1
|
Bale R, Doshi G. Cross talk about the role of Neuropeptide Y in CNS disorders and diseases. Neuropeptides 2023; 102:102388. [PMID: 37918268 DOI: 10.1016/j.npep.2023.102388] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
A peptide composed of a 36 amino acid called Neuropeptide Y (NPY) is employed in a variety of physiological processes to manage and treat conditions affecting the endocrine, circulatory, respiratory, digestive, and neurological systems. NPY naturally binds to G-protein coupled receptors, activating the Y-receptors (Y1-Y5 and y6). The findings on numerous therapeutic applications of NPY for CNS disease are presented in this review by the authors. New targets for treating diseases will be revealed by medication combinations that target NPY and its receptors. This review is mainly focused on disorders such as anxiety, Alzheimer's disease, Parkinson's disease, Huntington's disease, Machado Joseph disease, multiple sclerosis, schizophrenia, depression, migraine, alcohol use disorder, and substance use disorder. The findings from the preclinical studies and clinical studies covered in this article may help create efficient therapeutic plans to treat neurological conditions on the one hand and psychiatric disorders on the other. They may also open the door to the creation of novel NPY receptor ligands as medications to treat these conditions.
Collapse
Affiliation(s)
- Rajeshwari Bale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Gaurav Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India.
| |
Collapse
|
2
|
Dunigan AI, Roseberry AG. Actions of feeding-related peptides on the mesolimbic dopamine system in regulation of natural and drug rewards. ADDICTION NEUROSCIENCE 2022; 2:100011. [PMID: 37220637 PMCID: PMC10201992 DOI: 10.1016/j.addicn.2022.100011] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The mesolimbic dopamine system is the primary neural circuit mediating motivation, reinforcement, and reward-related behavior. The activity of this system and multiple behaviors controlled by it are affected by changes in feeding and body weight, such as fasting, food restriction, or the development of obesity. Multiple different peptides and hormones that have been implicated in the control of feeding and body weight interact with the mesolimbic dopamine system to regulate many different dopamine-dependent, reward-related behaviors. In this review, we summarize the effects of a selected set of feeding-related peptides and hormones acting within the ventral tegmental area and nucleus accumbens to alter feeding, as well as food, drug, and social reward.
Collapse
Affiliation(s)
- Anna I. Dunigan
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Aaron G. Roseberry
- Department of Biology and Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
3
|
Neasta J, Darcq E, Jeanblanc J, Carnicella S, Ben Hamida S. GPCR and Alcohol-Related Behaviors in Genetically Modified Mice. Neurotherapeutics 2020; 17:17-42. [PMID: 31919661 PMCID: PMC7007453 DOI: 10.1007/s13311-019-00828-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) constitute the largest class of cell surface signaling receptors and regulate major neurobiological processes. Accordingly, GPCRs represent primary targets for the treatment of brain disorders. Several human genetic polymorphisms affecting GPCRs have been associated to different components of alcohol use disorder (AUD). Moreover, GPCRs have been reported to contribute to several features of alcohol-related behaviors in animal models. Besides traditional pharmacological tools, genetic-based approaches mostly aimed at deleting GPCR genes provided substantial information on how key GPCRs drive alcohol-related behaviors. In this review, we summarize the alcohol phenotypes that ensue from genetic manipulation, in particular gene deletion, of key GPCRs in rodents. We focused on GPCRs that belong to fundamental neuronal systems that have been shown as potential targets for the development of AUD treatment. Data are reviewed with particular emphasis on alcohol reward, seeking, and consumption which are behaviors that capture essential aspects of AUD. Literature survey indicates that in most cases, there is still a gap in defining the intracellular transducers and the functional crosstalk of GPCRs as well as the neuronal populations in which their signaling regulates alcohol actions. Further, the implication of only a few orphan GPCRs has been so far investigated in animal models. Combining advanced pharmacological technologies with more specific genetically modified animals and behavioral preclinical models is likely necessary to deepen our understanding in how GPCR signaling contributes to AUD and for drug discovery.
Collapse
Affiliation(s)
- Jérémie Neasta
- Laboratoire de Pharmacologie, Faculté de Pharmacie, University of Montpellier, 34093, Montpellier, France
| | - Emmanuel Darcq
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada
| | - Jérôme Jeanblanc
- Research Group on Alcohol and Pharmacodependences-INSERM U1247, University of Picardie Jules Verne, 80025, Amiens, France
| | - Sebastien Carnicella
- INSERM U1216, Grenoble Institut des Neurosciences (GIN), University of Grenoble Alpes, 38000, Grenoble, France
| | - Sami Ben Hamida
- Douglas Hospital Research Center, Department of Psychiatry, McGill University, 6875 Boulevard LaSalle, Montreal, Quebec, H4H 1R3, Canada.
| |
Collapse
|
4
|
Becker HC. Influence of stress associated with chronic alcohol exposure on drinking. Neuropharmacology 2017; 122:115-126. [PMID: 28431971 PMCID: PMC5497303 DOI: 10.1016/j.neuropharm.2017.04.028] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/12/2017] [Accepted: 04/17/2017] [Indexed: 12/24/2022]
Abstract
Stress is commonly regarded as an important trigger for relapse and a significant factor that promotes increased motivation to drink in some individuals. However, the relationship between stress and alcohol is complex, likely changing in form during the transition from early moderated alcohol use to more heavy uncontrolled alcohol intake. A growing body of evidence indicates that prolonged excessive alcohol consumption serves as a potent stressor, producing persistent dysregulation of brain reward and stress systems beyond normal homeostatic limits. This progressive dysfunctional (allostatic) state is characterized by changes in neuroendocrine and brain stress pathways that underlie expression of withdrawal symptoms that reflect a negative affective state (dysphoria, anxiety), as well as increased motivation to self-administer alcohol. This review highlights literature supportive of this theoretical framework for alcohol addiction. In particular, evidence for stress-related neural, physiological, and behavioral changes associated with chronic alcohol exposure and withdrawal experience is presented. Additionally, this review focuses on the effects of chronic alcohol-induced changes in several pro-stress neuropeptides (corticotropin-releasing factor, dynorphin) and anti-stress neuropeptide systems (nocicepton, neuropeptide Y, oxytocin) in contributing to the stress, negative emotional, and motivational consequences of chronic alcohol exposure. Studies involving use of animal models have significantly increased our understanding of the dynamic stress-related physiological mechanisms and psychological underpinnings of alcohol addiction. This, in turn, is crucial for developing new and more effective therapeutics for treating excessive, harmful drinking, particularly stress-enhanced alcohol consumption. This article is part of the Special Issue entitled "Alcoholism".
Collapse
Affiliation(s)
- Howard C Becker
- Charleston Alcohol Research Center, Department of Psychiatry and Behavioral Sciences, Department of Neuroscience, Medical University of South Carolina, RHJ Department of Veterans Affairs, Charleston, SC 29464, USA.
| |
Collapse
|
5
|
Robinson SL, Thiele TE. The Role of Neuropeptide Y (NPY) in Alcohol and Drug Abuse Disorders. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 136:177-197. [PMID: 29056151 DOI: 10.1016/bs.irn.2017.06.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neuropeptide Y (NPY) is a neuromodulator that is widely expressed throughout the central nervous system (CNS) and which is cosecreted with classic neurotransmitters including GABA and glutamate. There is a long history of research implicating a role for NPY in modulating neurobiological responses to alcohol (ethanol) as well as other drugs of abuse. Both ethanol exposure and withdrawal from chronic ethanol have been shown to produce changes in NPY and NPY receptor protein levels and mRNA expression in the CNS. Importantly, manipulations of NPY Y1 and Y2 receptor signaling have been shown to alter ethanol consumption and self-administration in a brain region-specific manner, with Y1 receptor activation and Y2 receptor blockade in regions of the extended amygdala promoting robust reductions of ethanol intake. Similar observations have been made in studies examining neurobiological responses to nicotine, psychostimulants, and opioids. When taken together with observations of potential genetic linkage between the NPY system and the human alcohol abuse disorders, NPY represents a promising target for treating problematic alcohol and drug use, and in protecting individuals from relapse during abstinence.
Collapse
Affiliation(s)
- Stacey L Robinson
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd E Thiele
- University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
6
|
Thorsell A, Mathé AA. Neuropeptide Y in Alcohol Addiction and Affective Disorders. Front Endocrinol (Lausanne) 2017; 8:178. [PMID: 28824541 PMCID: PMC5534438 DOI: 10.3389/fendo.2017.00178] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 07/07/2017] [Indexed: 12/31/2022] Open
Abstract
Neuropeptide Y (NPY), a neuropeptide highly conserved throughout evolution, is present at high levels in the central nervous system (CNS), as well as in peripheral tissues such as the gut and cardiovascular system. The peptide exerts its effects via multiple receptor subtypes, all belonging to the G-protein-coupled receptor superfamily. Of these subtypes, the Y1 and the Y2 are the most thoroughly characterized, followed by the Y5 subtype. NPY and its receptors have been shown to be of importance in central regulation of events underlying, for example, affective disorders, drug/alcohol use disorders, and energy homeostasis. Furthermore, within the CNS, NPY also affects sleep regulation and circadian rhythm, memory function, tissue growth, and plasticity. The potential roles of NPY in the etiology and pathophysiology of mood and anxiety disorders, as well as alcohol use disorders, have been extensively studied. This focus was prompted by early indications for an involvement of NPY in acute responses to stress, and, later, also data pointing to a role in alterations within the CNS during chronic, or repeated, exposure to adverse events. These functions of NPY, in addition to the peptide's regulation of disease states, suggest that modulation of the activity of the NPY system via receptor agonists/antagonists may be a putative treatment mechanism in affective disorders as well as alcohol use disorders. In this review, we present an overview of findings with regard to the NPY system in relation to anxiety and stress, acute as well as chronic; furthermore we discuss post-traumatic stress disorder and, in part depression. In addition, we summarize findings on alcohol use disorders and related behaviors. Finally, we briefly touch upon genetic as well as epigenetic mechanisms that may be of importance for NPY function and regulation. In conclusion, we suggest that modulation of NPY-ergic activity within the CNS, via ligands aimed at different receptor subtypes, may be attractive targets for treatment development for affective disorders, as well as for alcohol use disorders.
Collapse
Affiliation(s)
- Annika Thorsell
- Center for Social and Affective Neuroscience, Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
- *Correspondence: Annika Thorsell,
| | - Aleksander A. Mathé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Gonçalves J, Martins J, Baptista S, Ambrósio AF, Silva AP. Effects of drugs of abuse on the central neuropeptide Y system. Addict Biol 2016; 21:755-65. [PMID: 25904345 DOI: 10.1111/adb.12250] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Neuropeptide Y (NPY), which is widely expressed in the central nervous system is involved in several neuropathologies including addiction. Here we comprehensively and systematically review alterations on the central NPY system induced by several drugs. We report on the effects of psychostimulants [cocaine, amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA) and nicotine], ethanol, and opioids on NPY protein levels and expression of different NPY receptors. Overall, expression and function of NPY and its receptors are changed under conditions of drug exposure, thus affecting several physiologic behaviors, such as feeding, stress and anxiety. Drugs of abuse differentially affect the components of the NPY system. For example methamphetamine and nicotine lead to a consistent increase in NPY mRNA and protein levels in different brain sites whereas ethanol and opioids decrease NPY mRNA and protein expression. Drug-induced alterations on the different NPY receptors show more complex regulation pattern. Manipulation of the NPY system can have opposing effects on reinforcing and addictive properties of drugs of abuse. NPY can produce pro-addictive effects (nicotine and heroin), but can also exert inhibitory effects on addictive behavior (AMPH, ethanol). Furthermore, NPY can act as a neuroprotective agent in chronically methamphetamine and MDMA-treated rodents. In conclusion, manipulation of the NPY system seems to be a potential target to counteract neural alterations, addiction-related behaviors and cognitive deficits induced by these drugs.
Collapse
Affiliation(s)
- Joana Gonçalves
- Institute of Nuclear Sciences Applied to Health (ICNAS); University of Coimbra; Portugal
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
| | - João Martins
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Centre of Ophthalmology and Vision Sciences; Faculty of Medicine; University of Coimbra; Portugal
| | - Sofia Baptista
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Laboratory of Pharmacology and Experimental Therapeutics; Faculty of Medicine; University of Coimbra; Portugal
| | - António Francisco Ambrósio
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Centre of Ophthalmology and Vision Sciences; Faculty of Medicine; University of Coimbra; Portugal
- Association for Innovation and Biomedical Research on Light and Image (AIBILI); Portugal
| | - Ana Paula Silva
- Institute for Biomedical Imaging and Life Sciences (IBILI); University of Coimbra; Portugal
- Center for Neuroscience and Cell Biology-Institute for Biomedical Imaging and Life Sciences (CNC.IBILI) Research Unit; University of Coimbra; Portugal
- Laboratory of Pharmacology and Experimental Therapeutics; Faculty of Medicine; University of Coimbra; Portugal
| |
Collapse
|
8
|
Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neurosci Biobehav Rev 2016; 65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/24/2016] [Accepted: 04/11/2016] [Indexed: 12/22/2022]
|
9
|
Mayfield J, Arends MA, Harris RA, Blednov YA. Genes and Alcohol Consumption: Studies with Mutant Mice. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2016; 126:293-355. [PMID: 27055617 PMCID: PMC5302130 DOI: 10.1016/bs.irn.2016.02.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this chapter, we review the effects of global null mutant and overexpressing transgenic mouse lines on voluntary self-administration of alcohol. We examine approximately 200 publications pertaining to the effects of 155 mouse genes on alcohol consumption in different drinking models. The targeted genes vary in function and include neurotransmitter, ion channel, neuroimmune, and neuropeptide signaling systems. The alcohol self-administration models include operant conditioning, two- and four-bottle choice continuous and intermittent access, drinking in the dark limited access, chronic intermittent ethanol, and scheduled high alcohol consumption tests. Comparisons of different drinking models using the same mutant mice are potentially the most informative, and we will highlight those examples. More mutants have been tested for continuous two-bottle choice consumption than any other test; of the 137 mouse genes examined using this model, 97 (72%) altered drinking in at least one sex. Overall, the effects of genetic manipulations on alcohol drinking often depend on the sex of the mice, alcohol concentration and time of access, genetic background, as well as the drinking test.
Collapse
Affiliation(s)
- J Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| | - M A Arends
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA, United States
| | - R A Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States.
| | - Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
10
|
Vadnie CA, Park JH, Abdel Gawad N, Ho AMC, Hinton DJ, Choi DS. Gut-brain peptides in corticostriatal-limbic circuitry and alcohol use disorders. Front Neurosci 2014; 8:288. [PMID: 25278825 PMCID: PMC4166902 DOI: 10.3389/fnins.2014.00288] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 08/26/2014] [Indexed: 12/22/2022] Open
Abstract
Peptides synthesized in endocrine cells in the gastrointestinal tract and neurons are traditionally considered regulators of metabolism, energy intake, and appetite. However, recent work has demonstrated that many of these peptides act on corticostriatal-limbic circuitry and, in turn, regulate addictive behaviors. Given that alcohol is a source of energy and an addictive substance, it is not surprising that increasing evidence supports a role for gut-brain peptides specifically in alcohol use disorders (AUD). In this review, we discuss the effects of several gut-brain peptides on alcohol-related behaviors and the potential mechanisms by which these gut-brain peptides may interfere with alcohol-induced changes in corticostriatal-limbic circuitry. This review provides a summary of current knowledge on gut-brain peptides focusing on five peptides: neurotensin, glucagon-like peptide 1, ghrelin, substance P, and neuropeptide Y. Our review will be helpful to develop novel therapeutic targets for AUD.
Collapse
Affiliation(s)
- Chelsea A Vadnie
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Jun Hyun Park
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry, Sanggye Paik Hospital, College of Medicine, InJe University Seoul, South Korea
| | - Noha Abdel Gawad
- Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Ada Man Choi Ho
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| | - David J Hinton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA
| | - Doo-Sup Choi
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine Rochester, MN, USA ; Neurobiology of Disease Program, Mayo Clinic College of Medicine Rochester, MN, USA ; Department of Psychiatry and Psychology, Mayo Clinic College of Medicine Rochester, MN, USA
| |
Collapse
|
11
|
McCall NM, Sprow GM, Delpire E, Thiele TE, Kash TL, Pleil KE. Effects of sex and deletion of neuropeptide Y2 receptors from GABAergic neurons on affective and alcohol drinking behaviors in mice. Front Integr Neurosci 2013; 7:100. [PMID: 24399943 PMCID: PMC3872329 DOI: 10.3389/fnint.2013.00100] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/08/2013] [Indexed: 12/13/2022] Open
Abstract
A large literature has demonstrated that neuropeptide Y (NPY) regulates many emotional and reward-related behaviors via its primary receptors, Y1R and Y2R. Classically, NPY actions at postsynaptic Y1R decrease anxiety, depression, and alcohol drinking, while its actions at presynaptic Y2R produce the opposite behavioral phenotypes. However, emerging evidence suggests that activation of Y2R can also produce anxiolysis in a brain region and neurotransmitter system-dependent fashion. Further, numerous human and rodent studies have reported that females display higher levels of anxiety, depression, and alcohol drinking. In this study, we evaluated sex differences and the role of Y2R on GABAergic transmission in these behaviors using a novel transgenic mouse that lacks Y2R specifically in VGAT-expressing neurons (VGAT-Y2R knockout). First, we confirmed our genetic manipulation by demonstrating that Y2R protein expression was decreased and that a Y2R agonist could not alter GABAergic transmission in the extended amygdala, a limbic brain region critically implicated in the regulation of anxiety and alcohol drinking behaviors, using immunofluorescence and slice electrophysiology. Then, we tested male and female VGAT-Y2R knockout mice on a series of behavioral assays for anxiety, depression, fear, anhedonia, and alcohol drinking. We found that females displayed greater basal anxiety, higher levels of ethanol consumption, and faster fear conditioning than males, and that knockout mice exhibited enhanced depressive-like behavior in the forced swim test. Together, these results confirm previous studies that demonstrate higher expression of negative affective and alcohol drinking behaviors in females than males, and they highlight the importance of Y2R function in GABAergic systems in the expression of depressive-like behavior.
Collapse
Affiliation(s)
- Nora M McCall
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Psychology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Eric Delpire
- Department of Anesthesiology, Vanderbilt University Nashville, TN, USA ; Department of Molecular Physiology and Biophysics, Vanderbilt University Nashville, TN, USA
| | - Todd E Thiele
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Psychology, University of North Carolina at Chapel Hill Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina School of Medicine Chapel Hill, NC, USA ; Department of Pharmacology, University of North Carolina School of Medicine Chapel Hill, NC, USA
| |
Collapse
|
12
|
Ligands of the neuropeptide Y Y2 receptor. Bioorg Med Chem Lett 2013; 24:430-41. [PMID: 24365162 DOI: 10.1016/j.bmcl.2013.11.061] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/19/2013] [Accepted: 11/24/2013] [Indexed: 01/30/2023]
Abstract
Neuropeptide Y (NPY) is one of the most abundant neuropeptides in the mammalian brain and exerts a variety of physiological processes in humans via four different receptor subtypes Y1, Y2, Y4 and Y5. Y2 receptor is the most abundant Y subtype receptor in the central nervous system and implicated with food intake, bone formation, affective disorders, alcohol and drugs of abuse, epilepsy, pain, and cancer. The lack of small molecule non-peptidic Y2 receptor modulators suitable as in vivo pharmacological tools hampered the progress to uncover the precise pharmacological role of Y2. Only in recent years, several potent, selective and non-peptidic Y2 antagonists have been discovered providing the tools to validate Y2 receptor as a therapeutic target. This Letter reviews Y2 receptor modulators mainly non-peptidic antagonists and their structure-activity relationships.
Collapse
|
13
|
Gilpin NW. Neuropeptide Y (NPY) in the extended amygdala is recruited during the transition to alcohol dependence. Neuropeptides 2012; 46:253-9. [PMID: 22938859 PMCID: PMC3508396 DOI: 10.1016/j.npep.2012.08.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/11/2012] [Accepted: 08/03/2012] [Indexed: 11/26/2022]
Abstract
Neuropeptide Y (NPY) is abundant in the extended amygdala, a conceptual macrostructure in the basal forebrain important for regulation of negative affective states. NPY has been attributed a central role in anxiety-like behavior, fear, nociception, and reward in rodents. Deletion of the NPY gene in mice produces a high-anxiety high-alcohol-drinking phenotype. NPY infused into the brains of rats selectively bred to consume high quantities of alcohol suppresses alcohol drinking by those animals, an effect that is mediated by central amygdala (CeA). Likewise, alcohol-preferring rats exhibit basal NPY deficits in CeA. NPY infused into the brains of alcohol-dependent rats blocks excessive alcohol drinking by those animals, an effect that also has been localized to the CeA. NPY in CeA may rescue dependence-induced increases in anxiety and alcohol drinking via inhibition of downstream effector regions that receive GABAergic inputs from CeA. It is hypothesized here that NPY modulates anxiety-like behavior via Y2R regulation of NPY release, whereas NPY modulation of alcohol-drinking behavior in alcohol-dependent animals occurs via Y2R regulation of GABA release.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, United States.
| |
Collapse
|
14
|
Kash TL. The role of biogenic amine signaling in the bed nucleus of the stria terminals in alcohol abuse. Alcohol 2012; 46:303-8. [PMID: 22449787 DOI: 10.1016/j.alcohol.2011.12.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 12/22/2011] [Accepted: 12/27/2011] [Indexed: 12/01/2022]
Abstract
There is a growing body of evidence that suggests that stress and anxiety can influence the development of alcohol use disorders. This influence is believed to be due in part to persistent adaptations in discrete brain regions that underlie stress responsivity. One structure that has been proposed to be a site of important neuroadaptations underlying this behavior is the extended amygdala. The extended amygdala is a series of extensively inter-connected limbic structures including the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). These structures are critical regulators of behavioral and physiological activation associated with anxiety. Additionally, numerous reports have suggested that these regions are involved in increased drinking behavior associated with chronic alcohol exposure and withdrawal. The focus of this review will be to discuss the role of the BNST in regulation of behavior, to provide some insight in to the circuitry of the BNST, and to discuss the actions of the biogenic amines, serotonin, dopamine and norepinephrine, in the BNST.
Collapse
Affiliation(s)
- Thomas Louis Kash
- Bowles Center for Alcohol Studies, School of Medicine, University of North Carolina Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
15
|
Gilpin NW. Corticotropin-releasing factor (CRF) and neuropeptide Y (NPY): effects on inhibitory transmission in central amygdala, and anxiety- & alcohol-related behaviors. Alcohol 2012; 46:329-37. [PMID: 22560367 PMCID: PMC3613993 DOI: 10.1016/j.alcohol.2011.11.009] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Revised: 11/09/2011] [Accepted: 11/28/2011] [Indexed: 12/25/2022]
Abstract
The central amygdala (CeA) is uniquely situated to function as an interface between stress- and addiction-related processes. This brain region has long been attributed an important role in aversive (e.g., fear) conditioning, as well as the negative emotional states that define alcohol dependence and withdrawal. The CeA is the major output region of the amygdala and receives complex inputs from other amygdaloid nuclei as well as regions that integrate sensory information from the external environment (e.g., thalamus, cortex). The CeA is functionally and anatomically divided into lateral and medial subdivisions that themselves are interconnected and populated by inhibitory interneurons and projections neurons. Neuropeptides are highly expressed in the CeA, particularly in the lateral subdivision, and the role of many of these peptides in regulating anxiety- and alcohol-related behaviors has been localized to the CeA. This review focuses on two of these peptides, corticotropin-releasing factor (CRF) and neuropeptide Y (NPY), that exhibit a high degree of neuroanatomical overlap (e.g., in CeA) and largely opposite behavioral profiles (e.g., in regulating anxiety- and alcohol-related behavior). CRF and NPY systems in the CeA appear to be recruited and/or up-regulated during the transition to alcohol dependence. These and other neuropeptides may converge on GABA synapses in CeA to control projection neurons and downstream effector regions, thereby translating negative affective states into anxiety-like behavior and excessive alcohol consumption.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA.
| |
Collapse
|
16
|
Sparrow AM, Lowery-Gionta EG, Pleil KE, Li C, Sprow GM, Cox BR, Rinker JA, Jijon AM, Peňa J, Navarro M, Kash TL, Thiele TE. Central neuropeptide Y modulates binge-like ethanol drinking in C57BL/6J mice via Y1 and Y2 receptors. Neuropsychopharmacology 2012; 37:1409-21. [PMID: 22218088 PMCID: PMC3327846 DOI: 10.1038/npp.2011.327] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Frequent binge drinking has been linked to heart disease, high blood pressure, type 2 diabetes, and the development of ethanol dependence. Thus, identifying pharmaceutical targets to treat binge drinking is of paramount importance. Here we employed a mouse model of binge-like ethanol drinking to study the role of neuropeptide Y (NPY). To this end, the present set of studies utilized pharmacological manipulation of NPY signaling, immunoreactivity (IR) mapping of NPY and NPY receptors, and electrophysiological recordings from slice preparations of the amygdala. The results indicated that central infusion of NPY, a NPY Y1 receptor (Y1R) agonist, and a Y2R antagonist significantly blunted binge-like ethanol drinking in C57BL/6J mice (that achieved blood ethanol levels >80 mg/dl in control conditions). Binge-like ethanol drinking reduced NPY and Y1R IR in the central nucleus of the amygdala (CeA), and 24 h of ethanol abstinence after a history of binge-like drinking promoted increases of Y1R and Y2R IR. Electrophysiological recordings of slice preparations from the CeA showed that binge-like ethanol drinking augmented the ability of NPY to inhibit GABAergic transmission. Thus, binge-like ethanol drinking in C57BL/6J mice promoted alterations of NPY signaling in the CeA, and administration of exogenous NPY compounds protected against binge-like drinking. The current data suggest that Y1R agonists and Y2R antagonists may be useful for curbing and/or preventing binge drinking, protecting vulnerable individuals from progressing to the point of ethanol dependence.
Collapse
Affiliation(s)
- Angela M Sparrow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | | | - Kristen E Pleil
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Chia Li
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Gretchen M Sprow
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Benjamin R Cox
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Jennifer A Rinker
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Ana M Jijon
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - José Peňa
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Montserrat Navarro
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina, Chapel Hill, NC, USA
| | - Todd E Thiele
- Department of Psychology, University of North Carolina, Chapel Hill, NC, USA,Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA,Department of Psychology, University of North Carolina Davie Hall, CB #3270 Chapel Hill, NC 27599-3270, USA, Tel: +1 919 966 1519, Fax: +1 919-962-2537, E-mail:
| |
Collapse
|
17
|
Morganstern I, Barson JR, Leibowitz SF. Regulation of drug and palatable food overconsumption by similar peptide systems. ACTA ACUST UNITED AC 2012; 4:163-73. [PMID: 21999690 DOI: 10.2174/1874473711104030163] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Revised: 08/04/2011] [Accepted: 08/04/2011] [Indexed: 11/22/2022]
Abstract
This review is aimed at understanding some of the common neurochemical, behavioral and physiological determinants of drug and food overconsumption. Much current work has been devoted to determining the similarities between the brain circuits controlling excessive use of addictive drugs and the overconsumption of palatable foods. The brain systems involved likely include peptides of both mesolimbic and hypothalamic origin. Evidence gathered from expression and injection studies suggests that the consumption of drugs, such as ethanol and nicotine, and also of palatable foods rich in fat is stimulated by different orexigenic peptides, such as enkephalin, galanin, orexin, and melaninconcentrating hormone, acting within the hypothalamus or various limbic structures, while another peptide, neuropeptide Y, is closely related to carbohydrate consumption and shows an inverse relationship with ethanol and nicotine consumption. Moreover, studies in animal models suggest that a propensity to overconsume these reinforcing substances may result from preexisting disturbances in these same peptide systems. These neurochemical disturbances, in turn, may also be closely linked to specific behaviors associated with excessive consummatory behavior, such as hyperactivity or novelty-seeking, palatable food preference, and also fluctuations in circulating lipid levels. Clear understanding of the relationship between these various determinants of consummatory behavior will allow researchers to effectively predict and examine at early stages of exposure animals that are prone to drug and food overconsumption. This work may ultimately aid in the identification of inherent traits that increase the risk for drug abuse and palatable food overconsumption.
Collapse
Affiliation(s)
- Irene Morganstern
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, NY 10065, USA
| | | | | |
Collapse
|
18
|
Barson JR, Morganstern I, Leibowitz SF. Neurobiology of consummatory behavior: mechanisms underlying overeating and drug use. ILAR J 2012; 53:35-58. [PMID: 23520598 PMCID: PMC3954603 DOI: 10.1093/ilar.53.1.35] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Consummatory behavior is driven by both caloric and emotional need, and a wide variety of animal models have been useful in research on the systems that drive consumption of food and drugs. Models have included selective breeding for a specific trait, manipulation of gene expression, forced or voluntary exposure to a substance, and identification of biomarkers that predict which animals are prone to overconsuming specific substances. This research has elucidated numerous brain areas and neurochemicals that drive consummatory behavior. Although energy homeostasis is primarily mediated by the hypothalamus, reinforcement is more strongly mediated by nuclei outside the hypothalamus, in mesocorticolimbic regions. Orexigenic neurochemicals that control food intake can provide a general signal for promoting caloric intake or a more specific signal for stimulating consumption of a particular macronutrient, fat, carbohydrate, or protein. The neurochemicals involved in controlling fat ingestion--galanin, enkephalin, orexin, melanin-concentrating hormone, and the endocannabinoids--show positive feedback with this macronutrient, as these peptides both increase fat intake and are further stimulated by its intake. This positive association offers some explanation for why foods high in fat are so often overconsumed. Consumption of ethanol, a drug of abuse that also contains calories, is similarly driven by the neurochemical systems involved in fat intake, according to evidence that closely relates fat and ethanol consumption. Further understanding of the systems involved in consummatory behavior will enable the development of effective therapies for the treatment of both overeating and drug abuse.
Collapse
Affiliation(s)
- Jessica R Barson
- Laboratory of Behavioral Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | | | | |
Collapse
|
19
|
Affect-related behaviors in mice selectively bred for high and low voluntary alcohol consumption. Behav Genet 2011; 42:313-22. [PMID: 21989731 DOI: 10.1007/s10519-011-9505-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Accepted: 09/08/2011] [Indexed: 10/17/2022]
Abstract
There is considerable evidence for the existence of comorbidity between alcohol-use disorders and depression in humans. One strategy to elucidate hereditary factors affecting the comorbidity of these disorders is to use genetic animal models, such as mouse lines selectively bred for voluntary ethanol consumption. We hypothesized that mice from lines that were bred for high-alcohol preference would manifest increased depression-like phenotypes compared to low-alcohol preferring mice. Mice that were bi-directionally selected and bred on the basis of their High- (HAP) or Low-Alcohol Preference (LAP) were tested in the open-field (OFT), dark-light box (DLB), forced swim (FST), and learned helplessness tests (LH). The study was conducted in two independently derived replicates. In the OFT, both HAP2 and HAP3 mice showed higher levels of general locomotion compared to LAP mice. However, only HAP2 mice spent more time in the center compared to LAP2 mice. In the DLB, there was a slightly higher anxiety-like phenotype in HAP mice. In both FST and LH, we observed higher depression-like behaviors in HAP mice compared to LAP mice, but this was limited to the Replicate 2 mice. Overall, we identified affect-related behavioral changes in mouse lines bred for high-alcohol preference. Notably, the Replicate 3 lines that showed fewer depression-like behaviors also manifest smaller differences in alcohol intake. These data suggest that there may be overlap between genes that predispose to excessive alcohol intake and those underlying affect-related behaviors in the mouse.
Collapse
|
20
|
Cippitelli A, Rezvani AH, Robinson JE, Eisenberg L, Levin ED, Bonaventure P, Motley ST, Lovenberg TW, Heilig M, Thorsell A. The novel, selective, brain-penetrant neuropeptide Y Y2 receptor antagonist, JNJ-31020028, tested in animal models of alcohol consumption, relapse, and anxiety. Alcohol 2011; 45:567-76. [PMID: 21145691 DOI: 10.1016/j.alcohol.2010.09.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Revised: 09/02/2010] [Accepted: 09/27/2010] [Indexed: 11/29/2022]
Abstract
Neuropeptide Y (NPY) signaling has been shown to modulate stress responses and to be involved in regulation of alcohol intake and dependence. The present study explores the possibility that blockade of NPY Y2 autoreceptors using a novel, blood-brain barrier penetrant NPY Y2 receptor antagonist, JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), may achieve a therapeutically useful activation of the NPY system in alcohol- and anxiety-related behavioral models. We examined JNJ-31020028 in operant alcohol self-administration, stress-induced reinstatement to alcohol seeking, and acute alcohol withdrawal (hangover)-induced anxiety. Furthermore, we tested its effects on voluntary alcohol consumption in a genetic animal model of alcohol preference, the alcohol-preferring (P) rat. Neither systemic (0, 15, 30, and 40 mg/kg, subcutaneously [s.c.]) nor intracerebroventricular (0.0, 0.3, and 1.0 nmol/rat) administration of JNJ-31020028 affected alcohol-reinforced lever pressing or relapse to alcohol seeking behavior following stress exposure. Also, when its effects were tested on unlimited access to alcohol in P rats, preference for alcohol solution was transiently suppressed but without affecting voluntary alcohol intake. JNJ-31020028 (15 mg/kg, s.c.) did reverse the anxiogenic effects of withdrawal from a single bolus dose of alcohol on the elevated plus-maze, confirming the anxiolytic-like properties of NPY Y2 antagonism. Our data do not support Y2 antagonism as a mechanism for reducing alcohol consumption or relapse-like behavior, but the observed effects on withdrawal-induced anxiety suggest that NPY Y2 receptor antagonists may be a putative treatment for the negative affective states following alcohol withdrawal.
Collapse
Affiliation(s)
- Andrea Cippitelli
- Laboratory of Clinical and Translational Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gilpin NW, Misra K, Herman MA, Cruz MT, Koob GF, Roberto M. Neuropeptide Y opposes alcohol effects on gamma-aminobutyric acid release in amygdala and blocks the transition to alcohol dependence. Biol Psychiatry 2011; 69:1091-9. [PMID: 21459365 PMCID: PMC3090491 DOI: 10.1016/j.biopsych.2011.02.004] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 02/04/2011] [Accepted: 02/07/2011] [Indexed: 10/18/2022]
Abstract
BACKGROUND During the transition to alcohol and drug addiction, neuromodulator systems in the extended amygdala are recruited to mediate aspects of withdrawal and relapse via convergence on inhibitory gamma-aminobutyric acid (GABA) neurons in central amygdala (CeA). METHODS This study investigated the role of neuropeptide Y (NPY) in excessive alcohol drinking by making rats dependent on alcohol via alcohol vapor inhalation. This study also utilized intracellular and whole-cell recording techniques to determine the effects of NPY on GABAergic inhibitory transmission in CeA, synaptic mechanisms involved in these NPY effects, and NPY interactions with alcohol in the CeA of alcohol-naive and alcohol-dependent rats. RESULTS Chronic NPY treatment blocked excessive operant alcohol-reinforced responding associated with alcohol dependence, as well as gradual increases in alcohol responding by intermittently tested nondependent control animals. Neuropeptide Y decreased baseline GABAergic transmission and reversed alcohol-induced enhancement of inhibitory transmission in CeA by suppressing GABA release via actions at presynaptic Y(2) receptors. CONCLUSIONS These results highlight NPY modulation of GABAergic signaling in central amygdala as a promising pharmacotherapeutic target for the treatment of alcoholism. Gamma-aminobutyric acid neurons in the CeA likely constitute a major point of convergence for neuromodulator systems recruited during the transition to alcohol dependence.
Collapse
Affiliation(s)
- Nicholas W Gilpin
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Abstract
Neuropeptide Y (NPY) is widely distributed in the human body and contributes to a vast number of physiological processes. Since its discovery, NPY has been implicated in metabolic regulation and, although interest in its role in central mechanisms related to food intake and obesity has somewhat diminished, the topic remains a strong focus of research concerning NPY signalling. In addition, a number of other uses for modulators of NPY receptors have been implied in a range of diseases, although the development of NPY receptor ligands has been slow, with no clinically approved receptor therapeutics currently available. Nevertheless, several interesting small molecule compounds, notably Y2 receptor antagonists, have been published recently, fueling optimism in the field. Herein we review the role of NPY in the pathophysiology of a number of diseases and highlight instances where NPY receptor signalling systems are attractive therapeutic targets.
Collapse
Affiliation(s)
- Shaun P Brothers
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | | |
Collapse
|
23
|
Baraboi ED, Michel C, Smith P, Thibaudeau K, Ferguson AV, Richard D. Effects of albumin-conjugated PYY on food intake: the respective roles of the circumventricular organs and vagus nerve. Eur J Neurosci 2010; 32:826-39. [DOI: 10.1111/j.1460-9568.2010.07318.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
24
|
In vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a selective brain penetrant small molecule antagonist of the neuropeptide Y Y(2) receptor. Psychopharmacology (Berl) 2010; 208:265-77. [PMID: 19953226 DOI: 10.1007/s00213-009-1726-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Accepted: 11/06/2009] [Indexed: 01/30/2023]
Abstract
RATIONALE The lack of potent, selective, brain penetrant Y(2) receptor antagonists has hampered in vivo functional studies of this receptor. OBJECTIVE Here, we report the in vitro and in vivo characterization of JNJ-31020028 (N-(4-{4-[2-(diethylamino)-2-oxo-1-phenylethyl]piperazin-1-yl}-3-fluorophenyl)-2-pyridin-3-ylbenzamide), a novel Y(2) receptor antagonist. METHODS The affinity of JNJ-31020028 was determined by inhibition of the PYY binding to human Y(2) receptors in KAN-Ts cells and rat Y(2) receptors in rat hippocampus. The functional activity was determined by inhibition of PYY-stimulated calcium responses in KAN-Ts cells expressing a chimeric G protein Gqi5 and in the rat vas deferens (a prototypical Y(2) bioassay). Ex vivo receptor occupancy was revealed by receptor autoradiography. JNJ-31020028 was tested in vivo with microdialysis, in anxiety models, and on corticosterone release. RESULTS JNJ-31020028 bound with high affinity (pIC(50) = 8.07 +/- 0.05, human, and pIC(50) = 8.22 +/- 0.06, rat) and was >100-fold selective versus human Y(1), Y(4), and Y(5) receptors. JNJ-31020028 was demonstrated to be an antagonist (pK(B) = 8.04 +/- 0.13) in functional assays. JNJ-31020028 occupied Y(2) receptor binding sites (approximately 90% at 10 mg/kg) after subcutaneous administration in rats. JNJ-31020028 increased norepinephrine release in the hypothalamus, consistent with the colocalization of norepinephrine and neuropeptide Y. In a variety of anxiety models, JNJ-31020028 was found to be ineffective, although it did block stress-induced elevations in plasma corticosterone, without altering basal levels, and normalized food intake in stressed animals without affecting basal food intake. CONCLUSION These results suggest that Y(2) receptors may not be critical for acute behaviors in rodents but may serve modulatory roles that can only be elucidated under specific situational conditions.
Collapse
|
25
|
Moonat S, Starkman BG, Sakharkar A, Pandey SC. Neuroscience of alcoholism: molecular and cellular mechanisms. Cell Mol Life Sci 2010; 67:73-88. [PMID: 19756388 PMCID: PMC3747955 DOI: 10.1007/s00018-009-0135-y] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 07/28/2009] [Accepted: 08/13/2009] [Indexed: 01/21/2023]
Abstract
Alcohol use and abuse appear to be related to neuroadaptive changes at functional, neurochemical, and structural levels. Acute and chronic ethanol exposure have been shown to modulate function of the activity-dependent gene transcription factor, cAMP-responsive element binding (CREB) protein in the brain, which may be associated with the development of alcoholism. Study of the downstream effectors of CREB have identified several important CREB-related genes, such as neuropeptide Y, brain-derived neurotrophic factor, activity-regulated cytoskeleton-associated protein, and corticotrophin-releasing factor, that may play a crucial role in the behavioral effects of ethanol and molecular changes in the specific neurocircuitry that underlie both alcohol addiction and a genetic predisposition to alcoholism. Brain chromatin remodeling due to histone covalent modifications may also be involved in mediating the behavioral effects and neuroadaptive changes that occur during ethanol exposure. This review outlines progressive neuroscience research into molecular and epigenetic mechanisms of alcoholism.
Collapse
Affiliation(s)
- Sachin Moonat
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| | - Bela G. Starkman
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| | - Amul Sakharkar
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
| | - Subhash C. Pandey
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL USA
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL USA
- Jesse Brown VA Medical Center, Chicago, IL USA
- Department of Psychiatry, University of Illinois at Chicago and Jesse Brown VA Medical Center, 820 S. Damen Avenue (M/C 151), Chicago, IL 60612 USA
| |
Collapse
|
26
|
Zhang H, Sakharkar AJ, Shi G, Ugale R, Prakash A, Pandey SC. Neuropeptide Y signaling in the central nucleus of amygdala regulates alcohol-drinking and anxiety-like behaviors of alcohol-preferring rats. Alcohol Clin Exp Res 2009; 34:451-61. [PMID: 20028368 DOI: 10.1111/j.1530-0277.2009.01109.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND The neuropeptide Y (NPY) system of the central nucleus of amygdala (CeA) has been shown to be involved in anxiety and alcoholism. In this study, we investigated the molecular mechanisms by which NPY in the CeA regulates anxiety and alcohol drinking behaviors using alcohol-preferring (P) rats as an animal model. METHODS Alcohol-preferring rats were bilaterally cannulated targeting the CeA and infused with artificial cerebrospinal fluid (aCSF) or NPY. Alcohol drinking and anxiety-like behaviors were assessed by the 2-bottle free-choice paradigm and light/dark box (LDB) exploration test, respectively. The levels of NPY and related signaling proteins were determined by the gold immunolabeling procedure. The mRNA levels of NPY were measured by in situ RT-PCR. Double-immunofluorescence labeling was performed to observe the colocalization of NPY and Ca(2+)/calmodulin-dependent protein kinase IV (CaMK IV). RESULTS We found that NPY infusion into the CeA produced anxiolytic effects, as measured by the LDB exploration test, and also decreased alcohol intake in P rats. NPY infusion into the CeA significantly increased levels of CaMK IV and phosphorylated cAMP responsive element-binding (pCREB) protein and increased mRNA and protein levels of NPY, but produced no changes in protein levels of CREB or the catalytic alpha-subunit of protein kinase A (PKA-Calpha) in the CeA. We also observed that alcohol intake produced anxiolytic effects in P rats in the LDB test and also increased NPY expression and protein levels of pCREB and PKA-Calpha without modulating protein levels of CREB or CaMK IV, in both the CeA and medial nucleus of amygdala. In addition, we found that CaMK IV-positive cells were co-localized with NPY in amygdaloid structures of P rats. CONCLUSIONS These results suggest that NPY infusion may increase the expression of endogenous NPY in the CeA, which is most likely attributable to an increase in CaMK IV-dependent CREB phosphorylation and this molecular mechanism may be involved in regulating anxiety and alcohol drinking behaviors of P rats.
Collapse
Affiliation(s)
- Huaibo Zhang
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | |
Collapse
|
27
|
Wetherill L, Schuckit MA, Hesselbrock V, Xuei X, Liang T, Dick DM, Kramer J, Nurnberger JI, Tischfield JA, Porjesz B, Edenberg HJ, Foroud T. Neuropeptide Y receptor genes are associated with alcohol dependence, alcohol withdrawal phenotypes, and cocaine dependence. Alcohol Clin Exp Res 2008; 32:2031-40. [PMID: 18828811 PMCID: PMC2650441 DOI: 10.1111/j.1530-0277.2008.00790.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BACKGROUND Several lines of evidence in both human and animal studies suggest that variation in neuropeptide Y (NPY) or its receptor genes (NPY1R, NPY2R and NPY5R) is associated with alcohol dependence as well as alcohol withdrawal symptoms. Additional studies suggest that cocaine may affect NPY expression. METHODS A total of 39 single nucleotide polymorphisms (SNPs) were genotyped across NPY and its 3 receptor genes in a sample of 1,923 subjects from 219 multiplex alcoholic families of European American descent recruited as part of the Collaborative Studies on the Genetics of Alcoholism (COGA) study. Family-based association analysis was performed to test the primary hypothesis that variation in these genes is associated with alcohol dependence. Secondary analyses evaluated whether there was an association of these SNPs with symptoms of alcohol withdrawal, cocaine dependence, or comorbid alcohol and cocaine dependence. RESULTS Although variations in NPY itself were not associated with these phenotypes, variations in 2 NPY-receptor genes were. SNPs in NPY2R provided significant evidence of association with alcohol dependence, alcohol withdrawal symptoms, comorbid alcohol and cocaine dependence, and cocaine dependence (all p < 0.03). Haplotype analyses strengthened the evidence for these phenotypes (global 0.0004 < p < 0.005). SNPs in NPY5R demonstrated significant association with alcohol withdrawal characterized by seizures (p < 0.05). CONCLUSION These results indicate that sequence variations in NPY receptor genes are associated with alcohol dependence, particularly a severe subtype of alcohol dependence characterized by withdrawal symptoms, comorbid alcohol and cocaine dependence, and cocaine dependence.
Collapse
Affiliation(s)
- Leah Wetherill
- Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | | | | | - Xiaoling Xuei
- Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | - Tiebing Liang
- Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| | | | - John Kramer
- University of Iowa Carver College of Medicine, Iowa City, IA, 52242 USA
| | | | | | | | | | - Tatiana Foroud
- Indiana University School of Medicine, Indianapolis, IN, 46202 USA
| |
Collapse
|
28
|
Abstract
Drug addiction is a chronically relapsing disorder characterized by compulsion to seek and take drugs and has been linked to dysregulation of brain regions that mediate reward and stress. Activation of brain stress systems is hypothesized to be key to the negative emotional state produced by dependence that drives drug seeking through negative reinforcement mechanisms. This review explores the role of brain stress systems (corticotropin-releasing factor, norepinephrine, orexin [hypocretin], vasopressin, dynorphin) and brain antistress systems (neuropeptide Y, nociceptin [orphanin FQ]) in drug dependence, with emphasis on the neuropharmacological function of extrahypothalamic systems in the extended amygdala. The brain stress and antistress systems may play a key role in the transition to and maintenance of drug dependence once initiated. Understanding the role of brain stress and antistress systems in addiction provides novel targets for treatment and prevention of addiction and insights into the organization and function of basic brain emotional circuitry.
Collapse
Affiliation(s)
- George F Koob
- Committee on the Neurobiology of Addictive Disorders, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
29
|
Sakoori K, Murphy NP. Endogenous nociceptin (orphanin FQ) suppresses basal hedonic state and acute reward responses to methamphetamine and ethanol, but facilitates chronic responses. Neuropsychopharmacology 2008; 33:877-91. [PMID: 17522627 DOI: 10.1038/sj.npp.1301459] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The opioid peptide nociceptin (orphanin FQ) suppresses drug reward, drug self-administration, and impedes some of the processes believed to underlie the transition to addiction. As virtually all previous studies have used administration of nociceptin receptor agonists to evaluate the role of nociceptin on addiction-like behavior, the current study used a pharmacological (nociceptin receptor antagonist) and genetic (nociceptin receptor knockout mice) approach to elucidate the role of endogenous nociceptin. The nociceptin receptor antagonist UFP-101 induced a modest place preference, and enhanced the conditioned place preference induced by methamphetamine. In agreement with this, nociceptin receptor knockout mice had slightly enhanced methamphetamine and ethanol conditioned place preferences compared to wild-type mice. This effect did not appear to depend on differences in learning ability, as nociceptin receptor knockout mice had slightly weaker-conditioned place aversions to lithium chloride, the kappa-opioid receptor agonist, U50488H, and the general opiate antagonist, naloxone. The development of behavioral sensitization to methamphetamine was lower in nociceptin receptor knockout mice, and attenuated by UFP-101 administration to wild-type mice. Additionally, ethanol consumption and preference in a two-bottle choice test was lower in nociceptin receptor knockout mice, though ethanol-stimulated locomotion was stronger. Whereas the rewarding effect of methamphetamine and ethanol following chronic treatment, as measured by place conditioning, strengthened in wild-type mice, this effect was absent in nociceptin receptor knockout mice. These results suggest that endogenous N/OFQ suppresses basal and drug-stimulated increases in hedonic state, and plays either a permissive or facilitatory role in the development of addiction.
Collapse
Affiliation(s)
- Kazuto Sakoori
- Neuronal Circuit Mechanisms Research Group, RIKEN Brain Science Institute, Wakoshi, Saitama, Japan
| | | |
Collapse
|
30
|
Abstract
Rates of pediatric obesity have increased dramatically over the past decade. This trend is especially alarming because obesity is associated with significant medical and psychosocial consequences. It may contribute to cardiovascular, metabolic, and hepatic complications, as well as to psychiatric difficulties. The development of obesity appears to be influenced by a complex array of genetic, metabolic, and neural frameworks, along with behavior, eating habits, and physical activity. Numerous parallels exist between obesity and addictive behaviors, including genetic predisposition, personality, environmental risk factors, and common neurobiological pathways in the brain. Typical treatments for pediatric obesity include behavioral interventions targeting diet or exercise. These treatments have yielded mixed results and typically have been examined in specialty clinic populations, limiting their generalizability. There are limited medication options for overweight children and adolescents, and no approved medical intervention in children younger than 16 years old. Bariatric surgery may be an option for some adolescents, but due to the risks of surgery, it is often seen as a last resort. The parallels between addiction and obesity aid in developing novel interventions for pediatric obesity. Motivational enhancement and cognitive-behavioral strategies used in addiction treatment may prove to be beneficial.
Collapse
Affiliation(s)
- Michelle C. Acosta
- St. Luke’s-Roosevelt Hospital Center, New York, NY 10025, USA
- Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Jeanne Manubay
- New York State Psychiatry Institute, New York, NY 10032, USA
| | - Frances R. Levin
- Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
- New York State Psychiatry Institute, New York, NY 10032, USA
| |
Collapse
|
31
|
Abstract
We briefly survey the current knowledge and concepts regarding structure and function of the neuropeptide Y Y2 receptor and its agonists, especially as related to pharmacology of the receptor and its roles in pathological processes. Specific structural features are considered that could be responsible for the known compartmentalization and participation of the receptor in cell and tissue organization. This is further discussed in relation to changes of levels of the Y2 receptor in pathological conditions (especially in epilepsy and drug abuse), to endocytosis and recycling, and to participation in wound healing, retinopathy and angiogenesis. Properties of the receptor and of Y2 agonists are considered and reviewed in connection to the negative regulation of transmitter release, feeding, mood and social behavior. The possible involvement of the Y2 receptor in diabetes, carcinogenesis and bone formation is also reviewed.
Collapse
Affiliation(s)
- S L Parker
- Department of Pharmacology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | | |
Collapse
|
32
|
Crabbe JC, Phillips TJ, Harris RA, Arends MA, Koob GF. Alcohol-related genes: contributions from studies with genetically engineered mice. Addict Biol 2006; 11:195-269. [PMID: 16961758 DOI: 10.1111/j.1369-1600.2006.00038.x] [Citation(s) in RCA: 161] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Since 1996, nearly 100 genes have been studied for their effects related to ethanol in mice using genetic modifications including gene deletion, gene overexpression, gene knock-in, and occasionally by studying existing mutants. Nearly all such studies have concentrated on genes expressed in brain, and the targeted genes range widely in their function, including most of the principal neurotransmitter systems, several neurohormones, and a number of signaling molecules. We review 141 published reports of effects (or lack thereof) of 93 genes on responses to ethanol. While most studies have focused on ethanol self-administration and reward, and/or sedative effects, other responses studied include locomotor stimulation, anxiolytic effects, and neuroadaptation (tolerance, sensitization, withdrawal). About 1/4 of the engineered mutations increase self-administration, 1/3 decrease it, and about 40% have no significant effect. In many cases, the effects on self-administration are rather modest and/or depend on the specific experimental procedures. In some cases, genes in the background strains on which the mutant is placed are important for results. Not surprisingly, review of the systems affected further supports roles for serotonin, gamma-aminobutyric acid, opioids and dopamine, all of which have long been foci of alcohol research. Novel modulatory effects of protein kinase C and G protein-activated inwardly rectifying K+ (GIRK) channels are also suggested. Some newer research with cannabinoid systems is promising, and has led to ongoing clinical trials.
Collapse
Affiliation(s)
- John C Crabbe
- Portland Alcohol Research Center, Department of Behavioral Neuroscience, Oregon Health & Science University, and Department of Veterans Affairs Medical Center, USA
| | | | | | | | | |
Collapse
|
33
|
Wultsch T, Painsipp E, Donner S, Sperk G, Herzog H, Peskar BA, Holzer P. Selective increase of dark phase water intake in neuropeptide-Y Y2 and Y4 receptor knockout mice. Behav Brain Res 2006; 168:255-60. [PMID: 16364461 PMCID: PMC4370833 DOI: 10.1016/j.bbr.2005.11.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2005] [Revised: 11/13/2005] [Accepted: 11/14/2005] [Indexed: 10/25/2022]
Abstract
Neuropeptide-Y (NPY) is involved in the regulation of ingestive behaviour and energy homeostasis. Since deletion of the NPY Y2 and Y4 receptor gene increases and decreases food intake, respectively, we examined whether water intake during the light and dark phases is altered in Y2 and Y4 receptor knockout mice. The water consumption of mice staying in their home cages was measured by weighing the water bottles at the beginning and end of the light phase during 4 consecutive days. Control, Y2 and Y4 receptor knockout mice did not differ in their water intake during the light phase. However, during the dark phase Y2 and Y4 receptor knockout mice drank significantly more (46-63%, P<0.05) water than the control mice. The total daily water intake over 24 h was also enhanced. The enhanced water intake during the dark phase was not altered by the beta-adrenoceptor antagonist propranolol or the angiotensin AT1 receptor antagonist telmisartan (each injected intraperitoneally at 10 mg/kg). These data indicate that NPY acting via Y2 and Y4 receptors plays a distinctive role in the regulation of nocturnal water consumption. While beta-adrenoceptors and angiotensin AT1 receptors do not seem to be involved, water intake in Y2 and Y4 receptor knockout mice may be enhanced because presynaptic autoinhibition of NPY release and inhibition of orexin neurons in the central nervous system are prevented.
Collapse
Affiliation(s)
- Thomas Wultsch
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Evelin Painsipp
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Sabine Donner
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Günther Sperk
- Department of Pharmacology, Medical University of Innsbruck, Austria
| | - Herbert Herzog
- Neurobiology Research Program, Garvan Institute of Medical Research, Sydney, Australia
| | - Bernhard A. Peskar
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| | - Peter Holzer
- Department of Experimental and Clinical Pharmacology, Medical University of Graz, Austria
| |
Collapse
|
34
|
Fee JR, Knapp DJ, Sparta DR, Breese GR, Picker MJ, Thiele TE. Involvement of protein kinase A in ethanol-induced locomotor activity and sensitization. Neuroscience 2006; 140:21-31. [PMID: 16529875 PMCID: PMC1861809 DOI: 10.1016/j.neuroscience.2006.02.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
RATIONALE Mutant mice lacking the RIIbeta subunit of protein kinase A (regulatory subunit II beta(-/-)) show increased ethanol preference. Recent evidence suggests a relationship between heightened ethanol preference and susceptibility to ethanol-induced locomotor sensitization. It is currently unknown if protein kinase A signaling modulates the stimulant effects and/or behavioral sensitization caused by ethanol administration. To address this question, we examined the effects of repeated ethanol administration on locomotor activity RIIbeta(-/-) and littermate wild-type (RIIbeta(+/+)) mice on multiple genetic backgrounds. METHODS Over three consecutive days, mice were given single i.p. saline injections and immediately placed in a locomotor activity apparatus to establish a composite baseline for locomotor activity. Next, mice maintained on a hybrid 129/SvEvxC57BL/6J or pure C57BL/6J genetic background were given 10 i.p. ethanol injections before being placed in the activity apparatus. Each ethanol injection was separated by 3-4 days. To determine if changes in behavior were specific to ethanol injection, naïve mice were tested following repeated daily saline injections. The effects of ethanol injection on locomotor behavior were also assessed using an alternate paradigm in which mice were given repeated ethanol injections in their home cage environment. RESULTS Relative to RIIbeta(+/+) mice, RIIbeta(-/-) mice, regardless of genetic background, consistently showed significantly greater ethanol-induced locomotor activation. RIIbeta(-/-) mice also showed increased sensitivity to ethanol-induced locomotor sensitization resulting from repeated administration, an effect that was dependent on genetic background and testing paradigm. Increased locomotor activity by RIIbeta(-/-) mice was specific to ethanol injections, and was not related to altered blood ethanol levels. CONCLUSIONS These data provide novel evidence implicating an influence of protein kinase A signaling on ethanol-induced locomotor activity and behavioral sensitization. The observation that RIIbeta(-/-) mice are more sensitive to the effects of repeated ethanol administration suggests that normal protein kinase A signaling limits, or is protective against, the stimulant effects of ethanol and the plastic alterations that underlie behavioral sensitization.
Collapse
Affiliation(s)
- J R Fee
- Department of Psychology, University of North Carolina, Davie Hall, Chapel Hill, NC 27599-3270, USA
| | | | | | | | | | | |
Collapse
|
35
|
Abstract
Molecular techniques allowing in vivo modulation of gene expression have provided unique opportunities and challenges for behavioural studies aimed at understanding the function of particular genes or biological systems under physiological or pathological conditions. Although various animal models are available, the laboratory mouse (Mus musculus) has unique features and is therefore a preferred animal model. The mouse shares a remarkable genetic resemblance and aspects of behaviour with humans. In this review, first we describe common mouse models for behavioural analyses. As both genetic and environmental factors influence behavioural performance and need to be carefully evaluated in behavioural experiments, considerations for designing and interpretations of these experiments are subsequently discussed. Finally, common behavioural tests used to assess brain function are reviewed, and it is illustrated how behavioural tests are used to increase our understanding of the role of histaminergic neurotransmission in brain function.
Collapse
Affiliation(s)
- Peter van Meer
- *Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, U.S.A
| | - Jacob Raber
- *Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon 97239, U.S.A
- †Department of Neurology and Division of Neuroscience, ONPRC, Oregon Health & Science University, Portland, Oregon 97239, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
36
|
Hayes DM, Knapp DJ, Breese GR, Thiele TE. Comparison of basal neuropeptide Y and corticotropin releasing factor levels between the high ethanol drinking C57BL/6J and low ethanol drinking DBA/2J inbred mouse strains. Alcohol Clin Exp Res 2005; 29:721-9. [PMID: 15897715 PMCID: PMC1360240 DOI: 10.1097/01.alc.0000164375.16838.f3] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
BACKGROUND Recent genetic and pharmacological evidence indicates that low neuropeptide Y (NPY) levels in brain regions involved with neurobiological responses to ethanol promote increased ethanol consumption. Because of their opposing actions, it has been suggested that NPY and corticotropin releasing factor (CRF) exert a reciprocal regulation on drug self-administration. It has been widely reported that inbred C57BL/6 mice consume significantly higher amounts of ethanol than do DBA/2 mice. Therefore, we used immunohistochemical techniques to determine if basal NPY and/or CRF levels differed in predicted directions between C57BL/6J and DBA/2J mice. METHODS Ethanol-naive C57BL/6J and DBA/2J mice were deeply anesthetized with sodium pentobarbital (100 mg/kg) and perfused transcardially with 0.1 mM of phosphate-buffered saline followed by 4% paraformaldehyde in buffered saline. Brains were collected and postfixed for 4 hr at 4 degrees C and then were cut into 35-microm sections. Tissues containing the nucleus accumbens (NAc), hypothalamus, and amygdala were processed for NPY or CRF immunoreactivity using immunofluorescent or DAB techniques. Immunoreactivity was quantified from digital images using Image J software. RESULTS The C57BL/6J mice showed reduced NPY expression in the NAc shell, the basolateral amygdala, and the central nucleus of the amygdala when compared with DBA/2J mice. However, these strains did not differ in CRF expression in any of the brain regions analyzed. CONCLUSIONS These data suggest that low NPY levels in the amygdala and/or the shell of the NAc, which are not compensated for by similar changes in CRF levels, may contribute to the high ethanol consumption characteristic of C57BL/6J mice.
Collapse
Affiliation(s)
| | | | | | - Todd E. Thiele
- Reprint requests: Todd E. Thiele, PhD, Department of Psychology, University of North Carolina, Davie Hall, CB# 3270, Chapel Hill, NC 27599–3270; Fax: 919-962-2537; E-mail:
| |
Collapse
|
37
|
Thiele TE, Sparta DR, Hayes DM, Fee JR. A role for neuropeptide Y in neurobiological responses to ethanol and drugs of abuse. Neuropeptides 2004; 38:235-43. [PMID: 15337375 DOI: 10.1016/j.npep.2004.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/24/2004] [Indexed: 10/26/2022]
Abstract
In recent years, evidence has emerged suggesting that neuropeptide Y (NPY) is involved with neurobiological responses to ethanol and other drugs of abuse. Here, we provide an overview of physiological, pharmacological, and genetic research showing that: (A) administration of ethanol, as well as ethanol withdrawal, alter central NPY expression, (B) NPY modulates ethanol consumption under certain conditions, and (C) NPY signaling modulates the sedative effects of several drugs, including ethanol, sodium pentobarbital, and ketamine. Evidence suggesting possible mechanism(s) by which NPY signaling modulates ethanol consumption are considered. It is suggested that NPY may influence ethanol consumption by regulating basal levels of anxiety, by modulating the sedative effects of ethanol, and/or by modulating ethanol's rewarding properties.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, Davie Hall, CB 3270, Chapel Hill, NC 27599-3270, USA.
| | | | | | | |
Collapse
|