1
|
Loughran ST, Walls D. Tagging Recombinant Proteins to Enhance Solubility and Aid Purification. Methods Mol Biol 2023; 2699:97-123. [PMID: 37646996 DOI: 10.1007/978-1-0716-3362-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has a long history, and there is a considerable repertoire of these that can be used to address issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. In this chapter, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Life and Health Sciences, School of Health and Science, Dundalk Institute of Technology, Dundalk, Louth, Ireland.
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
2
|
Diep P, Cadavid JL, Yakunin AF, McGuigan AP, Mahadevan R. REVOLVER: A low-cost automated protein purifier based on parallel preparative gravity column workflows. HARDWAREX 2022; 11:e00291. [PMID: 35509899 PMCID: PMC9058827 DOI: 10.1016/j.ohx.2022.e00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Protein purification is a ubiquitous procedure in biochemistry and the life sciences, and represents a key step in the protein production pipeline. The need for scalable and parallel protein purification systems is driven by the demands for increasing the throughput of recombinant protein characterization. Therefore, automating the process to simultaneously handle multiple samples with minimal human intervention is highly desirable, yet there are only a handful of such systems that have been developed, all of which are closed source and expensive. To address this challenge, we present REVOLVER, a 3D-printed programmable protein purification system based on gravity-column workflows and controlled by Arduino boards that can be built for under $130 USD. REVOLVER takes a cell lysate sample and completes a full protein purification process with almost no human intervention and yields results indistinguishable from those obtained by an experienced biochemist when purifying a real-world protein sample. We further present and describe MULTI-VOLVER, a scalable version of the REVOLVER that allows for parallel purification of up to six samples and can be built for under $250 USD. Both systems can help accelerate protein purification and ultimately link them to bio-foundries for protein characterization and engineering.
Collapse
Affiliation(s)
- Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - Jose L. Cadavid
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Alexander F. Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Centre for Environmental Biotechnology, Bangor University, Bangor, United Kingdom
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Ortega C, Oppezzo P, Correa A. Overcoming the Solubility Problem in E. coli: Available Approaches for Recombinant Protein Production. Methods Mol Biol 2022; 2406:35-64. [PMID: 35089549 DOI: 10.1007/978-1-0716-1859-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Despite the importance of recombinant protein production in the academy and industrial fields, many issues concerning the expression of soluble and homogeneous products are still unsolved. Several strategies were developed to overcome these obstacles; however, at present, there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.
Collapse
Affiliation(s)
- Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay.
| |
Collapse
|
4
|
Kanje S, Enstedt H, Dannemeyer M, Uhlén M, Hober S, Tegel H. Improvements of a high-throughput protein purification process using a calcium-dependent setup. Protein Expr Purif 2020; 175:105698. [PMID: 32681960 DOI: 10.1016/j.pep.2020.105698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 05/12/2020] [Accepted: 06/28/2020] [Indexed: 01/26/2023]
Abstract
The Human Secretome Project aims to produce and purify all human secreted proteins as full-length. In order to enable this, a robust, gentle and effective purification process is needed, where multiple proteins can be purified in parallel. For this reason, a purification system based on a Protein C-tag and the HPC4 antibody with high affinity to the tag was chosen for purification. The strong binding between the tag and the antibody is specific and calcium-dependent, which allows for mild elution with EDTA. Presented here is a study comparing different protein purification base matrices coupled with the HPC4 antibody, aiming to increase the yield of purified protein and reduce the time for purification. Among the different tested matrices, Capto XP showed a high coupling degree and increased the amount of eluted protein as compared to the control matrix. By moving from batch incubation to direct sample loading and by performing the purification on the ÄKTAxpress, an automated protein purification process and a high reduction of hands-on sample handling was achieved. This new method also integrates the desalting step in the purification process, and the time for purification and analysis of each sample was decreased from five to three days. Moreover, a new mild method for matrix regeneration was developed using 50 mM EDTA pH 7.5 instead of 0.1 M glycine pH 2. This method was proven to be efficient for regeneration while maintaining the column binding performance even after nine rounds of regeneration.
Collapse
Affiliation(s)
- Sara Kanje
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Henric Enstedt
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Melanie Dannemeyer
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Mathias Uhlén
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Sophia Hober
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691, Stockholm, Sweden
| | - Hanna Tegel
- Department of Protein Science, KTH - Royal Institute of Technology, SE-10691, Stockholm, Sweden.
| |
Collapse
|
5
|
Ma Y, Chen T, Iqbal MZ, Yang F, Hampp N, Wu A, Luo L. Applications of magnetic materials separation in biological nanomedicine. Electrophoresis 2019; 40:2011-2028. [DOI: 10.1002/elps.201800401] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 01/09/2019] [Accepted: 01/19/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Yuanyuan Ma
- Department of Chemistry College of Sciences Shanghai University Shanghai P. R. China
- CAS Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
| | - Tianxiang Chen
- CAS Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
| | - Muhammad Zubair Iqbal
- CAS Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
| | - Fang Yang
- CAS Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
- Cixi Institute of Biomedical Engineering Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
- Fachbereich Chemie Philipps Universität Marburg Marburg Germany
| | - Norbert Hampp
- Fachbereich Chemie Philipps Universität Marburg Marburg Germany
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices & Division of Functional Materials and Nanodevices Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
- Cixi Institute of Biomedical Engineering Ningbo Institute of Materials Technology and Engineering Chinese Academy of Sciences Ningbo P. R. China
| | - Liqiang Luo
- Department of Chemistry College of Sciences Shanghai University Shanghai P. R. China
| |
Collapse
|
6
|
Konczal J, Gray CH. Streamlining workflow and automation to accelerate laboratory scale protein production. Protein Expr Purif 2017; 133:160-169. [PMID: 28330825 DOI: 10.1016/j.pep.2017.03.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 03/17/2017] [Indexed: 12/20/2022]
Abstract
Protein production facilities are often required to produce diverse arrays of proteins for demanding methodologies including crystallography, NMR, ITC and other reagent intensive techniques. It is common for these teams to find themselves a bottleneck in the pipeline of ambitious projects. This pressure to deliver has resulted in the evolution of many novel methods to increase capacity and throughput at all stages in the pipeline for generation of recombinant proteins. This review aims to describe current and emerging options to accelerate the success of protein production in Escherichia coli. We emphasize technologies that have been evaluated and implemented in our laboratory, including innovative molecular biology and expression vectors, small-scale expression screening strategies and the automation of parallel and multidimensional chromatography.
Collapse
Affiliation(s)
- Jennifer Konczal
- Drug Discovery Program, CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom
| | - Christopher H Gray
- Drug Discovery Program, CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, United Kingdom.
| |
Collapse
|
7
|
Abstract
Protein fusion technology has had a major impact on the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags is described.
Collapse
Affiliation(s)
- Sinéad T Loughran
- Department of Applied Sciences, Dundalk Institute of Technology, Dundalk, Ireland
| | - Dermot Walls
- School of Biotechnology, Dublin City University, Glasnevin, Dublin 9, Ireland.
- National Centre for Sensor Research, Dublin City University, Glasnevin, Dublin 9, Ireland.
| |
Collapse
|
8
|
Zhang C, Long AM, Swalm B, Charest K, Wang Y, Hu J, Schulz C, Goetzinger W, Hall BE. Development of an automated mid-scale parallel protein purification system for antibody purification and affinity chromatography. Protein Expr Purif 2016; 128:29-35. [DOI: 10.1016/j.pep.2016.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 08/01/2016] [Accepted: 08/03/2016] [Indexed: 11/26/2022]
|
9
|
Automated harvesting and 2-step purification of unclarified mammalian cell-culture broths containing antibodies. J Chromatogr A 2015; 1418:103-109. [PMID: 26431859 DOI: 10.1016/j.chroma.2015.09.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 09/08/2015] [Accepted: 09/13/2015] [Indexed: 11/22/2022]
Abstract
Therapeutic monoclonal antibodies represent one of the fastest growing segments in the pharmaceutical market. The growth of the segment has necessitated development of new efficient and cost saving platforms for the preparation and analysis of early candidates for faster and better antibody selection and characterization. We report on a new integrated platform for automated harvesting of whole unclarified cell-culture broths, followed by in-line tandem affinity-capture, pH neutralization and size-exclusion chromatography of recombinant antibodies expressed transiently in mammalian human embryonic kidney 293T-cells at the 1-L scale. The system consists of two bench-top chromatography instruments connected to a central unit with eight disposable filtration devices used for loading and filtering the cell cultures. The staggered parallel multi-step configuration of the system allows unattended processing of eight samples in less than 24h. The system was validated with a random panel of 45 whole-cell culture broths containing recombinant antibodies in the early profiling phase. The results showed that the overall performances of the preparative automated system were higher compared to the conventional downstream process including manual harvesting and purification. The mean recovery of purified material from the culture-broth was 66.7%, representing a 20% increase compared to that of the manual process. Moreover, the automated process reduced by 3-fold the amount of residual aggregates in the purified antibody fractions, indicating that the automated system allows the cost-efficient and timely preparation of antibodies in the 20-200mg range, and covers the requirements for early in vitro and in vivo profiling and formulation of these drug candidates.
Collapse
|
10
|
Bjerga GEK, Williamson AK. Cold shock induction of recombinant Arctic environmental genes. BMC Biotechnol 2015; 15:78. [PMID: 26286037 PMCID: PMC4544801 DOI: 10.1186/s12896-015-0185-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/24/2015] [Indexed: 11/16/2022] Open
Abstract
Background Heterologous expression of psychrophilic enzymes in E. coli is particularly challenging due to their intrinsic instability. The low stability is regarded as a consequence of adaptation that allow them to function at low temperatures. Recombinant production presents a significant barrier to their exploitation for commercial applications in industry. Methods As part of an enzyme discovery project we have investigated the utility of a cold-shock inducible promoter for low-temperature expression of five diverse genes derived from the metagenomes of marine Arctic sediments. After evaluation of their production, we further optimized for soluble production by building a vector suite from which the environmental genes could be expressed as fusions with solubility tags. Results We found that the low-temperature optimized system produced high expression levels for all putatively cold-active proteins, as well as reducing host toxicity for several candidates. As a proof of concept, activity assays with one of the candidates, a putative chitinase, showed that functional protein was obtained using the low-temperature optimized vector suite. Conclusions We conclude that a cold-shock inducible system is advantageous for the heterologous expression of psychrophilic proteins, and may also be useful for expression of toxic mesophilic and thermophilic proteins where properties of the proteins are deleterious to the host cell growth. Electronic supplementary material The online version of this article (doi:10.1186/s12896-015-0185-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gro Elin Kjæreng Bjerga
- Norstruct, Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway. .,Centre for Applied Biotechnology, Uni Research AS, Thormøhlensgt. 55, N-5008, Bergen, Norway.
| | - Adele Kim Williamson
- Norstruct, Department of Chemistry, Faculty of Science and Technology, University of Tromsø, N-9037, Tromsø, Norway.
| |
Collapse
|
11
|
Overcoming the solubility problem in E. coli: available approaches for recombinant protein production. Methods Mol Biol 2015; 1258:27-44. [PMID: 25447857 DOI: 10.1007/978-1-4939-2205-5_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the importance of recombinant protein production in academy and industrial fields, many issues concerning the expression of soluble and homogeneous product are still unsolved. Although several strategies were developed to overcome these obstacles, at present there is no magic bullet that can be applied for all cases. Indeed, several key expression parameters need to be evaluated for each protein. Among the different hosts for protein expression, Escherichia coli is by far the most widely used. In this chapter, we review many of the different tools employed to circumvent protein insolubility problems.
Collapse
|
12
|
Stressler T, Eisele T, Kranz B, Fischer L. PepX from Lactobacillus helveticus: Automated multi-step purification and determination of kinetic parameters with original tripeptide substrates. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.molcatb.2014.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Yoo D, Provchy J, Park C, Schulz C, Walker K. Automated high-throughput protein purification using an ÄKTApurifier and a CETAC autosampler. J Chromatogr A 2014; 1344:23-30. [PMID: 24768125 DOI: 10.1016/j.chroma.2014.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/14/2014] [Accepted: 04/06/2014] [Indexed: 10/25/2022]
Abstract
As the pace of drug discovery accelerates there is an increased focus on screening larger numbers of protein therapeutic candidates to identify those that are functionally superior and to assess manufacturability earlier in the process. Although there have been advances toward high throughput (HT) cloning and expression, protein purification is still an area where improvements can be made to conventional techniques. Current methodologies for purification often involve a tradeoff between HT automation or capacity and quality. We present an ÄKTA combined with an autosampler, the ÄKTA-AS, which has the capability of purifying up to 240 samples in two chromatographic dimensions without the need for user intervention. The ÄKTA-AS has been shown to be reliable with sample volumes between 0.5 mL and 100 mL, and the innovative use of a uniquely configured loading valve ensures reliability by efficiently removing air from the system as well as preventing sample cross contamination. Incorporation of a sample pump flush minimizes sample loss and enables recoveries ranging from the low tens of micrograms to milligram quantities of protein. In addition, when used in an affinity capture-buffer exchange format the final samples are formulated in a buffer compatible with most assays without requirement of additional downstream processing. The system is designed to capture samples in 96-well microplate format allowing for seamless integration of downstream HT analytic processes such as microfluidic or HPLC analysis. Most notably, there is minimal operator intervention to operate this system, thereby increasing efficiency, sample consistency and reducing the risk of human error.
Collapse
Affiliation(s)
- Daniel Yoo
- Therapeutic Discovery, Amgen, Inc., One Amgen Center, Thousand Oaks, CA 91320-1789, USA
| | - Justin Provchy
- Therapeutic Discovery, Amgen, Inc., One Amgen Center, Thousand Oaks, CA 91320-1789, USA
| | - Cynthia Park
- Therapeutic Discovery, Amgen, Inc., One Amgen Center, Thousand Oaks, CA 91320-1789, USA
| | - Craig Schulz
- Therapeutic Discovery, Amgen, Inc., One Amgen Center, Thousand Oaks, CA 91320-1789, USA
| | - Kenneth Walker
- Therapeutic Discovery, Amgen, Inc., One Amgen Center, Thousand Oaks, CA 91320-1789, USA.
| |
Collapse
|
14
|
Correa A, Ortega C, Obal G, Alzari P, Vincentelli R, Oppezzo P. Generation of a vector suite for protein solubility screening. Front Microbiol 2014; 5:67. [PMID: 24616717 PMCID: PMC3934309 DOI: 10.3389/fmicb.2014.00067] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 02/05/2014] [Indexed: 12/15/2022] Open
Abstract
Recombinant protein expression has become an invaluable tool for academic and biotechnological projects. With the use of high-throughput screening technologies for soluble protein production, uncountable target proteins have been produced in a soluble and homogeneous state enabling the realization of further studies. Evaluation of hundreds conditions requires the use of high-throughput cloning and screening methods. Here we describe a new versatile vector suite dedicated to the expression improvement of recombinant proteins (RP) with solubility problems. This vector suite allows the parallel cloning of the same PCR product into the 12 different expression vectors evaluating protein expression under different promoter strength, different fusion tags as well as different solubility enhancer proteins. Additionally, we propose the use of a new fusion protein which appears to be a useful solubility enhancer. Above all we propose in this work an economic and useful vector suite to fast track the solubility of different RP. We also propose a new solubility enhancer protein that can be included in the evaluation of the expression of RP that are insoluble in classical expression conditions.
Collapse
Affiliation(s)
- Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo Montevideo, Uruguay
| | - Claudia Ortega
- Recombinant Protein Unit, Institut Pasteur de Montevideo Montevideo, Uruguay
| | - Gonzalo Obal
- Protein Biophysics Unit, Institut Pasteur de Montevideo Montevideo, Uruguay
| | - Pedro Alzari
- Unité de Microbiologie Structurale, Institut Pasteur, Paris France
| | - Renaud Vincentelli
- Centre National de la Recherche Scientifique, Aix-Marseille Université CNRS UMR7257, AFMB, Marseille, France
| | - Pablo Oppezzo
- Recombinant Protein Unit, Institut Pasteur de Montevideo Montevideo, Uruguay
| |
Collapse
|
15
|
Detection of Target Proteins by Fluorescence Anisotropy. J Fluoresc 2013; 23:881-8. [DOI: 10.1007/s10895-013-1194-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 02/24/2013] [Indexed: 01/28/2023]
|
16
|
Abdolalizadeh J, Majidi Zolbanin J, Nouri M, Baradaran B, Movassaghpour A, Farajnia S, Omidi Y. Affinity Purification of Tumor Necrosis Factor-α Expressed in Raji Cells by Produced scFv Antibody Coupled CNBr-Activated Sepharose. Adv Pharm Bull 2013; 3:19-23. [PMID: 24312807 DOI: 10.5681/apb.2013.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 10/04/2012] [Indexed: 11/17/2022] Open
Abstract
PURPOSE Recombinant tumor necrosis factor-alpha (TNF-α) has been utilized as an antineoplastic agent for the treatment of patients with melanoma and sarcoma. It targets tumor cell antigens by impressing tumor-associated vessels. Protein purification with affinity chromatography has been widely used in the downstream processing of pharmaceutical-grade proteins. METHODS In this study, we examined the potential of our produced anti-TNF-α scFv fragments for purification of TNF-α produced by Raji cells. The Raji cells were induced by lipopolysaccharides (LPS) to express TNF-α. Western blotting and Fluorescence-activated cell sorting (FACS) flow cytometry analyses were used to evaluate the TNF-α expression. The anti-TNF-α scFv selected from antibody phage display library was coupled to CNBr-activated sepharose 4B beads used for affinity purification of expressed TNF-α and the purity of the protein was assessed by SDS-PAGE. RESULTS Western blot and FACS flow cytometry analyses showed the successful expression of TNF-α with Raji cells. SDS-PAGE analysis showed the performance of scFv for purification of TNF-α protein with purity over 95%. CONCLUSION These findings confirm not only the potential of the produced scFv antibody fragments but also this highly pure recombinant TNF-α protein can be applied for various in vitro and in vivo applications.
Collapse
Affiliation(s)
- Jalal Abdolalizadeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. ; Student' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | | | | | | | | |
Collapse
|
17
|
Adler B, Boström T, Ekström S, Hober S, Laurell T. Miniaturized and Automated High-Throughput Verification of Proteins in the ISET Platform with MALDI MS. Anal Chem 2012; 84:8663-9. [DOI: 10.1021/ac3017983] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Belinda Adler
- Department of Measurement Technology
and Industrial Electrical Engineering, Division of Nanobiotechnology, Lund University, Box 118, SE-211 00 Lund, Sweden
| | - Tove Boström
- Division of Proteomics, School
of Biotechnology, AlbaNova University Center, KTH, SE-106 91 Stockholm, Sweden
| | - Simon Ekström
- Department of Measurement Technology
and Industrial Electrical Engineering, Division of Nanobiotechnology, Lund University, Box 118, SE-211 00 Lund, Sweden
| | - Sophia Hober
- Division of Proteomics, School
of Biotechnology, AlbaNova University Center, KTH, SE-106 91 Stockholm, Sweden
| | - Thomas Laurell
- Department of Measurement Technology
and Industrial Electrical Engineering, Division of Nanobiotechnology, Lund University, Box 118, SE-211 00 Lund, Sweden
| |
Collapse
|
18
|
Automated solid-phase subcloning based on beads brought into proximity by magnetic force. PLoS One 2012; 7:e37429. [PMID: 22624028 PMCID: PMC3356258 DOI: 10.1371/journal.pone.0037429] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 04/23/2012] [Indexed: 11/30/2022] Open
Abstract
In the fields of proteomics, metabolic engineering and synthetic biology there is a need for high-throughput and reliable cloning methods to facilitate construction of expression vectors and genetic pathways. Here, we describe a new approach for solid-phase cloning in which both the vector and the gene are immobilized to separate paramagnetic beads and brought into proximity by magnetic force. Ligation events were directly evaluated using fluorescent-based microscopy and flow cytometry. The highest ligation efficiencies were obtained when gene- and vector-coated beads were brought into close contact by application of a magnet during the ligation step. An automated procedure was developed using a laboratory workstation to transfer genes into various expression vectors and more than 95% correct clones were obtained in a number of various applications. The method presented here is suitable for efficient subcloning in an automated manner to rapidly generate a large number of gene constructs in various vectors intended for high throughput applications.
Collapse
|
19
|
Young CL, Britton ZT, Robinson AS. Recombinant protein expression and purification: A comprehensive review of affinity tags and microbial applications. Biotechnol J 2012; 7:620-34. [DOI: 10.1002/biot.201100155] [Citation(s) in RCA: 312] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/23/2011] [Accepted: 11/29/2011] [Indexed: 12/27/2022]
|
20
|
Pontén F, Schwenk JM, Asplund A, Edqvist PHD. The Human Protein Atlas as a proteomic resource for biomarker discovery. J Intern Med 2011; 270:428-46. [PMID: 21752111 DOI: 10.1111/j.1365-2796.2011.02427.x] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The analysis of tissue-specific expression at both the gene and protein levels is vital for understanding human biology and disease. Antibody-based proteomics provides a strategy for the systematic generation of antibodies against all human proteins to combine with protein profiling in tissues and cells using tissue microarrays, immunohistochemistry and immunofluorescence. The Human Protein Atlas project was launched in 2003 with the aim of creating a map of protein expression patterns in normal cells, tissues and cancer. At present, 11,200 unique proteins corresponding to over 50% of all human protein-encoding genes have been analysed. All protein expression data, including underlying high-resolution images, are published on the free and publically available Human Protein Atlas portal (http://www.proteinatlas.org). This database provides an important source of information for numerous biomedical research projects, including biomarker discovery efforts. Moreover, the global analysis of how our genome is expressed at the protein level has provided basic knowledge on the ubiquitous expression of a large proportion of our proteins and revealed the paucity of cell- and tissue-type-specific proteins.
Collapse
Affiliation(s)
- F Pontén
- Department of Genetics and Pathology, Uppsala University, Uppsala, Sweden.
| | | | | | | |
Collapse
|
21
|
Smith ER, Begley DW, Anderson V, Raymond AC, Haffner TE, Robinson JI, Edwards TE, Duncan N, Gerdts CJ, Mixon MB, Nollert P, Staker BL, Stewart LJ. The Protein Maker: an automated system for high-throughput parallel purification. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:1015-21. [PMID: 21904043 PMCID: PMC3169395 DOI: 10.1107/s1744309111028776] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 07/17/2011] [Indexed: 12/03/2022]
Abstract
The Protein Maker is an automated purification system developed by Emerald BioSystems for high-throughput parallel purification of proteins and antibodies. This instrument allows multiple load, wash and elution buffers to be used in parallel along independent lines for up to 24 individual samples. To demonstrate its utility, its use in the purification of five recombinant PB2 C-terminal domains from various subtypes of the influenza A virus is described. Three of these constructs crystallized and one diffracted X-rays to sufficient resolution for structure determination and deposition in the Protein Data Bank. Methods for screening lysis buffers for a cytochrome P450 from a pathogenic fungus prior to upscaling expression and purification are also described. The Protein Maker has become a valuable asset within the Seattle Structural Genomics Center for Infectious Disease (SSGCID) and hence is a potentially valuable tool for a variety of high-throughput protein-purification applications.
Collapse
Affiliation(s)
- Eric R. Smith
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Darren W. Begley
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Vanessa Anderson
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Amy C. Raymond
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Taryn E. Haffner
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - John I. Robinson
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Thomas E. Edwards
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Natalie Duncan
- Emerald BioSystems, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Cory J. Gerdts
- Emerald BioSystems, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Mark B. Mixon
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Peter Nollert
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Bart L. Staker
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| | - Lance J. Stewart
- Seattle Structural Genomics Center for Infectious Disease (http://www.ssgcid.org), USA
- Emerald BioStructures, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
- Emerald BioSystems, 7869 NE Day Road West, Bainbridge Island, WA 98110, USA
| |
Collapse
|
22
|
Tegel H, Yderland L, Boström T, Eriksson C, Ukkonen K, Vasala A, Neubauer P, Ottosson J, Hober S. Parallel production and verification of protein products using a novel high-throughput screening method. Biotechnol J 2011; 6:1018-25. [PMID: 21681961 DOI: 10.1002/biot.201000430] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Revised: 03/14/2011] [Accepted: 04/04/2011] [Indexed: 11/09/2022]
Abstract
Protein production and analysis in a parallel fashion is today applied in laboratories worldwide and there is a great need to improve the techniques and systems used for this purpose. In order to save time and money, a fast and reliable screening method for analysis of protein production and also verification of the protein product is desired. Here, a micro-scale protocol for the parallel production and screening of 96 proteins in plate format is described. Protein capture was achieved using immobilized metal affinity chromatography and the product was verified using matrix-assisted laser desorption ionization time-of-flight MS. In order to obtain sufficiently high cell densities and product yield in the small-volume cultivations, the EnBase® cultivation technology was applied, which enables cultivation in as small volumes as 150 μL. Here, the efficiency of the method is demonstrated by producing 96 human, recombinant proteins, both in micro-scale and using a standard full-scale protocol and comparing the results in regard to both protein identity and sample purity. The results obtained are highly comparable to those acquired through employing standard full-scale purification protocols, thus validating this method as a successful initial screening step before protein production at a larger scale.
Collapse
Affiliation(s)
- Hanna Tegel
- School of Biotechnology, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Larsson K, Hofström C, Lindskog C, Hansson M, Angelidou P, Hökfelt T, Uhlén M, Wernérus H, Gräslund T, Hober S. Novel antigen design for the generation of antibodies to G-protein-coupled receptors. J Immunol Methods 2011; 370:14-23. [PMID: 21605562 DOI: 10.1016/j.jim.2011.05.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 05/05/2011] [Accepted: 05/05/2011] [Indexed: 11/19/2022]
Abstract
Antibodies are important tools for the study of G-protein-coupled receptors, key proteins in cellular signaling. Due to their large hydrophobic membrane spanning regions and often very short loops exposed on the surface of the cells, generation of antibodies able to recognize the receptors in the endogenous environment has been difficult. Here, we describe an antigen-design method where the extracellular loops and N-terminus are combined to a single antigen for generation of antibodies specific to three selected GPCRs: NPY5R, B2ARN and GLP1R. The design strategy enabled straightforward antigen production and antibody generation. Binding of the antibodies to intact receptors was analyzed using flow cytometry and immunofluorescence based confocal microscopy on A-431 cells overexpressing the respective GPCR. The antibody-antigen interactions were characterized using epitope mapping, and the antibodies were applied in immunohistochemical staining of human tissues. Most of the antibodies showed specific binding to their respective overexpressing cell line but not to the non-transfected cells, thus indicating binding to their respective target receptor. The epitope mapping showed that sub-populations within the purified antibody pool recognized different regions of the antigen. Hence, the genetic combination of several different epitopes enables efficient generation of specific antibodies with potential use in several applications for the study of endogenous receptors.
Collapse
Affiliation(s)
- K Larsson
- Division of Proteomics, School of Biotechnology, KTH/AlbaNova University Center, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Correa A, Oppezzo P. Tuning different expression parameters to achieve soluble recombinant proteins in E. coli: advantages of high-throughput screening. Biotechnol J 2011; 6:715-30. [PMID: 21567962 DOI: 10.1002/biot.201100025] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/15/2011] [Accepted: 03/21/2011] [Indexed: 01/04/2023]
Abstract
Proteins are the main reagents for structural, biomedical, and biotechnological studies; however, some important challenges remain concerning protein solubility and stability. Numerous strategies have been developed, with some success, to mitigate these challenges, but a universal strategy is still elusive. Currently, researchers face a plethora of alternatives for the expression of the target protein, which generates a great diversity of conditions to be evaluated. Among these, different promoter strength, diverse expression host and constructs, or special culture conditions have an important role in protein solubility. With the arrival of automated high-throughput screening (HTS) systems, the evaluation of hundreds of different conditions within reasonable cost and time limits is possible. This technology increases the chances to obtain the target protein in a pure, soluble, and stable state. This review focuses on some of the most commonly used strategies for the expression of recombinant proteins in the enterobacterium Escherichia coli, including the use of HTS for the production of soluble proteins.
Collapse
Affiliation(s)
- Agustín Correa
- Recombinant Protein Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | |
Collapse
|
25
|
Xu F, Geiger JH, Baker GL, Bruening ML. Polymer brush-modified magnetic nanoparticles for His-tagged protein purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3106-12. [PMID: 21338107 PMCID: PMC3153590 DOI: 10.1021/la1050404] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Growth of poly(2-hydroxyethyl methacrylate) brushes on magnetic nanoparticles and subsequent brush functionalization with nitrilotriacetate-Ni(2+) yield magnetic beads that selectively capture polyhistidine-tagged (His-tagged) protein directly from cell extracts. Transmission electron microscopy, Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis, and magnetization measurements confirm and quantify the formation of the brushes on magnetic particles, and multilayer protein adsorption to these brushes results in binding capacities (220 mg BSA/g of beads and 245 mg His-tagged ubiquitin/g of beads) that are an order of magnitude greater than those of commercial magnetic beads. Moreover, the functionalized beads selectively capture His-tagged protein within 5 min. The high binding capacity and protein purity along with efficient protein capture in a short incubation time make brush-modified particles attractive for purification of recombinant proteins.
Collapse
Affiliation(s)
| | | | | | - Merlin L. Bruening
- The author to whom correspondence should be addressed. . Tel: (517) 355-9715, ext. 237. Fax: (517) 353-1793
| |
Collapse
|
26
|
Wållberg H, Löfdahl PÅ, Tschapalda K, Uhlén M, Tolmachev V, Nygren PÅ, Ståhl S. Affinity recovery of eight HER2-binding affibody variants using an anti-idiotypic affibody molecule as capture ligand. Protein Expr Purif 2011; 76:127-35. [DOI: 10.1016/j.pep.2010.10.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/19/2010] [Accepted: 10/19/2010] [Indexed: 10/18/2022]
|
27
|
Kostallas G, Löfdahl PÅ, Samuelson P. Substrate profiling of tobacco etch virus protease using a novel fluorescence-assisted whole-cell assay. PLoS One 2011; 6:e16136. [PMID: 21267463 PMCID: PMC3022733 DOI: 10.1371/journal.pone.0016136] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/14/2010] [Indexed: 11/18/2022] Open
Abstract
Site-specific proteolysis of proteins plays an important role in many cellular functions and is often key to the virulence of infectious organisms. Efficient methods for characterization of proteases and their substrates will therefore help us understand these fundamental processes and thereby hopefully point towards new therapeutic strategies. Here, a novel whole-cell in vivo method was used to investigate the substrate preference of the sequence specific tobacco etch virus protease (TEVp). The assay, which utilizes protease-mediated intracellular rescue of genetically encoded short-lived fluorescent substrate reporters to enhance the fluorescence of the entire cell, allowed subtle differences in the processing efficiency of closely related substrate peptides to be detected. Quantitative screening of large combinatorial substrate libraries, through flow cytometry analysis and cell sorting, enabled identification of optimal substrates for TEVp. The peptide, ENLYFQG, identical to the protease's natural substrate peptide, emerged as a strong consensus cleavage sequence, and position P3 (tyrosine, Y) and P1 (glutamine, Q) within the substrate peptide were confirmed as being the most important specificity determinants. In position P1′, glycine (G), serine (S), cysteine (C), alanine (A) and arginine (R) were among the most prevalent residues observed, all known to generate functional TEVp substrates and largely in line with other published studies stating that there is a strong preference for short aliphatic residues in this position. Interestingly, given the complex hydrogen-bonding network that the P6 glutamate (E) is engaged in within the substrate-enzyme complex, an unexpectedly relaxed residue preference was revealed for this position, which has not been reported earlier. Thus, in the light of our results, we believe that our assay, besides enabling protease substrate profiling, also may serve as a highly competitive platform for directed evolution of proteases and their substrates.
Collapse
Affiliation(s)
- George Kostallas
- Department of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Per-Åke Löfdahl
- Department of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
| | - Patrik Samuelson
- Department of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), Stockholm, Sweden
- * E-mail:
| |
Collapse
|
28
|
Tegel H, Ottosson J, Hober S. Enhancing the protein production levels in Escherichia coli with a strong promoter. FEBS J 2011; 278:729-39. [PMID: 21205203 DOI: 10.1111/j.1742-4658.2010.07991.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In biotechnology, the use of Escherichia coli for recombinant protein production has a long tradition, although the optimal production conditions for certain proteins are still not evident. The most favorable conditions for protein production vary with the gene product. Temperature and induction conditions represent parameters that affect total protein production, as well as the amount of soluble protein. Furthermore, the choice of promoter and bacterial strain will have large effects on the production of the target protein. In the present study, the effects of three different promoters (T7, trc and lacUV5) on E. coli production of target proteins with different characteristics are presented. The total amount of target protein as well as the amount of soluble protein were analyzed, demonstrating the benefits of using a strong promoter such as T7. To understand the underlying causes, transcription levels have been correlated with the total amount of target protein and protein solubility in vitro has been correlated with the amount of soluble protein that is produced. In addition, the effects of two different E. coli strains, BL21(DE3) and Rosetta(DE3), on the expression pattern were analyzed. It is concluded that the regulation of protein production is a combination of the transcription and translation efficiencies. Other important parameters include the nucleotide-sequence itself and the solubility of the target protein.
Collapse
Affiliation(s)
- Hanna Tegel
- School of Biotechnology, Department of Proteomics, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Walls D, Loughran ST. Tagging recombinant proteins to enhance solubility and aid purification. Methods Mol Biol 2011; 681:151-175. [PMID: 20978965 DOI: 10.1007/978-1-60761-913-0_9] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Protein fusion technology has enormously facilitated the efficient production and purification of individual recombinant proteins. The use of genetically engineered affinity and solubility-enhancing polypeptide "tags" has increased greatly in recent years and there now exists a considerable repertoire of these that can be used to solve issues related to the expression, stability, solubility, folding, and purification of their fusion partner. In the case of large-scale proteomic studies, the development of purification procedures tailored to individual proteins is not practicable, and affinity tags have therefore become indispensable tools for structural and functional proteomic initiatives that involve the expression of many proteins in parallel. Here, the rationale and applications of a range of established and more recently developed solubility-enhancing and affinity tags are outlined.
Collapse
Affiliation(s)
- Dermot Walls
- School of Biotechnology and National Centre for Sensor Research, Dublin City University, Dublin, Ireland.
| | | |
Collapse
|
30
|
|
31
|
|
32
|
To automate or not to automate: this is the question. ACTA ACUST UNITED AC 2010; 11:211-21. [PMID: 20526815 PMCID: PMC2921494 DOI: 10.1007/s10969-010-9092-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 05/14/2010] [Indexed: 11/26/2022]
Abstract
New protocols and instrumentation significantly boost the outcome of structural biology, which has resulted in significant growth in the number of deposited Protein Data Bank structures. However, even an enormous increase of the productivity of a single step of the structure determination process may not significantly shorten the time between clone and deposition or publication. For example, in a medium size laboratory equipped with the LabDB and HKL-3000 systems, we show that automation of some (and integration of all) steps of the X-ray structure determination pathway is critical for laboratory productivity. Moreover, we show that the lag period after which the impact of a technology change is observed is longer than expected.
Collapse
|
33
|
Affinity maturation of a TNFα-binding Affibody molecule by Darwinian survival selection. Biotechnol Appl Biochem 2010; 55:111-20. [DOI: 10.1042/ba20090274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Tegel H, Tourle S, Ottosson J, Persson A. Increased levels of recombinant human proteins with the Escherichia coli strain Rosetta(DE3). Protein Expr Purif 2009; 69:159-67. [PMID: 19733669 DOI: 10.1016/j.pep.2009.08.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 08/26/2009] [Accepted: 08/28/2009] [Indexed: 10/20/2022]
Abstract
The effect of two Escherichiacoli expression strains on the production of recombinant human protein fragments was evaluated. High-throughput protein production projects, such as the Swedish Human Protein Atlas project, are dependent on high protein yield and purity. By changing strain from E. coli BL21(DE3) to E. coli Rosetta(DE3) the overall success rate of the protein production has increased dramatically. The Rosetta(DE3) strain compensates for a number of rare codons. Here, we describe how the protein expression of human gene fragments in E. coli strains BL21(DE3) and Rosetta(DE3) was evaluated in two stages. Initially a test set of 68 recombinant proteins that previously had been expressed in BL21(DE3) was retransformed and expressed in Rosetta(DE3). The test set generated very positive results with an improved expression yield and a significantly better purity of the protein product which prompted us to implement the Rosetta(DE3) strain in the high-throughput protein production. Except for analysis of protein yield and purity the sequences were also analyzed regarding number of rare codons and rare codon clusters. The content of rare codons showed to have a significant effect on the protein purity. Based on the results of this study the atlas project permanently changed expression strain to Rosetta(DE3).
Collapse
Affiliation(s)
- Hanna Tegel
- School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | |
Collapse
|
35
|
Tegel H, Steen J, Konrad A, Nikdin H, Pettersson K, Stenvall M, Tourle S, Wrethagen U, Xu L, Yderland L, Uhlén M, Hober S, Ottosson J. High-throughput protein production--lessons from scaling up from 10 to 288 recombinant proteins per week. Biotechnol J 2009; 4:51-7. [PMID: 19039781 DOI: 10.1002/biot.200800183] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The demand for high-throughput recombinant protein production has markedly increased with the increased activity in the field of proteomics. Within the Human Protein Atlas project recombinantly produced human protein fragments are used for antibody production. Here we describe how the protein expression and purification protocol has been optimized in the project to allow for handling of nearly 300 different proteins per week. The number of manual handling steps has been significantly reduced (from 18 to 9) and the protein purification has been completely automated.
Collapse
Affiliation(s)
- Hanna Tegel
- School of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Aoki M, Matsuda T, Tomo Y, Miyata Y, Inoue M, Kigawa T, Yokoyama S. Automated system for high-throughput protein production using the dialysis cell-free method. Protein Expr Purif 2009; 68:128-36. [PMID: 19664715 DOI: 10.1016/j.pep.2009.07.017] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/10/2009] [Accepted: 07/17/2009] [Indexed: 11/28/2022]
Abstract
High-throughput protein production systems have become an important issue, because protein production is one of the bottleneck steps in large-scale structural and functional analyses of proteins. We have developed a dialysis reactor and a fully automated system for protein production using the dialysis cell-free synthesis method, which we previously established to produce protein samples on a milligram scale in a high-throughput manner. The dialysis reactor was designed to be suitable for an automated system and has six dialysis cups attached to a flat dialysis membrane. The automated system is based on a Tecan Freedom EVO 200 workstation in a three-arm configuration, and is equipped with shaking incubators, a vacuum module, a robotic centrifuge, a plate heat sealer, and a custom-made tilting carrier for collection of reaction solutions from the flat-bottom cups with dialysis membranes. The consecutive process, from the dialysis cell-free protein synthesis to the partial purification by immobilized metal affinity chromatography on a 96-well filtration plate, was performed within ca. 14h, including 8h of cell-free protein synthesis. The proteins were eluted stepwise in a high concentration using EDTA by centrifugation, while the resin in the filtration plate was washed on the vacuum manifold. The system was validated to be able to simultaneously and automatically produce up to 96 proteins in yields of several milligrams with high well-to-well reliability, sufficient for structural and functional analyses of proteins. The protein samples produced by the automated system have been utilized for NMR screening to judge the protein foldedness and for structure determinations using heteronuclear multi-dimensional NMR spectroscopy. The automated high-throughput protein production system represents an important breakthrough in the structural and functional studies of proteins and has already contributed a massive amount of results in the structural genomics project at the RIKEN Structural Genomics/Proteomics Initiative (RSGI).
Collapse
Affiliation(s)
- Masaaki Aoki
- RIKEN Systems and Structural Biology Center (SSBC), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | |
Collapse
|
37
|
Camper DV, Viola RE. Fully automated protein purification. Anal Biochem 2009; 393:176-81. [PMID: 19595984 DOI: 10.1016/j.ab.2009.07.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 10/20/2022]
Abstract
Obtaining highly purified proteins is essential to begin investigating their functional and structural properties. The steps that are typically involved in purifying proteins can include an initial capture, intermediate purification, and a final polishing step. Completing these steps can take several days and require frequent attention to ensure success. Our goal was to design automated protocols that would allow the purification of proteins with minimal operator intervention. Separate methods have been produced and tested that automate the sample loading, column washing, sample elution and peak collection steps for ion exchange, metal affinity, hydrophobic interaction, and gel filtration chromatography. These individual methods are designed to be coupled and run sequentially in any order to achieve a flexible and fully automated protein purification protocol.
Collapse
Affiliation(s)
- DeMarco V Camper
- Department of Chemistry, University of Toledo, Toledo, OH 43606, USA
| | | |
Collapse
|
38
|
Riek U, Ramirez S, Wallimann T, Schlattner U. A versatile multidimensional protein purification system with full internet remote control based on a standard HPLC system. Biotechniques 2009; 46:ix-xii. [PMID: 19480643 DOI: 10.2144/000113130] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The standard Akta Explorer high-performance liquid chromatography (HPLC) system has limitations for the automation of multidimensional protein purification. Here, we describe simple modifications that allow for automated multidimensional purification protocols to extend the possibilities of the Akta three-dimensional purification kit in terms of column number, flexibility of volumes stocked for re-injection of samples, and available choice of buffers. These modifications do not preclude the use of standard one-dimensional purification protocols. Additionally, we demonstrate a technology for encrypted full remote control of the machine over the Internet by cost-effective use of standard asymmetric digital subscriber line (ADSL) that enables direct remote interaction with the machine without preventing local control. A 4-column purification scheme, including equilibration and cleaning in place (CIP) procedures, was implemented on such a system. It significantly increased reproducibility and shortened processing time by 85%, as compared with manual operation, thus allowing for automated protein purification overnight.
Collapse
Affiliation(s)
- Uwe Riek
- INSERM U884, Université Joseph Fourier, Laboratory of Fundamental and Applied Bioenergetics, Grenoble, France.
| | | | | | | |
Collapse
|
39
|
Löfdahl PA, Nord O, Janzon L, Nygren PA. Selection of TNF-alpha binding affibody molecules using a beta-lactamase protein fragment complementation assay. N Biotechnol 2009; 26:251-9. [PMID: 19576305 DOI: 10.1016/j.nbt.2009.06.980] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Revised: 06/11/2009] [Accepted: 06/17/2009] [Indexed: 11/30/2022]
Abstract
Protein fragment complementation assays (PCAs) based on different reporter proteins have been described as powerful tools for monitoring dynamic protein-protein interactions in living cells. The present study describes the construction of a PCA system based on genetic splitting of TEM-1 beta-lactamase for the selection of proteins specifically interacting in the periplasm of Escherichia coli bacterial cells, and its application for the selection of affibody molecules binding human tumour necrosis factor-alpha (TNF-alpha) from a combinatorial library. Vectors encoding individual members of a naïve 10(9) affibody protein library fused to a C-terminal fragment of the beta-lactamase reporter were distributed via phage infection to a culture of cells harbouring a common construct encoding a fusion protein between a non-membrane anchored version of a human TNF-alpha target and the N-terminal segment of the reporter. An initial binding analysis of 29 library variants derived from surviving colonies using selection plates containing ampicillin and in some cases also the beta-lactamase inhibitor tazobactam, indicated a stringent selection for target binding variants. Subsequent analyses showed that the binding affinities (K(D)) for three selected variants studied in more detail were in the range 14-27 nm. The selectivity in binding to TNF-alpha for these variants was further demonstrated in both a cross-target PCA-based challenge and the specific detection of a low nm concentration of TNF-alpha spiked into a complex cell lysate sample. Further, in a biosensor-based competition assay, the binding to TNF-alpha of three investigated affibody variants could be completely blocked by premixing the target with the therapeutic monoclonal antibody adalimumab (Humira), indicating overlapping epitopes between the two classes of reagents. The data indicate that beta-lactamase PCA is a promising methodology for stringent selection of binders from complex naïve libraries to yield high affinity reagents with selective target binding characteristics.
Collapse
Affiliation(s)
- P-A Löfdahl
- Division of Molecular Biotechnology, School of Biotechnology, Royal Institute of Technology (KTH), SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
40
|
Automated sample preparation method for mass spectrometry analysis on recombinant proteins. J Chromatogr A 2009; 1216:4457-64. [DOI: 10.1016/j.chroma.2009.03.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 03/12/2009] [Accepted: 03/17/2009] [Indexed: 11/19/2022]
|
41
|
Uhlén M, Hober S. Generation and validation of affinity reagents on a proteome-wide level. J Mol Recognit 2009; 22:57-64. [PMID: 18546091 DOI: 10.1002/jmr.891] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
There is a need for protein-specific affinity reagents to explore the gene products encoded by the genome. Recently, systematic efforts to generate validated affinity reagents on a whole human proteome level have been initiated. There are several issues for such efforts, including choice of antigen, type of affinity reagent, and the subsequent validation of the generated protein-specific binders. The advantages and disadvantages with the different approaches are discussed and the problems related to quality assessment of antibodies to be used in multi-platform applications are addressed. This review also describes the efforts to create a virtual resource of validated antibodies using a community-based portal and summarizes the status and visions for the publicly available human protein atlas (http://www.proteinatlas.org) showing the human protein profiles in a large number of normal and cancer tissues as well as a large set of human cell lines.
Collapse
Affiliation(s)
- Mathias Uhlén
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, Stockholm, Sweden.
| | | |
Collapse
|
42
|
Larsson K, Eriksson C, Schwenk J, Berglund L, Wester K, Uhlén M, Hober S, Wernérus H. Characterization of PrEST-based antibodies towards human Cytokeratin-17. J Immunol Methods 2009; 342:20-32. [DOI: 10.1016/j.jim.2008.11.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/27/2022]
|
43
|
|
44
|
Hamsten C, Westberg J, Bölske G, Ayling R, Uhlén M, Persson A. Expression and immunogenicity of six putative variable surface proteins in Mycoplasma mycoides subsp. mycoides SC. MICROBIOLOGY-SGM 2008; 154:539-549. [PMID: 18227258 DOI: 10.1099/mic.0.2007/010694-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Variable surface protein Vmm and five Vmm-type proteins from Mycoplasma mycoides subsp. mycoides SC were analysed to determine whether these proteins are expressed in vivo in animals affected by contagious bovine pleuropneumonia (CBPP) and in vitro. Recombinant versions of these proteins were constructed and expressed in Escherichia coli after mutation of the TGA Trp codons to TGG. These proteins were then analysed by dot and Western blotting with sera from CBPP-affected cattle. Furthermore, affinity-purified polyclonal antibodies to the recombinant proteins were used in Western and colony blotting to look for expression of the putative Vmm-type proteins in cultured M. mycoides SC. This study demonstrates that immunoglobulins in CBPP sera recognize all putative Vmm-type proteins tested, indicating that these proteins or their homologues are expressed by mycoplasmas during natural infections. Vmm and one of the putative Vmm-type proteins showed variable expression in vitro.
Collapse
Affiliation(s)
- Carl Hamsten
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Joakim Westberg
- Department of Molecular Evolution, Evolutionary Biology Center, Uppsala University, SE-752 36 Uppsala, Sweden
| | - Göran Bölske
- Department of Bacteriology, National Veterinary Institute (SVA), SE-751 89 Uppsala, Sweden
| | - Roger Ayling
- The Mycoplasma Group, Veterinary Laboratories Agency (VLA), Addlestone, Surrey KT15 3NB, UK
| | - Mathias Uhlén
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| | - Anja Persson
- Department of Proteomics, School of Biotechnology, Royal Institute of Technology (KTH), AlbaNova University Center, SE-106 91 Stockholm, Sweden
| |
Collapse
|
45
|
Human protein atlas and the use of microarray technologies. Curr Opin Biotechnol 2008; 19:30-5. [DOI: 10.1016/j.copbio.2007.11.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2007] [Revised: 11/14/2007] [Accepted: 11/14/2007] [Indexed: 01/06/2023]
|
46
|
Alm T, Steen J, Ottosson J, Hober S. High-throughput protein purification under denaturating conditions by the use of cation exchange chromatography. Biotechnol J 2007; 2:709-16. [PMID: 17492715 DOI: 10.1002/biot.200700060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A high-throughput protein purification strategy using the polycationic Z(basic) tag has been developed. In order for the strategy to be useful both for soluble and less soluble proteins, a denaturating agent, urea, was used in all purification steps. First, four target proteins were genetically fused to the purification tag, Z(basic). These protein constructs were purified by cation exchange chromatography and eluted using a salt gradient. From the data achieved, a purification strategy was planned including stepwise elution to enable parallel protein purification using a laboratory robot. A protocol that includes all steps, equilibration of the chromatography resin, load of sample, wash, and elution, all without any manual handling steps, was handled by the laboratory robot. The program allows automated purification giving milligram amounts of pure recombinant protein of up to 60 cell lysates. In this study 22 different protein constructs, with different characteristics regarding pI and solubility, were successfully purified by the laboratory robot. The data show that Z(basic) can be used as a general purification tag also under denaturating conditions. Moreover, the strategy enables purification of proteins with different pI and solubility using ion exchange chromatography (IEXC). The procedure is highly reproducible and allows for high protein yield and purity and is therefore a good complement to the commonly used His(6)-tag.
Collapse
Affiliation(s)
- Tove Alm
- School of Biotechnology, Department of Proteomics, Royal Institute of Technology, AlbaNova University Center, Stockholm, Sweden
| | | | | | | |
Collapse
|
47
|
Falk R, Ramström M, Ståhl S, Hober S. Approaches for systematic proteome exploration. ACTA ACUST UNITED AC 2007; 24:155-68. [PMID: 17376740 DOI: 10.1016/j.bioeng.2007.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 01/24/2007] [Accepted: 01/25/2007] [Indexed: 10/23/2022]
Abstract
With the completion of the human genome project (HUGO) during recent years, gene function, protein abundance and expression patterns in tissues and cell types have emerged as central areas for the scientific community. A mapped human proteome will extend the value of the genome sequence and large-scale efforts aiming at elucidating protein localization, abundance and function are invaluable for biomarker and drug discovery. This research area, termed proteomics, is more demanding than any genome sequencing effort and to perform this on a wide scale is a highly diverse task. Therefore, the proteomics field employs a range of methods to examine different aspects of proteomics including protein localization, protein-protein interactions, posttranslational modifications and alteration of protein composition (e.g. differential expression) in tissues and body fluids. Here, some of the most commonly used methods, including chromatographic separations together with mass spectrometry and a number of affinity proteomics concepts are discussed and exemplified.
Collapse
Affiliation(s)
- Ronny Falk
- Royal Institute of Technology, Albanova University Center, School of Biotechnology, SE-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
48
|
Larsson K, Wester K, Nilsson P, Uhlén M, Hober S, Wernérus H. Multiplexed PrEST immunization for high-throughput affinity proteomics. J Immunol Methods 2006; 315:110-20. [PMID: 16949094 DOI: 10.1016/j.jim.2006.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 05/31/2006] [Accepted: 07/18/2006] [Indexed: 11/24/2022]
Abstract
Monospecific antibodies dfdfdfdf (msAbs) generated through antigen specific purification of polyclonal antisera are valuable tools in proteome analyses. However, proteome wide generation of msAbs would require extensive immunization programs. Therefore, it would be desirable to develop efficient immunization and purification methods to reduce the number of animals needed for such antibody-based research. Here we describe a multiplex immunization strategy for generation of msAbs towards recombinantly produced human protein fragments, denoted PrESTs. Antisera from rabbits immunized with a mixture of two, three, five and up to ten different PrESTs have been purified by a two-step immunoaffinity-based protocol and the efficiency of the purification method was analyzed using a two-color protein array concept. The obtained results showed that almost 80% of the animals immunized with antigens composed of two or three different PrESTs yielded antibodies recognizing all the included PrESTs. Furthermore, the modified two-step purification method effectively eliminated all background binding and produced pure antibody pools against individual PrESTs. This indicates that the multiplexed PrEST immunization strategy described here could become useful for high-throughput antibody-based proteomics initiatives, thus significantly reducing the number of animals needed in addition to providing a more cost-efficient method for production of msAbs.
Collapse
Affiliation(s)
- Karin Larsson
- Department of Proteomics, AlbaNova University Center, Royal Institute of Technology (KTH), Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|