry, Rice University , Houston, Texas 77251, United States
| | - Ben Shen
- Department of Chemistry, The Scripps Research Institute , Jupiter, Florida 33458, United States
| |
Collapse
|
14
|
Tong S, Lin Y, Lu S, Wang M, Bogdanov M, Zheng L. Structural Insight into Substrate Selection and Catalysis of Lipid Phosphate Phosphatase PgpB in the Cell Membrane. J Biol Chem 2016; 291:18342-52. [PMID: 27405756 DOI: 10.1074/jbc.m116.737874] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 12/19/2022] Open
Abstract
PgpB belongs to the lipid phosphate phosphatase protein family and is one of three bacterial integral membrane phosphatases catalyzing dephosphorylation of phosphatidylglycerol phosphate (PGP) to generate phosphatidylglycerol. Although the structure of its apo form became recently available, the mechanisms of PgpB substrate binding and catalysis are still unclear. We found that PgpB was inhibited by phosphatidylethanolamine (PE) in a competitive mode in vitro Here we report the crystal structure of the lipid-bound form of PgpB. The structure shows that a PE molecule is stabilized in a membrane-embedded tunnel formed by TM3 and the "PSGH" fingerprint peptide near the catalytic site, providing structural insight into PgpB substrate binding mechanism. Noteworthy, in silico docking of varied lipid phosphates exhibited similar substrate binding modes to that of PE, and the residues in the lipid tunnel appear to be important for PgpB catalysis. The catalytic triad in the active site is essential for dephosphorylating substrates lysophosphatidic acid, phosphatidic acid, or sphingosine-1-phosphate but surprisingly not for the native substrate PGP. Remarkably, residue His-207 alone is sufficient to hydrolyze PGP, indicating a specific catalytic mechanism for PgpB in PG biosynthesis. We also identified two novel sensor residues, Lys-93 and Lys-97, on TM3. Our data show that Lys-97 is essential for the recognition of lyso-form substrates. Modification at the Lys-93 position may alter substrate specificity of lipid phosphate phosphatase proteins in prokaryotes versus eukaryotes. These studies reveal new mechanisms of lipid substrate selection and catalysis by PgpB and suggest that the enzyme rests in a PE-stabilized state in the bilayer.
Collapse
Affiliation(s)
- Shuilong Tong
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Yibin Lin
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Shuo Lu
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Meitian Wang
- Swiss Light Source, Paul Scherrer Institute, CH-5232 Villigen PSI, Switzerland
| | - Mikhail Bogdanov
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, Houston, Texas 77030 and
| | - Lei Zheng
- From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, University of Texas Houston Medical School, Houston, Texas 77030 and
| |
Collapse
|
15
|
Pereira JH, Heins RA, Gall DL, McAndrew RP, Deng K, Holland KC, Donohue TJ, Noguera DR, Simmons BA, Sale KL, Ralph J, Adams PD. Structural and Biochemical Characterization of the Early and Late Enzymes in the Lignin β-Aryl Ether Cleavage Pathway from Sphingobium sp. SYK-6. J Biol Chem 2016; 291:10228-38. [PMID: 26940872 PMCID: PMC4858972 DOI: 10.1074/jbc.m115.700427] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Indexed: 12/23/2022] Open
Abstract
There has been great progress in the development of technology for the conversion of lignocellulosic biomass to sugars and subsequent fermentation to fuels. However, plant lignin remains an untapped source of materials for production of fuels or high value chemicals. Biological cleavage of lignin has been well characterized in fungi, in which enzymes that create free radical intermediates are used to degrade this material. In contrast, a catabolic pathway for the stereospecific cleavage of β-aryl ether units that are found in lignin has been identified in Sphingobium sp. SYK-6 bacteria. β-Aryl ether units are typically abundant in lignin, corresponding to 50–70% of all of the intermonomer linkages. Consequently, a comprehensive understanding of enzymatic β-aryl ether (β-ether) cleavage is important for future efforts to biologically process lignin and its breakdown products. The crystal structures and biochemical characterization of the NAD-dependent dehydrogenases (LigD, LigO, and LigL) and the glutathione-dependent lyase LigG provide new insights into the early and late enzymes in the β-ether degradation pathway. We present detailed information on the cofactor and substrate binding sites and on the catalytic mechanisms of these enzymes, comparing them with other known members of their respective families. Information on the Lig enzymes provides new insight into their catalysis mechanisms and can inform future strategies for using aromatic oligomers derived from plant lignin as a source of valuable aromatic compounds for biofuels and other bioproducts.
Collapse
Affiliation(s)
- Jose Henrique Pereira
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Richard A Heins
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Daniel L Gall
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, the Departments of Civil and Environmental Engineering and
| | - Ryan P McAndrew
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Kai Deng
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Keefe C Holland
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Timothy J Donohue
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Daniel R Noguera
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, the Departments of Civil and Environmental Engineering and
| | - Blake A Simmons
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Kenneth L Sale
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - John Ralph
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, and
| | - Paul D Adams
- From the Joint BioEnergy Institute, Emeryville, California 94608, the Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, the Department of Bioengineering, University of California, Berkeley, California 94720
| |
Collapse
|
16
|
Haertlein M, Moulin M, Devos JM, Laux V, Dunne O, Trevor Forsyth V. Biomolecular Deuteration for Neutron Structural Biology and Dynamics. Methods Enzymol 2016; 566:113-57. [DOI: 10.1016/bs.mie.2015.11.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Helmich KE, Pereira JH, Gall DL, Heins RA, McAndrew RP, Bingman C, Deng K, Holland KC, Noguera DR, Simmons BA, Sale KL, Ralph J, Donohue TJ, Adams PD, Phillips GN. Structural Basis of Stereospecificity in the Bacterial Enzymatic Cleavage of β-Aryl Ether Bonds in Lignin. J Biol Chem 2015; 291:5234-46. [PMID: 26637355 PMCID: PMC4777856 DOI: 10.1074/jbc.m115.694307] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Indexed: 11/23/2022] Open
Abstract
Lignin is a combinatorial polymer comprising monoaromatic units that are linked via covalent bonds. Although lignin is a potential source of valuable aromatic chemicals, its recalcitrance to chemical or biological digestion presents major obstacles to both the production of second-generation biofuels and the generation of valuable coproducts from lignin's monoaromatic units. Degradation of lignin has been relatively well characterized in fungi, but it is less well understood in bacteria. A catabolic pathway for the enzymatic breakdown of aromatic oligomers linked via β-aryl ether bonds typically found in lignin has been reported in the bacterium Sphingobium sp. SYK-6. Here, we present x-ray crystal structures and biochemical characterization of the glutathione-dependent β-etherases, LigE and LigF, from this pathway. The crystal structures show that both enzymes belong to the canonical two-domain fold and glutathione binding site architecture of the glutathione S-transferase family. Mutagenesis of the conserved active site serine in both LigE and LigF shows that, whereas the enzymatic activity is reduced, this amino acid side chain is not absolutely essential for catalysis. The results include descriptions of cofactor binding sites, substrate binding sites, and catalytic mechanisms. Because β-aryl ether bonds account for 50–70% of all interunit linkages in lignin, understanding the mechanism of enzymatic β-aryl ether cleavage has significant potential for informing ongoing studies on the valorization of lignin.
Collapse
Affiliation(s)
- Kate E Helmich
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
| | - Jose Henrique Pereira
- the Joint BioEnergy Institute, Emeryville, California 94608, the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Daniel L Gall
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, the Departments of Civil and Environmental Engineering and
| | - Richard A Heins
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Ryan P McAndrew
- the Joint BioEnergy Institute, Emeryville, California 94608, the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Craig Bingman
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706
| | - Kai Deng
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Keefe C Holland
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Daniel R Noguera
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, the Departments of Civil and Environmental Engineering and
| | - Blake A Simmons
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - Kenneth L Sale
- the Joint BioEnergy Institute, Emeryville, California 94608, the Biological and Engineering Sciences Center, Sandia National Laboratories, Livermore, California 94551
| | - John Ralph
- From the Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726
| | - Timothy J Donohue
- the United States Department of Energy Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin, Madison, Wisconsin 53726, Bacteriology, University of Wisconsin, Madison, Wisconsin 53706,
| | - Paul D Adams
- the Joint BioEnergy Institute, Emeryville, California 94608, the Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, the Department of Bioengineering, University of California, Berkeley, California 94720, and
| | - George N Phillips
- the Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77251
| |
Collapse
|
18
|
Wang F, Singh S, Xu W, Helmich KE, Miller MD, Cao H, Bingman CA, Thorson JS, Phillips GN. Structural Basis for the Stereochemical Control of Amine Installation in Nucleotide Sugar Aminotransferases. ACS Chem Biol 2015; 10:2048-56. [PMID: 26023720 DOI: 10.1021/acschembio.5b00244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sugar aminotransferases (SATs) are an important class of tailoring enzymes that catalyze the 5'-pyridoxal phosphate (PLP)-dependent stereo- and regiospecific installation of an amino group from an amino acid donor (typically L-Glu or L-Gln) to a corresponding ketosugar nucleotide acceptor. Herein we report the strategic structural study of two homologous C4 SATs (Micromonospora echinospora CalS13 and Escherichia coli WecE) that utilize identical substrates but differ in their stereochemistry of aminotransfer. This study reveals for the first time a new mode of SAT sugar nucleotide binding and, in conjunction with previously reported SAT structural studies, provides the basis from which to propose a universal model for SAT stereo- and regiochemical control of amine installation. Specifically, the universal model put forth highlights catalytic divergence to derive solely from distinctions within nucleotide sugar orientation upon binding within a relatively fixed SAT active site where the available ligand bound structures of the three out of four representative C3 and C4 SAT examples provide a basis for the overall model. Importantly, this study presents a new predictive model to support SAT functional annotation, biochemical study and rational engineering.
Collapse
Affiliation(s)
| | - Shanteri Singh
- Center
for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | | | - Kate E. Helmich
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | | | | | - Craig A. Bingman
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| | - Jon S. Thorson
- Center
for Pharmaceutical Research and Innovation, University of Kentucky College of Pharmacy, 789 South Limestone Street, Lexington, Kentucky 40536-0596, United States
| | - George N. Phillips
- Department
of Biochemistry, University of Wisconsin—Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Faust G, Stand A, Weuster-Botz D. IPTG can replace lactose in auto-induction media to enhance protein expression in batch-culturedEscherichia coli. Eng Life Sci 2015. [DOI: 10.1002/elsc.201500011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Georg Faust
- Lehrstuhl für Bioverfahrenstechnik; Technische Universität München; Garching Germany
| | - Alexandra Stand
- Lehrstuhl für Bioverfahrenstechnik; Technische Universität München; Garching Germany
| | - Dirk Weuster-Botz
- Lehrstuhl für Bioverfahrenstechnik; Technische Universität München; Garching Germany
| |
Collapse
|
20
|
Guthertz N, Klopp J, Winterhalter A, Fernández C, Gossert AD. Auto-inducing media for uniform isotope labeling of proteins with (15)N, (13)C and (2)H. JOURNAL OF BIOMOLECULAR NMR 2015; 62:169-177. [PMID: 25893498 DOI: 10.1007/s10858-015-9931-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/10/2015] [Indexed: 06/04/2023]
Abstract
Auto-inducing media for protein expression offer many advantages like robust reproducibility, high yields of soluble protein and much reduced workload. Here, an auto-inducing medium for uniform isotope labelling of proteins with (15)N, (13)C and/or (2)H in E. coli is presented. So far, auto-inducing media have not found widespread application in the NMR field, because of the prohibitively high cost of labeled lactose, which is an essential ingredient of such media. Here, we propose using lactose that is only selectively labeled on the glucose moiety. It can be synthesized from inexpensive and readily available substrates: labeled glucose and unlabeled activated galactose. With this approach, uniformly isotope labeled proteins were expressed in unattended auto-inducing cultures with incorporation of (13)C, (15)N of 96.6% and (2)H, (15)N of 98.8%. With the present protocol, the NMR community could profit from the many advantages that auto-inducing media offer.
Collapse
Affiliation(s)
- Nicolas Guthertz
- Division of Structural Biology, Institute of Cancer Research, London, UK
| | | | | | | | | |
Collapse
|
21
|
Kim DJ, Bitto E, Bingman CA, Kim HJ, Han BW, Phillips GN. Crystal structure of the protein At3g01520, a eukaryotic universal stress protein-like protein from Arabidopsis thaliana in complex with AMP. Proteins 2015; 83:1368-73. [PMID: 25921306 PMCID: PMC4624624 DOI: 10.1002/prot.24821] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/20/2015] [Accepted: 04/24/2015] [Indexed: 11/11/2022]
Abstract
Members of the universal stress protein (USP) family are conserved in a phylogenetically diverse range of prokaryotes, fungi, protists, and plants and confer abilities to respond to a wide range of environmental stresses. Arabidopsis thaliana contains 44 USP domain‐containing proteins, and USP domain is found either in a small protein with unknown physiological function or in an N‐terminal portion of a multi‐domain protein, usually a protein kinase. Here, we report the first crystal structure of a eukaryotic USP‐like protein encoded from the gene At3g01520. The crystal structure of the protein At3g01520 was determined by the single‐wavelength anomalous dispersion method and refined to an R factor of 21.8% (Rfree = 26.1%) at 2.5 Å resolution. The crystal structure includes three At3g01520 protein dimers with one AMP molecule bound to each protomer, comprising a Rossmann‐like α/β overall fold. The bound AMP and conservation of residues in the ATP‐binding loop suggest that the protein At3g01520 also belongs to the ATP‐binding USP subfamily members. Proteins 2015; 83:1368–1373. © 2015 The Authors. Proteins: Structure, Function, and Bioinformatics Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Do Jin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - Eduard Bitto
- Department of Chemistry and Biochemistry, Georgian Court University, Lakewood, New Jersey, 08701
| | - Craig A Bingman
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin, 53706
| | - Hyun-Jung Kim
- Laboratory of Stem Cell and Molecular Pharmacology, College of Pharmacy, Chung-Ang University, Seoul, 156-756, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, 151-742, Korea
| | - George N Phillips
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin, 53706.,BioSciences at Rice and Department of Chemistry, Rice University, Houston, Texas, 77251
| |
Collapse
|
22
|
Expression platforms for producing eukaryotic proteins: a comparison of E. coli cell-based and wheat germ cell-free synthesis, affinity and solubility tags, and cloning strategies. ACTA ACUST UNITED AC 2015; 16:67-80. [PMID: 25854603 DOI: 10.1007/s10969-015-9198-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 03/25/2015] [Indexed: 10/23/2022]
Abstract
Vectors designed for protein production in Escherichia coli and by wheat germ cell-free translation were tested using 21 well-characterized eukaryotic proteins chosen to serve as controls within the context of a structural genomics pipeline. The controls were carried through cloning, small-scale expression trials, large-scale growth or synthesis, and purification. Successfully purified proteins were also subjected to either crystallization trials or (1)H-(15)N HSQC NMR analyses. Experiments evaluated: (1) the relative efficacy of restriction/ligation and recombinational cloning systems; (2) the value of maltose-binding protein (MBP) as a solubility enhancement tag; (3) the consequences of in vivo proteolysis of the MBP fusion as an alternative to post-purification proteolysis; (4) the effect of the level of LacI repressor on the yields of protein obtained from E. coli using autoinduction; (5) the consequences of removing the His tag from proteins produced by the cell-free system; and (6) the comparative performance of E. coli cells or wheat germ cell-free translation. Optimal promoter/repressor and fusion tag configurations for each expression system are discussed.
Collapse
|
23
|
Blumer-Schuette SE, Alahuhta M, Conway JM, Lee LL, Zurawski JV, Giannone RJ, Hettich RL, Lunin VV, Himmel ME, Kelly RM. Discrete and structurally unique proteins (tāpirins) mediate attachment of extremely thermophilic Caldicellulosiruptor species to cellulose. J Biol Chem 2015; 290:10645-56. [PMID: 25720489 DOI: 10.1074/jbc.m115.641480] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Indexed: 11/06/2022] Open
Abstract
A variety of catalytic and noncatalytic protein domains are deployed by select microorganisms to deconstruct lignocellulose. These extracellular proteins are used to attach to, modify, and hydrolyze the complex polysaccharides present in plant cell walls. Cellulolytic enzymes, often containing carbohydrate-binding modules, are key to this process; however, these enzymes are not solely responsible for attachment. Few mechanisms of attachment have been discovered among bacteria that do not form large polypeptide structures, called cellulosomes, to deconstruct biomass. In this study, bioinformatics and proteomics analyses identified unique, discrete, hypothetical proteins ("tāpirins," origin from Māori: to join), not directly associated with cellulases, that mediate attachment to cellulose by species in the noncellulosomal, extremely thermophilic bacterial genus Caldicellulosiruptor. Two tāpirin genes are located directly downstream of a type IV pilus operon in strongly cellulolytic members of the genus, whereas homologs are absent from the weakly cellulolytic Caldicellulosiruptor species. Based on their amino acid sequence, tāpirins are specific to these extreme thermophiles. Tāpirins are also unusual in that they share no detectable protein domain signatures with known polysaccharide-binding proteins. Adsorption isotherm and trans vivo analyses demonstrated the carbohydrate-binding module-like affinity of the tāpirins for cellulose. Crystallization of a cellulose-binding truncation from one tāpirin indicated that these proteins form a long β-helix core with a shielded hydrophobic face. Furthermore, they are structurally unique and define a new class of polysaccharide adhesins. Strongly cellulolytic Caldicellulosiruptor species employ tāpirins to complement substrate-binding proteins from the ATP-binding cassette transporters and multidomain extracellular and S-layer-associated glycoside hydrolases to process the carbohydrate content of lignocellulose.
Collapse
Affiliation(s)
- Sara E Blumer-Schuette
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905
| | - Markus Alahuhta
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Jonathan M Conway
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905
| | - Laura L Lee
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905
| | - Jeffrey V Zurawski
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905
| | - Richard J Giannone
- the Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Robert L Hettich
- the Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831
| | - Vladimir V Lunin
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Michael E Himmel
- the Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, and
| | - Robert M Kelly
- From the Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina 27695-7905,
| |
Collapse
|
24
|
Ray S, Banerjee V, Blaise M, Banerjee B, Das KP, Kern D, Banerjee R. Critical role of zinc ion on E. coli glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) structure and function. Protein J 2014; 33:143-9. [PMID: 24505021 DOI: 10.1007/s10930-014-9546-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glutamyl-queuosine-tRNA(Asp) synthetase (Glu-Q-RS) and glutamyl-tRNA synthetase (GluRS), differ widely by their function although they share close structural resemblance within their catalytic core of GluRS. In particular both Escherichia coli GluRS and Glu-Q-RS contain a single zinc-binding site in their putative tRNA acceptor stem-binding domain. It has been shown that the zinc is crucial for correct positioning of the tRNA(Glu) acceptor-end in the active site of E. coli GluRS. To address the role of zinc ion in Glu-Q-RS, the C101S/C103S Glu-Q-RS variant is constructed. Energy dispersive X-ray fluorescence show that the zinc ion still remained coordinated but the variant became structurally labile and acquired aggregation capacity. The extent of aggregation of the protein is significantly decreased in presence of the small substrates and more particularly by adenosine triphosphate. Addition of zinc increased significantly the solubility of the variant. The aminoacylation assay reveals a decrease in activity of the variant even after addition of zinc as compared to the wild-type, although the secondary structure of the protein is not altered as shown by the Fourier transform infrared spectroscopy study.
Collapse
Affiliation(s)
- Sutapa Ray
- Department of Biotechnology and Dr. BC Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700 019, India
| | | | | | | | | | | | | |
Collapse
|
25
|
Park MS, Bitto E, Kim KR, Bingman CA, Miller MD, Kim HJ, Han BW, Phillips GN. Crystal structure of human protein N-terminal glutamine amidohydrolase, an initial component of the N-end rule pathway. PLoS One 2014; 9:e111142. [PMID: 25356641 PMCID: PMC4214742 DOI: 10.1371/journal.pone.0111142] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Accepted: 09/28/2014] [Indexed: 11/22/2022] Open
Abstract
The N-end rule states that half-life of protein is determined by their N-terminal amino acid residue. N-terminal glutamine amidohydrolase (Ntaq) converts N-terminal glutamine to glutamate by eliminating the amine group and plays an essential role in the N-end rule pathway for protein degradation. Here, we report the crystal structure of human Ntaq1 bound with the N-terminus of a symmetry-related Ntaq1 molecule at 1.5 Å resolution. The structure reveals a monomeric globular protein with alpha-beta-alpha three-layer sandwich architecture. The catalytic triad located in the active site, Cys-His-Asp, is highly conserved among Ntaq family and transglutaminases from diverse organisms. The N-terminus of a symmetry-related Ntaq1 molecule bound in the substrate binding cleft and the active site suggest possible substrate binding mode of hNtaq1. Based on our crystal structure of hNtaq1 and docking study with all the tripeptides with N-terminal glutamine, we propose how the peptide backbone recognition patch of hNtaq1 forms nonspecific interactions with N-terminal peptides of substrate proteins. Upon binding of a substrate with N-terminal glutamine, active site catalytic triad mediates the deamination of the N-terminal residue to glutamate by a mechanism analogous to that of cysteine proteases.
Collapse
Affiliation(s)
- Mi Seul Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Eduard Bitto
- Department of Chemistry and Biochemistry, Georgian Court University, Lakewood, New Jersey, United States of America
| | - Kyung Rok Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Craig A. Bingman
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
| | - Mitchell D. Miller
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
- * E-mail: (BWH); (GNP)
| | - George N. Phillips
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin Madison, Madison, Wisconsin, United States of America
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, United States of America
- * E-mail: (BWH); (GNP)
| |
Collapse
|
26
|
Auto-induction-based Rapid Evaluation of Extracellular Enzyme Expression from Lac Operator-involved Recombinant Escherichia coli. Appl Biochem Biotechnol 2014; 174:2516-26. [DOI: 10.1007/s12010-014-1201-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/22/2014] [Indexed: 12/30/2022]
|
27
|
Wang F, Singh S, Zhang J, Huber TD, Helmich KE, Sunkara M, Hurley KA, Goff RD, Bingman CA, Morris AJ, Thorson JS, Phillips GN. Understanding molecular recognition of promiscuity of thermophilic methionine adenosyltransferase sMAT from Sulfolobus solfataricus. FEBS J 2014; 281:4224-39. [PMID: 24649856 DOI: 10.1111/febs.12784] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/06/2014] [Accepted: 03/12/2014] [Indexed: 12/28/2022]
Abstract
UNLABELLED Methionine adenosyltransferase (MAT) is a family of enzymes that utilizes ATP and methionine to produce S-adenosylmethionine (AdoMet), the most crucial methyl donor in the biological methylation of biomolecules and bioactive natural products. Here, we report that the MAT from Sulfolobus solfataricus (sMAT), an enzyme from a poorly explored class of the MAT family, has the ability to produce a range of differentially alkylated AdoMet analogs in the presence of non-native methionine analogs and ATP. To investigate the molecular basis for AdoMet analog production, we have crystallized the sMAT in the AdoMet bound, S-adenosylethionine (AdoEth) bound and unbound forms. Notably, among these structures, the AdoEth bound form offers the first MAT structure containing a non-native product, and cumulatively these structures add new structural insight into the MAT family and allow for detailed active site comparison with its homologs in Escherichia coli and human. As a thermostable MAT structure from archaea, the structures herein also provide a basis for future engineering to potentially broaden AdoMet analog production as reagents for methyltransferase-catalyzed 'alkylrandomization' and/or the study of methylation in the context of biological processes. DATABASES PDB IDs: 4HPV, 4L7I, 4K0B and 4L2Z. EC 2.5.1.6 STRUCTURED DIGITAL ABSTRACT: • sMAT and sMAT bind by x-ray crystallography (View interaction).
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Desai KK, Cheng CL, Bingman CA, Phillips GN, Raines RT. A tRNA splicing operon: Archease endows RtcB with dual GTP/ATP cofactor specificity and accelerates RNA ligation. Nucleic Acids Res 2014; 42:3931-42. [PMID: 24435797 PMCID: PMC3973293 DOI: 10.1093/nar/gkt1375] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Archease is a 16-kDa protein that is conserved in all three domains of life. In diverse bacteria and archaea, the genes encoding Archease and the tRNA ligase RtcB are localized into an operon. Here we provide a rationale for this operon organization by showing that Archease and RtcB from Pyrococcus horikoshii function in tandem, with Archease altering the catalytic properties of the RNA ligase. RtcB catalyzes the GTP and Mn(II)-dependent joining of either 2',3'-cyclic phosphate or 3'-phosphate termini to 5'-hydroxyl termini. We find that catalytic concentrations of Archease are sufficient to activate RtcB, and that Archease accelerates both the RNA 3'-P guanylylation and ligation steps. In addition, we show that Archease can alter the NTP specificity of RtcB such that ATP, dGTP or ITP is used efficiently. Moreover, RtcB variants that have inactivating substitutions in the guanine-binding pocket can be rescued by the addition of Archease. We also present a 1.4 Å-resolution crystal structure of P. horikoshii Archease that reveals a metal-binding site consisting of conserved carboxylates located at the protein tip. Substitution of the Archease metal-binding residues drastically reduced Archease-dependent activation of RtcB. Thus, evolution has sought to co-express archease and rtcB by creating a tRNA splicing operon.
Collapse
Affiliation(s)
- Kevin K Desai
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA, Department of Biochemistry and Cell Biology and Department of Chemistry, Rice University, Houston, TX 77005, USA and Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | | | | | |
Collapse
|
29
|
Autocatalytically generated Thr-Gln ester bond cross-links stabilize the repetitive Ig-domain shaft of a bacterial cell surface adhesin. Proc Natl Acad Sci U S A 2013; 111:1367-72. [PMID: 24344302 DOI: 10.1073/pnas.1316855111] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gram-positive bacteria are decorated by a variety of proteins that are anchored to the cell wall and project from it to mediate colonization, attachment to host cells, and pathogenesis. These proteins, and protein assemblies, such as pili, are typically long and thin yet must withstand high levels of mechanical stress and proteolytic attack. The recent discovery of intramolecular isopeptide bond cross-links, formed autocatalytically, in the pili from Streptococcus pyogenes has highlighted the role that such cross-links can play in stabilizing such structures. We have investigated a putative cell-surface adhesin from Clostridium perfringens comprising an N-terminal adhesin domain followed by 11 repeat domains. The crystal structure of a two-domain fragment shows that each domain has an IgG-like fold and contains an unprecedented ester bond joining Thr and Gln side chains. MS confirms the presence of these bonds. We show that the bonds form through an autocatalytic intramolecular reaction catalyzed by an adjacent His residue in a serine protease-like mechanism. Two buried acidic residues assist in the reaction. By mutagenesis, we show that loss of the ester bond reduces the thermal stability drastically and increases susceptibility to proteolysis. As in pilin domains, the bonds are placed at a strategic position joining the first and last strands, even though the Ig fold type differs. Bioinformatic analysis suggests that similar domains and ester bond cross-links are widespread in Gram-positive bacterial adhesins.
Collapse
|
30
|
Canning P, Rea D, Morty RE, Fülöp V. Crystal structures of Trypanosoma brucei oligopeptidase B broaden the paradigm of catalytic regulation in prolyl oligopeptidase family enzymes. PLoS One 2013; 8:e79349. [PMID: 24265767 PMCID: PMC3827171 DOI: 10.1371/journal.pone.0079349] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
Oligopeptidase B cleaves after basic amino acids in peptides up to 30 residues. As a virulence factor in bacteria and trypanosomatid pathogens that is absent in higher eukaryotes, this is a promising drug target. Here we present ligand-free open state and inhibitor-bound closed state crystal structures of oligopeptidase B from Trypanosoma brucei, the causative agent of African sleeping sickness. These (and related) structures show the importance of structural dynamics, governed by a fine enthalpic and entropic balance, in substrate size selectivity and catalysis. Peptides over 30 residues cannot fit the enzyme cavity, preventing the complete domain closure required for a key propeller Asp/Glu to fix the catalytic His and Arg in the catalytically competent conformation. This size exclusion mechanism protects larger peptides and proteins from degradation. Similar bacterial prolyl endopeptidase and archael acylaminoacyl peptidase structures demonstrate this mechanism is conserved among oligopeptidase family enzymes across all three domains of life.
Collapse
Affiliation(s)
- Peter Canning
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Dean Rea
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Rory E. Morty
- Department of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Vilmos Fülöp
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
31
|
Ukkonen K, Mayer S, Vasala A, Neubauer P. Use of slow glucose feeding as supporting carbon source in lactose autoinduction medium improves the robustness of protein expression at different aeration conditions. Protein Expr Purif 2013; 91:147-54. [DOI: 10.1016/j.pep.2013.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 07/26/2013] [Accepted: 07/31/2013] [Indexed: 11/16/2022]
|
32
|
Cai K, Frederick RO, Kim JH, Reinen NM, Tonelli M, Markley JL. Human mitochondrial chaperone (mtHSP70) and cysteine desulfurase (NFS1) bind preferentially to the disordered conformation, whereas co-chaperone (HSC20) binds to the structured conformation of the iron-sulfur cluster scaffold protein (ISCU). J Biol Chem 2013; 288:28755-70. [PMID: 23940031 PMCID: PMC3789972 DOI: 10.1074/jbc.m113.482042] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human ISCU is the scaffold protein for mitochondrial iron-sulfur (Fe-S) cluster biogenesis and transfer. NMR spectra have revealed that ISCU populates two conformational states; that is, a more structured state (S) and a partially disordered state (D). We identified two single amino acid substitutions (D39V and N90A) that stabilize the S-state and two (D39A and H105A) that stabilize the D-state. We isolated the two constituent proteins of the human cysteine desulfurase complex (NFS1 and ISD11) separately and used NMR spectroscopy to investigate their interaction with ISCU. We found that ISD11 does not interact directly with ISCU. By contrast, NFS1 binds preferentially to the D-state of ISCU as does the NFS1-ISD11 complex. An in vitro Fe-S cluster assembly assay showed that [2Fe-2S] and [4Fe-4S] clusters are assembled on ISCU when catalyzed by NFS1 alone and at a higher rate when catalyzed by the NFS1-ISD11 complex. The DnaK-type chaperone (mtHSP70) and DnaJ-type co-chaperone (HSC20) are involved in the transfer of clusters bound to ISCU to acceptor proteins in an ATP-dependent reaction. We found that the ATPase activity of mtHSP70 is accelerated by HSC20 and further accelerated by HSC20 plus ISCU. NMR studies have shown that mtHSP70 binds preferentially to the D-state of ISCU and that HSC20 binds preferentially to the S-state of ISCU.
Collapse
Affiliation(s)
- Kai Cai
- From the Center for Eukaryotic Structural Genomics and
| | | | | | | | | | | |
Collapse
|
33
|
Chen WB, Nie Y, Xu Y, Xiao R. Enhancement of extracellular pullulanase production from recombinant Escherichia coli by combined strategy involving auto-induction and temperature control. Bioprocess Biosyst Eng 2013; 37:601-8. [DOI: 10.1007/s00449-013-1026-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 11/28/2022]
|
34
|
Smith DW, Han MR, Park JS, Kim KR, Yeom T, Lee JY, Kim DJ, Bingman CA, Kim HJ, Jo K, Han BW, Phillips GN. Crystal structure of the protein from Arabidopsis thaliana gene At5g06450, a putative DnaQ-like exonuclease domain-containing protein with homohexameric assembly. Proteins 2013; 81:1669-1675. [PMID: 23616405 DOI: 10.1002/prot.24315] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 03/09/2013] [Accepted: 03/17/2013] [Indexed: 01/17/2023]
Abstract
Arabidopsis thaliana gene At5g06450 encodes a putative DnaQ-like 3'-5' exonuclease domain-containing protein (AtDECP). The DnaQ-like 3'-5' exonuclease domain is often found as a proofreading domain of DNA polymerases. The overall structure of AtDECP adopts an RNase H fold that consists of a mixed β-sheet flanked by α-helices. Interestingly, AtDECP forms a homohexameric assembly with a central six fold symmetry, generating a central cavity. The ring-shaped structure and comparison with WRN-exo, the best structural homologue of AtDECP, suggest a possible mechanism for implementing its exonuclease activity using positively charged patch on the N-terminal side of the homohexameric assembly. The homohexameric structure of AtDECP provides unique information about the interaction between the DnaQ-like 3'-5' exonuclease and its substrate nucleic acids.
Collapse
Affiliation(s)
- David W Smith
- Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Mi Ra Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Joon Sung Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Kyung Rok Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Taeho Yeom
- Department of Chemistry, Sogang University, Seoul 121-742, Korea
| | - Ji Yeon Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Do Jin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Craig A Bingman
- Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Kyubong Jo
- Department of Chemistry, Sogang University, Seoul 121-742, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - George N Phillips
- Center for Eukaryotic Structural Genomics, Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA.,Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251, USA
| |
Collapse
|
35
|
Wang F, Zhou M, Singh S, Yennamalli RM, Bingman CA, Thorson JS, Phillips GN. Crystal structure of SsfS6, the putative C-glycosyltransferase involved in SF2575 biosynthesis. Proteins 2013; 81:1277-82. [PMID: 23526584 DOI: 10.1002/prot.24289] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 02/28/2013] [Accepted: 03/06/2013] [Indexed: 12/16/2022]
Abstract
The molecule known as SF2575 from Streptomyces sp. is a tetracycline polyketide natural product that displays antitumor activity against murine leukemia P388 in vivo. In the SF2575 biosynthetic pathway, SsfS6 has been implicated as the crucial C-glycosyltransferase (C-GT) that forms the C-C glycosidic bond between the sugar and the SF2575 tetracycline-like scaffold. Here, we report the crystal structure of SsfS6 in the free form and in complex with TDP, both at 2.4 Å resolution. The structures reveal SsfS6 to adopt a GT-B fold wherein the TDP and docked putative aglycon are consistent with the overall C-glycosylation reaction. As one of only a few existing structures for C-glycosyltransferases, the structures described herein may serve as a guide to better understand and engineer C-glycosylation.
Collapse
Affiliation(s)
- Fengbin Wang
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | | | |
Collapse
|
36
|
Francis SM, Gas ME, Daugeron MC, Bravo J, Séraphin B. Rbg1-Tma46 dimer structure reveals new functional domains and their role in polysome recruitment. Nucleic Acids Res 2012; 40:11100-14. [PMID: 23002146 PMCID: PMC3510508 DOI: 10.1093/nar/gks867] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Developmentally Regulated GTP-binding (DRG) proteins are highly conserved GTPases that associate with DRG Family Regulatory Proteins (DFRP). The resulting complexes have recently been shown to participate in eukaryotic translation. The structure of the Rbg1 GTPase, a yeast DRG protein, in complex with the C-terminal region of its DFRP partner, Tma46, was solved by X-ray diffraction. These data reveal that DRG proteins are multimodular factors with three additional domains, helix–turn–helix (HTH), S5D2L and TGS, packing against the GTPase platform. Surprisingly, the S5D2L domain is inserted in the middle of the GTPase sequence. In contrast, the region of Tma46 interacting with Rbg1 adopts an extended conformation typical of intrinsically unstructured proteins and contacts the GTPase and TGS domains. Functional analyses demonstrate that the various domains of Rbg1, as well as Tma46, modulate the GTPase activity of Rbg1 and contribute to the function of these proteins in vivo. Dissecting the role of the different domains revealed that the Rbg1 TGS domain is essential for the recruitment of this factor in polysomes, supporting further the implication of these conserved factors in translation.
Collapse
Affiliation(s)
- Sandrea M Francis
- Instituto de Biomedicina de Valencia (IBV-CSIC), Calle Jaime Roig, 11, Valencia E-46010, Spain
| | | | | | | | | |
Collapse
|
37
|
Bitto E, Kim DJ, Bingman CA, Kim HJ, Han BW, Phillips GN. Crystal structure of tandem ACT domain-containing protein ACTP from Galdieria sulphuraria. Proteins 2012; 80:2105-2109. [PMID: 22528523 DOI: 10.1002/prot.24101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Revised: 04/13/2012] [Accepted: 04/17/2012] [Indexed: 11/09/2022]
Abstract
The ACT domain is a structurally conserved small molecule binding domain which is mostly involved in amino acid and purine metabolism. Here, we report the crystal structure of a tandem ACT domain-containing protein (ACTP) from Galdieria sulphuraria. The two ACTP monomers in the asymmetric unit form a dimer with a non-crystallographic twofold axis in a domain-swapped manner, showing a horseshoe-like structure with a central crevice. This structure contributes to expand our knowledge on the structural diversity of ACT domain-containing proteins.
Collapse
Affiliation(s)
- Eduard Bitto
- Department of Chemistry and Biochemistry, Georgian Court University, Lakewood, New Jersey 08701, USA
| | - Do Jin Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Craig A Bingman
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Hyun-Jung Kim
- College of Pharmacy, Chung-Ang University, Seoul 156-756, Korea
| | - Byung Woo Han
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - George N Phillips
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
38
|
Sarduy ES, Muñoz AC, Trejo SA, Chavéz Planes MDLA. High-level expression of Falcipain-2 in Escherichia coli by codon optimization and auto-induction. Protein Expr Purif 2012; 83:59-69. [DOI: 10.1016/j.pep.2012.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 03/08/2012] [Accepted: 03/10/2012] [Indexed: 01/11/2023]
|
39
|
Bianchetti CM, Elsen NL, Fox BG, Phillips GN. Structure of cellobiose phosphorylase from Clostridium thermocellum in complex with phosphate. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1345-9. [PMID: 22102229 PMCID: PMC3212448 DOI: 10.1107/s1744309111032660] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/11/2011] [Indexed: 11/10/2022]
Abstract
Clostridium thermocellum is a cellulosome-producing bacterium that is able to efficiently degrade and utilize cellulose as a sole carbon source. Cellobiose phosphorylase (CBP) plays a critical role in cellulose degradation by catalyzing the reversible phosphate-dependent hydrolysis of cellobiose, the major product of cellulose degradation, into α-D-glucose 1-phosphate and D-glucose. CBP from C. thermocellum is a modular enzyme composed of four domains [N-terminal domain, helical linker, (α/α)(6)-barrel domain and C-terminal domain] and is a member of glycoside hydrolase family 94. The 2.4 Å resolution X-ray crystal structure of C. thermocellum CBP reveals the residues involved in coordinating the catalytic phosphate as well as the residues that are likely to be involved in substrate binding and discrimination.
Collapse
Affiliation(s)
- Christopher M. Bianchetti
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nathaniel L. Elsen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Brian G. Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - George N. Phillips
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
40
|
Kunze M, Huber R, Gutjahr C, Müllner S, Büchs J. Predictive tool for recombinant protein production in Escherichia coli Shake-Flask cultures using an on-line monitoring system. Biotechnol Prog 2011; 28:103-13. [DOI: 10.1002/btpr.719] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 08/18/2011] [Indexed: 12/20/2022]
|
41
|
Optimized procedure to generate heavy isotope and selenomethionine-labeled proteins for structure determination using Escherichia coli-based expression systems. Appl Microbiol Biotechnol 2011; 92:823-33. [DOI: 10.1007/s00253-011-3603-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/27/2022]
|
42
|
Burgie SE, Bingman CA, Soni AB, Phillips GN. Structural characterization of human Uch37. Proteins 2011; 80:649-54. [PMID: 21953935 DOI: 10.1002/prot.23147] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 07/07/2011] [Indexed: 11/11/2022]
Abstract
Uch37 is a de-ubiquitylating enzyme that is functionally linked with the 26S proteasome via Rpn13, and is essential for metazoan development. Here, we report the X-ray crystal structure of full-length human Uch37 at 2.95 Å resolution. Uch37's catalytic domain is similar to those of all UCH enzymes characterized to date. The C-terminal extension is elongated, predominantly helical and contains coiled coil interactions. Additionally, we provide an initial characterization of Uch37's oligomeric state and identify a systematic error in previous analyses of Uch37 activity. Taken together, these data provide a strong foundation for further analysis of Uch37's several functions.
Collapse
Affiliation(s)
- Sethe E Burgie
- Department of Biochemistry, Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison Wisconsin 53706-1544
| | | | | | | |
Collapse
|
43
|
Silva APG, Chechik M, Byrne RT, Waterman DG, Ng CL, Dodson EJ, Koonin EV, Antson AA, Smits C. Structure and activity of a novel archaeal β-CASP protein with N-terminal KH domains. Structure 2011; 19:622-32. [PMID: 21565697 PMCID: PMC3095777 DOI: 10.1016/j.str.2011.03.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2010] [Revised: 03/03/2011] [Accepted: 03/09/2011] [Indexed: 11/03/2022]
Abstract
MTH1203, a β-CASP metallo-β-lactamase family nuclease from the archaeon Methanothermobacter thermautotrophicus, was identified as a putative nuclease that might contribute to RNA processing. The crystal structure of MTH1203 reveals that, in addition to the metallo-β-lactamase nuclease and the β-CASP domains, it contains two contiguous KH domains that are unique to MTH1203 and its orthologs. RNA-binding experiments indicate that MTH1203 preferentially binds U-rich sequences with a dissociation constant in the micromolar range. In vitro nuclease activity assays demonstrated that MTH1203 is a zinc-dependent nuclease. MTH1203 is also shown to be a dimer and, significantly, this dimerization enhances the nuclease activity. Transcription termination in archaea produces mRNA transcripts with U-rich 3' ends that could be degraded by MTH1203 considering its RNA-binding specificity. We hypothesize that this nuclease degrades mRNAs of proteins targeted for degradation and so regulates archaeal RNA turnover, possibly in concert with the exosome.
Collapse
Affiliation(s)
- Ana P G Silva
- York Structural Biology Laboratory, Department of Chemistry, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
High throughput platforms for structural genomics of integral membrane proteins. Curr Opin Struct Biol 2011; 21:517-22. [PMID: 21807498 DOI: 10.1016/j.sbi.2011.07.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2011] [Revised: 06/20/2011] [Accepted: 07/07/2011] [Indexed: 11/20/2022]
Abstract
Structural genomics approaches on integral membrane proteins have been postulated for over a decade, yet specific efforts are lagging years behind their soluble counterparts. Indeed, high throughput methodologies for production and characterization of prokaryotic integral membrane proteins are only now emerging, while large-scale efforts for eukaryotic ones are still in their infancy. Presented here is a review of recent literature on actively ongoing structural genomics of membrane protein initiatives, with a focus on those aimed at implementing interesting techniques aimed at increasing our rate of success for this class of macromolecules.
Collapse
|
45
|
Simple defined autoinduction medium for high-level recombinant protein production using T7-based Escherichia coli expression systems. Appl Microbiol Biotechnol 2011; 91:1203-13. [DOI: 10.1007/s00253-011-3407-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 05/19/2011] [Accepted: 05/19/2011] [Indexed: 11/25/2022]
|
46
|
Singh S, Chang A, Goff RD, Bingman CA, Grüschow S, Sherman DH, Phillips GN, Thorson JS. Structural characterization of the mitomycin 7-O-methyltransferase. Proteins 2011; 79:2181-8. [PMID: 21538548 DOI: 10.1002/prot.23040] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/09/2011] [Accepted: 02/19/2011] [Indexed: 11/07/2022]
Abstract
Mitomycins are quinone-containing antibiotics, widely used as antitumor drugs in chemotherapy. Mitomycin-7-O-methyltransferase (MmcR), a key tailoring enzyme involved in the biosynthesis of mitomycin in Streptomyces lavendulae, catalyzes the 7-O-methylation of both C9β- and C9α-configured 7-hydroxymitomycins. We have determined the crystal structures of the MmcR-S-adenosylhomocysteine (SAH) binary complex and MmcR-SAH-mitomycin A (MMA) ternary complex at resolutions of 1.9and 2.3 Å, respectively. The study revealed MmcR to adopt a common S-adenosyl-L-methionine-dependent O-methyltransferase fold and the presence of a structurally conserved active site general acid-base pair is consistent with a proton-assisted methyltransfer common to most methyltransferases. Given the importance of C7 alkylation to modulate mitomycin redox potential, this study may also present a template toward the future engineering of catalysts to generate uniquely bioactive mitomycins.
Collapse
Affiliation(s)
- Shanteri Singh
- Division of Pharmaceutical Sciences, Wisconsin Center for Natural Product Research, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, USA
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Bianchetti CM, Bingman CA, Phillips GN. Structure of the C-terminal heme-binding domain of THAP domain containing protein 4 from Homo sapiens. Proteins 2011; 79:1337-41. [PMID: 21387410 PMCID: PMC3179982 DOI: 10.1002/prot.22944] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Accepted: 11/05/2010] [Indexed: 01/07/2023]
Affiliation(s)
- Christopher M. Bianchetti
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA,Centers for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| | - Craig A. Bingman
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA,Centers for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| | - George N. Phillips
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA,Centers for Eukaryotic Structural Genomics, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
48
|
Jeon WB. Retrospective analyses of the bottleneck in purification of eukaryotic proteins from Escherichia coli as affected by molecular weight, cysteine content and isoelectric point. BMB Rep 2010; 43:319-24. [PMID: 20510014 DOI: 10.5483/bmbrep.2010.43.5.319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Experimental bioinformatics data obtained from an E. coli cell-based eukaryotic protein purification experiment were analyzed in order to identify any bottleneck as well as the factors affecting the target purification. All targets were expressed as His-tagged maltose-binding protein (MBP) fusion constructs and were initially purified by immobilized metal affinity chromatography (IMAC). The targets were subsequently separated from the His-tagged MBP through TEV protease cleavage followed by a second IMAC isolation. Of the 743 total purification trials, 342 yielded more than 3 mg of target proteins for structural studies. The major reason for failure of target purification was poor TEV proteolysis. The overall success rate for target purification decreased linearly as cysteine content or isoelectric point (pI) of the target increased. This pattern of pI versus overall success rate strongly suggests that pI should be incorporated into target scoring criteria with a threshold value.
Collapse
Affiliation(s)
- Won Bae Jeon
- Daegu Gyeongbuk Institute of Science and Technology, Korea.
| |
Collapse
|
49
|
Neerathilingam M, Markley JL. Auto-induction medium containing glyphosate for high-level incorporation of unusual aromatic amino acids into proteins. Biotechniques 2010; 49:659-61. [PMID: 20854268 PMCID: PMC3023234 DOI: 10.2144/000113491] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
We describe the use of an auto-induction medium containing N-(phosphono-methyl)glycine (glyphosate) as a means for high-level introduction of nonstandard aromatic amino acids into a protein. We illustrate this approach by preparing maltose binding protein (MBP) wherein all eight tryptophan residues have been replaced with 6-fluorotryptophan at an incorporation level of 99.3%. Such a high level of incorporation is important for spectroscopic investigations, in particular 19F NMR, because each species' differing amino acid sequence potentially yields a different peak pattern that complicates spectral analysis.
Collapse
|
50
|
Bae E, Bitto E, Bingman CA, McCoy JG, Wesenberg GE, Phillips GN. Crystal structure of an eIF4G-like protein from Danio rerio. Proteins 2010; 78:1803-6. [PMID: 20229607 DOI: 10.1002/prot.22703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Euiyoung Bae
- Center for Eukaryotic Structural Genomics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|