1
|
Nozaki LY, Bulka NR, Dos Reis KL, Martim DB, Fernandes de Castro F, Barbosa-Tessmann IP. Expression of the Fusarium graminearum galactose oxidase GaoA in Saccharomyces cerevisiae. Protein Expr Purif 2025; 227:106637. [PMID: 39617309 DOI: 10.1016/j.pep.2024.106637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/17/2024] [Accepted: 11/28/2024] [Indexed: 12/24/2024]
Abstract
Galactose oxidase, produced by fungi of the genus Fusarium, is an enzyme of great biotechnological importance. The gaoA gene has been recombinantly expressed in several hosts but has yet to be in Saccharomyces cerevisiae. This work aimed to express the Fusarium graminearum GaoA enzyme in S. cerevisiae. The full-length and the truncated F. graminearum gaoA gene were subcloned into a yeast expression vector. The GaoA enzyme expression level in S. cerevisiae was higher when the truncated gene, which codes for the mature form of the enzyme, was used. After purification of the expressed enzyme on a Sepharose® 6B column, the obtained yield of the pure and active enzyme was 16.7 mg/L. The purified protein showed a KM of 9.8 mM, lower than that of the wild-type enzyme, and a kcat/KM of 2.9 × 107 M-1s-1, higher than that of the wild-type enzyme. The expressed recombinant protein used several common substrates for galactose oxidase, such as galactose, raffinose, and 1,3-dihydroxyacetone dimer. In addition, it had increased activity on guar gum, lactose, and Arabic gum compared with the wild-type enzyme. The obtained enzyme's characteristics are compatible with the galactose oxidase biotechnological applications.
Collapse
Affiliation(s)
- Lucas Yudai Nozaki
- Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
| | - Nathalia Rodrigues Bulka
- Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
| | - Karina Lima Dos Reis
- Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
| | - Damaris Batistão Martim
- Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
| | - Fausto Fernandes de Castro
- Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
| | | |
Collapse
|
2
|
Sun H, Xia G, Cao N, Zhao L, Cao R. Enhancing catalytic efficiency of GAO-5F from Fusarium odoratissimum and its application in development of a polyaldehyde crosslinked gelatin-based edible packaging film. Int J Biol Macromol 2024; 283:137807. [PMID: 39579837 DOI: 10.1016/j.ijbiomac.2024.137807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
Galactose oxidase has long captured the interest of the biocatalysis and biotechnology communities due to its unique catalytic characteristics and versatility with various substrates. In our previous studies, we demonstrated that galactose oxidase GAO-5F from Fusarium odoratissimum can oxidize agarose to produce a polyaldehyde polymer, which can be further crosslinked with gelatin to produce food packaging films. Despite its commendable catalytic performance, GAO-5F falls short of meeting the requirements for industrial applications. In this study, we employed a combination of multiple sequence comparisons and site-directed mutagenesis to pinpoint key amino acid sites crucial for enhancing the enzyme's catalytic activity, resulting in the creation of the double mutant GAO-5F/AR (D403A/Q484R), showing a six-fold increase in catalytic activity. The catalytic mechanism of mutant was further elucidated through homology modeling and molecular docking. Results highlighted the significance of increased hydrogen bonding interactions between the enzyme and substrate in enhancing catalytic activity. Then, agarose was transformed into a polyaldehyde polymer by oxidation catalyzed by GAO-5F mutant. The resulting polyaldehyde polymer was crosslinked with gelatin to prepare an edible packaging film; the properties and structure of the film were characterized. In this study, we successfully obtained mutants with increased catalytic activity through a semi-rational-driven site-directed mutagenesis strategy. This approach, which combines rational design with targeted mutagenesis, holds promise for furthering our understanding of enzyme function and may find widespread use in comparative functional genomics studies of other natural enzymes. This study provides valuable insights for the improvement of galactose oxidase, and new ideas for the preparation of edible packaging films for use in the food industry.
Collapse
Affiliation(s)
- Huihui Sun
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Guangli Xia
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Na Cao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Ling Zhao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China
| | - Rong Cao
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Science and Technology, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China.
| |
Collapse
|
3
|
Vuong TV, Aghajohari M, Feng X, Woodstock AK, Nambiar DM, Sleiman ZC, Urbanowicz BR, Master ER. Enzymatic Routes to Designer Hemicelluloses for Use in Biobased Materials. JACS AU 2024; 4:4044-4065. [PMID: 39610758 PMCID: PMC11600177 DOI: 10.1021/jacsau.4c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 11/30/2024]
Abstract
Various enzymes can be used to modify the structure of hemicelluloses directly in vivo or following extraction from biomass sources, such as wood and agricultural residues. Generally, these enzymes can contribute to designer hemicelluloses through four main strategies: (1) enzymatic hydrolysis such as selective removal of side groups by glycoside hydrolases (GH) and carbohydrate esterases (CE), (2) enzymatic cross-linking, for instance, the selective addition of side groups by glycosyltransferases (GT) with activated sugars, (3) enzymatic polymerization by glycosynthases (GS) with activated glycosyl donors or transglycosylation, and (4) enzymatic functionalization, particularly via oxidation by carbohydrate oxidoreductases and via amination by amine transaminases. Thus, this Perspective will first highlight enzymes that play a role in regulating the degree of polymerization and side group composition of hemicelluloses, and subsequently, it will explore enzymes that enhance cross-linking capabilities and incorporate novel chemical functionalities into saccharide structures. These enzymatic routes offer a precise way to tailor the properties of hemicelluloses for specific applications in biobased materials, contributing to the development of renewable alternatives to conventional materials derived from fossil fuels.
Collapse
Affiliation(s)
- Thu V. Vuong
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Mohammad Aghajohari
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, 305 Sanford Drive, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Xuebin Feng
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Amanda K. Woodstock
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Deepti M. Nambiar
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Zeina C. Sleiman
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Breeanna R. Urbanowicz
- Department
of Biochemistry and Molecular Biology, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
- Complex
Carbohydrate Research Center, University
of Georgia, 315 Riverbend
Road, Athens, Georgia 30602, United States
| | - Emma R. Master
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
- Department
of Bioproducts and Biosystems, Aalto University, Kemistintie 1, 02150 Espoo, Finland
| |
Collapse
|
4
|
Fong JK, Mathieu Y, Vo MT, Bellemare A, Tsang A, Brumer H. Expansion of Auxiliary Activity Family 5 sequence space via biochemical characterization of six new copper radical oxidases. Appl Environ Microbiol 2024; 90:e0101424. [PMID: 38953370 PMCID: PMC11267884 DOI: 10.1128/aem.01014-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
Bacterial and fungal copper radical oxidases (CROs) from Auxiliary Activity Family 5 (AA5) are implicated in morphogenesis and pathogenesis. The unique catalytic properties of CROs also make these enzymes attractive biocatalysts for the transformation of small molecules and biopolymers. Despite a recent increase in the number of characterized AA5 members, especially from subfamily 2 (AA5_2), the catalytic diversity of the family as a whole remains underexplored. In the present study, phylogenetic analysis guided the selection of six AA5_2 members from diverse fungi for recombinant expression in Komagataella pfaffii (syn. Pichia pastoris) and biochemical characterization in vitro. Five of the targets displayed predominant galactose 6-oxidase activity (EC 1.1.3.9), and one was a broad-specificity aryl alcohol oxidase (EC 1.1.3.7) with maximum activity on the platform chemical 5-hydroxymethyl furfural (EC 1.1.3.47). Sequence alignment comparing previously characterized AA5_2 members to those from this study indicated various amino acid substitutions at active site positions implicated in the modulation of specificity.IMPORTANCEEnzyme discovery and characterization underpin advances in microbial biology and the application of biocatalysts in industrial processes. On one hand, oxidative processes are central to fungal saprotrophy and pathogenesis. On the other hand, controlled oxidation of small molecules and (bio)polymers valorizes these compounds and introduces versatile functional groups for further modification. The biochemical characterization of six new copper radical oxidases further illuminates the catalytic diversity of these enzymes, which will inform future biological studies and biotechnological applications.
Collapse
Affiliation(s)
- Jessica K. Fong
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Minh Tri Vo
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Annie Bellemare
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Chemistry, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Canbay E, Sezer E, Canda E, Yazıcı H, Kalkan Uçar S, Çoker M, Yildirim Sözmen E. Development of a New Amperometric Biosensor for Measurement of Plasma Galactose Levels. ACS OMEGA 2024; 9:7621-7633. [PMID: 38405530 PMCID: PMC10882682 DOI: 10.1021/acsomega.3c06789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 02/27/2024]
Abstract
Galactosemia is an inherited disease that occurs as a result of insufficient or no synthesis of some enzymes (GALT, GALK, and GALE) in galactose metabolism. Failure to make an early diagnosis, especially in newborns, can lead to severe clinical and even fatal consequences. The aim of this study is to develop a biosensor for measuring free galactose in plasma. The immobilization components of the developed free galactose biosensor are screen printed carbon electrode (SCPE), Prussian blue (PB), chitosan (CHIT), Nafion (NAF), gold nanoparticle (GNP), and galactose oxidase (GaOX). The CHIT/GaOX/NAF-GNP/GaOX/CHIT-GNP/SCPE-PB electrode showed a sensitive amperometric response to detect galactose. While the surface characterization of the biosensor was performed with cyclic voltammetry and scanning electron microscopy, the optimization and performance characterizations were made by applying an amperometry technique. The amperometric operating potential for the free galactose biosensor was determined as -0.05 V. The linear detection range for the free galactose biosensor is between 0.025 and 10 mM. This range includes galactose levels in plasma of both healthy and patients. The percent coefficient of variation values calculated for intraday and interday repeatability of the developed biosensor are below 10%. The practical use of the biosensor, for which optimization and characterization studies were carried out, was tested in 10 healthy 11 patients with galactosemia, and the results were compared with the colorimetric method. In conclusion, the unique analytical properties and effortless preparation of the new galactose biosensor developed in this study make them serious candidates for point-of-care diagnostic testing.
Collapse
Affiliation(s)
- Erhan Canbay
- Department
of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Ebru Sezer
- Department
of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| | - Ebru Canda
- Department
of Pediatric Metabolic Disease, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkiye
| | - Havva Yazıcı
- Department
of Pediatric Metabolic Disease, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkiye
| | - Sema Kalkan Uçar
- Department
of Pediatric Metabolic Disease, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkiye
| | - Mahmut Çoker
- Department
of Pediatric Metabolic Disease, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkiye
| | - Eser Yildirim Sözmen
- Department
of Medical Biochemistry, Faculty of Medicine, Ege University, Bornova, Izmir 35100, Turkey
| |
Collapse
|
6
|
Cao N, Xia G, Sun H, Zhao L, Cao R, Jiang H, Mao X, Liu Q. Characterization of a Galactose Oxidase from Fusarium odoratissimum and Its Application in the Modification of Agarose. Foods 2023; 12:foods12030603. [PMID: 36766130 PMCID: PMC9914589 DOI: 10.3390/foods12030603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/18/2023] [Accepted: 01/24/2023] [Indexed: 02/04/2023] Open
Abstract
A galactose oxidase gene, gao-5f, was cloned from Fusarium odoratissimum and successfully expressed in E. coli. The galactose oxidase GAO-5F belongs to the AA5 family and consists of 681 amino acids, with an estimated molecular weight of 72 kDa. GAO-5F exhibited maximum activity at 40 °C and pH 7.0 and showed no change in activity after 24 h incubation at 30 °C. Moreover, GAO-5F exhibited 40% of its maximum activity after 24 h incubation at 50 °C and 60% after 40 h incubation at pH 7.0. The measured thermostability of GAO-5F is superior to galactose oxidase's reported thermostability. The enzyme exhibited strict substrate specificity toward D-galactose and oligosaccharides/polysaccharides containing D-galactose. Further analysis demonstrated that GAO-5F specifically oxidized agarose to a polyaldehyde-based polymer, which could be used as a polyaldehyde to crosslink with gelatin to form edible packaging films. To our knowledge, this is the first report about the modification of agarose by galactose oxidase, and this result has laid a foundation for the further development of edible membranes using agarose.
Collapse
Affiliation(s)
- Na Cao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Guangli Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Huihui Sun
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Correspondence:
| | - Ling Zhao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Rong Cao
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Qi Liu
- Department of Food Engineering and Nutrition, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| |
Collapse
|
7
|
Copper radical oxidases: galactose oxidase, glyoxal oxidase, and beyond! Essays Biochem 2022; 67:597-613. [PMID: 36562172 DOI: 10.1042/ebc20220124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/14/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
The copper radical oxidases (CROs) are an evolutionary and functionally diverse group of enzymes established by the historically significant galactose 6-oxidase and glyoxal oxidase from fungi. Inducted in 2013, CROs now constitute Auxiliary Activity Family 5 (AA5) in the Carbohydrate-Active Enzymes (CAZy) classification. CROs catalyse the two-electron oxidation of their substrates using oxygen as the final electron acceptor and are particularly distinguished by a cross-linked tyrosine-cysteine co-factor that is integral to radical stabilization. Recently, there has been a significant increase in the biochemically and structurally characterized CROs, which has revealed an expanded natural diversity of catalytic activities in the family. This review provides a brief historical introduction to CRO biochemistry and structural biology as a foundation for an update on current advances in CRO enzymology, biotechnology, and biology across kingdoms of life.
Collapse
|
8
|
Koschorreck K, Alpdagtas S, Urlacher VB. Copper-radical oxidases: A diverse group of biocatalysts with distinct properties and a broad range of biotechnological applications. ENGINEERING MICROBIOLOGY 2022; 2:100037. [PMID: 39629025 PMCID: PMC11611005 DOI: 10.1016/j.engmic.2022.100037] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 12/06/2024]
Abstract
Copper-radical oxidases (CROs) catalyze the two-electron oxidation of a large number of primary alcohols including carbohydrates, polyols and benzylic alcohols as well as aldehydes and α-hydroxy-carbonyl compounds while reducing molecular oxygen to hydrogen peroxide. Initially, CROs like galactose oxidase and glyoxal oxidase were identified only in fungal secretomes. Since the last decade, their representatives have also been identified in some bacteria. CROs are grouped in the AA5 family of "auxiliary activities" in the database of Carbohydrate-Active enzymes. Despite low overall sequence similarity and different substrate specificities, sequence alignments and the solved crystal structures revealed a conserved architecture of the active sites in all CROs, with a mononuclear copper ion coordinated to an axial tyrosine, two histidines, and a cross-linked cysteine-tyrosyl radical cofactor. This unique post-translationally modified protein cofactor has attracted much attention in the past, which resulted in a large number of reports that shed light on key steps of the catalytic cycle and physico-chemical properties of CROs. Thanks to their broad substrate spectrum accompanied by the only need for molecular oxygen for catalysis, CROs since recently experience a renaissance and have been applied in various biocatalytic processes. This review provides an overview of the structural features, catalytic mechanism and substrates of CROs, presents an update on the engineering of these enzymes to improve their expression in recombinant hosts and to enhance their activity, and describes their potential fields of biotechnological application.
Collapse
Affiliation(s)
- Katja Koschorreck
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| | - Saadet Alpdagtas
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
- Department of Biology, Van Yuzuncu Yil University, Van 65080, Turkey
| | - Vlada B. Urlacher
- Institute of Biochemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, Düsseldorf 40225, Germany
| |
Collapse
|
9
|
Mathieu Y, Cleveland ME, Brumer H. Active-Site Engineering Switches Carbohydrate Regiospecificity in a Fungal Copper Radical Oxidase. ACS Catal 2022; 12:10264-10275. [PMID: 36033369 PMCID: PMC9397409 DOI: 10.1021/acscatal.2c01956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/15/2022] [Indexed: 11/30/2022]
Abstract
Copper radical oxidases (CROs) from Auxiliary Activity Family 5, Subfamily 2 (AA5_2), are organic cofactor-free biocatalysts for the selective oxidation of alcohols to the corresponding aldehydes. AA5_2 CROs comprise canonical galactose-6-oxidases as well as the more recently discovered general alcohol oxidases and aryl alcohol oxidases. Guided by primary and tertiary protein structural analyses, we targeted a distinct extended loop in the active site of a Colletotrichum graminicola aryl alcohol oxidase (CgrAAO) to explore its effect on catalysis in the broader context of AA5_2. Deletion of this loop, which is bracketed by a conserved disulfide bridge, significantly reduced the inherent activity of the enzyme toward extended galacto-oligosaccharides, as anticipated from molecular modeling. Unexpectedly, kinetic and product analysis on a range of monosaccharides and disaccharides revealed that an altered carbohydrate specificity in CgrAAO-Δloop was accompanied by a complete change in regiospecificity from C-6 to C-1 oxidation, thereby generating aldonic acids. C-1 regiospecificity is unprecedented in AA5 enzymes and is classically associated with flavin-dependent carbohydrate oxidases of Auxiliary Activity Family 3. Thus, this work further highlights the catalytic adaptability of the unique mononuclear copper radical active site and provides a basis for the design of improved biocatalysts for diverse potential applications.
Collapse
Affiliation(s)
- Yann Mathieu
- Michael
Smith Laboratories, University of British
Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- BioProducts
Institute, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Maria E. Cleveland
- Michael
Smith Laboratories, University of British
Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- BioProducts
Institute, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Harry Brumer
- Michael
Smith Laboratories, University of British
Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- BioProducts
Institute, University of British Columbia, 2385 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department
of Biochemistry and Molecular Biology, University
of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department
of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
10
|
Rendered-Protein Hydrolysates as a Low-Cost Nitrogen Source for the Fungal Biotransformation of 5-Hydroxymethylfurfural. Catalysts 2022. [DOI: 10.3390/catal12080839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
5-hydroxymethylfurfural (HMF) is a platform chemical that can be converted into a wide range of high-value derivatives. Industrially, HMF-based derivatives are synthesized via chemical catalysis. However, biocatalytic transformation has emerged as an attractive alternative. Significant advances have been made in the last years using isolated enzymes and whole-cell biocatalysts in HMF biotransformation. Nonetheless, one of the major bottlenecks is the cost of the process, mainly due to the microorganism growth substrate. In this work, biotransformation studies to transform HMF into 2,5-di(hydroxymethyl)furan (DHMF) were carried out with the fungus Fusarium striatum using low-cost protein hydrolysates. The protein hydrolysates were obtained from fines, an unexploited material produced during the rendering process of meat industry waste residues. Given the high content in the protein of fines, of around 46%, protein hydrolysis was optimized using two commercially available proteases, Alcalase 2.4 L and Neutrase 0.8 L. The maximum degree of hydrolysis (DH) achieved with Alcalase 2.4 L was 21.4% under optimal conditions of 5% E/S ratio, pH 8, 55 °C, and 24 h. On the other hand, Neutrase 0.8 L exhibited lower efficiency, and therefore, lower protein recovery. After optimization of the Neutrase 0.8 L process using the response surface methodology (RSM), the maximum DH achieved was 7.2% with the variables set at 15% E/S ratio, initial pH 8, 40 °C, and 10.5 h. Using these hydrolysates as a nitrogen source allowed higher sporulation of the fungus and, therefore, the use of a lower volume of inoculum (three-fold), obtaining a DHMF yield > 90%, 50% higher than the yield obtained when using commercial peptones. The presented process allows the transformation of animal co- and by-products into low-cost nitrogen sources, which greatly impacts the industrial feasibility of HMF biotransformation.
Collapse
|
11
|
Silva J, Spiess R, Marchesi A, Flitsch SL, Gough JE, Webb SJ. Enzymatic elaboration of oxime-linked glycoconjugates in solution and on liposomes. J Mater Chem B 2022; 10:5016-5027. [PMID: 35723603 PMCID: PMC9258907 DOI: 10.1039/d2tb00714b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 06/11/2022] [Indexed: 11/21/2022]
Abstract
Oxime formation is a convenient one-step method for ligating reducing sugars to surfaces, producing a mixture of closed ring α- and β-anomers along with open-chain (E)- and (Z)-isomers. Here we show that despite existing as a mixture of isomers, N-acetylglucosamine (GlcNAc) oximes can still be substrates for β(1,4)-galactosyltransferase (β4GalT1). β4GalT1 catalysed the galactosylation of GlcNAc oximes by a galactose donor (UDP-Gal) both in solution and in situ on the surface of liposomes, with conversions up to 60% in solution and ca. 15-20% at the liposome surface. It is proposed that the β-anomer is consumed preferentially but long reaction times allow this isomer to be replenished by equilibration from the remaining isomers. Adding further enzymes gave more complex oligosaccharides, with a combination of α-1,3-fucosyltransferase, β4GalT1 and the corresponding sugar donors providing Lewis X coated liposomes. However, sialylation using T. cruzi trans-sialidase and sialyllactose provided only very small amounts of sialyl Lewis X (sLex) capped lipid. These observations show that combining oxime formation with enzymatic elaboration will be a useful method for the high-throughput surface modification of drug delivery vehicles, such as liposomes, with cell-targeting oligosaccharides.
Collapse
Affiliation(s)
- Joana Silva
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Reynard Spiess
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Andrea Marchesi
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Sabine L Flitsch
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| | - Julie E Gough
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK.
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess St, Manchester M1 7DN, UK
| |
Collapse
|
12
|
Milić M, Byström E, Domínguez de María P, Kara S. Enzymatic Cascade for the Synthesis of 2,5-Furandicarboxylic Acid in Biphasic and Microaqueous Conditions: 'Media-Agnostic' Biocatalysts for Biorefineries. CHEMSUSCHEM 2022; 15:e202102704. [PMID: 35438241 PMCID: PMC9322558 DOI: 10.1002/cssc.202102704] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/21/2022] [Indexed: 06/14/2023]
Abstract
5-hydroxymethylfurfural (HMF) is produced upon dehydration of C6 sugars in biorefineries. As the product, it remains either in aqueous solutions, or is in situ extracted to an organic medium (biphasic system). For the subsequent oxidation of HMF to 2,5-furandicarboxylic acid (FDCA), 'media-agnostic' catalysts that can be efficiently used in different conditions, from aqueous to biphasic, and to organic (microaqueous) media, are of interest. Here, the concept of a one-pot biocatalytic cascade for production of FDCA from HMF was reported, using galactose oxidase (GalOx) for the formation of 2,5-diformylfuran (DFF), followed by the lipase-mediated peracid oxidation of DFF to FDCA. GalOx maintained its catalytic activity upon exposure to a range of organic solvents with only 1 % (v/v) of water. The oxidation of HMF to 2,5-diformylfuran (DFF) was successfully established in ethyl acetate-based biphasic or microaqueous systems. To validate the concept, the reaction was conducted at 5 % (v/v) water, and integrated in a cascade where DFF was subsequently oxidized to FDCA in a reaction catalyzed by Candida antarctica lipase B.
Collapse
Affiliation(s)
- Milica Milić
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 108000Aarhus CDenmark
| | | | | | - Selin Kara
- Biocatalysis and Bioprocessing GroupDepartment of Biological and Chemical EngineeringAarhus UniversityGustav Wieds Vej 108000Aarhus CDenmark
- Institute of Technical ChemistryLeibniz University HannoverCallinstr. 530167HannoverGermany
| |
Collapse
|
13
|
Duke JA, Paschall AV, Glushka J, Lees A, Moremen KW, Avci FY. Harnessing galactose oxidase in the development of a chemoenzymatic platform for glycoconjugate vaccine design. J Biol Chem 2022; 298:101453. [PMID: 34838818 PMCID: PMC8689215 DOI: 10.1016/j.jbc.2021.101453] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/02/2022] Open
Abstract
In the preparation of commercial conjugate vaccines, capsular polysaccharides (CPSs) must undergo chemical modification to generate the reactive groups necessary for covalent attachment to a protein carrier. One of the most common approaches employed for this derivatization is sodium periodate (NaIO4) oxidation of vicinal diols found within CPS structures. This procedure is largely random and structurally damaging, potentially resulting in significant changes in the CPS structure and therefore its antigenicity. Additionally, periodate activation of CPS often gives rise to heterogeneous conjugate vaccine products with variable efficacy. Here, we explore the use of an alternative agent, galactose oxidase (GOase) isolated from Fusarium sp. in a chemoenzymatic approach to generate a conjugate vaccine against Streptococcus pneumoniae. Using a colorimetric assay and NMR spectroscopy, we found that GOase generated aldehyde motifs on the CPS of S. pneumoniae serotype 14 (Pn14p) in a site-specific and reversible fashion. Direct comparison of Pn14p derivatized by either GOase or NaIO4 illustrates the functionally deleterious role chemical oxidation can have on CPS structures. Immunization with the conjugate synthesized using GOase provided a markedly improved humoral response over the traditional periodate-oxidized group. Further, functional protection was validated in vitro by measure of opsonophagocytic killing and in vivo through a lethality challenge in mice. Overall, this work introduces a strategy for glycoconjugate development that overcomes limitations previously known to play a role in the current approach of vaccine design.
Collapse
Affiliation(s)
- Jeremy A Duke
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| | - Amy V Paschall
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Andrew Lees
- Fina Biosolutions, LLC, Rockville, Maryland, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Fikri Y Avci
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, USA; Center for Molecular Medicine, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
14
|
Šola K, Dean GH, Li Y, Lohmann J, Movahedan M, Gilchrist EJ, Adams KL, Haughn GW. Expression Patterns and Functional Characterization of Arabidopsis Galactose Oxidase-Like Genes Suggest Specialized Roles for Galactose Oxidases in Plants. PLANT & CELL PHYSIOLOGY 2021; 62:1927-1943. [PMID: 34042158 DOI: 10.1093/pcp/pcab073] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/10/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Galactose oxidases (GalOxs) are well-known enzymes that have been identified in several fungal species and characterized using structural and enzymatic approaches. However, until very recently, almost no information on their biological functions was available. The Arabidopsis (Arabidopsis thaliana) gene ruby particles in mucilage (RUBY) encodes a putative plant GalOx that is required for pectin cross-linking through modification of galactose (Gal) side chains and promotes cell-cell adhesion between seed coat epidermal cells. RUBY is one member of a family of seven putative GalOxs encoded in the Arabidopsis genome. To examine the function(s) of GalOxs in plants, we studied the remaining six galactose oxidase-like (GOXL) proteins. Like RUBY, four of these proteins (GOXL1, GOXL3, GOXL5 and GOXL6) were found to localize primarily to the apoplast, while GOXL2 and GOXL4 were found primarily in the cytoplasm. Complementation and GalOx assay data suggested that GOXL1, GOXL3 and possibly GOXL6 have similar biochemical activity to RUBY, whereas GOXL5 only weakly complemented and GOXL2 and GOXL4 showed no activity. Members of this protein family separated into four distinct clades prior to the divergence of the angiosperms. There have been recent duplications in Brassicaceae resulting in two closely related pairs of genes that have either retained similarity in expression (GOXL1 and GOXL6) or show expression divergence (GOXL3 and RUBY). Mutant phenotypes were not detected when these genes were disrupted, but their expression patterns suggest that these proteins may function in tissues that require mechanical reinforcements in the absence of lignification.
Collapse
Affiliation(s)
- Krešimir Šola
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, Noord-Holland 1098 XH, The Netherlands
| | - Gillian H Dean
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| | - Yi Li
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Sjaak van Schie B.V., Maasdijk, Schenkeldijk 8, Zuid-Holland 2676 LD, The Netherlands
| | - Julia Lohmann
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Molecular Plant Physiology, Institute for Plant Science and Microbiology, Universität Hamburg, Ohnhorststr. 18, Hamburg 22609, Germany
| | - Mahsa Movahedan
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Burnaby Hospital, 3935 Kincaid St, Burnaby, British Columbia V5G 2X6, Canada
| | - Erin J Gilchrist
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
- Anandia Labs, 125-887 Great Northern Way, Vancouver, British Columbia V5T 4T5, Canada
| | - Keith L Adams
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| | - George W Haughn
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
15
|
Cleveland ME, Mathieu Y, Ribeaucourt D, Haon M, Mulyk P, Hein JE, Lafond M, Berrin JG, Brumer H. A survey of substrate specificity among Auxiliary Activity Family 5 copper radical oxidases. Cell Mol Life Sci 2021; 78:8187-8208. [PMID: 34738149 PMCID: PMC11072238 DOI: 10.1007/s00018-021-03981-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/13/2021] [Accepted: 10/13/2021] [Indexed: 12/21/2022]
Abstract
There is significant contemporary interest in the application of enzymes to replace or augment chemical reagents toward the development of more environmentally sound and sustainable processes. In particular, copper radical oxidases (CRO) from Auxiliary Activity Family 5 Subfamily 2 (AA5_2) are attractive, organic cofactor-free catalysts for the chemoselective oxidation of alcohols to the corresponding aldehydes. These enzymes were first defined by the archetypal galactose-6-oxidase (GalOx, EC 1.1.3.13) from the fungus Fusarium graminearum. The recent discovery of specific alcohol oxidases (EC 1.1.3.7) and aryl alcohol oxidases (EC 1.1.3.47) within AA5_2 has indicated a potentially broad substrate scope among fungal CROs. However, only relatively few AA5_2 members have been characterized to date. Guided by sequence similarity network and phylogenetic analysis, twelve AA5_2 homologs have been recombinantly produced and biochemically characterized in the present study. As defined by their predominant activities, these comprise four galactose 6-oxidases, two raffinose oxidases, four broad-specificity primary alcohol oxidases, and two non-carbohydrate alcohol oxidases. Of particular relevance to applications in biomass valorization, detailed product analysis revealed that two CROs produce the bioplastics monomer furan-2,5-dicarboxylic acid (FDCA) directly from 5-hydroxymethylfurfural (HMF). Furthermore, several CROs could desymmetrize glycerol (a by-product of the biodiesel industry) to D- or L-glyceraldehyde. This study furthers our understanding of CROs by doubling the number of characterized AA5_2 members, which may find future applications as biocatalysts in diverse processes.
Collapse
Affiliation(s)
- Maria E Cleveland
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
- V. Mane Fils, 620 route de Grasse, 06620, Le Bar sur Loup, France
| | - Mireille Haon
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Paul Mulyk
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR 1163 Biodiversité et Biotechnologie Fongiques, 13009, Marseille, France
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
16
|
Figueiredo C, De Lacey AL, Pita M. Electrochemical studies of galactose oxidase. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
| | | | - Marcos Pita
- Instituto de Catálisis y Petroleoquímica CSIC Madrid Spain
| |
Collapse
|
17
|
Daou M, Bisotto A, Haon M, Oliveira Correia L, Cottyn B, Drula E, Garajová S, Bertrand E, Record E, Navarro D, Raouche S, Baumberger S, Faulds CB. A Putative Lignin Copper Oxidase from Trichoderma reesei. J Fungi (Basel) 2021; 7:jof7080643. [PMID: 34436182 PMCID: PMC8400822 DOI: 10.3390/jof7080643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 11/16/2022] Open
Abstract
The ability of Trichoderma reesei, a fungus widely used for the commercial production of hemicellulases and cellulases, to grow and modify technical soda lignin was investigated. By quantifying fungal genomic DNA, T. reesei showed growth and sporulation in solid and liquid cultures containing lignin alone. The analysis of released soluble lignin and residual insoluble lignin was indicative of enzymatic oxidative conversion of phenolic lignin side chains and the modification of lignin structure by cleaving the β-O-4 linkages. The results also showed that polymerization reactions were taking place. A proteomic analysis conducted to investigate secreted proteins at days 3, 7, and 14 of growth revealed the presence of five auxiliary activity (AA) enzymes in the secretome: AA6, AA9, two AA3 enzymes), and the only copper radical oxidase encoded in the genome of T. reesei. This enzyme was heterologously produced and characterized, and its activity on lignin-derived molecules was investigated. Phylogenetic characterization demonstrated that this enzyme belonged to the AA5_1 family, which includes characterized glyoxal oxidases. However, the enzyme displayed overlapping physicochemical and catalytic properties across the AA5 family. The enzyme was remarkably stable at high pH and oxidized both, alcohols and aldehydes with preference to the alcohol group. It was also active on lignin-derived phenolic molecules as well as simple carbohydrates. HPSEC and LC-MS analyses on the reactions of the produced protein on lignin dimers (SS ββ, SS βO4 and GG β5) uncovered the polymerizing activity of this enzyme, which was accordingly named lignin copper oxidase (TrLOx). Polymers of up 10 units were formed by hydroxy group oxidation and radical formation. The activations of lignin molecules by TrLOx along with the co-secretion of this enzyme with reductases and FAD flavoproteins oxidoreductases during growth on lignin suggest a synergistic mechanism for lignin breakdown.
Collapse
Affiliation(s)
- Mariane Daou
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Alexandra Bisotto
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Mireille Haon
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Lydie Oliveira Correia
- PAPPSO Platform, INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France;
| | - Betty Cottyn
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (B.C.); (S.B.)
| | - Elodie Drula
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Soňa Garajová
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Emmanuel Bertrand
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Eric Record
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - David Navarro
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
- CIRM-CF BBF, INRAE, Aix Marseille University, 13288 Marseille, France
| | - Sana Raouche
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
| | - Stéphanie Baumberger
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (B.C.); (S.B.)
| | - Craig B. Faulds
- BBF, INRAE, Aix Marseille University, 13288 Marseille, France; (M.D.); (A.B.); (M.H.); (E.D.); (S.G.); (E.B.); (E.R.); (D.N.); (S.R.)
- Correspondence:
| |
Collapse
|
18
|
Ribeaucourt D, Bissaro B, Lambert F, Lafond M, Berrin JG. Biocatalytic oxidation of fatty alcohols into aldehydes for the flavors and fragrances industry. Biotechnol Adv 2021; 56:107787. [PMID: 34147589 DOI: 10.1016/j.biotechadv.2021.107787] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 01/11/2023]
Abstract
From Egyptian mummies to the Chanel n°5 perfume, fatty aldehydes have long been used and keep impacting our senses in a wide range of foods, beverages and perfumes. Natural sources of fatty aldehydes are threatened by qualitative and quantitative variability while traditional chemical routes are insufficient to answer the society shift toward more sustainable and natural products. The production of fatty aldehydes using biotechnologies is therefore the most promising alternative for the flavors and fragrances industry. In this review, after drawing the portrait of the origin and characteristics of fragrant fatty aldehydes, we present the three main classes of enzymes that catalyze the reaction of fatty alcohols oxidation into aldehydes, namely alcohol dehydrogenases, flavin-dependent alcohol oxidases and copper radical alcohol oxidases. The constraints, challenges and opportunities to implement these oxidative enzymes in the flavors and fragrances industry are then discussed. By setting the scene on the biocatalytic production of fatty aldehydes, and providing a critical assessment of its potential, we expect this review to contribute to the development of biotechnology-based solutions in the flavors and fragrances industry.
Collapse
Affiliation(s)
- David Ribeaucourt
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France; V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France; Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France.
| | - Bastien Bissaro
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France
| | - Fanny Lambert
- V. Mane Fils, 620 route de Grasse, 06620 Le Bar sur Loup, France
| | - Mickael Lafond
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, UMR1163 Biodiversité et Biotechnologie Fongiques, 13009 Marseille, France.
| |
Collapse
|
19
|
Cleveland M, Lafond M, Xia FR, Chung R, Mulyk P, Hein JE, Brumer H. Two Fusarium copper radical oxidases with high activity on aryl alcohols. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:138. [PMID: 34134727 PMCID: PMC8207647 DOI: 10.1186/s13068-021-01984-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biomass valorization has been suggested as a sustainable alternative to petroleum-based energy and commodities. In this context, the copper radical oxidases (CROs) from Auxiliary Activity Family 5/Subfamily 2 (AA5_2) are attractive biocatalysts for the selective oxidation of primary alcohols to aldehydes. Originally defined by the archetypal galactose 6-oxidase from Fusarium graminearum, fungal AA5_2 members have recently been shown to comprise a wide range of specificities for aromatic, aliphatic and furan-based alcohols. This suggests a broader substrate scope of native CROs for applications. However, only 10% of the annotated AA5_2 members have been characterized to date. RESULTS Here, we define two homologues from the filamentous fungi Fusarium graminearum and F. oxysporum as predominant aryl alcohol oxidases (AAOs) through recombinant production in Pichia pastoris, detailed kinetic characterization, and enzyme product analysis. Despite possessing generally similar active-site architectures to the archetypal FgrGalOx, FgrAAO and FoxAAO have weak activity on carbohydrates, but instead efficiently oxidize specific aryl alcohols. Notably, both FgrAAO and FoxAAO oxidize hydroxymethyl furfural (HMF) directly to 5-formyl-2-furoic acid (FFCA), and desymmetrize the bioproduct glycerol to the uncommon L-isomer of glyceraldehyde. CONCLUSIONS This work expands understanding of the catalytic diversity of CRO from AA5_2 to include unique representatives from Fusarium species that depart from the well-known galactose 6-oxidase activity of this family. Detailed enzymological analysis highlights the potential biotechnological applications of these orthologs in the production of renewable plastic polymer precursors and other chemicals.
Collapse
Affiliation(s)
- Maria Cleveland
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mickael Lafond
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Fan Roderick Xia
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Ryan Chung
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Paul Mulyk
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Jason E Hein
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada.
- BioProducts Institute, University of British Columbia, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada.
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada.
- Department of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
20
|
Lv J, Yang W, Miao Y. Preparation of galactose oxidase functional phosphorescent quantum dots and detection of D-galactose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 240:118599. [PMID: 32563030 DOI: 10.1016/j.saa.2020.118599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/04/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Environmental friendly nano biosensor can improve the detection performance of traditional biomolecular sensors and have important application value in practical applications. In this study, a kind of room temperature phosphorescence (RTP) quantum dots (QDs) (GOX RTP QDs) nanobiosensor was prepared by mineralization at room temperature (25 °C), using galactose oxidase (GOX) as template, which improved the catalytic ability of traditional GOx to D-Galactose. The specific enzyme substrate reaction between GOx and D-Galactose and photoinduced electron transfer (Piet) were used to detect the RTP of D-galactose. The linear range of D-galactose detection is 0.02-0.8 mM, and the detection limit of the method is 0.008 mM. This method is based on the RTP property of QDs, which can effectively avoid the interference of background fluorescence of biological samples, and does not need complex sample pretreatment process. Therefore, this method is more suitable for the quantitative detection of D-Galactose in biological samples.
Collapse
Affiliation(s)
- Jinzhi Lv
- Shanxi Normal University, Linfen 041004, PR China.
| | - Wenli Yang
- Shanxi Normal University, Linfen 041004, PR China
| | - Yanming Miao
- Shanxi Normal University, Linfen 041004, PR China
| |
Collapse
|
21
|
Savino S, Fraaije MW. The vast repertoire of carbohydrate oxidases: An overview. Biotechnol Adv 2020; 51:107634. [PMID: 32961251 DOI: 10.1016/j.biotechadv.2020.107634] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 01/01/2023]
Abstract
Carbohydrates are widely abundant molecules present in a variety of forms. For their biosynthesis and modification, nature has evolved a plethora of carbohydrate-acting enzymes. Many of these enzymes are of particular interest for biotechnological applications, where they can be used as biocatalysts or biosensors. Among the enzymes catalysing conversions of carbohydrates are the carbohydrate oxidases. These oxidative enzymes belong to different structural families and use different cofactors to perform the oxidation reaction of CH-OH bonds in carbohydrates. The variety of carbohydrate oxidases available in nature reflects their specificity towards different sugars and selectivity of the oxidation site. Thanks to their properties, carbohydrate oxidases have received a lot of attention in basic and applied research, such that nowadays their role in biotechnological processes is of paramount importance. In this review we provide an overview of the available knowledge concerning the known carbohydrate oxidases. The oxidases are first classified according to their structural features. After a description on their mechanism of action, substrate acceptance and characterisation, we report on the engineering of the different carbohydrate oxidases to enhance their employment in biocatalysis and biotechnology. In the last part of the review we highlight some practical applications for which such enzymes have been exploited.
Collapse
Affiliation(s)
- Simone Savino
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands
| | - Marco W Fraaije
- Molecular Enzymology Group, University of Groningen, Nijenborgh 4, 9747AG Groningen, the Netherlands.
| |
Collapse
|
22
|
Jiménez DJ, Wang Y, Chaib de Mares M, Cortes-Tolalpa L, Mertens JA, Hector RE, Lin J, Johnson J, Lipzen A, Barry K, Mondo SJ, Grigoriev IV, Nichols NN, van Elsas JD. Defining the eco-enzymological role of the fungal strain Coniochaeta sp. 2T2.1 in a tripartite lignocellulolytic microbial consortium. FEMS Microbiol Ecol 2020; 96:5643886. [PMID: 31769802 DOI: 10.1093/femsec/fiz186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/22/2019] [Indexed: 12/14/2022] Open
Abstract
Coniochaeta species are versatile ascomycetes that have great capacity to deconstruct lignocellulose. Here, we explore the transcriptome of Coniochaeta sp. strain 2T2.1 from wheat straw-driven cultures with the fungus growing alone or as a member of a synthetic microbial consortium with Sphingobacterium multivorum w15 and Citrobacter freundii so4. The differential expression profiles of carbohydrate-active enzymes indicated an onset of (hemi)cellulose degradation by 2T2.1 during the initial 24 hours of incubation. Within the tripartite consortium, 63 transcripts of strain 2T2.1 were differentially expressed at this time point. The presence of the two bacteria significantly upregulated the expression of one galactose oxidase, one GH79-like enzyme, one multidrug transporter, one laccase-like protein (AA1 family) and two bilirubin oxidases, suggesting that inter-kingdom interactions (e.g. amensalism) take place within this microbial consortium. Overexpression of multicopper oxidases indicated that strain 2T2.1 may be involved in lignin depolymerization (a trait of enzymatic synergism), while S. multivorum and C. freundii have the metabolic potential to deconstruct arabinoxylan. Under the conditions applied, 2T2.1 appears to be a better degrader of wheat straw when the two bacteria are absent. This conclusion is supported by the observed suppression of its (hemi)cellulolytic arsenal and lower degradation percentages within the microbial consortium.
Collapse
Affiliation(s)
- Diego Javier Jiménez
- Microbiomes and Bioenergy Research Group, Department of Biological Sciences, Universidad de los Andes, Carrera 1 No 18A-12, Bogotá, Colombia
| | - Yanfang Wang
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Maryam Chaib de Mares
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Larisa Cortes-Tolalpa
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| | - Jeffrey A Mertens
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Junyan Lin
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jenifer Johnson
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Bioagricultural Science and Pest Management Department, Colorado State University, Fort Collins, Colorado 80521, USA
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720-3102, USA
| | - Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, USDA-ARS, Peoria, Illinois 61604, USA
| | - Jan Dirk van Elsas
- Cluster of Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7 9747AG, Groningen, The Netherlands
| |
Collapse
|
23
|
Mathieu Y, Offen WA, Forget SM, Ciano L, Viborg AH, Blagova E, Henrissat B, Walton PH, Davies GJ, Brumer H. Discovery of a Fungal Copper Radical Oxidase with High Catalytic Efficiency toward 5-Hydroxymethylfurfural and Benzyl Alcohols for Bioprocessing. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04727] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Yann Mathieu
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Wendy A. Offen
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Stephanie M. Forget
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Luisa Ciano
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Alexander Holm Viborg
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Elena Blagova
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille University, Marseille, 13288, France
- INRA, USC1408 Architecture et Fonction des Macromolécules Biologiques (AFMB), Marseille, 13288, France
| | - Paul H. Walton
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Gideon J. Davies
- Department of Chemistry, University of York, Heslington, YO10 5DD, York, U.K
| | - Harry Brumer
- Michael Smith Laboratories, University of British Columbia, 2185 East Mall, Vancouver, British Columbia V6T 1Z4, Canada
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Sciences Mall, Vancouver, British Columbia V6T 1Z3, Canada
- Department of Botany, University of British Columbia, 3200 University Boulevard, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
24
|
Faria CB, de Castro FF, Martim DB, Abe CAL, Prates KV, de Oliveira MAS, Barbosa-Tessmann IP. Production of Galactose Oxidase Inside the Fusarium fujikuroi Species Complex and Recombinant Expression and Characterization of the Galactose Oxidase GaoA Protein from Fusarium subglutinans. Mol Biotechnol 2020; 61:633-649. [PMID: 31177409 DOI: 10.1007/s12033-019-00190-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Galactose oxidase catalyzes a two-electron oxidation, mainly from the C6 hydroxyl group of D-galactose, with the concomitant reduction of water to hydrogen peroxide. This enzyme is secreted by Fusarium species and has several biotechnological applications. In this study, a screening of galactose oxidase production among species of the Fusarium fujikuroi species complex demonstrated Fusarium subglutinans to be the main producer. The truncated F. subglutinans gaoA gene coding for the mature galactose oxidase was expressed from the prokaryotic vector pTrcHis2B in the E. coli Rosetta™ (DE3) strain. The purified recombinant enzyme presented temperature and pH optima of 30 °C and 7.0, respectively, KM of 132.6 ± 18.18 mM, Vmax of 3.2 ± 0.18 µmol of H2O2/min, kcat of 12,243 s-1, and a catalytic efficiency (kcat/KM) of 9.2 × 104 M-1 s-1. In the presence of 50% glycerol, the enzyme showed a T50 of 59.77 °C and was stable for several hours at pH 8.0 and 4 °C. Besides D-(+)-galactose, the purified enzyme also acted against D-(+)-raffinose, α-D-(+)-melibiose, and methyl-α-D-galactopyranoside, and was strongly inhibited by SDS. Although the F. subglutinans gaoA gene was successfully expressed in E. coli, its endogenous transcription was not confirmed by RT-PCR.
Collapse
Affiliation(s)
- Carla Bertechini Faria
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Fausto Fernandes de Castro
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Damaris Batistão Martim
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Camila Agnes Lumi Abe
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | - Kelly Valério Prates
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | | - Ione Parra Barbosa-Tessmann
- Department of Biochemistry, Universidade Estadual de Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil.
| |
Collapse
|
25
|
Forget SM, Xia F(R, Hein JE, Brumer H. Determination of biocatalytic parameters of a copper radical oxidase using real-time reaction progress monitoring. Org Biomol Chem 2020; 18:2076-2084. [DOI: 10.1039/c9ob02757b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
VTNA is applied to reaction progress curves to glean key kinetic and mechanistic details for a copper radical oxidase.
Collapse
Affiliation(s)
- Stephanie M. Forget
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- Michael Smith Laboratories
| | - Fan (Roderick) Xia
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- Michael Smith Laboratories
| | - Jason E. Hein
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
| | - Harry Brumer
- Department of Chemistry
- University of British Columbia
- Vancouver
- Canada
- Michael Smith Laboratories
| |
Collapse
|
26
|
Chan JC, Paice M, Zhang X. Enzymatic Oxidation of Lignin: Challenges and Barriers Toward Practical Applications. ChemCatChem 2019. [DOI: 10.1002/cctc.201901480] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jou C. Chan
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
| | - Michael Paice
- FPInnovations Pulp Paper & Bioproducts 2665 East Mall Vancouver BC V6T 1Z4 Canada
| | - Xiao Zhang
- Voiland School of Chemical Engineering and Bioengineering Washington State University 2710 Crimson Way Richland WA-99354 USA
- Pacific Northwest National Laboratory 520 Battelle Boulevard P.O. Box 999, MSIN P8-60 Richland WA-99352 USA
| |
Collapse
|
27
|
A family AA5_2 carbohydrate oxidase from Penicillium rubens displays functional overlap across the AA5 family. PLoS One 2019; 14:e0216546. [PMID: 31091286 PMCID: PMC6519835 DOI: 10.1371/journal.pone.0216546] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/24/2019] [Indexed: 12/02/2022] Open
Abstract
Copper radical alcohol oxidases belonging to auxiliary activity family 5, subfamily 2 (AA5_2) catalyze the oxidation of galactose and galactosides, as well as aliphatic alcohols. Despite their broad applied potential, so far very few AA5_2 members have been biochemically characterized. We report the recombinant production and biochemical characterization of an AA5_2 oxidase from Penicillium rubens Wisconsin 54–1255 (PruAA5_2A), which groups within an unmapped clade phylogenetically distant from those comprising AA5_2 members characterized to date. PruAA5_2 preferentially oxidized raffinose over galactose; however, its catalytic efficiency was 6.5 times higher on glycolaldehyde dimer compared to raffinose. Deep sequence analysis of characterized AA5_2 members highlighted amino acid pairs correlated to substrate range and conserved within the family. Moreover, PruAA5_2 activity spans substrate preferences previously reported for AA5 subfamily 1 and 2 members, identifying possible functional overlap across the AA5 family.
Collapse
|
28
|
Šola K, Gilchrist EJ, Ropartz D, Wang L, Feussner I, Mansfield SD, Ralet MC, Haughn GW. RUBY, a Putative Galactose Oxidase, Influences Pectin Properties and Promotes Cell-To-Cell Adhesion in the Seed Coat Epidermis of Arabidopsis. THE PLANT CELL 2019; 31:809-831. [PMID: 30852555 PMCID: PMC6501606 DOI: 10.1105/tpc.18.00954] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 02/15/2019] [Accepted: 03/08/2019] [Indexed: 05/21/2023]
Abstract
Cell-to-cell adhesion is essential for establishment of multicellularity. In plants, such adhesion is mediated through a middle lamella composed primarily of pectic polysaccharides. The molecular interactions that influence cell-to-cell adhesion are not fully understood. We have used Arabidopsis (Arabidopsis thaliana) seed coat mucilage as a model system to investigate interactions between cell wall carbohydrates. Using a forward-genetic approach, we have discovered a gene, RUBY PARTICLES IN MUCILAGE (RUBY), encoding a protein that is annotated as a member of the Auxiliary Activity 5 (AA5) family of Carbohydrate-Active Enzymes (Gal/glyoxal oxidases) and is secreted to the apoplast late in the differentiation of seed coat epidermal cells. We show that RUBY is required for the Gal oxidase activity of intact seeds; the oxidation of Gal in side-chains of rhamnogalacturonan-I (RG-I) present in mucilage-modified2 (mum2) mucilage, but not in wild-type mucilage; the retention of branched RG-I in the seed following extrusion; and the enhancement of cell-to-cell adhesion in the seed coat epidermis. These data support the hypothesis that RUBY is a Gal oxidase that strengthens pectin cohesion within the middle lamella, and possibly the mucilage of wild-type seed coat epidermal cells, through oxidation of RG-I Gal side-chains.
Collapse
Affiliation(s)
- Krešimir Šola
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Erin J Gilchrist
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - David Ropartz
- Institut National de la Recherche Agronomique (INRA), Nantes 44316, France
| | - Lisa Wang
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute, University of Goettingen, Goettingen 37077, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen 37077, Germany
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | | | - George W Haughn
- Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
29
|
A Novel Colletotrichum graminicola Raffinose Oxidase in the AA5 Family. Appl Environ Microbiol 2017; 83:AEM.01383-17. [PMID: 28778886 DOI: 10.1128/aem.01383-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 12/17/2022] Open
Abstract
We describe here the identification and characterization of a copper radical oxidase from auxiliary activities family 5 (AA5_2) that was distinguished by showing preferential activity toward raffinose. Despite the biotechnological potential of carbohydrate oxidases from family AA5, very few members have been characterized. The gene encoding raffinose oxidase from Colletotrichum graminicola (CgRaOx; EC 1.1.3.-) was identified utilizing a bioinformatics approach based on the known modular structure of a characterized AA5_2 galactose oxidase. CgRaOx was expressed in Pichia pastoris, and the purified enzyme displayed the highest activity on the trisaccharide raffinose, whereas the activity on the disaccharide melibiose was three times lower and more than ten times lower activity was detected on d-galactose at a 300 mM substrate concentration. Thus, the substrate preference of CgRaOx was distinguished clearly from the substrate preferences of the known galactose oxidases. The site of oxidation for raffinose was studied by 1H nuclear magnetic resonance and mass spectrometry, and we confirmed that the hydroxyl group at the C-6 position was oxidized to an aldehyde and that in addition uronic acid was produced as a side product. A new electrospray ionization mass spectrometry method for the identification of C-6 oxidized products was developed, and the formation mechanism of the uronic acid was studied. CgRaOx presented a novel activity pattern in the AA5 family.IMPORTANCE Currently, there are only a few characterized members of the CAZy AA5 protein family. These enzymes are interesting from an application point of view because of their ability to utilize the cheap and abundant oxidant O2 without the requirement of complex cofactors such as FAD or NAD(P). Here, we present the identification and characterization of a novel AA5 member from Colletotrichum graminicola As discussed in the present study, the bioinformatics approach using the modular structure of galactose oxidase was successful in finding a C-6 hydroxyl carbohydrate oxidase having substrate preference for the trisaccharide raffinose. By the discovery of this activity, the diversity of the CAZy AA5 family is increasing.
Collapse
|
30
|
Tang X, Chen J, Wang Y, Wang X. Gene cloning, expression and polyclonal antibody preparation of Rab3A for protein interaction analysis. SPRINGERPLUS 2016; 5:1705. [PMID: 27795879 PMCID: PMC5052235 DOI: 10.1186/s40064-016-3330-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/19/2016] [Indexed: 11/29/2022]
Abstract
Background Rab3A is a GTP-binding protein and plays critical roles in the regulation of synaptic vesicle exocytosis. Up to date, how Rab3A participates in such a regulatory process is not completely clear. Results In this report the Rab3A gene from Rattus norvegicus was cloned and heterologously expressed in E. coli using pCold-TF expression vector with folding capacity. Due to the presence of His-tag sequence on the N-terminal side, Rab3A fusion protein was purified to greater than 95 % purity with a single Ni-affinity purification step. After the Rab3A fusion protein was used to immunize mice, an anti-serum against Rab3A with a titer of about 6000 was generated. Western blot analysis indicated that the prepared polyclonal antibody could recognize both Rab3A fusion protein and native Rab3A protein. To remove the tag sequence, thrombin was used to cleave the Rab3A fusion protein, followed by SDS-PAGE to separate the cleavage products. Using the gel protein recovery strategy with a Micro Protein PAGE Recovery Kit, the de-tagged Rab3A protein of electrophoretic purity was prepared. Conclusions The present work not only prepared the ground for the study on Rab3A-mediated protein interactions, but also provided systematic experimental methods referable for the similar studies.
Collapse
Affiliation(s)
- Xia Tang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Jia Chen
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Ying Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| | - Xianchun Wang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, 410081 Hunan China
| |
Collapse
|
31
|
Heterologous Production and Characterization of Two Glyoxal Oxidases from Pycnoporus cinnabarinus. Appl Environ Microbiol 2016; 82:4867-75. [PMID: 27260365 PMCID: PMC4968546 DOI: 10.1128/aem.00304-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/18/2016] [Indexed: 11/20/2022] Open
Abstract
The genome of the white rot fungus Pycnoporus cinnabarinus includes a large number of genes encoding enzymes implicated in lignin degradation. Among these, three genes are predicted to encode glyoxal oxidase, an enzyme previously isolated from Phanerochaete chrysosporium. The glyoxal oxidase of P. chrysosporium is physiologically coupled to lignin-oxidizing peroxidases via generation of extracellular H2O2 and utilizes an array of aldehydes and α-hydroxycarbonyls as the substrates. Two of the predicted glyoxal oxidases of P. cinnabarinus, GLOX1 (PciGLOX1) and GLOX2 (PciGLOX2), were heterologously produced in Aspergillus niger strain D15#26 (pyrG negative) and purified using immobilized metal ion affinity chromatography, yielding 59 and 5 mg of protein for PciGLOX1 and PciGLOX2, respectively. Both proteins were approximately 60 kDa in size and N-glycosylated. The optimum temperature for the activity of these enzymes was 50°C, and the optimum pH was 6. The enzymes retained most of their activity after incubation at 50°C for 4 h. The highest relative activity and the highest catalytic efficiency of both enzymes occurred with glyoxylic acid as the substrate. The two P. cinnabarinus enzymes generally exhibited similar substrate preferences, but PciGLOX2 showed a broader substrate specificity and was significantly more active on 3-phenylpropionaldehyde.
IMPORTANCE This study addresses the poorly understood role of how fungal peroxidases obtain an in situ supply of hydrogen peroxide to enable them to oxidize a variety of organic and inorganic compounds. This cooperative activity is intrinsic in the living organism to control the amount of toxic H2O2 in its environment, thus providing a feed-on-demand scenario, and can be used biotechnologically to supply a cheap source of peroxide for the peroxidase reaction. The secretion of multiple glyoxal oxidases by filamentous fungi as part of a lignocellulolytic mechanism suggests a controlled system, especially as these enzymes utilize fungal metabolites as the substrates. Two glyoxal oxidases have been isolated and characterized to date, and the differentiation of the substrate specificity of the two enzymes produced by Pycnoporus cinnabarinus illustrates the alternative mechanisms existing in a single fungus, together with the utilization of these enzymes to prepare platform chemicals for industry.
Collapse
|
32
|
Yin DT, Urresti S, Lafond M, Johnston EM, Derikvand F, Ciano L, Berrin JG, Henrissat B, Walton PH, Davies GJ, Brumer H. Structure-function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family. Nat Commun 2015; 6:10197. [PMID: 26680532 PMCID: PMC4703870 DOI: 10.1038/ncomms10197] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/16/2015] [Indexed: 11/09/2022] Open
Abstract
Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Here we report the recombinant production and detailed structure-function analyses of two homologues from the phytopathogenic fungi Colletotrichum graminicola and C. gloeosporioides, CgrAlcOx and CglAlcOx, respectively, to explore the wider biocatalytic potential in AA5. EPR spectroscopy and crystallographic analysis confirm a common active-site structure vis-à-vis the archetypal galactose 6-oxidase from Fusarium graminearum. Strikingly, however, CgrAlcOx and CglAlcOx are essentially incapable of oxidizing galactose and galactosides, but instead efficiently catalyse the oxidation of diverse aliphatic alcohols. The results highlight the significant potential of prospecting the evolutionary diversity of AA5 to reveal novel enzyme specificities, thereby informing both biology and applications.
Collapse
Affiliation(s)
- DeLu Tyler Yin
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Saioa Urresti
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Mickael Lafond
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4.,Institut des Sciences Moléculaires de Marseille-Team BiosCiences UMR 7313-CNRS, Aix-Marseille University, Avenue Escadrille Normandie Niemen, Marseille 13397, France
| | - Esther M Johnston
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Fatemeh Derikvand
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| | - Luisa Ciano
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Jean-Guy Berrin
- INRA, UMR1163 Biodiversité et Biotechnologie Fongiques Marseille F-13288, France
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS-Aix-Marseille University, 163 Avenue de Luminy, Marseille 13288, France.,INRA, USC 1408 AFMB, Marseille 13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Paul H Walton
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Gideon J Davies
- Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Harry Brumer
- Michael Smith Laboratories and Department of Chemistry, University of British Columbia, 2185 East Mall, Vancouver, British Columbia, Canada V6T 1Z4
| |
Collapse
|
33
|
Toftgaard Pedersen A, Birmingham WR, Rehn G, Charnock SJ, Turner NJ, Woodley JM. Process Requirements of Galactose Oxidase Catalyzed Oxidation of Alcohols. Org Process Res Dev 2015. [DOI: 10.1021/acs.oprd.5b00278] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Asbjørn Toftgaard Pedersen
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - William R. Birmingham
- School
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Gustav Rehn
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Simon J. Charnock
- Prozomix
Ltd, Station Court, Haltwhistle, Northumberland NE49 9HN, United Kingdom
| | - Nicholas J. Turner
- School
of Chemistry, University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - John M. Woodley
- Department
of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|