1
|
Khudainazarova NS, Granovskiy DL, Kondakova OA, Ryabchevskaya EM, Kovalenko AO, Evtushenko EA, Arkhipenko MV, Nikitin NA, Karpova OV. Prokaryote- and Eukaryote-Based Expression Systems: Advances in Post-Pandemic Viral Antigen Production for Vaccines. Int J Mol Sci 2024; 25:11979. [PMID: 39596049 PMCID: PMC11594041 DOI: 10.3390/ijms252211979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
This review addresses the ongoing global challenge posed by emerging and evolving viral diseases, underscoring the need for innovative vaccine development strategies. It focuses on the modern approaches to creating vaccines based on recombinant proteins produced in different expression systems, including bacteria, yeast, plants, insects, and mammals. This review analyses the advantages, limitations, and applications of these expression systems for producing vaccine antigens, as well as strategies for designing safer, more effective, and potentially 'universal' antigens. The review discusses the development of vaccines for a range of viral diseases, excluding SARS-CoV-2, which has already been extensively studied. The authors present these findings with the aim of contributing to ongoing research and advancing the development of antiviral vaccines.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nikolai A. Nikitin
- Department of Virology, Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.S.K.); (D.L.G.); (O.A.K.); (E.M.R.); (A.O.K.); (E.A.E.); (M.V.A.); (O.V.K.)
| | | |
Collapse
|
2
|
Rahman MU, Ullah MW, Alabbosh KF, Shah JA, Muhammad N, Zahoor, Shah SWA, Nawab S, Sethupathy S, Abdikakharovich SA, Khan KA, Elboughdiri N, Zhu D. Lignin valorization through the oxidative activity of β-etherases: Recent advances and perspectives. Int J Biol Macromol 2024; 281:136383. [PMID: 39395522 DOI: 10.1016/j.ijbiomac.2024.136383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/10/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
The increasing interest in lignin, a complex and abundant biopolymer, stems from its ability to produce environmentally beneficial biobased products. β-Etherases play a crucial role by breaking down the β-aryl ether bonds in lignin. This comprehensive review covers the latest advancements in β-etherase-mediated lignin valorization, focusing on substrate selectivity, enzymatic oxidative activity, and engineering methods. Research on the microbial origin, protein modification, and molecular structure determination of β-etherases has improved our understanding of their effectiveness. Furthermore, the use of these enzymes in biorefinery processes is promising for enhancing lignin breakdown and creating more valuable products. The review also discusses the challenges and future potential of β-etherases in advancing lignin valorization for biorefinery applications that are economically viable and environmentally sustainable.
Collapse
Affiliation(s)
- Mujeeb Ur Rahman
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Muhammad Wajid Ullah
- Department of Pulp & Paper Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | | | - Junaid Ali Shah
- Department of Molecular Biology and Biochemistry, College of Life Sciences, China Normal University, Shanghai 200241, PR China
| | - Nizar Muhammad
- COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Zahoor
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Said Nawab
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | | | - Khalid Ali Khan
- Applied College & Center of Bee Research and its Products (CBRP), King Khalid University, Abha 61413, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, P.O. Box 2440, Ha'il 81441, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| |
Collapse
|
3
|
Sahoo A, Das PK, Veeranki VD, Patra S. Production of recombinant human insulin from a promising Pseudomonas fluorescens cell factory and its kinetic modeling. Int J Biol Macromol 2024; 280:135742. [PMID: 39293616 DOI: 10.1016/j.ijbiomac.2024.135742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/20/2024]
Abstract
Insulin intake is recommended for diabetics in addition to a proper diet and lifestyle to maintain adequate blood glucose level. Currently, there is a need for an alternative expression system for insulin production as the current expression systems may not meet the growing demand due to various constraints. Here, we demonstrate the synthesis of human insulin in an unconventional expression system based on Pseudomonas fluorescens, a BSL 1 bacterium. Human insulin was produced in the form of proinsulin fused with fusion protein. Then, the proinsulin fusion protein was purified using Ni-NTA chromatography and converted into human insulin. The physicochemical parameters for producing proinsulin fusion protein are optimized. Glucose and ammonium chloride are determined to be suitable carbon and nitrogen sources, respectively. The validity of insulin and proinsulin fusion protein is assessed using western blot and quantified using ELISA techniques. Up to 145.35 mg/l of the proinsulin fusion protein is achieved at the shake flask level. Further, MALDI-TOF and RP-HPLC analysis of the purified human insulin were observed to be close to the theoretical value and insulin standard, respectively. The expression of the recombinant fusion protein was found to be 214.7 mg/l in a batch bioreactor, a ∼48% enhancement over the shake flask level. Further, kinetic modeling was performed to understand the system regarding growth, substrate utilization and product formation, and to estimate the various kinetic parameters. This study establishes the potential of the P. fluorescens expression system for producing human insulin.
Collapse
Affiliation(s)
- Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Venkata Dasu Veeranki
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Sanjukta Patra
- Enzyme & Microbial Technology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, 781039, Assam, India
| |
Collapse
|
4
|
Dodge AG, Thoma CJ, O’Connor MR, Wackett LP. Recombinant Pseudomonas growing on non-natural fluorinated substrates shows stress but overall tolerance to cytoplasmically released fluoride anion. mBio 2024; 15:e0278523. [PMID: 38063407 PMCID: PMC10790756 DOI: 10.1128/mbio.02785-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 10/23/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE Society uses thousands of organofluorine compounds, sometimes denoted per- and polyfluoroalkyl substances (PFAS), in hundreds of products, but recent studies have shown some to manifest human and environmental health effects. As a class, they are recalcitrant to biodegradation, partly due to the paucity of fluorinated natural products to which microbes have been exposed. Another limit to PFAS biodegradation is the intracellular toxicity of fluoride anion generated from C-F bond cleavage. The present study identified a broader substrate specificity in an enzyme originally studied for its activity on the natural product fluoroacetate. A recombinant Pseudomonas expressing this enzyme was used here as a model system to better understand the limits and effects of a high level of intracellular fluoride generation. A fluoride stress response has evolved in bacteria and has been described in Pseudomonas spp. The present study is highly relevant to organofluorine compound degradation or engineered biosynthesis in which fluoride anion is a substrate.
Collapse
Affiliation(s)
- Anthony G. Dodge
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Calvin J. Thoma
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Madeline R. O’Connor
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| | - Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics and Biotechnology Institute, University of Minnesota, Twin Cities, Minnesota, USA
| |
Collapse
|
5
|
Sun M, Gao AX, Liu X, Yang Y, Ledesma-Amaro R, Bai Z. High-throughput process development from gene cloning to protein production. Microb Cell Fact 2023; 22:182. [PMID: 37715258 PMCID: PMC10503041 DOI: 10.1186/s12934-023-02184-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/19/2023] [Indexed: 09/17/2023] Open
Abstract
In the post-genomic era, the demand for faster and more efficient protein production has increased, both in public laboratories and industry. In addition, with the expansion of protein sequences in databases, the range of possible enzymes of interest for a given application is also increasing. Faced with peer competition, budgetary, and time constraints, companies and laboratories must find ways to develop a robust manufacturing process for recombinant protein production. In this review, we explore high-throughput technologies for recombinant protein expression and present a holistic high-throughput process development strategy that spans from genes to proteins. We discuss the challenges that come with this task, the limitations of previous studies, and future research directions.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, School of Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
6
|
de Pinho Favaro MT, Atienza-Garriga J, Martínez-Torró C, Parladé E, Vázquez E, Corchero JL, Ferrer-Miralles N, Villaverde A. Recombinant vaccines in 2022: a perspective from the cell factory. Microb Cell Fact 2022; 21:203. [PMID: 36199085 PMCID: PMC9532831 DOI: 10.1186/s12934-022-01929-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 08/30/2022] [Indexed: 12/02/2022] Open
Abstract
The last big outbreaks of Ebola fever in Africa, the thousands of avian influenza outbreaks across Europe, Asia, North America and Africa, the emergence of monkeypox virus in Europe and specially the COVID-19 pandemics have globally stressed the need for efficient, cost-effective vaccines against infectious diseases. Ideally, they should be based on transversal technologies of wide applicability. In this context, and pushed by the above-mentioned epidemiological needs, new and highly sophisticated DNA-or RNA-based vaccination strategies have been recently developed and applied at large-scale. Being very promising and effective, they still need to be assessed regarding the level of conferred long-term protection. Despite these fast-developing approaches, subunit vaccines, based on recombinant proteins obtained by conventional genetic engineering, still show a wide spectrum of interesting potentialities and an important margin for further development. In the 80's, the first vaccination attempts with recombinant vaccines consisted in single structural proteins from viral pathogens, administered as soluble plain versions. In contrast, more complex formulations of recombinant antigens with particular geometries are progressively generated and explored in an attempt to mimic the multifaceted set of stimuli offered to the immune system by replicating pathogens. The diversity of recombinant antimicrobial vaccines and vaccine prototypes is revised here considering the cell factory types, through relevant examples of prototypes under development as well as already approved products.
Collapse
Affiliation(s)
- Marianna Teixeira de Pinho Favaro
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Laboratory of Vaccine Development, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jan Atienza-Garriga
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Carlos Martínez-Torró
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Eloi Parladé
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain
| | - Esther Vázquez
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - José Luis Corchero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Neus Ferrer-Miralles
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Cerdanyola del Vallès, 08193, Barcelona, Spain.
- Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, 08193, Barcelona, Spain.
| |
Collapse
|
7
|
Cross reacting material (CRM197) as a carrier protein for carbohydrate conjugate vaccines targeted at bacterial and fungal pathogens. Int J Biol Macromol 2022; 218:775-798. [PMID: 35872318 DOI: 10.1016/j.ijbiomac.2022.07.137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/22/2022]
Abstract
This paper gives an overview of conjugate glycovaccines which contain recombinant diphtheria toxoid CRM197 as a carrier protein. A special focus is given to synthetic methods used for preparation of neoglycoconjugates of CRM197 with oligosaccharide epitopes of cell surface carbohydrates of pathogenic bacteria and fungi. Syntheses of commercial vaccines and laboratory specimen on the basis of CRM197 are outlined briefly.
Collapse
|
8
|
Das PK, Sahoo A, Dasu VV. Current status, and the developments of hosts and expression systems for the production of recombinant human cytokines. Biotechnol Adv 2022; 59:107969. [PMID: 35525478 DOI: 10.1016/j.biotechadv.2022.107969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/07/2023]
Abstract
Cytokines consist of peptides, proteins and glycoproteins, which are biological signaling molecules, and boost cell-cell communication in immune reactions to stimulate cellular movements in the place of trauma, inflammation and infection. Recombinant cytokines are designed in such a way that they have generalized immunostimulation action or stimulate specific immune cells when the body encounters immunosuppressive signals from exogenous pathogens or other tumor microenvironments. Recombinant cytokines have improved the treatment processes for numerous diseases. They are also beneficial against novel toxicities that arise due to pharmacologic immunostimulators that lead to an imbalance in the regulation of cytokine. So, the production and use of recombinant human cytokines as therapeutic proteins are significant for medical treatment purposes. For the improved production of recombinant human cytokines, the development of host cells such as bacteria, yeast, fungi, insect, mammal and transgenic plants, and the specific expression systems for individual hosts is necessary. The recent advancements in the field of genetic engineering are beneficial for easy and efficient genetic manipulations for hosts as well as expression cassettes. The use of metabolic engineering and systems biology approaches have tremendous applications in recombinant protein production by generating mathematical models, and analyzing complex biological networks and metabolic pathways via simulations to understand the interconnections between metabolites and genetic behaviors. Further, the bioprocess developments and the optimization of cell culture conditions would enhance recombinant cytokines productivity on large scales.
Collapse
Affiliation(s)
- Prabir Kumar Das
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Veeranki Venkata Dasu
- Biochemical Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
9
|
Wackett LP. Pseudomonas: Versatile Biocatalysts for PFAS. Environ Microbiol 2022; 24:2882-2889. [PMID: 35384226 DOI: 10.1111/1462-2920.15990] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lawrence P Wackett
- Microbial Engineering, University of Minnesota.,Biotechnology Institute, University of Minnesota.,Biochemistry, Molecular Biology and Biophysics, University of Minnesota
| |
Collapse
|
10
|
Xie H, Muenke C, Sommer M, Buschmann S, Michel H. Production of Membrane Proteins in Pseudomonas stutzeri. Methods Mol Biol 2022; 2507:91-110. [PMID: 35773579 DOI: 10.1007/978-1-0716-2368-8_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functional and structural studies on membrane proteins are often hampered by insufficient yields, misfolding and aggregation during the production and purification process. Escherichia coli is the most commonly used expression host for the production of recombinant prokaryotic integral membrane proteins. However, in many cases expression hosts other than E. coli are more appropriate for certain target proteins. Here, we report a convenient, systematically developed expression system using the γ-proteobacterium Pseudomonas stutzeri as an alternative production host for over-expression of integral membrane proteins. P. stutzeri can be easily and inexpensively cultured in large quantities. The Pseudomonas expression vectors are designed for inducible expression of affinity-tagged fusion proteins controlled by the PBAD promoter. This chapter provides detailed protocols of the different steps required to successfully produce and isolate recombinant membrane proteins with high yields in P. stutzeri.
Collapse
Affiliation(s)
- Hao Xie
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Cornelia Muenke
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Manuel Sommer
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Sabine Buschmann
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Hartmut Michel
- Department of Molecular Membrane Biology, Max Planck Institute of Biophysics, Frankfurt am Main, Germany.
| |
Collapse
|
11
|
Pourhassan N Z, Smits SHJ, Ahn JH, Schmitt L. Biotechnological applications of type 1 secretion systems. Biotechnol Adv 2021; 53:107864. [PMID: 34767962 DOI: 10.1016/j.biotechadv.2021.107864] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/30/2021] [Accepted: 10/31/2021] [Indexed: 02/06/2023]
Abstract
Bacteria have evolved a diverse range of secretion systems to export different substrates across their cell envelope. Although secretion of proteins into the extracellular space could offer advantages for recombinant protein production, the low secretion titers of the secretion systems for some heterologous proteins remain a clear drawback of their utility at commercial scales. Therefore, a potential use of most of secretion systems as production platforms at large scales are still limited. To overcome this limitation, remarkable efforts have been made toward improving the secretion efficiency of different bacterial secretion systems in recent years. Here, we review the progress with respect to biotechnological applications of type I secretion system (T1SS) of Gram-negative bacteria. We will also focus on the applicability of T1SS for the secretion of heterologous proteins as well as vaccine development. Last but not least, we explore the employed engineering strategies that have enhanced the secretion efficiencies of T1SS. Attention is also paid to directed evolution approaches that may offer a more versatile approach to optimize secretion efficiency of T1SS.
Collapse
Affiliation(s)
- Zohreh Pourhassan N
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Sander H J Smits
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Jung Hoon Ahn
- Department of Chemistry and Biology, Korea Science Academy of Korea Advanced Institute of Science and Technology, Busan 47162, South Korea
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
12
|
Shamadykova DV, Panteleev DY, Kust NN, Savchenko EA, Rybalkina EY, Revishchin AV, Pavlova GV. Neuroinductive properties of mGDNF depend on the producer, E. Coli or human cells. PLoS One 2021; 16:e0258289. [PMID: 34634077 PMCID: PMC8504721 DOI: 10.1371/journal.pone.0258289] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 07/11/2021] [Indexed: 12/04/2022] Open
Abstract
The glial cell line-derived neurotrophic factor (GDNF) is involved in the survival of dopaminergic neurons. Besides, GDNF can also induce axonal growth and creation of new functional synapses. GDNF potential is promising for translation to treat diseases associated with neuronal death: neurodegenerative disorders, ischemic stroke, and cerebral or spinal cord damages. Unproductive clinical trials of GDNF for Parkinson's disease treatment have induced to study this failure. A reason could be due to irrelevant producer cells that cannot perform the required post-translational modifications. The biological activity of recombinant mGDNF produced by E. coli have been compared with mGDNF produced by human cells HEK293. mGDNF variants were tested with PC12 cells, rat embryonic spinal ganglion cells, and SH-SY5Y human neuroblastoma cells in vitro as well as with a mouse model of the Parkinson's disease in vivo. Both in vitro and in vivo the best neuro-inductive ability belongs to mGDNF produced by HEK293 cells. Keywords: GDNF, neural differentiation, bacterial and mammalian expression systems, cell cultures, model of Parkinson's disease.
Collapse
Affiliation(s)
- Dzhirgala V. Shamadykova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dmitry Y. Panteleev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda N. Kust
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | - Alexander V. Revishchin
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Galina V. Pavlova
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
- Burdenko Neurosurgical Institute, Moscow, Russia
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
13
|
Cid R, Bolívar J. Platforms for Production of Protein-Based Vaccines: From Classical to Next-Generation Strategies. Biomolecules 2021; 11:1072. [PMID: 34439738 PMCID: PMC8394948 DOI: 10.3390/biom11081072] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 12/12/2022] Open
Abstract
To date, vaccination has become one of the most effective strategies to control and reduce infectious diseases, preventing millions of deaths worldwide. The earliest vaccines were developed as live-attenuated or inactivated pathogens, and, although they still represent the most extended human vaccine types, they also face some issues, such as the potential to revert to a pathogenic form of live-attenuated formulations or the weaker immune response associated with inactivated vaccines. Advances in genetic engineering have enabled improvements in vaccine design and strategies, such as recombinant subunit vaccines, have emerged, expanding the number of diseases that can be prevented. Moreover, antigen display systems such as VLPs or those designed by nanotechnology have improved the efficacy of subunit vaccines. Platforms for the production of recombinant vaccines have also evolved from the first hosts, Escherichia coli and Saccharomyces cerevisiae, to insect or mammalian cells. Traditional bacterial and yeast systems have been improved by engineering and new systems based on plants or insect larvae have emerged as alternative, low-cost platforms. Vaccine development is still time-consuming and costly, and alternative systems that can offer cost-effective and faster processes are demanding to address infectious diseases that still do not have a treatment and to face possible future pandemics.
Collapse
Affiliation(s)
- Raquel Cid
- ADL Bionatur Solutions S.A., Av. del Desarrollo Tecnológico 11, 11591 Jerez de la Frontera, Spain
| | - Jorge Bolívar
- Department of Biomedicine, Biotechnology and Public Health-Biochemistry and Molecular Biology, Campus Universitario de Puerto Real, University of Cadiz, 11510 Puerto Real, Spain
| |
Collapse
|
14
|
Abdullah, Jiang Z, Hong X, Zhang S, Yao R, Xiao Y. CRISPR base editing and prime editing: DSB and template-free editing systems for bacteria and plants. Synth Syst Biotechnol 2020; 5:277-292. [PMID: 32954022 PMCID: PMC7481536 DOI: 10.1016/j.synbio.2020.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/14/2020] [Accepted: 08/25/2020] [Indexed: 12/20/2022] Open
Abstract
CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR associated) has been extensively exploited as a genetic tool for genome editing. The RNA guided Cas nucleases generate DNA double-strand break (DSB), triggering cellular repair systems mainly Non-homologous end-joining (NHEJ, imprecise repair) or Homology-directed repair (HDR, precise repair). However, DSB typically leads to unexpected DNA changes and lethality in some organisms. The establishment of bacteria and plants into major bio-production platforms require efficient and precise editing tools. Hence, in this review, we focus on the non-DSB and template-free genome editing, i.e., base editing (BE) and prime editing (PE) in bacteria and plants. We first highlight the development of base and prime editors and summarize their studies in bacteria and plants. We then discuss current and future applications of BE/PE in synthetic biology, crop improvement, evolutionary engineering, and metabolic engineering. Lastly, we critically consider the challenges and prospects of BE/PE in PAM specificity, editing efficiency, off-targeting, sequence specification, and editing window.
Collapse
Affiliation(s)
- Abdullah
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhengzheng Jiang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xulin Hong
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shun Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruilian Yao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Xiao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
15
|
Wang S, Cui J, Bilal M, Hu H, Wang W, Zhang X. Pseudomonas spp. as cell factories (MCFs) for value-added products: from rational design to industrial applications. Crit Rev Biotechnol 2020; 40:1232-1249. [PMID: 32907412 DOI: 10.1080/07388551.2020.1809990] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
In recent years, there has been increasing interest in microbial biotechnology for the production of value-added compounds from renewable resources. Pseudomonas species have been proposed as a suitable workhorse for high-value secondary metabolite production because of their unique characteristics for fast growth on sustainable carbon sources, a clear inherited background, versatile intrinsic metabolism with diverse enzymatic capacities, and their robustness in an extreme environment. It has also been demonstrated that metabolically engineered Pseudomonas strains can produce several industrially valuable aromatic chemicals and natural products such as phenazines, polyhydroxyalkanoates, rhamnolipids, and insecticidal proteins from renewable feedstocks with remarkably high yields suitable for commercial application. In this review, we summarize cell factory construction in Pseudomonas for the biosynthesis of native and non-native bioactive compounds in P. putida, P. chlororaphis, P. aeruginosa, as well as pharmaceutical proteins production by P. fluorescens. Additionally, some novel strategies together with metabolic engineering strategies in order to improve the biosynthetic abilities of Pseudomonas as an ideal chassis are discussed. Finally, we proposed emerging opportunities, challenges, and essential strategies to enable the successful development of Pseudomonas as versatile microbial cell factories for the bioproduction of diverse bioactive compounds.
Collapse
Affiliation(s)
- Songwei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiajia Cui
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Hongbo Hu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xuehong Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
16
|
Pauly M, Gawenda N, Wagner C, Fischbach P, Ramírez V, Axmann IM, Voiniciuc C. The Suitability of Orthogonal Hosts to Study Plant Cell Wall Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2019; 8:E516. [PMID: 31744209 PMCID: PMC6918405 DOI: 10.3390/plants8110516] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/08/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022]
Abstract
Plant cells are surrounded by an extracellular matrix that consists mainly of polysaccharides. Many molecular components involved in plant cell wall polymer synthesis have been identified, but it remains largely unknown how these molecular players function together to define the length and decoration pattern of a polysaccharide. Synthetic biology can be applied to answer questions beyond individual glycosyltransferases by reconstructing entire biosynthetic machineries required to produce a complete wall polysaccharide. Recently, this approach was successful in establishing the production of heteromannan from several plant species in an orthogonal host-a yeast-illuminating the role of an auxiliary protein in the biosynthetic process. In this review we evaluate to what extent a selection of organisms from three kingdoms of life (Bacteria, Fungi and Animalia) might be suitable for the synthesis of plant cell wall polysaccharides. By identifying their key attributes for glycoengineering as well as analyzing the glycosidic linkages of their native polymers, we present a valuable comparison of their key advantages and limitations for the production of different classes of plant polysaccharides.
Collapse
Affiliation(s)
- Markus Pauly
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Niklas Gawenda
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Christine Wagner
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| | - Patrick Fischbach
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany; (M.P.); (N.G.); (V.R.)
| | - Ilka M. Axmann
- Institute for Synthetic Microbiology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany;
| | - Cătălin Voiniciuc
- Independent Junior Research Group–Designer Glycans, Leibniz Institute of Plant Biochemistry, 06120 Halle (Saale), Germany;
| |
Collapse
|
17
|
Schillberg S, Raven N, Spiegel H, Rasche S, Buntru M. Critical Analysis of the Commercial Potential of Plants for the Production of Recombinant Proteins. FRONTIERS IN PLANT SCIENCE 2019; 10:720. [PMID: 31244868 PMCID: PMC6579924 DOI: 10.3389/fpls.2019.00720] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/16/2019] [Indexed: 05/06/2023]
Abstract
Over the last three decades, the expression of recombinant proteins in plants and plant cells has been promoted as an alternative cost-effective production platform. However, the market is still dominated by prokaryotic and mammalian expression systems, the former offering high production capacity at a low cost, and the latter favored for the production of complex biopharmaceutical products. Although plant systems are now gaining widespread acceptance as a platform for the larger-scale production of recombinant proteins, there is still resistance to commercial uptake. This partly reflects the relatively low yields achieved in plants, as well as inconsistent product quality and difficulties with larger-scale downstream processing. Furthermore, there are only a few cases in which plants have demonstrated economic advantages compared to established and approved commercial processes, so industry is reluctant to switch to plant-based production. Nevertheless, some plant-derived proteins for research or cosmetic/pharmaceutical applications have reached the market, showing that plants can excel as a competitive production platform in some niche areas. Here, we discuss the strengths of plant expression systems for specific applications, but mainly address the bottlenecks that must be overcome before plants can compete with conventional systems, enabling the future commercial utilization of plants for the production of valuable proteins.
Collapse
Affiliation(s)
- Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Institute for Phytopathology, Justus-Liebig-University Giessen, Giessen, Germany
- *Correspondence: Stefan Schillberg,
| | - Nicole Raven
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
- Aachen-Maastricht Institute for Biobased Materials, Geleen, Netherlands
| | - Matthias Buntru
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Aachen, Germany
| |
Collapse
|
18
|
Park AR, Jang SW, Kim JS, Park YG, Koo BS, Lee HC. Efficient recovery of recombinant CRM197 expressed as inclusion bodies in E.coli. PLoS One 2018; 13:e0201060. [PMID: 30021008 PMCID: PMC6051658 DOI: 10.1371/journal.pone.0201060] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 07/06/2018] [Indexed: 01/29/2023] Open
Abstract
CRM197, which retains the same inflammatory and immune-stimulant properties as diphtheria toxin but with reduced toxicity, has been used as a safe carrier in conjugated vaccines. Expression of recombinant CRM197 in E. coli is limited due to formation of inclusion bodies. Soluble expression attempts in Bacillus subtilis, P. fluorescens, Pichia pastoris, and E. coli were partially unsuccessful or did not generate yields sufficient for industrial scale production. Multiple approaches have been attempted to produce CRM197 in E. coli, which has attractive features such as high yield, simplicity, fast growth, etc., including expression of oxidative host, concurrent expression of chaperones, or periplasmic export. Recently, alternative methods for recovery of insoluble proteins expressed in E. coli were reported. Compared to traditional denaturation/refolding, these methods used the non-denaturing solubilization agent, N-lauroylsarkosine to obtain higher recovery yields of native proteins. Based on this work, here, we focused on solubilization of CRM197 from E. coli inclusion bodies. First, CRM197 was expressed as inclusion bodies by high-level expression of recombinant CRM197 in E. coli (126.8 mg/g dcw). Then bioactive CRM197 was isolated from these inclusion bodies with high yield (108.1 mg/g dcw) through solubilization with N-lauroylsarkosine including Triton X-100 and CHAPS, and purified by Ni-affinity chromatography and size-exclusion chromatography. In this study, we present a cost-effective alternative for the production of bioactive CRM197 and compare our recovery yield with yields in other production processes.
Collapse
|
19
|
A Robust CRISPR Interference Gene Repression System in Pseudomonas. J Bacteriol 2018; 200:JB.00575-17. [PMID: 29311279 DOI: 10.1128/jb.00575-17] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 12/21/2017] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas spp. are widely used model organisms in different areas of research. Despite the relevance of Pseudomonas in many applications, the use of protein depletion tools in this host remains limited. Here, we developed the CRISPR interference system for gene repression in Pseudomonas spp. using a nuclease-null Streptococcus pasteurianus Cas9 variant (dead Cas9, or dCas9). We demonstrate a robust and titratable gene depletion system with up to 100-fold repression in β-galactosidase activity in P. aeruginosa and 300-fold repression in pyoverdine production in Pseudomonas putida This inducible system enables the study of essential genes, as shown by ftsZ depletions in P. aeruginosa, P. putida, and Pseudomonas fluorescens that led to phenotypic changes consistent with depletion of the targeted gene. Additionally, we performed the first in vivo characterization of protospacer adjacent motif (PAM) site preferences of S. pasteurianus dCas9 and identified NNGCGA as a functional PAM site that resulted in repression efficiencies comparable to the consensus NNGTGA sequence. This discovery significantly expands the potential genomic targets of S. pasteurianus dCas9, especially in GC-rich organisms.IMPORTANCEPseudomonas spp. are prevalent in a variety of environments, such as the soil, on the surface of plants, and in the human body. Although Pseudomonas spp. are widely used as model organisms in different areas of research, existing tools to deplete a protein of interest in these organisms remain limited. We have developed a robust and inducible gene repression tool in P. aeruginosa, P. putida, and P. fluorescens using the Streptococcus pasteurianus dCas9. This method of protein depletion is superior to existing methods, such as promoter replacements and addition of degradation tags, because it does not involve genomic modifications of the target protein, is titratable, and is capable of repressing multiple genes simultaneously. This gene repression system now enables easy depletion of specific proteins in Pseudomonas, accelerating the study and engineering of this widely used model organism.
Collapse
|
20
|
Sommer M, Xie H, Michel H. Pseudomonas stutzeri as an alternative host for membrane proteins. Microb Cell Fact 2017; 16:157. [PMID: 28931397 PMCID: PMC5607611 DOI: 10.1186/s12934-017-0771-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 09/09/2017] [Indexed: 12/22/2022] Open
Abstract
Background Studies on membrane proteins are often hampered by insufficient yields of the protein of interest. Several prokaryotic hosts have been tested for their applicability as production platform but still Escherichia coli by far is the one most commonly used. Nevertheless, it has been demonstrated that in some cases hosts other than E. coli are more appropriate for certain target proteins. Results Here we have developed an expression system for the heterologous production of membrane proteins using a single plasmid-based approach. The gammaproteobacterium Pseudomonas stutzeri was employed as a new production host. We investigated several basic microbiological features crucial for its handling in the laboratory. The organism belonging to bio-safety level one is a close relative of the human pathogen Pseudomonas aeruginosa. Pseudomonas stutzeri is comparable to E. coli regarding its growth and cultivation conditions. Several effective antibiotics were identified and a protocol for plasmid transformation was established. We present a workflow including cloning of the target proteins, small-scale screening for the best production conditions and finally large-scale production in the milligram range. The GFP folding assay was used for the rapid analysis of protein folding states. In summary, out of 36 heterologous target proteins, 20 were produced at high yields. Additionally, eight transporters derived from P. aeruginosa could be obtained with high yields. Upscaling of protein production and purification of a Gluconate:H+ Symporter (GntP) family transporter (STM2913) from Salmonella enterica to high purity was demonstrated. Conclusions Pseudomonas stutzeri is an alternative production host for membrane proteins with success rates comparable to E. coli. However, some proteins were produced with high yields in P. stutzeri but not in E. coli and vice versa. Therefore, P. stutzeri extends the spectrum of useful production hosts for membrane proteins and increases the success rate for highly produced proteins. Using the new pL2020 vector no additional cloning is required to test both hosts in parallel. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0771-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manuel Sommer
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany
| | - Hao Xie
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| | - Hartmut Michel
- Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
21
|
Kang HJ, Kim HJ, Jung MS, Han JK, Cha SH. Optimal expression of a Fab-effector fusion protein in Escherichia coli by removing the cysteine residues responsible for an interchain disulfide bond of a Fab molecule. Immunol Lett 2017; 184:34-42. [DOI: 10.1016/j.imlet.2017.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 02/09/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
22
|
The Plasmodium falciparum Cell-Traversal Protein for Ookinetes and Sporozoites as a Candidate for Preerythrocytic and Transmission-Blocking Vaccines. Infect Immun 2017; 85:IAI.00498-16. [PMID: 27895131 PMCID: PMC5278177 DOI: 10.1128/iai.00498-16] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 11/16/2016] [Indexed: 01/04/2023] Open
Abstract
Recent studies have shown that immune responses against the cell-traversal protein for Plasmodium ookinetes and sporozoites (CelTOS) can inhibit parasite infection. While these studies provide important evidence toward the development of vaccines targeting this protein, it remains unknown whether these responses could engage the Plasmodium falciparum CelTOS in vivo. Using a newly developed rodent malaria chimeric parasite expressing the P. falciparum CelTOS (PfCelTOS), we evaluated the protective effect of in vivo immune responses elicited by vaccination and assessed the neutralizing capacity of monoclonal antibodies specific against PfCelTOS. Mice immunized with recombinant P. falciparum CelTOS in combination with the glucopyranosyl lipid adjuvant-stable emulsion (GLA-SE) or glucopyranosyl lipid adjuvant-liposome-QS21 (GLA-LSQ) adjuvant system significantly inhibited sporozoite hepatocyte infection. Notably, monoclonal antibodies against PfCelTOS strongly inhibited oocyst development of P. falciparum and Plasmodium berghei expressing PfCelTOS in Anopheles gambiae mosquitoes. Taken together, our results demonstrate that anti-CelTOS responses elicited by vaccination or passive immunization can inhibit sporozoite and ookinete infection and impair vector transmission.
Collapse
|
23
|
Legastelois I, Buffin S, Peubez I, Mignon C, Sodoyer R, Werle B. Non-conventional expression systems for the production of vaccine proteins and immunotherapeutic molecules. Hum Vaccin Immunother 2016; 13:947-961. [PMID: 27905833 DOI: 10.1080/21645515.2016.1260795] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increasing demand for recombinant vaccine antigens or immunotherapeutic molecules calls into question the universality of current protein expression systems. Vaccine production can require relatively low amounts of expressed materials, but represents an extremely diverse category consisting of different target antigens with marked structural differences. In contrast, monoclonal antibodies, by definition share key molecular characteristics and require a production system capable of very large outputs, which drives the quest for highly efficient and cost-effective systems. In discussing expression systems, the primary assumption is that a universal production platform for vaccines and immunotherapeutics will unlikely exist. This review provides an overview of the evolution of traditional expression systems, including mammalian cells, yeast and E.coli, but also alternative systems such as other bacteria than E. coli, transgenic animals, insect cells, plants and microalgae, Tetrahymena thermophila, Leishmania tarentolae, filamentous fungi, cell free systems, and the incorporation of non-natural amino acids.
Collapse
Affiliation(s)
| | - Sophie Buffin
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | - Isabelle Peubez
- a Research and Development, Sanofi Pasteur , Marcy L'Etoile , France
| | | | - Régis Sodoyer
- b Technology Research Institute Bioaster , Lyon , France
| | - Bettina Werle
- b Technology Research Institute Bioaster , Lyon , France
| |
Collapse
|
24
|
Evaluation of the non-toxic mutant of the diphtheria toxin K51E/E148K as carrier protein for meningococcal vaccines. Vaccine 2016; 34:1405-11. [PMID: 26845738 DOI: 10.1016/j.vaccine.2016.01.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 12/14/2015] [Accepted: 01/19/2016] [Indexed: 11/21/2022]
Abstract
Diphtheria toxin mutant CRM197 is a common carrier protein for glycoconjugate vaccines, which has been proven an effective protein vector for, among others, meningococcal carbohydrates. The wide-range use of this protein in massive vaccine production requires constant increase of production yields and adaptability to an ever-growing market. Here we compare CRM197 with the alternative diphtheria non-toxic variant DT-K51E/E148K, an inactive mutant that can be produced in the periplasm of Escherichia coli. Biophysical characterization of DT-K51E/E148K suggested high similarity with CRM197, with main differences in their alpha-helical content, and a suitable purity for conjugation and vaccine preparation. Meningococcal serogroup A (MenA) glycoconjugates were synthesized using CRM197 and DT-K51E/E148K as carrier proteins, obtaining the same conjugation yields and comparable biophysical profiles. Mice were then immunized with these CRM197 and DT-K51E/E148K conjugates, and essentially identical immunogenic and protective effects were observed. Overall, our data indicate that DT-K51E/E148K is a readily produced protein that now allows the added flexibility of E. coli production in vaccine development and that can be effectively used as protein carrier for a meningococcal conjugate vaccine.
Collapse
|
25
|
Kang HJ, Kim HJ, Cha SH. Isolation of human anti-serum albumin Fab antibodies with an extended serum-half life. Immunol Lett 2016; 169:33-40. [DOI: 10.1016/j.imlet.2015.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
|
26
|
Immunization with a Recombinant, Pseudomonas fluorescens-Expressed, Mutant Form of Bacillus anthracis-Derived Protective Antigen Protects Rabbits from Anthrax Infection. PLoS One 2015. [PMID: 26207820 PMCID: PMC4514824 DOI: 10.1371/journal.pone.0130952] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Protective antigen (PA), one of the components of the anthrax toxin, is the major component of human anthrax vaccine (Biothrax). Human anthrax vaccines approved in the United States and Europe consist of an alum-adsorbed or precipitated (respectively) supernatant material derived from cultures of toxigenic, non-encapsulated strains of Bacillus anthracis. Approved vaccination schedules in humans with either of these vaccines requires several booster shots and occasionally causes adverse injection site reactions. Mutant derivatives of the protective antigen that will not form the anthrax toxins have been described. We have cloned and expressed both mutant (PA SNKE167-ΔFF-315-E308D) and native PA molecules recombinantly and purified them. In this study, both the mutant and native PA molecules, formulated with alum (Alhydrogel), elicited high titers of anthrax toxin neutralizing anti-PA antibodies in New Zealand White rabbits. Both mutant and native PA vaccine preparations protected rabbits from lethal, aerosolized, B. anthracis spore challenge subsequent to two immunizations at doses of less than 1 μg.
Collapse
|
27
|
Jajesniak P, Seng Wong T. From genetic circuits to industrial-scale biomanufacturing: bacterial promoters as a cornerstone of biotechnology. AIMS BIOENGINEERING 2015. [DOI: 10.3934/bioeng.2015.3.277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Noe AR, Espinosa D, Li X, Coelho-dos-Reis JGA, Funakoshi R, Giardina S, Jin H, Retallack DM, Haverstock R, Allen JR, Vedvick TS, Fox CB, Reed SG, Ayala R, Roberts B, Winram SB, Sacci J, Tsuji M, Zavala F, Gutierrez GM. A full-length Plasmodium falciparum recombinant circumsporozoite protein expressed by Pseudomonas fluorescens platform as a malaria vaccine candidate. PLoS One 2014; 9:e107764. [PMID: 25247295 PMCID: PMC4172688 DOI: 10.1371/journal.pone.0107764] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
The circumsporozoite protein (CSP) of Plasmodium falciparum is a major surface protein, which forms a dense coat on the sporozoite's surface. Preclinical research on CSP and clinical evaluation of a CSP fragment-based RTS, S/AS01 vaccine have demonstrated a modest degree of protection against P. falciparum, mediated in part by humoral immunity and in part by cell-mediated immunity. Given the partial protective efficacy of the RTS, S/AS01 vaccine in a recent Phase 3 trial, further improvement of CSP-based vaccines is crucial. In this report, we describe the preclinical development of a full-length, recombinant CSP (rCSP)-based vaccine candidate against P. falciparum malaria suitable for current Good Manufacturing Practice (cGMP) production. Utilizing a novel high-throughput Pseudomonas fluorescens expression platform, we demonstrated greater efficacy of full-length rCSP as compared to N-terminally truncated versions, rapidly down-selected a promising lead vaccine candidate, and developed a high-yield purification process to express immunologically active, intact antigen for clinical trial material production. The rCSP, when formulated with various adjuvants, induced antigen-specific antibody responses as measured by enzyme-linked immunosorbent assay (ELISA) and immunofluorescence assay (IFA), as well as CD4+ T-cell responses as determined by ELISpot. The adjuvanted rCSP vaccine conferred protection in mice when challenged with transgenic P. berghei sporozoites containing the P. falciparum repeat region of CSP. Furthermore, heterologous prime/boost regimens with adjuvanted rCSP and an adenovirus type 35-vectored CSP (Ad35CS) showed modest improvements in eliciting CSP-specific T-cell responses and anti-malarial protection, depending on the order of vaccine delivery. Collectively, these data support the importance of further clinical development of adjuvanted rCSP, either as a stand-alone product or as one of the components in a heterologous prime/boost strategy, ultimately acting as an effective vaccine candidate for the mitigation of P. falciparum-induced malaria.
Collapse
Affiliation(s)
- Amy R. Noe
- Leidos Inc., Frederick, Maryland, United States of America
| | - Diego Espinosa
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xiangming Li
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Jordana G. A. Coelho-dos-Reis
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Ryota Funakoshi
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Steve Giardina
- Leidos Inc., Frederick, Maryland, United States of America
| | - Hongfan Jin
- Pfenex Inc., San Diego, California, United States of America
| | | | - Ryan Haverstock
- Pfenex Inc., San Diego, California, United States of America
| | | | - Thomas S. Vedvick
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Steven G. Reed
- Infectious Disease Research Institute, Seattle, Washington, United States of America
| | - Ramses Ayala
- Leidos Inc., Frederick, Maryland, United States of America
| | - Brian Roberts
- Leidos Inc., Frederick, Maryland, United States of America
| | | | - John Sacci
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Moriya Tsuji
- HIV and Malaria Vaccine Program, Aaron Diamond AIDS Research Center, Affiliate of The Rockefeller University, New York, New York, United States of America
| | - Fidel Zavala
- Johns Hopkins Malaria Research Institute and Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | | |
Collapse
|
29
|
Long Q, Liu X, Yang Y, Li L, Harvey L, McNeil B, Bai Z. The development and application of high throughput cultivation technology in bioprocess development. J Biotechnol 2014; 192 Pt B:323-38. [PMID: 24698846 DOI: 10.1016/j.jbiotec.2014.03.028] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/18/2014] [Accepted: 03/24/2014] [Indexed: 01/06/2023]
Abstract
This review focuses on recent progress in the technology of high throughput (HTP) cultivation and its increasing application in quality by design (QbD) -driven bioprocess development. Several practical HTP strategies aimed at shortening process development (PD) timelines from DNA to large scale processes involving commercially available HTP technology platforms, including microtiter plate (MTP) culture, micro-scale bioreactors, and in parallel fermentation systems, etc., are critically reviewed in detail. This discussion focuses upon the relative strengths and weaknesses or limitations of each of these platforms in this context. Emerging prototypes of micro-bioreactors reported recently, such as milliliter (mL) scale stirred tank bioreactors, and microfludics integrated micro-scale bioreactors, and their potential for practical application in QbD-driven HTP process development are also critically appraised. The overall aim of such technology is to rapidly gain process insights, and since the analytical technology deployed in HTP systems is critically important to the achievement of this aim, this rapidly developing area is discussed. Finally, general future trends are critically reviewed.
Collapse
Affiliation(s)
- Quan Long
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Xiuxia Liu
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Yankun Yang
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | - Lu Li
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China
| | | | | | - Zhonghu Bai
- Jiangnan University, Jiangsu, Wuxi, 214122, PR China.
| |
Collapse
|
30
|
Rustandi RR, Peklansky B, Anderson CL. Use of imaged capillary isoelectric focusing technique in development of diphtheria toxin mutant CRM197. Electrophoresis 2014; 35:1065-71. [PMID: 24375281 DOI: 10.1002/elps.201300386] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/26/2013] [Accepted: 12/16/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Richard R. Rustandi
- Vaccine Analytical Development; Merck Research Laboratories; West Point PA USA
| | - Brian Peklansky
- Vaccine Analytical Development; Merck Research Laboratories; West Point PA USA
| | - Carrie L. Anderson
- Vaccine Analytical Development; Merck Research Laboratories; West Point PA USA
| |
Collapse
|
31
|
Ferrer-Miralles N, Villaverde A. Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb Cell Fact 2013; 12:113. [PMID: 24245806 PMCID: PMC3842683 DOI: 10.1186/1475-2859-12-113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 10/30/2013] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Antonio Villaverde
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona, Bellaterra 08193 Barcelona, Spain.
| |
Collapse
|
32
|
Non-Invasive Analysis of Recombinant mRNA Stability in Escherichia coli by a Combination of Transcriptional Inducer Wash-Out and qRT-PCR. PLoS One 2013; 8:e66429. [PMID: 23840466 PMCID: PMC3686738 DOI: 10.1371/journal.pone.0066429] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/04/2013] [Indexed: 01/27/2023] Open
Abstract
mRNA stability is one among many parameters that can potentially affect the level of recombinant gene expression in bacteria. Blocking of the entire prokaryotic transcription machinery by addition of rifampicin is commonly used in protocols for analysis of mRNA stability. Here we show that such treatment can be effectively replaced by a simple, non-invasive method based on removal of the relevant transcriptional inducers and that the mRNA decay can then be followed by qRT-PCR. To establish the methodology we first used the m-toluate-inducible XylS/Pm expression cassette as a model system and analyzed several examples of DNA modifications causing gene expression stimulation in Escherichia coli. The new method allowed us to clearly discriminate whether an improvement in mRNA stability contributes to observed increases in transcript amounts for each individual case. To support the experimental data a simple mathematical fitting model was developed to calculate relative decay rates. We extended the relevance of the method by demonstrating its application also for an IPTG-inducible expression cassette (LacI/Ptac) and by analyzing features of the bacteriophage T7-based expression system. The results suggest that the methodology is useful in elucidating factors controlling mRNA stability as well as other specific features of inducible expression systems. Moreover, as expression systems based on diffusible inducers are almost universally available, the concept can be most likely used to measure mRNA decay for any gene in any cell type that is heavily used in molecular biology research.
Collapse
|
33
|
Implantation of unmarked regulatory and metabolic modules in Gram-negative bacteria with specialised mini-transposon delivery vectors. J Biotechnol 2013; 163:143-54. [DOI: 10.1016/j.jbiotec.2012.05.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 05/01/2012] [Accepted: 05/09/2012] [Indexed: 11/23/2022]
|
34
|
Lipase and protease double-deletion mutant of Pseudomonas fluorescens suitable for extracellular protein production. Appl Environ Microbiol 2012; 78:8454-62. [PMID: 23042178 DOI: 10.1128/aem.02476-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Pseudomonas fluorescens, a widespread Gram-negative bacterium, is an ideal protein manufacturing factory (PMF) because of its safety, robust growth, and high protein production. P. fluorescens possesses a type I secretion system (T1SS), which mediates secretion of a thermostable lipase (TliA) and a protease (PrtA) through its ATP-binding cassette (ABC) transporter. Recombinant proteins in P. fluorescens are attached to the C-terminal signal region of TliA for transport as fusion proteins to the extracellular medium. However, intrinsic TliA from the P. fluorescens genome interferes with detection of the recombinant protein and the secreted recombinant protein is hydrolyzed, due to intrinsic PrtA, resulting in decreased efficiency of the PMF. In this research, the lipase and protease genes of P. fluorescens SIK W1 were deleted using the targeted gene knockout method. Deletion mutant P. fluorescens ΔtliA ΔprtA secreted fusion proteins without TliA or protein degradation. Using wild-type P. fluorescens as an expression host, degradation of the recombinant protein varied depending on the type of culture media and aeration; however, degradation did not occur with the P. fluorescens ΔtliA ΔprtA double mutant irrespective of growth conditions. By homologous expression of tliA and the ABC transporter in a plasmid, TliA secreted from P. fluorescens ΔprtA and P. fluorescens ΔtliA ΔprtA cells was found to be intact, whereas that secreted from the wild-type P. fluorescens and P. fluorescens ΔtliA cells was found to be hydrolyzed. Our results demonstrate that the P. fluorescens ΔtliA ΔprtA deletion mutant is a promising T1SS-mediated PMF that enhances production and detection of recombinant proteins in extracellular media.
Collapse
|