1
|
Falcón A, Martínez-Pulgarín S, López-Serrano S, Reytor E, Cid M, Nuñez MDC, Córdoba L, Darji A, Escribano JM. Development of a Fully Protective Pandemic Avian Influenza Subunit Vaccine in Insect Pupae. Viruses 2024; 16:829. [PMID: 38932122 PMCID: PMC11209067 DOI: 10.3390/v16060829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, we pioneered an alternative technology for manufacturing subunit influenza hemagglutinin (HA)-based vaccines. This innovative method involves harnessing the pupae of the Lepidoptera Trichoplusia ni (T. ni) as natural biofactories in combination with baculovirus vectors (using CrisBio® technology). We engineered recombinant baculoviruses encoding two versions of the HA protein (trimeric or monomeric) derived from a pandemic avian H7N1 virus A strain (A/chicken/Italy/5093/99). These were then used to infect T. ni pupae, resulting in the production of the desired recombinant antigens. The obtained HA proteins were purified using affinity chromatography, consistently yielding approximately 75 mg/L of insect extract. The vaccine antigen effectively immunized poultry, which were subsequently challenged with a virulent H7N1 avian influenza virus. Following infection, all vaccinated animals survived without displaying any clinical symptoms, while none of the mock-vaccinated control animals survived. The CrisBio®-derived antigens induced high titers of HA-specific antibodies in the vaccinated poultry, demonstrating hemagglutination inhibition activity against avian H7N1 and human H7N9 viruses. These results suggest that the CrisBio® technology platform has the potential to address major industry challenges associated with producing recombinant influenza subunit vaccines, such as enhancing production yields, scalability, and the speed of development, facilitating the global deployment of highly effective influenza vaccines.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/genetics
- Influenza Vaccines/administration & dosage
- Pupa/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Vaccines, Subunit/immunology
- Vaccines, Subunit/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Hemagglutinin Glycoproteins, Influenza Virus/genetics
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Chickens
- Influenza A Virus, H7N1 Subtype/immunology
- Influenza A Virus, H7N1 Subtype/genetics
- Baculoviridae/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/genetics
- Humans
- Vaccine Development
- Moths/immunology
- Pandemics/prevention & control
Collapse
Affiliation(s)
- Ana Falcón
- Alternative Gene Expression S.L. (ALGENEX), Ronda de Poniente 14, 28760 Madrid, Spain
| | | | - Sergi López-Serrano
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Programa de Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Edel Reytor
- Alternative Gene Expression S.L. (ALGENEX), Ronda de Poniente 14, 28760 Madrid, Spain
| | - Miguel Cid
- Alternative Gene Expression S.L. (ALGENEX), Ronda de Poniente 14, 28760 Madrid, Spain
| | | | - Lorena Córdoba
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Programa de Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Ayub Darji
- Unitat Mixta d’Investigació IRTA-UAB en Sanitat Animal, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
- Programa de Sanitat Animal, Institut de Recerca i Tecnologia Agroalimentàries, Centre de Recerca en Sanitat Animal (CReSA), Campus de la Universitat Autònoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - José M. Escribano
- Alternative Gene Expression S.L. (ALGENEX), Ronda de Poniente 14, 28760 Madrid, Spain
| |
Collapse
|
2
|
Targovnik AM, Simonin JA, Mc Callum GJ, Smith I, Cuccovia Warlet FU, Nugnes MV, Miranda MV, Belaich MN. Solutions against emerging infectious and noninfectious human diseases through the application of baculovirus technologies. Appl Microbiol Biotechnol 2021; 105:8195-8226. [PMID: 34618205 PMCID: PMC8495437 DOI: 10.1007/s00253-021-11615-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 12/23/2022]
Abstract
Abstract
Baculoviruses are insect pathogens widely used as biotechnological tools in different fields of life sciences and technologies. The particular biology of these entities (biosafety viruses 1; large circular double-stranded DNA genomes, infective per se; generally of narrow host range on insect larvae; many of the latter being pests in agriculture) and the availability of molecular-biology procedures (e.g., genetic engineering to edit their genomes) and cellular resources (availability of cell lines that grow under in vitro culture conditions) have enabled the application of baculoviruses as active ingredients in pest control, as systems for the expression of recombinant proteins (Baculovirus Expression Vector Systems—BEVS) and as viral vectors for gene delivery in mammals or to display antigenic proteins (Baculoviruses applied on mammals—BacMam). Accordingly, BEVS and BacMam technologies have been introduced in academia because of their availability as commercial systems and ease of use and have also reached the human pharmaceutical industry, as incomparable tools in the development of biological products such as diagnostic kits, vaccines, protein therapies, and—though still in the conceptual stage involving animal models—gene therapies. Among all the baculovirus species, the Autographa californica multiple nucleopolyhedrovirus has been the most highly exploited in the above utilities for the human-biotechnology field. This review highlights the main achievements (in their different stages of development) of the use of BEVS and BacMam technologies for the generation of products for infectious and noninfectious human diseases. Key points • Baculoviruses can assist as biotechnological tools in human health problems. • Vaccines and diagnosis reagents produced in the baculovirus platform are described. • The use of recombinant baculovirus for gene therapy–based treatment is reviewed.
Collapse
Affiliation(s)
- Alexandra Marisa Targovnik
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina.
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina.
| | - Jorge Alejandro Simonin
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - Gregorio Juan Mc Callum
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Ignacio Smith
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Franco Uriel Cuccovia Warlet
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Nugnes
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| | - María Victoria Miranda
- Cátedra de Biotecnología, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Buenos Aires, 1113, Argentina
- Instituto de Nanobiotecnología (NANOBIOTEC), Facultad de Farmacia y Bioquímica, CONICET -Universidad de Buenos Aires, Junín 956, Sexto Piso, C1113AAD, 1113, Buenos Aires, Argentina
| | - Mariano Nicolás Belaich
- Laboratorio de Ingeniería Genética y Biología Celular y Molecular, Área Virosis de Insectos, Instituto de Microbiología Básica y Aplicada, Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Buenos Aires, Argentina
| |
Collapse
|
3
|
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021; 11:1072. [PMID: 34439738 PMCID: PMC8394948 DOI: 10.3390/biom11081072] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.
Collapse
Affiliation(s)
- Raquel Cid
- ADL Bionatur Solutions S.A., Av. del Desarrollo Tecnológico 11, 11591 Jerez de la Frontera, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
4
|
Chen X, Chereddy SCRR, Gurusamy D, Palli SR. Identification and characterization of highly active promoters from the fall armyworm, Spodoptera frugiperda. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 126:103455. [PMID: 32827641 DOI: 10.1016/j.ibmb.2020.103455] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The cell lines derived from the fall armyworm (FAW), Spodoptera frugiperda, have been widely used for production of recombinant proteins for applications in both basic research and applications in medicine and agriculture. Promoters from the nucleopolyhedrovirus (NPV) are commonly used in these expression systems. These promoters have some limitations, which may be overcome by using promoters of genes from S. frugiperda. However, information on these promoters is not available. We identified several highly expressed genes from the transcriptomes of S. frugiperda midgut, fat body, epidermis, ovarian cell line (Sf9), and a midgut cell line (Sf17). The activity of potential promoters of 21 highly expressed genes was evaluated in Sf9 and Sf17 cells. Two of these promoters, SfHSC70-P1780 and SfPub-P2009, showed higher activity than commonly used hr5/ie1 (baculovirus enhancer element, hr5 and immediate early gene 1, ie1) promoter. Interestingly, the activity of these two promoters increased after adding hr5 enhancer element. The hr5/SfPub-P2009 promoter performance was evaluated by expressing an exogenous P450 protein in Sf9 cells using a plasmid-based expression system. The activity of this promoter was also evaluated in the FAW by expressing green fluorescence protein using the baculovirus expression system. In both cases, the hr5/SfPub-P2009 promoter performed better than the commonly used hr5/ie1 promoter. These strong endogenous promoters will be useful for studies in S. frugiperda and other lepidopteran insects for multiple applications, including protein expression, genome editing, and transgenic insects.
Collapse
Affiliation(s)
- Xien Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, United States
| | - Shankar C R R Chereddy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, United States
| | - Dhandapani Gurusamy
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, United States
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, 40546, United States.
| |
Collapse
|
5
|
Escribano JM, Cid M, Reytor E, Alvarado C, Nuñez MC, Martínez-Pulgarín S, Dalton RM. Chrysalises as natural production units for recombinant subunit vaccines. J Biotechnol 2020; 324S:100019. [PMID: 34154729 DOI: 10.1016/j.btecx.2020.100019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/01/2020] [Accepted: 05/16/2020] [Indexed: 12/15/2022]
Abstract
The baculovirus vector expression system (BEVS) combines cultured insect cells and genetically modified Autographa californica nuclear polyhedrosis virus (AcMNPV)-derived baculovirus vectors. This expression system has been widely used for the expression of hundred of proteins for more than 30 years, existing commercial products manufactured at large scale by this methodology, mainly subunit vaccines. At an industrial scale, insect cells, as any other cultured cells, require artificial media and a strict control of environmental sterile conditions in the complex and expensive bioreactors. Here we describe an efficient alternative to produce recombinant biologics using the versatile and productive baculovirus vectors. It consists in natural biocapsules (pupae from Trichoplusia ni (Hübner) Lepidoptera), containing millions of insect cells in perfect physiological conditions, ready to be programmed by a genetically modified AcMNPV-derived baculovirus vector to produce large quantities of any recombinant protein. This technology, denominated CrisBio, has been tested to produce dozens of proteins, reaching productivities on the range of milligrams per infected pupa, that can be translated into dozens of vaccine doses, for example. The biologics production by CrisBio was industrialized with the design of both insect rearing and pupae storage single-use plastic devices, compatible with machines specifically designed for the automation of pupae manipulation and inoculation. These devices and machines reduce manual operations, increase batches consistency and facilitate the scaled production of any recombinant protein. As a mode of examples, the productivity in CrisBio technology platform of two virus-like particle (VLP) vaccine antigens is described in this work.
Collapse
Affiliation(s)
- José M Escribano
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain.
| | - Miguel Cid
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - Edel Reytor
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - Carmen Alvarado
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - María C Nuñez
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - Susana Martínez-Pulgarín
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| | - Romy M Dalton
- Alternative Gene Expression S.L. (ALGENEX). Centro Empresarial. Parque Científico y Tecnológico de la UPM, Campus Montegancedo, 28223 Pozuelo de Alarcón, Madrid Spain
| |
Collapse
|
6
|
Development of a baculovirus vector carrying a small hairpin RNA for suppression of sf-caspase-1 expression and improvement of recombinant protein production. BMC Biotechnol 2018; 18:24. [PMID: 29720159 PMCID: PMC5930690 DOI: 10.1186/s12896-018-0434-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 04/11/2018] [Indexed: 12/31/2022] Open
Abstract
Background The Baculovirus expression vector system (BEVS) is a transient expression platform for recombinant protein production in insect cells. Baculovirus infection of insect cells will shutoff host translation and induce apoptosis and lead to the termination of protein expression. Previous reports have demonstrated the enhancement of protein yield in BEVS using stable insect cell lines expressing interference RNA to suppress the expression of caspase-1. Results In this study, short-hairpin RNA (shRNA) expression cassettes targeting Spodoptera frugiperda caspase-1 (Sf-caspase-1) were constructed and inserted into an Autographa californica multiple nucleopolyhedrovirus (AcMNPV) vector. Using the recombinant baculovirus vectors, we detected the suppression of Sf-caspase-1 expression and cell apoptosis. Green fluorescent protein (GFP), Discosoma sp. Red (DsRed) and firefly luciferase were then expressed as reporter proteins. The results showed that suppression of apoptosis enhanced the accumulation of exogenous proteins at 2 and 3 days post infection. After 4 days post infection, the activity of the reporter proteins remained higher in BEVS using the baculovirus carrying shRNA in comparison with the control without shRNA, but the accumulated protein levels showed no obvious difference between them, suggesting that apoptosis suppression resulted in improved protein folding rather than translation efficiency at the very late stage of baculovirus infection. Conclusions The baculovirus vector developed in this study would be a useful tool for the production of active proteins suitable for structural and functional studies or pharmaceutical applications in Sf9 cells, and it also has the potential to be adapted for the improvement of protein expression in different insect cell lines that can be infected by AcMNPV.
Collapse
|
7
|
Guijarro-Pardo E, Gómez-Sebastián S, Escribano JM. In vivo production of recombinant proteins using occluded recombinant AcMNPV-derived baculovirus vectors. J Virol Methods 2017; 250:17-24. [PMID: 28943301 DOI: 10.1016/j.jviromet.2017.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/04/2017] [Accepted: 09/19/2017] [Indexed: 11/29/2022]
Abstract
Trichoplusia ni insect larvae infected with vectors derived from the Autographa californica multiple nucleopolyhedrovirus (AcMNPV), are an excellent alternative to insect cells cultured in conventional bioreactors to produce recombinant proteins because productivity and cost-efficiency reasons. However, there is still a lot of work to do to reduce the manual procedures commonly required in this production platform that limit its scalability. To increase the scalability of this platform technology, a current bottleneck to be circumvented in the future is the need of injection for the inoculation of larvae with polyhedrin negative baculovirus vectors (Polh-) because of the lack of oral infectivity of these viruses, which are commonly used for production in insect cell cultures. In this work we have developed a straightforward alternative to obtain orally infective vectors derived from AcMNPV and expressing recombinant proteins that can be administered to the insect larvae (Trichoplusia ni) by feeding, formulated in the insect diet. The approach developed was based on the use of a recombinant polyhedrin protein expressed by a recombinant vector (Polh+), able to co-occlude any recombinant Polh- baculovirus vector expressing a recombinant protein. A second alternative was developed by the generation of a dual vector co-expressing the recombinant polyhedrin protein and the foreign gene of interest to obtain the occluded viruses. Additionally, by the incorporation of a reporter gene into the helper Polh+ vector, it was possible the follow-up visualization of the co-occluded viruses infection in insect larvae and will help to homogenize infection conditions. By using these methodologies, the production of recombinant proteins in per os infected larvae, without manual infection procedures, was very similar in yield to that obtained by manual injection of recombinant Polh- AcMNPV-based vectors expressing the same proteins. However, further analyses will be required for a detailed comparison of production yields reached by injection vs oral infections for different recombinant proteins. In conclusion, these results open the possibility of future industrial scaling-up production of recombinant proteins in insect larvae by reducing manual operations.
Collapse
|
8
|
Smith ME, Targovnik AM, Cerezo J, Morales MA, Miranda MV, Talou JR. Integrated process for the purification and immobilization of the envelope protein domain III of dengue virus type 2 expressed in Rachiplusia nu larvae and its potential application in a diagnostic assay. Protein Expr Purif 2016; 131:76-84. [PMID: 27888023 DOI: 10.1016/j.pep.2016.11.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 12/24/2022]
Abstract
Dengue incidence has grown dramatically in the last years, with about 40% of the world population at risk of infection. Recently, a vaccine developed by Sanofi Pasteur has been registered, but only in a few countries. Moreover, specific antiviral drugs are not available. Thus, an efficient and accurate diagnosis is important for disease management. To develop a low-cost immunoassay for dengue diagnosis, in the present study we expressed the envelope protein domain III of dengue virus type 2 in Rachiplusia nu larvae by infection with a recombinant baculovirus. The antigen was expressed as a fusion to hydrophobin I (DomIIIHFBI) to easily purify it by an aqueous two-phase system (ATPS) and to efficiently immobilize it in immunoassay plates. A high level of recombinant DomIIIHFBI was obtained in R. nu, where yields reached 4.5 mg per g of larva. Also, we were able to purify DomIIIHFBI by an ATPS with 2% of Triton X-114, reaching a yield of 73% and purity higher than 80% in a single purification step. The recombinant DomIIIHFBI was efficiently immobilized in hydrophobic surface plates. The immunoassay we developed with the immobilized antigen was able to detect IgG specific for dengue virus type 2 in serum samples and not for other serotypes.
Collapse
Affiliation(s)
- María Emilia Smith
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Alexandra Marisa Targovnik
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Julieta Cerezo
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - María Alejandra Morales
- Laboratorio de Arbovirus, Instituto Nacional de Enfermedades Virales Humanas (INEVH) "Dr. Julio I. Maiztegui"- ANLIS, Monteagudo 2510, 2700, Pergamino, Buenos Aires, Argentina.
| | - María Victoria Miranda
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| | - Julián Rodríguez Talou
- Instituto NANOBIOTEC - Cátedra de Biotecnología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires - Consejo Nacional de Investigaciones Científicas y Técnicas, Junín 956, 1113, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
9
|
González-Aramundiz JV, Presas E, Dalmau-Mena I, Martínez-Pulgarín S, Alonso C, Escribano JM, Alonso MJ, Csaba NS. Rational design of protamine nanocapsules as antigen delivery carriers. J Control Release 2016; 245:62-69. [PMID: 27856263 DOI: 10.1016/j.jconrel.2016.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 11/11/2016] [Accepted: 11/11/2016] [Indexed: 12/24/2022]
Abstract
Current challenges in global immunization indicate the demand for new delivery strategies, which could be applied to the development of new vaccines against emerging diseases, as well as to improve safety and efficacy of currently existing vaccine formulations. Here, we report a novel antigen nanocarrier consisting of an oily core and a protamine shell, further stabilized with pegylated surfactants. These nanocarriers, named protamine nanocapsules, were rationally designed to promote the intracellular delivery of antigens to immunocompetent cells and to trigger an efficient and long-lasting immune response. Protamine nanocapsules have nanometric size, positive zeta potential and high association capacity for H1N1 influenza hemagglutinin, a protein that was used here as a model antigen. The new formulation shows an attractive stability profile both, as an aqueous suspension or a freeze-dried powder formulation. In vitro studies showed that protamine nanocapsules were efficiently internalized by macrophages without eliciting significant toxicity. In vivo studies indicate that antigen-loaded nanocapsules trigger immune responses comparable to those achieved with alum, even when using significantly lower antigen doses, thus indicating their adjuvant properties. These promising in vivo data, alongside with their versatility for the loading of different antigens and oily immunomodulators and their excellent stability profile, make these nanocapsules a promising platform for the delivery of antigens. CHEMICAL COMPOUNDS Protamine sulphate (PubChem SID: 7849283), Sodium Cholate (PubChem CID: 23668194), Miglyol (PubChem CID: 53471835), α tocopherol (PubChem CID: 14985), Tween® 20(PubChem CID: 443314), Tween® 80(PubChem CID: 5281955), TPGS (PubChem CID: 71406).
Collapse
Affiliation(s)
- José Vicente González-Aramundiz
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain; Departamento de Farmacia, Facultad de Química, Pontificia Universidad Católica de Chile, 7820436 Santiago, Chile.
| | - Elena Presas
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
| | - Inmaculada Dalmau-Mena
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - Susana Martínez-Pulgarín
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Madrid, Spain.
| | - Covadonga Alonso
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - José M Escribano
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain.
| | - María J Alonso
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
| | - Noemi Stefánia Csaba
- Center for Research in Molecular Medicine and Chronic Diseases (CIMUS), Health Research Institute of Santiago de Compostela (IDIS), Dept. of Pharmacy and Pharmaceutical Technology, School of Pharmacy, Univ. of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
| |
Collapse
|
10
|
Abstract
With an increasing need for functional analysis of proteins, there is a growing demand for fast and cost-effective production of biologically active eukaryotic proteins. The baculovirus expression vector system (BEVS) is widely used, and in the vast majority of cases cultured insect cells have been the host of choice. A low cost alternative to bioreactor-based protein production exists in the use of live insect larvae as "mini bioreactors." In this chapter we focus on Trichoplusia ni as the host insect for recombinant protein production, and explore three different methods of virus administration to the larvae. The first method is labor-intensive, as extracellular virus is injected into each larva, whereas the second lends itself to infection of large numbers of larvae via oral inoculation. While these first two methods require cultured insect cells for the generation of recombinant virus, the third relies on transfection of larvae with recombinant viral DNA and does not require cultured insect cells as an intermediate stage. We suggest that small- to mid-scale recombinant protein production (mg-g level) can be achieved in T. ni larvae with relative ease.
Collapse
|
11
|
Pérez-Hernández M, Gadea I, Escribano J, Tabarés E, Gómez-Sebastián S. Expression and characterization of the gD protein of HSV-2 fused to the tetramerization domain of the transcription factor p53. Protein Expr Purif 2015. [DOI: 10.1016/j.pep.2015.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
López-Vidal J, Gómez-Sebastián S, Bárcena J, Nuñez MDC, Martínez-Alonso D, Dudognon B, Guijarro E, Escribano JM. Improved Production Efficiency of Virus-Like Particles by the Baculovirus Expression Vector System. PLoS One 2015; 10:e0140039. [PMID: 26458221 PMCID: PMC4601761 DOI: 10.1371/journal.pone.0140039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/21/2015] [Indexed: 12/29/2022] Open
Abstract
Vaccines based on virus-like particles (VLPs) have proven effective in humans and animals. In this regard, the baculovirus expression vector system (BEVS) is one of the technologies of choice to generate such highly immunogenic vaccines. The extended use of these vaccines for human and animal populations is constrained because of high production costs, therefore a significant improvement in productivity is crucial to ensure their commercial viability. Here we describe the use of the previously described baculovirus expression cassette, called TB, to model the production of two VLP-forming vaccine antigens in insect cells. Capsid proteins from porcine circovirus type 2 (PCV2 Cap) and from the calicivirus that causes rabbit hemorrhagic disease (RHDV VP60) were expressed in insect cells using baculoviruses genetically engineered with the TB expression cassette. Productivity was compared to that obtained using standard counterpart vectors expressing the same proteins under the control of the polyhedrin promoter. Our results demonstrate that the use of the TB expression cassette increased the production yields of these vaccine antigens by around 300% with respect to the standard vectors. The recombinant proteins produced by TB-modified vectors were fully functional, forming VLPs identical in size and shape to those generated by the standard baculoviruses, as determined by electron microscopy analysis. The use of the TB expression cassette implies a simple modification of the baculovirus vectors that significantly improves the cost efficiency of VLP-based vaccine production, thereby facilitating the commercial viability and broad application of these vaccines for human and animal health.
Collapse
Affiliation(s)
- Javier López-Vidal
- Alternative Gene Expression S.L. (ALGENEX), Edificio de empresas, Campus Montegancedo (Universidad Politécnica de Madrid), Pozuelo de Alarcón, Madrid, Spain
| | - Silvia Gómez-Sebastián
- Alternative Gene Expression S.L. (ALGENEX), Edificio de empresas, Campus Montegancedo (Universidad Politécnica de Madrid), Pozuelo de Alarcón, Madrid, Spain
| | - Juan Bárcena
- Centro de Investigación en Sanidad Animal (CISA-INIA), Valdeolmos, Madrid, Spain
| | - Maria del Carmen Nuñez
- Alternative Gene Expression S.L. (ALGENEX), Edificio de empresas, Campus Montegancedo (Universidad Politécnica de Madrid), Pozuelo de Alarcón, Madrid, Spain
| | - Diego Martínez-Alonso
- Alternative Gene Expression S.L. (ALGENEX), Edificio de empresas, Campus Montegancedo (Universidad Politécnica de Madrid), Pozuelo de Alarcón, Madrid, Spain
| | - Benoit Dudognon
- Alternative Gene Expression S.L. (ALGENEX), Edificio de empresas, Campus Montegancedo (Universidad Politécnica de Madrid), Pozuelo de Alarcón, Madrid, Spain
| | - Eva Guijarro
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Autovia A6 Km 7, Madrid, Spain
| | - José M. Escribano
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Autovia A6 Km 7, Madrid, Spain
- * E-mail:
| |
Collapse
|
13
|
Nerome K, Sugita S, Kuroda K, Hirose T, Matsuda S, Majima K, Kawasaki K, Shibata T, Poetri ON, Soejoedono RD, Mayasari NLPI, Agungpriyono S, Nerome R. The large-scale production of an artificial influenza virus-like particle vaccine in silkworm pupae. Vaccine 2014; 33:117-25. [PMID: 25448101 DOI: 10.1016/j.vaccine.2014.11.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 10/09/2014] [Accepted: 11/06/2014] [Indexed: 12/15/2022]
Abstract
We successfully established a mass production system for an influenza virus-like particle (VLP) vaccine using a synthetic H5 hemagglutinin (HA) gene codon-optimized for the silkworm. A recombinant baculovirus containing the synthetic gene was inoculated into silkworm pupae. Four days after inoculation, the hemagglutination titer in homogenates from infected pupae reached a mean value of 0.8 million hemagglutination units (HAU), approximately 2,000 μg HA protein per pupa, more than 50-fold higher than that produced with an embryonated chicken egg. VLPs ranging from 30 nm to 300 nm in diameter and covered with a large number of spikes were detected in the homogenates. The spikes were approximately 14 nm long, similar to an authentic influenza HA spike. Detailed electron micrographs indicated that the VLP spike density was similar to that of authentic influenza virus particles. The results clearly show that the expression of a single HA gene can efficiently produce VLPs in silkworm pupae. When chickens were immunized with the pupae homogenate, the hemagglutination inhibition titer in their sera reached values of 2,048-8,192 after approximately 1 month. This is the first report demonstrating that a large amount of VLP vaccine could be produced by single synthetic HA gene in silkworm pupae. Our system might be useful for future vaccine development against other viral diseases.
Collapse
Affiliation(s)
- Kuniaki Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago, Okinawa 905-0004, Japan.
| | - Shigeo Sugita
- Equine Research Institute, Japan Racing Association, 321-4, Tokami-cho, Utsunomiya, Tochigi 320-0856, Japan
| | - Kazumichi Kuroda
- Division of Microbiology, Nihon University School of Medicine, 30-1, Oyaguchi-kamicho, Itabashi-ku, Tokyo 173-8610, Japan
| | - Toshiharu Hirose
- The Institute of Biological Resources, 893-2, Nakayama, Nago, Okinawa 905-0004, Japan
| | - Sayaka Matsuda
- The Institute of Biological Resources, 893-2, Nakayama, Nago, Okinawa 905-0004, Japan
| | - Kei Majima
- Baculotechnologies Co., Ltd., 2217-16, Hayashi-cho, Takamatsu, Kagawa 761-0301, Japan
| | - Kazunori Kawasaki
- National Institute of Advanced Science and Technology (AIST), 1-8-31 Midorigaoka, Ikeda, Osaka 563-8577, Japan
| | - Toshikatsu Shibata
- Division of Gastroenterology and Hepatology, Nihon University School of Medicine, 30-1, Oyaguchi-kamicho, Itabshi-ku, Tokyo 173-8610, Japan
| | - Okti Nadia Poetri
- Faculty of Veterinary Medicine, Bogor Agricultural University IPB, JL Agatis Kampus IPB Darmaga, Bogor 16680, Indonesia
| | - Retno D Soejoedono
- Faculty of Veterinary Medicine, Bogor Agricultural University IPB, JL Agatis Kampus IPB Darmaga, Bogor 16680, Indonesia
| | - Ni L P Ika Mayasari
- Faculty of Veterinary Medicine, Bogor Agricultural University IPB, JL Agatis Kampus IPB Darmaga, Bogor 16680, Indonesia
| | - Srihadi Agungpriyono
- Faculty of Veterinary Medicine, Bogor Agricultural University IPB, JL Agatis Kampus IPB Darmaga, Bogor 16680, Indonesia
| | - Reiko Nerome
- The Institute of Biological Resources, 893-2, Nakayama, Nago, Okinawa 905-0004, Japan
| |
Collapse
|
14
|
Ruiz V, Mignaqui AC, Nuñez MC, Reytor E, Escribano JM, Wigdorovitz A. Comparison of strategies for the production of FMDV empty capsids using the baculovirus vector system. Mol Biotechnol 2014; 56:963-70. [PMID: 24939577 DOI: 10.1007/s12033-014-9775-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recombinant FMDV empty capsids have been produced in insect cells and larvae using the baculovirus expression system, although protein yield and efficiency of capsid assembly have been highly variable. In this work, two strategies were compared for the expression of FMDV A/Arg/01 empty capsids: infection with a dual-promoter baculovirus vector coding for the capsid precursor (P12A) and the protease 3C under the control of the polyhedrin and p10 promoters, respectively (BacP12A-3C), or a single-promoter vector coding the P12A3C cassette (BacP12A3C). Expression levels and assembly into empty capsids were analyzed in insect cells and larvae. We observed that the use of the single-promoter vector allowed higher levels of expression both in insect cells and larvae. Recombinant capsid proteins produced by both vectors were recognized by monoclonal antibodies (mAbs) directed against conformational epitopes of FMDV A/Arg/01 and proved to self-assemble into empty capsids (75S) and pentamers (12S) when analyzed by sucrose gradient centrifugation.
Collapse
Affiliation(s)
- V Ruiz
- Instituto de Virología, CICVyA, INTA, Dr. Nicolás Repetto y De Los Reseros s/Nº, Hurlingham, (B1681FUM), Buenos Aires, Argentina,
| | | | | | | | | | | |
Collapse
|
15
|
Vicente S, Peleteiro M, Gonzalez-Aramundiz JV, Díaz-Freitas B, Martínez-Pulgarín S, Neissa JI, Escribano JM, Sanchez A, González-Fernández Á, Alonso MJ. Highly versatile immunostimulating nanocapsules for specific immune potentiation. Nanomedicine (Lond) 2014; 9:2273-89. [DOI: 10.2217/nnm.14.10] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To develop a new core-shell type (nanocapsules) adjuvant system composed of squalene and polyglucosamine (PG) and to evaluate its immunostimulant capacity. Results: The defined PG nanocapsules exhibited the capacity to efficiently associate the selected antigens (recombinant hepatitis B surface antigen and hemagglutinin of influenza virus) onto their polymeric surface (70–75%), and the immunostimulant imiquimod within the oily core. The resulting nanovaccines, with a particle size of 200–250 nm and a positive zeta-potential (∼+60 mV), were able to significantly potentiate and modulate the immune response to the selected antigens upon intramuscular administration to mice. Their efficacy as novel adjuvants was attributed to their enhanced cell internalization and effective intracellular imiquimod/antigen delivery, together with their prolonged residence time at the injection site. Conclusion: The nanocapsules described herein have the capacity to enhance, prolong and modulate the immune response of subunit antigens and, therefore, they could be proposed as a platform for the codelivery of different antigens and immunostimulators. Original submitted 13 June 2013; Revised submitted 28 November 2013
Collapse
Affiliation(s)
- Sara Vicente
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), University of Santiago de Compostela, 15706 Campus Vida, Santiago de Compostela, Spain and Pharmacy & Pharmaceutical Technology Department, School of Pharmacy, University of Santiago de Compostela, 15705 Campus Vida, Santiago de Compostela, Spain and Current affiliation: Exploratory Unit, Sanofi-Aventis R&D, 31036 Toulouse, France
| | - Mercedes Peleteiro
- Immunology, Institute of Biomedical Research (IBIV), Biomedical Research Center (CINBIO), University of Vigo, 36310, Campus Lagoas de Marcosende, Vigo, Spain
| | - Jose V Gonzalez-Aramundiz
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), University of Santiago de Compostela, 15706 Campus Vida, Santiago de Compostela, Spain and Pharmacy & Pharmaceutical Technology Department, School of Pharmacy, University of Santiago de Compostela, 15705 Campus Vida, Santiago de Compostela, Spain
| | - Belén Díaz-Freitas
- Immunology, Institute of Biomedical Research (IBIV), Biomedical Research Center (CINBIO), University of Vigo, 36310, Campus Lagoas de Marcosende, Vigo, Spain
| | - Susana Martínez-Pulgarín
- Alternative Gene Expression SL (ALGENEX), Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Jose I Neissa
- Department of Physiology, Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), University of Santiago de Compostela, 15706 Campus Vida, Santiago de Compostela, Spain
| | - Jose M Escribano
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA) Autovía A6 Km. 7.5, 28040 Madrid, Spain
| | - Alejandro Sanchez
- Pharmacy & Pharmaceutical Technology Department, School of Pharmacy, University of Santiago de Compostela, 15705 Campus Vida, Santiago de Compostela, Spain and Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - África González-Fernández
- Immunology, Institute of Biomedical Research (IBIV), Biomedical Research Center (CINBIO), University of Vigo, 36310, Campus Lagoas de Marcosende, Vigo, Spain
| | - Maria J Alonso
- Center for Research in Molecular Medicine & Chronic Diseases (CIMUS), University of Santiago de Compostela, 15706 Campus Vida, Santiago de Compostela, Spain and Pharmacy & Pharmaceutical Technology Department, School of Pharmacy, University of Santiago de Compostela, 15705 Campus Vida, Santiago de Compostela, Spain and Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
16
|
Dudognon B, Romero-Santacreu L, Gómez-Sebastián S, Hidalgo AB, López-Vidal J, Bellido ML, Muñoz E, Escribano JM. Production of functional active human growth factors in insects used as living biofactories. J Biotechnol 2014; 184:229-39. [PMID: 24915129 DOI: 10.1016/j.jbiotec.2014.05.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/23/2014] [Accepted: 05/30/2014] [Indexed: 12/11/2022]
Abstract
Growth factors (GFs) are naturally signalling proteins, which bind to specific receptors on the cell surface. Numerous families of GFs have already been identified and remarkable progresses have been made in understanding the pathways that these proteins use to activate/regulate the complex signalling network involved in cell proliferation or wound healing processes. The bottleneck for a wider clinical and commercial application of these factors relay on their scalable cost-efficient production as bioactive molecules. The present work describes the capacity of Trichoplusia ni insect larvae used as living bioreactors in combination with the baculovirus vector expression system to produce three fully functional human GFs, the human epidermal growth factor (huEGF), the human fibroblast growth factor 2 (huFGF2) and the human keratinocyte growth factor 1 (huKGF1). The expression levels obtained per g of insect biomass were of 9.1, 2.6 and 3mg for huEGF, huFGF2 and huKGF1, respectively. Attempts to increase the productivity of the insect/baculovirus system we have used different modifications to optimize their production. Additionally, recombinant proteins were expressed fused to different tags to facilitate their purification. Interestingly, the expression of huKGF1 was significantly improved when expressed fused to the fragment crystallizable region (Fc) of the human antibody IgG. The insect-derived recombinant GFs were finally characterized in terms of biological activity in keratinocytes and fibroblasts. The present work opens the possibility of a cost-efficient and scalable production of these highly valuable molecules in a system that favours its wide use in therapeutic or cosmetic applications.
Collapse
Affiliation(s)
- Benoit Dudognon
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Lorena Romero-Santacreu
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Silvia Gómez-Sebastián
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Ana B Hidalgo
- Vivacell Biotechnology España S.L. Parque Científico Tecnológico Rabanales, 21, c/Cecilia Payne, Parcela ID 8.1, 14014 Córdoba, Spain
| | - Javier López-Vidal
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - María L Bellido
- Vivacell Biotechnology España S.L. Parque Científico Tecnológico Rabanales, 21, c/Cecilia Payne, Parcela ID 8.1, 14014 Córdoba, Spain
| | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Spain
| | - José M Escribano
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Autovía A6, Km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
17
|
Gómez-Sebastián S, López-Vidal J, Escribano JM. Significant productivity improvement of the baculovirus expression vector system by engineering a novel expression cassette. PLoS One 2014; 9:e96562. [PMID: 24824596 PMCID: PMC4019511 DOI: 10.1371/journal.pone.0096562] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Accepted: 04/08/2014] [Indexed: 12/21/2022] Open
Abstract
Here we describe the development of a baculovirus vector expression cassette containing rearranged baculovirus-derived genetic regulatory elements. This newly designed expression cassette conferred significant production improvements to the baculovirus expression vector system (BEVS), including prolonged cell integrity after infection, improved protein integrity, and around 4-fold increase in recombinant protein production yields in insect cells with respect to a standard baculovirus vector. The expression cassette consisted of a cDNA encoding for the baculovirus transactivation factors IE1 and IE0, expressed under the control of the polyhedrin promoter, and a homologous repeated transcription enhancer sequence operatively cis-linked to the p10 promoter or to chimeric promoters containing p10. The prolonged cell integrity observed in cells infected by baculoviruses harbouring the novel expression cassette reduced the characteristic proteolysis and aberrant forms frequently found in baculovirus-derived recombinant proteins. The new expression cassette developed here has the potential to significantly improve the productivity of the BEVS.
Collapse
Affiliation(s)
| | | | - José M. Escribano
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Madrid, Spain
| |
Collapse
|
18
|
Dong J, Harada M, Yoshida S, Kato Y, Murakawa A, Ogata M, Kato T, Usui T, Park EY. Expression and purification of bioactive hemagglutinin protein of highly pathogenic avian influenza A (H5N1) in silkworm larvae. J Virol Methods 2013; 194:271-6. [DOI: 10.1016/j.jviromet.2013.08.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 08/27/2013] [Accepted: 08/29/2013] [Indexed: 10/26/2022]
|
19
|
Todolí F, Rodríguez-Cortés A, Núñez MDC, Laurenti MD, Gómez-Sebastián S, Rodríguez F, Pérez-Martín E, Escribano JM, Alberola J. Head-to-head comparison of three vaccination strategies based on DNA and raw insect-derived recombinant proteins against Leishmania. PLoS One 2012; 7:e51181. [PMID: 23236448 PMCID: PMC3517401 DOI: 10.1371/journal.pone.0051181] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 10/30/2012] [Indexed: 12/14/2022] Open
Abstract
Parasitic diseases plague billions of people among the poorest, killing millions annually, and causing additional millions of disability-adjusted life years lost. Leishmaniases affect more than 12 million people, with over 350 million people at risk. There is an urgent need for efficacious and cheap vaccines and treatments against visceral leishmaniasis (VL), its most severe form. Several vaccination strategies have been proposed but to date no head-to-head comparison was undertaken to assess which is the best in a clinical model of the disease. We simultaneously assayed three vaccination strategies against VL in the hamster model, using KMPII, TRYP, LACK, and PAPLE22 vaccine candidate antigens. Four groups of hamsters were immunized using the following approaches: 1) raw extracts of baculovirus-infected Trichoplusia ni larvae expressing individually one of the four recombinant proteins (PROT); 2) naked pVAX1 plasmids carrying the four genes individually (DNA); 3) a heterologous prime-boost (HPB) strategy involving DNA followed by PROT (DNA-PROT); and 4) a Control including empty pVAX1 plasmid followed by raw extract of wild-type baculovirus-infected T. ni larvae. Hamsters were challenged with L. infantum promastigotes and maintained for 20 weeks. While PROT vaccine was not protective, DNA vaccination achieved protection in spleen. Only DNA-PROT vaccination induced significant NO production by macrophages, accompanied by a significant parasitological protection in spleen and blood. Thus, the DNA-PROT strategy elicits strong immune responses and high parasitological protection in the clinical model of VL, better than its corresponding naked DNA or protein versions. Furthermore, we show that naked DNA coupled with raw recombinant proteins produced in insect larvae biofactories -the cheapest way of producing DNA-PROT vaccines- is a practical and cost-effective way for potential "off the shelf" supplying vaccines at very low prices for the protection against leishmaniases, and possibly against other parasitic diseases affecting the poorest of the poor.
Collapse
Affiliation(s)
- Felicitat Todolí
- LeishLAB–Servei d’Anàlisi de Fàrmacs, Departament de Farmacologia, de Terapèutica i de Toxicologia, Edifici V, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Alhelí Rodríguez-Cortés
- LeishLAB–Servei d’Anàlisi de Fàrmacs, Departament de Farmacologia, de Terapèutica i de Toxicologia, Edifici V, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - María del Carmen Núñez
- Alternative Gene Expression S.L., Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Márcia D. Laurenti
- Laboratorio Patologia de Moléstias Infecciosas, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Silvia Gómez-Sebastián
- Alternative Gene Expression S.L., Centro Empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Rodríguez
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la UAB, Bellaterra, Barcelona, Spain
| | - Eva Pérez-Martín
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la UAB, Bellaterra, Barcelona, Spain
| | - José M. Escribano
- Departamento de Biotecnología, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| | - Jordi Alberola
- LeishLAB–Servei d’Anàlisi de Fàrmacs, Departament de Farmacologia, de Terapèutica i de Toxicologia, Edifici V, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| |
Collapse
|
20
|
Terron-Exposito R, Dudognon B, Galindo I, Quetglas JI, Coll JM, Escribano JM, Gomez-Casado E. Antibodies against Marinobacter algicola and Salmonella typhimurium flagellins do not cross-neutralize TLR5 activation. PLoS One 2012; 7:e48466. [PMID: 23155384 PMCID: PMC3498291 DOI: 10.1371/journal.pone.0048466] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 09/25/2012] [Indexed: 11/18/2022] Open
Abstract
Flagellins evoke strong innate and adaptive immune responses. These proteins may play a key role as radioprotectors, exert antitumoral activity in certain types of tumor and reduce graft-versus-host disease in allogeneic hematopoietic stem cell transplant recipients. Notwithstanding, flagellins are highly immunogenic, and repeated use leads to their neutralization by systemic antibodies. This neutralization is not prevented by using functional deleted flagellins. These observations led us to explore the possibility of preventing initial neutralization by means of another functional flagellin that does not belong to common pathogenic bacteria but that has the capacity to activate TLR5. Here we characterized the functional capacity of the two-phase Marinobacter algicola (MA)-derived flagellins (F and FR) as systemic and mucosal adjuvants and compared their performance with that of Salmonella typhimurium (STF) flagellins (FljB and FliC). We also report for the first time on the in vitro and in vivo capacity of various flagellins to trigger TLR5 activation in the presence of species-specific anti-flagellin antibodies, the cross-neutralization mediated by these antibodies, and the sequential use of these flagellins for TLR5 activation. Our results showed that MA flagellins behave in a similar way to STF ones, inducing pro-inflammatory cytokines (IL8, CCL20, CCL2) and evoking a strong in vivo antibody response against a model epitope. More importantly, MA flagellins were fully functional, in vitro or in vivo, in the presence of a high concentration of neutralizing anti-flagellin STF antibodies, and STF flagellin was not inhibited by neutralizing anti-flagellin MA antibodies. The use of active flagellins from distinct bacteria could be a useful approach to prevent systemic neutralization of this group of adjuvants and to facilitate the rational design of flagellin-based vaccines and/or other therapeutic treatments (against ischemia, acute renal failure, tumors, ionizing radiations and also to improve the outcome of bone marrow transplants).
Collapse
Affiliation(s)
- Raul Terron-Exposito
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Benoit Dudognon
- Alternative Gene Expression S. L. (ALGENEX S. L.), Madrid, Spain
| | - Inmaculada Galindo
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Jose I. Quetglas
- Division of Gene Therapy, Centro de Investigación en Medicina Aplicada, CIMA, Pamplona, Spain
| | - Julio M. Coll
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Jose M. Escribano
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
| | - Eduardo Gomez-Casado
- Department of Biotechnology, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, INIA, Madrid, Spain
- * E-mail:
| |
Collapse
|
21
|
Gómez-Sebastián S, Nuñez MC, Garaicoechea L, Alvarado C, Mozgovoj M, Lasa R, Kahl A, Wigdorovitz A, Parreño V, Escribano JM. Rotavirus A-specific single-domain antibodies produced in baculovirus-infected insect larvae are protective in vivo. BMC Biotechnol 2012; 12:59. [PMID: 22953695 PMCID: PMC3444942 DOI: 10.1186/1472-6750-12-59] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/03/2012] [Indexed: 12/18/2022] Open
Abstract
Background Single-domain antibodies (sdAbs), also known as nanobodies or VHHs, are characterized by high stability and solubility, thus maintaining the affinity and therapeutic value provided by conventional antibodies. Given these properties, VHHs offer a novel alternative to classical antibody approaches. To date, VHHs have been produced mainly in E. coli, yeast, plants and mammalian cells. To apply the single-domain antibodies as a preventive or therapeutic strategy to control rotavirus infections in developing countries (444,000 deaths in children under 5 years of age) has to be minimized their production costs. Results Here we describe the highly efficient expression of functional VHHs by the Improved Baculovirus Expression System (IBES® technology), which uses a baculovirus expression vector in combination with Trichoplusia ni larvae as living biofactories. Two VHHs, named 3B2 and 2KD1, specific for the inner capsid protein VP6 of Group A rotavirus, were expressed in insect larvae. The IBES® technology achieved very high expression of 3B2 and 2KD1, reaching 2.62% and 3.63% of the total soluble protein obtained from larvae, respectively. These expression levels represent up to 257 mg/L of protein extract after insect processing (1 L extract represents about 125 g of insect biomass or about 375 insect larvae). Larva-derived antibodies were fully functional when tested in vitro and in vivo, neutralizing Group A rotaviruses and protecting offspring mice against rotavirus-induced diarrhea. Conclusions Our results open up the possibility of using insects as living biofactories (IBES® technology) for the cost-efficient production of these and other fully functional VHHs to be used for diagnostic or therapeutic purposes, thereby eliminating concerns regarding the use of bacterial or mammalian cells. To the best of our knowledge, this is the first time that insects have been used as living biofactories to produce a VHH molecule.
Collapse
Affiliation(s)
- Silvia Gómez-Sebastián
- Alternative Gene Expression S.L. (ALGENEX), Centro empresarial, Parque Científico y Tecnológico de la Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|