1
|
Li W, Chang X, Zhou H, Yu W, Wang R, Chang J. Investigating the Inhibition of Diindolylmethane Derivatives on SARS-CoV-2 Main Protease. J Mol Recognit 2024; 37:e3101. [PMID: 39221493 DOI: 10.1002/jmr.3101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 08/08/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The SARS-CoV-2 main protease (Mpro) is an essential enzyme that promotes viral transcription and replication. Mpro conserved nature in different variants and its nonoverlapping nature with human proteases make it an attractive target for therapeutic intervention against SARS-CoV-2. In this work, the interaction mechanism between Mpro and diindolylmethane derivatives was investigated by molecular docking, enzymatic inhibition assay, UV-vis, fluorescence spectroscopy, and circular dichroism spectroscopy. Results of IC50 values show that 1p (9.87 μM) was the strongest inhibitor for Mpro in this work, which significantly inhibited the activity of Mpro. The binding constant (4.07 × 105 Lmol-1), the quenching constant (5.41 × 105 Lmol-1), and thermodynamic parameters indicated that the quenching mode of 1p was static quenching, and the main driving forces between 1p and Mpro are hydrogen bond and van der Waals force. The influence of molecular structure on the binding is investigated. Chlorine atoms and methoxy groups are favorable for the diindolylmethane derivative inhibitors of Mpro. This work confirms the changes in the microenvironment of Mpro by 1p, and provides clues for the design of potential inhibitors.
Collapse
Affiliation(s)
- Wenjin Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Xiaoyu Chang
- College of Pharmacy, Zhengzhou University, Zhengzhou, China
| | - Hang Zhou
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Wenquan Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Ruiyong Wang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| | - Junbiao Chang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Nagahawatta DP, Liyanage NM, Jayawardena TU, Jayawardhana HHACK, Jeong SH, Kwon HJ, Jeon YJ. Role of marine natural products in the development of antiviral agents against SARS-CoV-2: potential and prospects. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:280-297. [PMID: 38827130 PMCID: PMC11136918 DOI: 10.1007/s42995-023-00215-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 10/17/2023] [Indexed: 06/04/2024]
Abstract
A novel coronavirus, known as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has surfaced and caused global concern owing to its ferocity. SARS-CoV-2 is the causative agent of coronavirus disease 2019; however, it was only discovered at the end of the year and was considered a pandemic by the World Health Organization. Therefore, the development of novel potent inhibitors against SARS-CoV-2 and future outbreaks is urgently required. Numerous naturally occurring bioactive substances have been studied in the clinical setting for diverse disorders. The intricate infection and replication mechanism of SARS-CoV-2 offers diverse therapeutic drug targets for developing antiviral medicines by employing natural products that are safer than synthetic compounds. Marine natural products (MNPs) have received increased attention in the development of novel drugs owing to their high diversity and availability. Therefore, this review article investigates the infection and replication mechanisms, including the function of the SARS-CoV-2 genome and structure. Furthermore, we highlighted anti-SARS-CoV-2 therapeutic intervention efforts utilizing MNPs and predicted SARS-CoV-2 inhibitor design. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00215-9.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - N. M. Liyanage
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
| | - Thilina U. Jayawardena
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3 Canada
| | | | - Seong-Hun Jeong
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - Hyung-Jun Kwon
- Functional Biomaterial Research Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup-si, Republic of Korea
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju, 690-756 Republic of Korea
- Marine Science Institute, Jeju National University, Jeju, 63333 Republic of Korea
| |
Collapse
|
3
|
Prasad R, Ajith H, Kumar Chandrakumaran N, Dnyaneshwar Khangar P, Mohan A, Nelson-Sathi S. In silico study identifies peptide inhibitors that negate the effect of non-synonymous mutations in major drug targets of SARS-CoV-2 variants. J Biomol Struct Dyn 2023; 41:9551-9561. [PMID: 36377464 DOI: 10.1080/07391102.2022.2143426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/29/2022] [Indexed: 11/16/2022]
Abstract
Since its advent in December 2019, SARS-CoV-2 has diverged into multiple variants with differing levels of virulence owing to the accumulation of mutations in its genome. The structural changes induced by non-synonymous mutations in major drug targets of the virus are known to alter the binding of potential antagonistic inhibitors. Here, we analyzed the effects of non-synonymous mutations in major targets of SARS-CoV-2 in response to potential peptide inhibitors. We screened 12 peptides reported to have anti-viral properties against RBD and 5 peptides against Mpro of SARS-CoV-2 variants using molecular docking and simulation approaches. The mutational landscape of RBD among SARS-CoV-2 variants had 21 non-synonymous mutations across 18 distinct sites. Among these, 14 mutations were present in the RBM region directly interacting with the hACE2 receptor. However, Only 3 non-synonymous mutations were observed in Mpro. We found that LCB1 - a de novo-synthesized peptide has the highest binding affinity to RBD despite non-synonymous mutations in variants and engages key residues of RBD-hACE2 interaction such as K417, E484, N487, and N501. Similarly, an antimicrobial peptide; 2JOS, was identified against Mpro with high binding affinity as it interacts with key residues in dimerization sites such as E166 and F140 crucial for viral replication. MD simulations affirm the stability of RBD-LCB1 and Mpro-2JOS complexes with an average RMSD of 1.902 and 2.476 respectively. We ascertain that LCB1 and 2JOS peptides are promising inhibitors to combat emerging variants of SARS-CoV-2 and thus warrant further investigations using in-vitro and in-vivo analysis.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Roshny Prasad
- Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Harikrishnan Ajith
- Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | - Anand Mohan
- Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Shijulal Nelson-Sathi
- Bioinformatics Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| |
Collapse
|
4
|
Hetmann M, Langner C, Durmaz V, Cespugli M, Köchl K, Krassnigg A, Blaschitz K, Groiss S, Loibner M, Ruau D, Zatloukal K, Gruber K, Steinkellner G, Gruber CC. Identification and validation of fusidic acid and flufenamic acid as inhibitors of SARS-CoV-2 replication using DrugSolver CavitomiX. Sci Rep 2023; 13:11783. [PMID: 37479788 PMCID: PMC10362000 DOI: 10.1038/s41598-023-39071-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/19/2023] [Indexed: 07/23/2023] Open
Abstract
In this work, we present DrugSolver CavitomiX, a novel computational pipeline for drug repurposing and identifying ligands and inhibitors of target enzymes. The pipeline is based on cavity point clouds representing physico-chemical properties of the cavity induced solely by the protein. To test the pipeline's ability to identify inhibitors, we chose enzymes essential for SARS-CoV-2 replication as a test system. The active-site cavities of the viral enzymes main protease (Mpro) and papain-like protease (Plpro), as well as of the human transmembrane serine protease 2 (TMPRSS2), were selected as target cavities. Using active-site point-cloud comparisons, it was possible to identify two compounds-flufenamic acid and fusidic acid-which show strong inhibition of viral replication. The complexes from which fusidic acid and flufenamic acid were derived would not have been identified using classical sequence- and structure-based methods as they show very little structural (TM-score: 0.1 and 0.09, respectively) and very low sequence (~ 5%) identity to Mpro and TMPRSS2, respectively. Furthermore, a cavity-based off-target screening was performed using acetylcholinesterase (AChE) as an example. Using cavity comparisons, the human carboxylesterase was successfully identified, which is a described off-target for AChE inhibitors.
Collapse
Affiliation(s)
- M Hetmann
- Innophore, San Francisco, CA, USA
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
| | - C Langner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - V Durmaz
- Innophore, San Francisco, CA, USA
| | | | - K Köchl
- Innophore, San Francisco, CA, USA
| | | | | | - S Groiss
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - M Loibner
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - D Ruau
- NVIDIA, Santa Clara, CA, USA
| | - K Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - K Gruber
- Innophore, San Francisco, CA, USA
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Austrian Centre of Industrial Biotechnology, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - G Steinkellner
- Innophore, San Francisco, CA, USA
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
- Field of Excellence BioHealth - University of Graz, Graz, Austria
| | - C C Gruber
- Innophore, San Francisco, CA, USA.
- Institute of Molecular Biosciences, University of Graz, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, Graz, Austria.
- Field of Excellence BioHealth - University of Graz, Graz, Austria.
| |
Collapse
|
5
|
Diabate O, Cisse C, Sangare M, Soremekun O, Fatumo S, Shaffer JG, Doumbia S, Wele M. Identification of promising high-affinity inhibitors of SARS-CoV-2 main protease from African Natural Products Databases by Virtual Screening. RESEARCH SQUARE 2023:rs.3.rs-2673755. [PMID: 36993208 PMCID: PMC10055610 DOI: 10.21203/rs.3.rs-2673755/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
With the rapid spread of the new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the pathogen agent of COVID-19 pandemic created a serious threat to global public health, requiring the most urgent research for potential therapeutic agents. The availability of genomic data of SARS-CoV-2 and efforts to determine the protein structure of the virus facilitated the identification of potent inhibitors by using structure-based approach and bioinformatics tools. Many pharmaceuticals have been proposed for the treatment of COVID-19, although their effectiveness has not been assessed yet. However, it is important to find out new-targeted drugs to overcome the resistance concern. Several viral proteins such as proteases, polymerases or structural proteins have been considered as potential therapeutic targets. But the virus target must be essential for host invasion match some drugability criterion. In this Work, we selected the highly validated pharmacological target main protease Mpro and we performed high throughput virtual screening of African Natural Products Databases such as NANPDB, EANPDB, AfroDb, and SANCDB to identify the most potent inhibitors with the best pharmacological properties. In total, 8753 natural compounds were virtually screened by AutoDock vina against the main protease of SARS-CoV-2. Two hundred and five (205) compounds showed high-affinity scores (less than - 10.0 Kcal/mol), while fifty-eight (58) filtered through Lipinski's rules showed better affinity than known Mpro inhibitors (i.e., ABBV-744, Onalespib, Daunorubicin, Alpha-ketoamide, Perampanel, Carprefen, Celecoxib, Alprazolam, Trovafloxacin, Sarafloxacin, Ethyl biscoumacetate…). Those promising compounds could be considered for further investigations toward the developpement of SARS-CoV-2 drug development.
Collapse
Affiliation(s)
- Oudou Diabate
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| | - Cheickna Cisse
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| | | | | | - Segun Fatumo
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| | | | - Seydou Doumbia
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| | - Mamadou Wele
- University of Sciences, Technics and Technologies of Bamako (USTTB)
| |
Collapse
|
6
|
Charles S, Edgar MP, Mahapatra RK. Artificial intelligence based virtual screening study for competitive and allosteric inhibitors of the SARS-CoV-2 main protease. J Biomol Struct Dyn 2023; 41:15286-15304. [PMID: 36943715 DOI: 10.1080/07391102.2023.2188419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/27/2023] [Indexed: 03/23/2023]
Abstract
SARS-CoV-2 is a highly contagious and dangerous coronavirus that first appeared in late 2019 causing COVID-19, a pandemic of acute respiratory illnesses that is still a threat to health and the general public safety. We performed deep docking studies of 800 M unique compounds in both the active and allosteric sites of the SARS-COV-2 Main Protease (Mpro) and the 15 M and 13 M virtual hits obtained were further taken for conventional docking and molecular dynamic (MD) studies. The best XP Glide docking scores obtained were -14.242 and -12.059 kcal/mol by CHEMBL591669 and the highest binding affinities were -10.5 kcal/mol (from 444215) and -11.2 kcal/mol (from NPC95421) for active and allosteric sites, respectively. Some hits can bind both sites making them a great area of concern. Re-docking of 8 random allosteric complexes in the active site shows a significant reduction in docking scores with a t-test P value of 2.532 × 10-11 at 95% confidence. Some specific interactions have higher elevations in docking scores. MD studies on 15 complexes show that single-ligand systems are stable as compared to double-ligand systems, and the allosteric binders identified are shown to modulate the active site binding as evidenced by the changes in the interaction patterns and stability of ligands and active site residues. When an allosteric complex was docked to the second monomer to check for homodimer formation, the validated homodimer could not be re-established, further supporting the potential of the identified allosteric binders. These findings could be important in developing novel therapeutics against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ssemuyiga Charles
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
- Department of Microbiology, Biotechnology and Plant Sciences, School of Biological Sciences, Makerere University, Kampala, Uganda
| | - Mulumba Pius Edgar
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | | |
Collapse
|
7
|
Quinazolinone-Peptido-Nitrophenyl-Derivatives as Potential Inhibitors of SARS-CoV-2 Main Protease. Viruses 2023; 15:v15020287. [PMID: 36851501 PMCID: PMC9963287 DOI: 10.3390/v15020287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 main protease (SARS-CoV-2-Mpro) plays an essential role in viral replication, transcription, maturation, and entry into host cells. Furthermore, its cleavage specificity for viruses, but not humans, makes it a promising drug target for the treatment of coronavirus disease 2019 (COVID-19). In this study, a fragment-based strategy including potential antiviral quinazolinone moiety and glutamine- or glutamate-derived peptidomimetic backbone and positioned nitro functional groups was used to synthesize putative Mpro inhibitors. Two compounds, G1 and G4, exhibited anti-Mpro enzymatic activity in a dose-dependent manner, with the calculated IC50 values of 22.47 ± 8.93 μM and 24.04 ± 0.67 μM, respectively. The bio-layer interferometer measured real-time binding. The dissociation kinetics of G1/Mpro and G4/Mpro also showed similar equilibrium dissociation constants (KD) of 2.60 × 10-5 M and 2.55 × 10-5 M, respectively, but exhibited distinct association/dissociation curves. Molecular docking of the two compounds revealed a similar binding cavity to the well-known Mpro inhibitor GC376, supporting a structure-function relationship. These findings may open a new avenue for developing new scaffolds for Mpro inhibition and advance anti-coronavirus drug research.
Collapse
|
8
|
Geethakumari AM, Ahmed WS, Rasool S, Fatima A, Nasir Uddin SM, Aouida M, Biswas KH. A genetically encoded BRET-based SARS-CoV-2 M pro protease activity sensor. Commun Chem 2022; 5:117. [PMID: 36187754 PMCID: PMC9516532 DOI: 10.1038/s42004-022-00731-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 09/07/2022] [Indexed: 01/27/2023] Open
Abstract
The main protease, Mpro, is critical for SARS-CoV-2 replication and an appealing target for designing anti-SARS-CoV-2 agents. Therefore, there is a demand for the development of improved sensors to monitor its activity. Here, we report a pair of genetically encoded, bioluminescence resonance energy transfer (BRET)-based sensors for detecting Mpro proteolytic activity in live cells as well as in vitro. The sensors were generated by sandwiching peptides containing the Mpro N-terminal autocleavage sites, either AVLQSGFR (short) or KTSAVLQSGFRKME (long), in between the mNeonGreen and NanoLuc proteins. Co-expression of the sensors with Mpro in live cells resulted in their cleavage while mutation of the critical C145 residue (C145A) in Mpro completely abrogated their cleavage. Additionally, the sensors recapitulated the inhibition of Mpro by the well-characterized pharmacological agent GC376. Further, in vitro assays with the BRET-based Mpro sensors revealed a molecular crowding-mediated increase in the rate of Mpro activity and a decrease in the inhibitory potential of GC376. The sensors developed here will find direct utility in studies related to drug discovery targeting the SARS-CoV-2 Mpro and functional genomics application to determine the effect of sequence variation in Mpro.
Collapse
Affiliation(s)
- Anupriya M. Geethakumari
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Wesam S. Ahmed
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Saad Rasool
- Division of Genomics and Precision Medicine, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - S. M. Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Mustapha Aouida
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| | - Kabir H. Biswas
- Division of Biological and Biomedical Sciences, College of Health & Life Sciences, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha, 34110 Qatar
| |
Collapse
|
9
|
Dahri M, Sadeghi MM, Abolmaali SS. A computational study of metal-organic frameworks (MOFs) as potential nanostructures to combat SARS-CoV-2. Sci Rep 2022; 12:15678. [PMID: 36127369 PMCID: PMC9489710 DOI: 10.1038/s41598-022-19845-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022] Open
Abstract
The COVID-19 causative agent, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has a critical surface protein called spike protein (S protein), which is the target of many vaccines and drugs developments. Among non-structural proteins of SARS-CoV-2, main protease (Mpro) has drawn much attention to itself for designing antiviral drugs since it is very crucial for the virus replication in host cells. In the first part of the present study, the application of metal-organic frameworks (MOFs), one of the developing nanomaterials in the deformation and consequently inhibition of S protein binding to the receptor, angiotensin-converting enzyme 2 (ACE 2), is investigated. In this line, various S protein inhibitors were designed virtually, including ZIF, UIO, and IRMOF that their interactions with S protein and were investigated using molecular dynamics (MD) simulation. The results revealed that ZIF is the best candidate among the investigated MOFs with the least amount of energy interference with S protein. In the second part, the interaction of three-dimensional (3D) MOFs (such as ZIF, IRMOF, and HKUST) with SARS-CoV-2 Mpro was investigated. HKUST had the most potent interaction with Mpro and showed more promise in deforming this protein's secondary structure among all materials tested. Furthermore, we investigated the interaction of HKUST-OH with Mpro to determine the effect of functionalization. The findings of this study could be used in future studies to introduce bioconjugates of MOFs and biological molecules (e.g., antibody or nanobody) or to use MOFs as carriers for antiviral drug delivery.
Collapse
Affiliation(s)
- Mohammad Dahri
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Samira Sadat Abolmaali
- Center for Nanotechnology in Drug Delivery, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
10
|
A Multistage In Silico Study of Natural Potential Inhibitors Targeting SARS-CoV-2 Main Protease. Int J Mol Sci 2022; 23:ijms23158407. [PMID: 35955547 PMCID: PMC9369012 DOI: 10.3390/ijms23158407] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
Among a group of 310 natural antiviral natural metabolites, our team identified three compounds as the most potent natural inhibitors against the SARS-CoV-2 main protease (PDB ID: 5R84), Mpro. The identified compounds are sattazolin and caprolactin A and B. A validated multistage in silico study was conducted using several techniques. First, the molecular structures of the selected metabolites were compared with that of GWS, the co-crystallized ligand of Mpro, in a structural similarity study. The aim of this study was to determine the thirty most similar metabolites (10%) that may bind to the Mpro similar to GWS. Then, molecular docking against Mpro and pharmacophore studies led to the choice of five metabolites that exhibited good binding modes against the Mpro and good fit values against the generated pharmacophore model. Among them, three metabolites were chosen according to ADMET studies. The most promising Mpro inhibitor was determined by toxicity and DFT studies to be caprolactin A (292). Finally, molecular dynamics (MD) simulation studies were performed for caprolactin A to confirm the obtained results and understand the thermodynamic characteristics of the binding. It is hoped that the accomplished results could represent a positive step in the battle against COVID-19 through further in vitro and in vivo studies on the selected compounds.
Collapse
|
11
|
Proia E, Ragno A, Antonini L, Sabatino M, Mladenovič M, Capobianco R, Ragno R. Ligand-based and structure-based studies to develop predictive models for SARS-CoV-2 main protease inhibitors through the 3d-qsar.com portal. J Comput Aided Mol Des 2022; 36:483-505. [PMID: 35716228 PMCID: PMC9206107 DOI: 10.1007/s10822-022-00460-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/28/2022] [Indexed: 11/05/2022]
Abstract
The main protease (Mpro) of SARS-Cov-2 is the essential enzyme for maturation of functional proteins implicated in viral replication and transcription. The peculiarity of its specific cleavage site joint with its high degree of conservation among all coronaviruses promote it as an attractive target to develop broad-spectrum inhibitors, with high selectivity and tolerable safety profile. Herein is reported a combination of three-dimensional quantitative structure-activity relationships (3-D QSAR) and comparative molecular binding energy (COMBINE) analysis to build robust and predictive ligand-based and structure-based statistical models, respectively. Models were trained on experimental binding poses of co-crystallized Mpro-inhibitors and validated on available literature data. By means of deep optimization both models' goodness and robustness reached final statistical values of r2/q2 values of 0.97/0.79 and 0.93/0.79 for the 3-D QSAR and COMBINE approaches respectively, and an overall predictiveness values of 0.68 and 0.57 for the SDEPPRED and AAEP metrics after application to a test set of 60 compounds covered by the training set applicability domain. Despite the different nature (ligand-based and structure-based) of the employed methods, their outcome fully converged. Furthermore, joint ligand- and structure-based structure-activity relationships were found in good agreement with nirmatrelvir chemical features properties, a novel oral Mpro-inhibitor that has recently received U.S. FDA emergency use authorization (EUA) for the oral treatment of mild-to-moderate COVID-19 infected patients. The obtained results will guide future rational design and/or virtual screening campaigns with the aim of discovering new potential anti-coronavirus lead candidates, minimizing both time and financial resources. Moreover, as most of calculation were performed through the well-established web portal 3d-qsar.com the results confirm the portal as a useful tool for drug design.
Collapse
Affiliation(s)
- Eleonora Proia
- Department of Drug Chemistry and Technology, Rome Center for Molecular Design, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Alessio Ragno
- Department of Computer, Control and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Rome, Italy
| | - Lorenzo Antonini
- Department of Drug Chemistry and Technology, Rome Center for Molecular Design, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Manuela Sabatino
- Department of Drug Chemistry and Technology, Rome Center for Molecular Design, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Milan Mladenovič
- Department of Chemistry, Faculty of Science, Kragujevac Center for Computational Biochemistry, University of Kragujevac, Radoja Domanovića 12, P.O. Box 60, 34000, Kragujevac, Serbia
| | - Roberto Capobianco
- Department of Computer, Control and Management Engineering "Antonio Ruberti", Sapienza University of Rome, Rome, Italy
- Sony AI, Rome, Italy
| | - Rino Ragno
- Department of Drug Chemistry and Technology, Rome Center for Molecular Design, Sapienza University of Rome, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
12
|
Multi-Step In Silico Discovery of Natural Drugs against COVID-19 Targeting Main Protease. Int J Mol Sci 2022; 23:ijms23136912. [PMID: 35805916 PMCID: PMC9266348 DOI: 10.3390/ijms23136912] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 02/04/2023] Open
Abstract
In continuation of our antecedent work against COVID-19, three natural compounds, namely, Luteoside C (130), Kahalalide E (184), and Streptovaricin B (278) were determined as the most promising SARS-CoV-2 main protease (Mpro) inhibitors among 310 naturally originated antiviral compounds. This was performed via a multi-step in silico method. At first, a molecular structure similarity study was done with PRD_002214, the co-crystallized ligand of Mpro (PDB ID: 6LU7), and favored thirty compounds. Subsequently, the fingerprint study performed with respect to PRD_002214 resulted in the election of sixteen compounds (7, 128, 130, 156, 157, 158, 180, 184, 203, 204, 210, 237, 264, 276, 277, and 278). Then, results of molecular docking versus Mpro PDB ID: 6LU7 favored eight compounds (128, 130, 156, 180, 184, 203, 204, and 278) based on their binding affinities. Then, in silico toxicity studies were performed for the promising compounds and revealed that all of them have good toxicity profiles. Finally, molecular dynamic (MD) simulation experiments were carried out for compounds 130, 184, and 278, which exhibited the best binding modes against Mpro. MD tests revealed that luteoside C (130) has the greatest potential to inhibit SARS-CoV-2 main protease.
Collapse
|
13
|
Mahmoudi S, Dehkordi MM, Asgarshamsi MH. The effect of various compounds on the COVID mechanisms, from chemical to molecular aspects. Biophys Chem 2022; 288:106824. [PMID: 35728510 PMCID: PMC9095071 DOI: 10.1016/j.bpc.2022.106824] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/13/2022] [Accepted: 05/07/2022] [Indexed: 02/07/2023]
Abstract
The novel coronavirus that caused COVID-19 pandemic is SARS-CoV-2. Although various vaccines are currently being used to prevent the disease's severe consequences, there is still a need for medications for those who become infected. The SARS-CoV-2 has a variety of proteins that have been studied extensively since the virus's advent. In this review article, we looked at chemical to molecular aspects of the various structures studied that have pharmaceutical activity and attempted to find a link between drug activity and compound structure. For example, designing of the compounds which bind to the allosteric site and modify hydrogen bonds or the salt bridges can disrupt SARS-CoV2 RBD–ACE2 complex. It seems that quaternary ammonium moiety and quinolin-1-ium structure could act as a negative allosteric modulator to reduce the tendency between spike-ACE2. Pharmaceutical structures with amino heads and hydrophobic tails can block envelope protein to prevent making mature SARS-CoV-2. Also, structures based on naphthalene pharmacophores or isosteres can form a strong bond with the PLpro and form a π-π and the Mpro's active site can be occupied by octapeptide compounds or linear compounds with a similar fitting ability to octapeptide compounds. And for protein RdRp, it is critical to consider pH and pKa so that pKa regulation of compounds to comply with patients is very effective, thus, the presence of tetrazole, phenylpyrazole groups, and analogs of pyrophosphate in the designed drugs increase the likelihood of the RdRp active site inhibition. Finally, it can be deduced that designing hybrid drug molecules along with considering the aforementioned characteristics would be a suitable approach for developing medicines in order to accurate targeting and complete inhibition this virus.
Collapse
Affiliation(s)
- Samira Mahmoudi
- Department of Microbial Biotechnology, School of Biological Sciences, Islamic Azad University Tehran North Branch, Tehran, Iran.
| | - Mehrdad Mohammadpour Dehkordi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| | - Mohammad Hossein Asgarshamsi
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
14
|
Khazaneha M, Tajedini O, Esmaeili O, Abdi M, Khasseh AA, Sadatmoosavi A. Thematic evolution of coronavirus disease: a longitudinal co-word analysis. LIBRARY HI TECH 2022. [DOI: 10.1108/lht-10-2021-0370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PurposeUsing science mapping analysis approach and co-word analysis, the present study explores and visualizes research fields and thematic evolution of the coronavirus. Based on this method, one can get a picture of the real content of the themes in the mentioned thematic area and identify the main minor and emerging themes.Design/methodology/approachThis study was conducted based on co-word science mapping analysis under a longitudinal study (from 1988 to 2020). The collection of documents in this study was further divided into three subperiods: 1988–1998, 1999–2009 and 2010–2020. In order to perform science mapping analysis based on co-word bibliographic networks, SciMAT was utilized as a bibliometric tool. Moreover, WoS, PubMed and Scopus bibliographic databases were used to download all records.FindingsIn this study, strategic diagrams were demonstrated for the coronavirus research for a chronological period to assess the most relevant themes. Each diagram depended on the sum of documents linked to each research topic. In the first period (1988–1998), the most centralizations were on virology and evaluation of coronavirus structure and its structural and nonstructural proteins. In the second period (1999–2009), with due attention to high population density in eastern Asia and the increasing number of people affected with the new generation of coronavirus (named severe acute respiratory syndrome virus or SARS virus), publications have been concentrated on “antiviral activity.” In the third period (2010–2020), there was a tendency to investigate clinical syndromes, and most of the publications and citations were about hot topics like “severe acute respiratory syndrome,” “coronavirus” and “respiratory tract disease.” Scientometric analysis of the field of coronavirus can be regarded as a roadmap for future research and policymaking in this important area.Originality/valueThe originality of this research can be considered in two ways. First, the strategic diagrams of coronavirus are drawn in four thematic areas including motor cluster, basic and transversal cluster, highly developed cluster and emerging and declining cluster. Second, COVID-19 is mentioned as a hot topic of research.
Collapse
|
15
|
Evaluation of binding performance of bioactive compounds against main protease and mutant model spike receptor binding domain of SARS-CoV-2: Docking, ADMET properties and molecular dynamics simulation study. J INDIAN CHEM SOC 2022. [PMCID: PMC8900880 DOI: 10.1016/j.jics.2022.100417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Phytochemicals present in medicinal plants have a variety of biological activities that help to combat against diseases. As part of efforts to study the binding performance of different phytochemicals derived from different plants like Zingiber officinale, Citrus limon, Syzygiumaromaticum, Ocimum tenuiflorum and Curcumin. We have screened 424 molecules. The binding affinity as well as physicochemical properties of the thebaine, acacetin, indomethacin, crinamineacetate, (S)-1-Piperideine-6-carboxylate, levamisole, melatonin, nicotinicacid, curcumin, methotrimeprazine, omeprazole, and methaqualone phytocompounds were analyzed through computational study. From the molecular docking study we found that, LEU50, ASN72, PRO96, TYR154, GLY170, ALA193, ARG222, and MET274 residues of main protease play a crucial role in binding with ligands. The present study revealed a noticeable interaction of GLY446, SER477, GLY482, THR500 and LEU518 residues with mutant of spike receptor binding domain SARS-CoV-2 protein were observed. Finally, 100 ns molecular dynamics simulation were used to study their dynamic properties as well as conformational flexibility. Free energy landscape analysis was performed of the 6LU7- acacetin and 6Y2E-acacetin systems and spike RBD-acacetin system. From molecular docking study and molecular dynamics study revealed that, the compound acacetin shows promising inhibitor towards both main protease as well as mutant spike RBD of SARS-CoV-2 protein.
Collapse
|
16
|
Mahato S. Recent Development of Small Molecules for SARS-CoV-2 and the Opportunity for Fragment-Based Drug Discovery. Med Chem 2022; 18:847-858. [DOI: 10.2174/1573406418666220214091107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/10/2021] [Accepted: 12/03/2021] [Indexed: 11/22/2022]
Abstract
Abstract:
The ongoing pandemic of Covid-19 caused by SARS-CoV-2 is a major threat to global public health, drawing attention to develop new therapeutics for treatment. Much research work is focused on identifying or repurposing new small molecules to serve as potential inhibitors by interacting with viral or host-cell molecular targets and understanding the nature of the virus in the host cells. Identifying small molecules as potent inhibitors at an early stage is advantageous to make a molecule with higher potency and then find a lead compound for the development of drug discovery. Small molecules can show their inhibition property by targeting either SARS-CoV-2 main protease (Mpro) enzyme, papain-like protease (PLpro) enzyme, or helicase (Hel), or blocking the spike (S) protein angiotensin-converting enzyme 2 (ACE2) receptor. A very recent outbreak of a new variant (B.1.617.2—termed as Delta variant) of SARS-CoV-2 worldwide posed a greater challenge as it is resistant to clinically undergoing vaccine trials. Thus, the development of new drug molecules is of potential interest to combat SARS-CoV-2 disease, and for that, fragment-based drug discovery (FBDD) approach could be one of the ways to bring out an effective solution. Two cysteine protease enzymes would be an attractive choice of target for fragment-based drug discovery to tune the molecular structure at an early stage with suitable functionality. In this short review, the recent development of small-molecule as inhibitors against Covid-19 are discussed and the opportunity for FBDD is envisioned optimistically to provide an outlook regarding Covid-19 that may pave the way in the direction of the Covid-19 drug development paradigm.
Collapse
Affiliation(s)
- Sujit Mahato
- Department of Chemistry, Sardar Vallabhbhai National Institute of Technology, Surat, Gujarat-395007, INDIA
| |
Collapse
|
17
|
Chou FP, Liu CC, Huong Giang HN, Huang SC, Hsu HF, Wu TK. Evaluation of RevX Solution Extract as a Potential Inhibitor of the Main Protease of SARS-CoV-2—In vitro Study and Molecular Docking. Heliyon 2022; 8:e09034. [PMID: 35252620 PMCID: PMC8882484 DOI: 10.1016/j.heliyon.2022.e09034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
The main protease (Mpro) of SARS-CoV-2 is a protease necessary for viral polyprotein processing and maturation. Mpro cleaves the polypeptide sequence after the glutamine residues. There is no known cellular protease with this substrate specificity in humans; therefore, it is considered an attractive drug target. Previously, fermented sorghum extract RevX (trademark of Revolutrx INC.) solution significantly alleviated physical decline and complications in a patient with lung adenocarcinoma, suggesting the role of bioactive components in RevX solution. To further explore whether the bioactive components in RevX solution exhibit other biological activities, such as antiviral effects, we investigated its inhibitory effect on the Mpro of SARS-CoV-2 virus. We report herein that the solid extract of the RevX solution exhibits an efficacious Mpro inhibitory activity, with IC50 of 2.07 ± 0.38 μg/mL. Molecular docking of sterol-like components in the RevX extracts identified by MS shows that the three sterol-like molecules can bind to the active region of the GC376-Mpro complex, supporting the structure-function relationship. Combined with its ability to significantly alleviate the body's immunity decline and to inhibit the activity of SARS-CoV-2 Mpro, RevX solution may provide a possible alternative supportive treatment for patients with COVID-19. The unique substrate specificity of SARS-CoV-2 Mpro makes it a potential target for drug design. Fermented sorghum extract RevX solution enhances adjuvant therapy of lung adenocarcinoma, suggesting the role of bioactive components in RevX solution. The solid extract of RevX showed potent Mpro inhibitory activity with IC50 of 2.07 ± 0.38 μg/mL. The three sterol-like structures of RevX extract showed a similar binding cavity to Mpro-GC376, suggesting its putative inhibitory activity.
Collapse
|
18
|
Tristán-Flores FE, Casique-Aguirre D, Pliego-Arreaga R, Cervantes-Montelongo JA, García-Gutierrez P, Acosta-García G, Silva-Martínez GA. Identification of potential inhibitors of SARS-CoV-2 S protein-ACE2 interaction by in silico drug repurposing. F1000Res 2021; 10. [PMID: 34900223 PMCID: PMC8630554 DOI: 10.12688/f1000research.52168.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/01/2021] [Indexed: 11/28/2022] Open
Abstract
Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a new coronavirus discovered that appeared in Wuhan, China, in December 2019, causes COVID-19 disease which have resulted in cases similar to SARS-atypical pneumonia. Worldwide, around 116 million cases and 2.57 million deaths are reported with new cases and increasing mortality every day. To date, there is no specific commercial treatment to control the infection. Repurpose drugs targeting the angiotensin-converting enzyme 2 (ACE2) receptor represents an alternative strategy to block the binding of SARS-CoV-2 protein S and forestall virus adhesion, internalization, and replication in the host cell. Methods: We performed a rigid molecular docking using the receptor binding domain of the S1 subunit of S protein (RBD
S1)-ACE2 (PDB ID: 6VW1) interaction site and 1,283 drugs FDA approved. The docking score, frequency of the drug in receptor site, and interactions at the binding site residues were used as analyzing criteria. Results: This research yielded 40 drugs identified as a potential inhibitor of RBD
S1-ACE2 interaction. Among the inhibitors, compounds such as ipratropium, formoterol, and fexofenadine can be found. Specialists employ these drugs as therapies to treat chronic obstructive pulmonary disease, asthma and virtually any respiratory infection. Conclusions: Our results will serve as the basis for
in vitro and
in vivo studies to evaluate the potential use of those drugs to generate affordable and convenient therapies to treat COVID-19.
Collapse
Affiliation(s)
| | - Diana Casique-Aguirre
- Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), CDMX, CDMX, 11340, Mexico
| | | | | | | | - Gerardo Acosta-García
- Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, Mexico
| | - Guillermo A Silva-Martínez
- Ingeniería Bioquímica, Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, Mexico.,Ingeniería Bioquímica, Cátedras CONACYT-Tecnológico Nacional de México en Celaya, Celaya, Guanajuato, 38010, Mexico
| |
Collapse
|
19
|
Kumar B, Misra A, Singh SP, Dhar YV, Rawat P, Chattopadhyay D, Barik SK, Srivastava S. In-silico efficacy of potential phytomolecules from Ayurvedic herbs as an adjuvant therapy in management of COVID-19. J Food Drug Anal 2021; 29:559-580. [PMID: 35649148 PMCID: PMC9931022 DOI: 10.38212/2224-6614.3380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 05/17/2021] [Accepted: 08/26/2021] [Indexed: 11/18/2022] Open
Abstract
The recent COVID-19 outbreak caused by SARS-CoV-2 virus has sparked a new spectrum of investigations, research and studies in multifarious directions. Efforts are being made around the world for discovery of effective vaccines/drugs against COVID-19. In this context, Ayurveda, an alternative traditional system of medicine in India may work as an adjuvant therapy in compromised patients. We selected 40 herbal leads on the basis of their traditional applications. The phytomolecules from these leads were further screened through in-silico molecular docking against two main targets of SARS-CoV-2 i.e. the spike protein (S; structural protein) and the main protease (MPRO; non-structural protein). Out of the selected 40, 12 phytomolecules were able to block or stabilize the major functional sites of the main protease and spike protein. Among these, Ginsenoside, Glycyrrhizic acid, Hespiridin and Tribulosin exhibited high binding energy with both main protease and spike protein. Etoposide showed good binding energy only with Spike protein and Teniposide had high binding energy only with main protease. The above phytocompounds showed promising binding efficiency with target proteins indicating their possible applications against SARS-CoV-2. However, these findings need to be validated through in vitro and in vivo experiments with above mentioned potential molecules as candidate drugs for the management of COVID-19. In addition, there is an opportunity for the development of formulations through different permutations and combinations of these phytomolecules to harness their synergistic potential.
Collapse
Affiliation(s)
- Bhanu Kumar
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Ankita Misra
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Satyendra Pratap Singh
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Yogeshwar Vikram Dhar
- Bioinformatics Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Poonam Rawat
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | | | - Saroj Kanta Barik
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| | - Sharad Srivastava
- Pharmacognosy Division, CSIR-National Botanical Research Institute, Lucknow, U.P. 226001,
India
| |
Collapse
|
20
|
Gül Ş. In silico drug repositioning against human NRP1 to block SARS-CoV-2 host entry. Turk J Biol 2021; 45:442-458. [PMID: 34803446 PMCID: PMC8573850 DOI: 10.3906/biy-2012-52] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 05/08/2021] [Indexed: 12/21/2022] Open
Abstract
Despite COVID-19 turned into a pandemic, no approved drug for the treatment or globally available vaccine is out yet. In such a global emergency, drug repurposing approach that bypasses a costly and long-time demanding drug discovery process is an effective way in search of finding drugs for the COVID-19 treatment. Recent studies showed that SARS-CoV-2 uses neuropilin-1 (NRP1) for host entry. Here we took advantage of structural information of the NRP1 in complex with C-terminal of spike (S) protein of SARS-CoV-2 to identify drugs that may inhibit NRP1 and S protein interaction. U.S. Food and Drug Administration (FDA) approved drugs were screened using docking simulations. Among top drugs, well-tolerated drugs were selected for further analysis. Molecular dynamics (MD) simulations of drugs-NRP1 complexes were run for 100 ns to assess the persistency of binding. MM/GBSA calculations from MD simulations showed that eltrombopag, glimepiride, sitagliptin, dutasteride, and ergotamine stably and strongly bind to NRP1. In silico Alanine scanning analysis revealed that Tyr297, Trp301, and Tyr353 amino acids of NRP1 are critical for drug binding. Validating the effect of drugs analyzed in this paper by experimental studies and clinical trials will expedite the drug discovery process for COVID-19.
Collapse
Affiliation(s)
- Şeref Gül
- Department of Chemical and Biological Engineering, Koç University, İstanbul Turkey.,Biotechnology Division, Department of Biology, Faculty of Science, İstanbul University, İstanbul Turkey
| |
Collapse
|
21
|
Kaul R, Paul P, Kumar S, Büsselberg D, Dwivedi VD, Chaari A. Promising Antiviral Activities of Natural Flavonoids against SARS-CoV-2 Targets: Systematic Review. Int J Mol Sci 2021; 22:11069. [PMID: 34681727 PMCID: PMC8539743 DOI: 10.3390/ijms222011069] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/08/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The ongoing COVID-19 pandemic, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a globally leading public health concern over the past two years. Despite the development and administration of multiple vaccines, the mutation of newer strains and challenges to universal immunity has shifted the focus to the lack of efficacious drugs for therapeutic intervention for the disease. As with SARS-CoV, MERS-CoV, and other non-respiratory viruses, flavonoids present themselves as a promising therapeutic intervention given their success in silico, in vitro, in vivo, and more recently, in clinical studies. This review focuses on data from in vitro studies analyzing the effects of flavonoids on various key SARS-CoV-2 targets and presents an analysis of the structure-activity relationships for the same. From 27 primary papers, over 69 flavonoids were investigated for their activities against various SARS-CoV-2 targets, ranging from the promising 3C-like protease (3CLpro) to the less explored nucleocapsid (N) protein; the most promising were quercetin and myricetin derivatives, baicalein, baicalin, EGCG, and tannic acid. We further review promising in silico studies featuring activities of flavonoids against SARS-CoV-2 and list ongoing clinical studies involving the therapeutic potential of flavonoid-rich extracts in combination with synthetic drugs or other polyphenols and suggest prospects for the future of flavonoids against SARS-CoV-2.
Collapse
Affiliation(s)
- Ridhima Kaul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (R.K.); (P.P.)
| | - Pradipta Paul
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (R.K.); (P.P.)
| | - Sanjay Kumar
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India; (S.K.); (V.D.D.)
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India
| | - Dietrich Büsselberg
- Department of Physiology and Biophysics, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar;
| | - Vivek Dhar Dwivedi
- Center for Bioinformatics, Computational and Systems Biology, Pathfinder Research and Training Foundation, Greater Noida 201308, India; (S.K.); (V.D.D.)
| | - Ali Chaari
- Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha 24144, Qatar; (R.K.); (P.P.)
| |
Collapse
|
22
|
Mahmud S, Hasan MR, Biswas S, Paul GK, Afrose S, Mita MA, Sultana Shimu MS, Promi MM, Hani U, Rahamathulla M, Khan MA, Zaman S, Uddin MS, Rahmatullah M, Jahan R, Alqahtani AM, Saleh MA, Emran TB. Screening of Potent Phytochemical Inhibitors Against SARS-CoV-2 Main Protease: An Integrative Computational Approach. FRONTIERS IN BIOINFORMATICS 2021; 1:717141. [PMID: 36303755 PMCID: PMC9581031 DOI: 10.3389/fbinf.2021.717141] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 09/17/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a potentially lethal and devastating disease that has quickly become a public health threat worldwide. Due to its high transmission rate, many countries were forced to implement lockdown protocols, wreaking havoc on the global economy and the medical crisis. The main protease (Mpro) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative virus for COVID-19, represent an effective target for the development of a new drug/vaccine because it is well-conserved and plays a vital role in viral replication. Mpro inhibition can stop the replication, transcription as well as recombination of SARS-CoV-2 after the infection and thus can halt the formation of virus particles, making Mpro a viable therapeutic target. Here, we constructed a phytochemical dataset based on a rigorous literature review and explored the probability that various phytochemicals will bind with the main protease using a molecular docking approach. The top three hit compounds, medicagol, faradiol, and flavanthrin, had binding scores of -8.3, -8.6, and -8.8 kcal/mol, respectively, in the docking analysis. These three compounds bind to the active groove, consisting of His41, Cys45, Met165, Met49, Gln189, Thr24, and Thr190, resulting in main protease inhibition. Moreover, the multiple descriptors from the molecular dynamics simulation, including the root-mean-square deviation, root-mean-square fluctuation, solvent-accessible surface area, radius of gyration, and hydrogen bond analysis, confirmed the stable nature of the docked complexes. In addition, absorption, distribution, metabolism, excretion, and toxicity (ADMET) analysis confirmed a lack of toxicity or carcinogenicity for the screened compounds. Our computational analysis may contribute toward the design of an effective drug against the main protease of SARS-CoV-2.
Collapse
Affiliation(s)
- Shafi Mahmud
- Department of Genetic Engineering and Biotechnology, Microbiology Laboratory, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Gobindo Kumar Paul
- Department of Genetic Engineering and Biotechnology, Microbiology Laboratory, University of Rajshahi, Rajshahi, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohsana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | | | - Maria Meha Promi
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi, Bangladesh
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Rahamathulla
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Md. Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Shahriar Zaman
- Department of Genetic Engineering and Biotechnology, Microbiology Laboratory, University of Rajshahi, Rajshahi, Bangladesh
| | - Md. Salah Uddin
- Department of Genetic Engineering and Biotechnology, Microbiology Laboratory, University of Rajshahi, Rajshahi, Bangladesh
| | - Mohammed Rahmatullah
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Rownak Jahan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Ali M. Alqahtani
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha, Saudi Arabia
| | - Md. Abu Saleh
- Department of Genetic Engineering and Biotechnology, Microbiology Laboratory, University of Rajshahi, Rajshahi, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| |
Collapse
|
23
|
Mahmud S, Biswas S, Kumar Paul G, Mita MA, Afrose S, Robiul Hasan M, Sharmin Sultana Shimu M, Uddin MAR, Salah Uddin M, Zaman S, Kaderi Kibria KM, Arif Khan M, Bin Emran T, Abu Saleh M. Antiviral peptides against the main protease of SARS-CoV-2: A molecular docking and dynamics study. ARAB J CHEM 2021; 14:103315. [PMID: 34909064 PMCID: PMC8277949 DOI: 10.1016/j.arabjc.2021.103315] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/04/2021] [Indexed: 01/08/2023] Open
Abstract
The recent coronavirus outbreak has changed the world's economy and health sectors due to the high mortality and transmission rates. Because the development of new effective vaccines or treatments against the virus can take time, an urgent need exists for the rapid development and design of new drug candidates to combat this pathogen. Here, we obtained antiviral peptides obtained from the data repository of antimicrobial peptides (DRAMP) and screened their predicted tertiary structures for the ability to inhibit the main protease of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using multiple combinatorial docking programs, including PatchDock, FireDock, and ClusPro. The four best peptides, DRAMP00877, DRAMP02333, DRAMP02669, and DRAMP03804, had binding energies of -1125.3, -1084.5, -1005.2, and -924.2 Kcal/mol, respectively, as determined using ClusPro, and binding energies of -55.37, -50.96, -49.25, -54.81 Kcal/mol, respectively, as determined using FireDock, which were better binding energy values than observed for other peptide molecules. These peptides were found to bind with the active cavity of the SARS-CoV-2 main protease; at Glu166, Cys145, Asn142, Phe140, and Met165, in addition to the substrate-binding sites, Domain 2 and Domain 3, whereas fewer interactions were observed with Domain 1. The docking studies were further confirmed by a molecular dynamics simulation study, in which several descriptors, including the root-mean-square difference (RMSD), root-mean-square fluctuation (RMSF), solvent-accessible surface area (SASA), radius of gyration (Rg), and hydrogen bond formation, confirmed the stable nature of the peptide-main protease complexes. Toxicity and allergenicity studies confirmed the non-allergenic nature of the peptides. This present study suggests that these identified antiviral peptide molecules might inhibit the main protease of SARS-CoV-2, although further wet-lab experiments remain necessary to verify these findings.
Collapse
Affiliation(s)
- Shafi Mahmud
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Suvro Biswas
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Gobindo Kumar Paul
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohasana Akter Mita
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shamima Afrose
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Md Robiul Hasan
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mst Sharmin Sultana Shimu
- Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Mohammad Abu Raihan Uddin
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong, Bangladesh
| | - Md Salah Uddin
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Shahriar Zaman
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - K M Kaderi Kibria
- Department of Biotechnology and Genetic Engineering, Faculty of Life Sciences, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
| | - Md Arif Khan
- Department of Biotechnology and Genetic Engineering, University of Development Alternative, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University, Chittagong 4381, Bangladesh
| | - Md Abu Saleh
- Microbiology Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| |
Collapse
|
24
|
Yan F, Gao F. An overview of potential inhibitors targeting non-structural proteins 3 (PL pro and Mac1) and 5 (3CL pro/M pro) of SARS-CoV-2. Comput Struct Biotechnol J 2021; 19:4868-4883. [PMID: 34457214 PMCID: PMC8382591 DOI: 10.1016/j.csbj.2021.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/02/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
There is an urgent need to develop effective treatments for coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The rapid spread of SARS-CoV-2 has resulted in a global pandemic that has not only affected the daily lives of individuals but also had a significant impact on the global economy and public health. Although extensive research has been conducted to identify inhibitors targeting SARS-CoV-2, there are still no effective treatment strategies to combat COVID-19. SARS-CoV-2 comprises two important proteolytic enzymes, namely, the papain-like proteinase, located within non-structural protein 3 (nsp3), and nsp5, both of which cleave large replicase polypeptides into multiple fragments that are required for viral replication. Moreover, a domain within nsp3, known as the macrodomain (Mac1), also plays an important role in viral replication. Inhibition of their functions should be able to significantly interfere with the replication cycle of the virus, and therefore these key proteins may serve as potential therapeutic targets. The functions of the above viral targets and their corresponding inhibitors have been summarized in the current review. This review provides comprehensive updates of nsp3 and nsp5 inhibitor development and would help advance the discovery of novel anti-viral therapeutics against SARS-CoV-2.
Collapse
Affiliation(s)
- Fangfang Yan
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
| | - Feng Gao
- Department of Physics, School of Science, Tianjin University, Tianjin 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
25
|
Toward the Identification of Potential α-Ketoamide Covalent Inhibitors for SARS-CoV-2 Main Protease: Fragment-Based Drug Design and MM-PBSA Calculations. Processes (Basel) 2021. [DOI: 10.3390/pr9061004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since December 2019, the world has been facing the outbreak of the SARS-CoV-2 pandemic that has infected more than 149 million and killed 3.1 million people by 27 April 2021, according to WHO statistics. Safety measures and precautions taken by many countries seem insufficient, especially with no specific approved drugs against the virus. This has created an urgent need to fast track the development of new medication against the virus in order to alleviate the problem and meet public expectations. The SARS-CoV-2 3CL main protease (Mpro) is one of the most attractive targets in the virus life cycle, which is responsible for the processing of the viral polyprotein and is a key for the ribosomal translation of the SARS-CoV-2 genome. In this work, we targeted this enzyme through a structure-based drug design (SBDD) protocol, which aimed at the design of a new potential inhibitor for Mpro. The protocol involves three major steps: fragment-based drug design (FBDD), covalent docking and molecular dynamics (MD) simulation with the calculation of the designed molecule binding free energy at a high level of theory. The FBDD step identified five molecular fragments, which were linked via a suitable carbon linker, to construct our designed compound RMH148. The mode of binding and initial interactions between RMH148 and the enzyme active site was established in the second step of our protocol via covalent docking. The final step involved the use of MD simulations to test for the stability of the docked RMH148 into the Mpro active site and included precise calculations for potential interactions with active site residues and binding free energies. The results introduced RMH148 as a potential inhibitor for the SARS-CoV-2 Mpro enzyme, which was able to achieve various interactions with the enzyme and forms a highly stable complex at the active site even better than the co-crystalized reference.
Collapse
|
26
|
Halder P, Pal U, Paladhi P, Dutta S, Paul P, Pal S, Das D, Ganguly A, IshitaDutta, SayarneelMandal, Ray A, Ghosh S. Evaluation of potency of the selected bioactive molecules from Indian medicinal plants with M Pro of SARS-CoV-2 through in silico analysis. J Ayurveda Integr Med 2021; 13:100449. [PMID: 34054246 PMCID: PMC8139275 DOI: 10.1016/j.jaim.2021.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 04/12/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022] Open
Abstract
Background The recent outbreak of novel SARs CoVid-2 across the globe and absence of specific drug against this virus lead the scientific community to look into some alternative indigenous treatments. India as a hub of ayurvedic and medicinal plants can shed light on its treatment using specific active bio-molecules from these plants. Objectives Keeping our herbal resources in mind we were interested to inquire whether some phytochemicals from Indian spices and medicinal plants can be used as alternative therapeutic agents in contrast to synthetic drugs. Materials and methods We used in-silico molecular docking approach to test whether bioactive molecules of herbal origin such as Hyperoside, Nimbaflavone, Ursolic acid, 6-gingerol, 6-shogaol& 6-paradol, Curcumin, Catechins&Epigallocatechin, α-Hederin, Piperine could bind and potentially block theMproenzyme of Sars-CoV-2 virus. Results Ursolic acid showed the highest docking score (-8.7 kcal/mol) followed by Hyperoside (-8.6kcal/mol), α-Hederin (-8.5 kcal/mol) and Nimbaflavone (-8.0kcal/mol). Epigallocatechin, Catechins, and Curcumin also exhibited high binding affinity (Docking score -7.3, -7.1 and -7.1 kcal/mol) with the Mpro. Rest of the tested phytochemicals exhibited moderate binding and inhibitory effects. Conclusion This finding provides a basis for biochemical assay on Sars-CoV-2 virus.
Collapse
Affiliation(s)
- Pinku Halder
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - Upamanyu Pal
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - Pranab Paladhi
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - Saurav Dutta
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - Pallab Paul
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - Samudra Pal
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - Debasmita Das
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - Agnish Ganguly
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - IshitaDutta
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - SayarneelMandal
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| | - Anirban Ray
- Department of Zoology, Bangabasi Morning College (affiliated to University of Calcutta), Kolkata, West Bengal, India, Pincode: 700009
| | - Sujay Ghosh
- Cytogenetics& Genomics Research Unit, Department of Zoology; University of Calcutta, Taraknath-Palit-Siksha-Prangan (Ballygunge Science College Campus), 35 Ballygunge Circular Road, Kolkata, WestBengal, India,Pincode: 700019
| |
Collapse
|
27
|
Hamoda AM, Fayed B, Ashmawy NS, El-Shorbagi ANA, Hamdy R, Soliman SSM. Marine Sponge is a Promising Natural Source of Anti-SARS-CoV-2 Scaffold. Front Pharmacol 2021; 12:666664. [PMID: 34079462 PMCID: PMC8165660 DOI: 10.3389/fphar.2021.666664] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 12/30/2022] Open
Abstract
The current pandemic caused by SARS-CoV2 and named COVID-19 urgent the need for novel lead antiviral drugs. Recently, United States Food and Drug Administration (FDA) approved the use of remdesivir as anti-SARS-CoV-2. Remdesivir is a natural product-inspired nucleoside analogue with significant broad-spectrum antiviral activity. Nucleosides analogues from marine sponge including spongouridine and spongothymidine have been used as lead for the evolutionary synthesis of various antiviral drugs such as vidarabine and cytarabine. Furthermore, the marine sponge is a rich source of compounds with unique activities. Marine sponge produces classes of compounds that can inhibit the viral cysteine protease (Mpro) such as esculetin and ilimaquinone and human serine protease (TMPRSS2) such as pseudotheonamide C and D and aeruginosin 98B. Additionally, sponge-derived compounds such as dihydrogracilin A and avarol showed immunomodulatory activity that can target the cytokines storm. Here, we reviewed the potential use of sponge-derived compounds as promising therapeutics against SARS-CoV-2. Despite the reported antiviral activity of isolated marine metabolites, structural modifications showed the importance in targeting and efficacy. On that basis, we are proposing a novel structure with bifunctional scaffolds and dual pharmacophores that can be superiorly employed in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Alshaimaa M. Hamoda
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Chemistry of Natural and Microbial Product Department, National Research Centre, Cairo, Egypt
| | - Naglaa S. Ashmawy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Abdel-Nasser A. El-Shorbagi
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Sameh S. M. Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
28
|
Citarella A, Scala A, Piperno A, Micale N. SARS-CoV-2 M pro: A Potential Target for Peptidomimetics and Small-Molecule Inhibitors. Biomolecules 2021; 11:607. [PMID: 33921886 PMCID: PMC8073203 DOI: 10.3390/biom11040607] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 12/17/2022] Open
Abstract
The uncontrolled spread of the COVID-19 pandemic caused by the new coronavirus SARS-CoV-2 during 2020-2021 is one of the most devastating events in the history, with remarkable impacts on the health, economic systems, and habits of the entire world population. While some effective vaccines are nowadays approved and extensively administered, the long-term efficacy and safety of this line of intervention is constantly under debate as coronaviruses rapidly mutate and several SARS-CoV-2 variants have been already identified worldwide. Then, the WHO's main recommendations to prevent severe clinical complications by COVID-19 are still essentially based on social distancing and limitation of human interactions, therefore the identification of new target-based drugs became a priority. Several strategies have been proposed to counteract such viral infection, including the repurposing of FDA already approved for the treatment of HIV, HCV, and EBOLA, inter alia. Among the evaluated compounds, inhibitors of the main protease of the coronavirus (Mpro) are becoming more and more promising candidates. Mpro holds a pivotal role during the onset of the infection and its function is intimately related with the beginning of viral replication. The interruption of its catalytic activity could represent a relevant strategy for the development of anti-coronavirus drugs. SARS-CoV-2 Mpro is a peculiar cysteine protease of the coronavirus family, responsible for the replication and infectivity of the parasite. This review offers a detailed analysis of the repurposed drugs and the newly synthesized molecules developed to date for the treatment of COVID-19 which share the common feature of targeting SARS-CoV-2 Mpro, as well as a brief overview of the main enzymatic and cell-based assays to efficaciously screen such compounds.
Collapse
Affiliation(s)
| | | | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, 98166 Messina, Italy; (A.C.); (A.S.); (A.P.)
| |
Collapse
|
29
|
Abdallah HM, El-Halawany AM, Sirwi A, El-Araby AM, Mohamed GA, Ibrahim SRM, Koshak AE, Asfour HZ, Awan ZA, A. Elfaky M. Repurposing of Some Natural Product Isolates as SARS-COV-2 Main Protease Inhibitors via In Vitro Cell Free and Cell-Based Antiviral Assessments and Molecular Modeling Approaches. Pharmaceuticals (Basel) 2021; 14:213. [PMID: 33806331 PMCID: PMC8001104 DOI: 10.3390/ph14030213] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 02/26/2021] [Accepted: 02/28/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of the SARS-CoV-2 pandemic has prompted scientists to search for an efficient antiviral medicine to overcome the rapid spread and the marked increase in the number of patients worldwide. In this regard natural products could be a potential source of substances active against coronavirus infections. A systematic computer-aided virtual screening approach was carried out using commercially available natural products found on the Zinc Database in addition to an in-house compound library to identify potential natural product inhibitors of SARS-CoV-2 main protease (MPRO). The top eighteen hits from the screening were selected for in vitro evaluation on the viral protease (SARS-CoV-2 MPRO). Five compounds (naringenin, 2,3',4,5',6-pentahydroxybenzophenone, apigenin-7-O-glucoside, sennoside B, and acetoside) displayed high activity against the viral protein. Acteoside showed similar activity to the positive control GC376. The most potent compounds were tested in vitro on SARS-CoV-2 Egyptian strain where only naringenin showed moderate anti-SARS-CoV-2 activity at non-cytotoxic micromolar concentrations in vitro with a significant selectivity index (CC50/IC50 = 178.748/28.347 = 6.3). Moreover; a common feature pharmacophore model was generated to explain the requirements for enzyme inhibition by this diverse group of active ligands. These results pave a path for future repurposing and development of natural products to aid in the battle against COVID-19.
Collapse
Affiliation(s)
- Hossam M. Abdallah
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.); (A.E.K.); (M.A.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Ali M. El-Halawany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt;
| | - Alaa Sirwi
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.); (A.E.K.); (M.A.E.)
| | - Amr M. El-Araby
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ain Shams Universit, Cairo 11566, Egypt;
| | - Gamal A. Mohamed
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.); (A.E.K.); (M.A.E.)
- Department of Pharmacognosy, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt
| | - Sabrin R. M. Ibrahim
- Batterjee Medical College, P.O. Box 6231, North Obhur, Prince Abdullah Al-Faisal Street, Jeddah 21442, Saudi Arabia;
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Abdulrahman E. Koshak
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.); (A.E.K.); (M.A.E.)
| | - Hani Z. Asfour
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Zuhier A. Awan
- Department of Clinical Biochemistry, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Mahmoud A. Elfaky
- Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (A.S.); (G.A.M.); (A.E.K.); (M.A.E.)
| |
Collapse
|
30
|
In silico analysis of Phyllanthus amarus phytochemicals as potent drugs against SARS-CoV-2 main protease. CURRENT RESEARCH IN GREEN AND SUSTAINABLE CHEMISTRY 2021; 4. [PMCID: PMC8364217 DOI: 10.1016/j.crgsc.2021.100159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Phyllanthus amarus, also known as Bhui Korma in India, is well known for its medicinal properties and is used to treat several diseases worldwide. This study aims to identify phytochemicals from P. amarus and assess their anti-viral activity through in silico methods against the main protease (3CLPro/MPro) enzyme of the novel coronavirus. 190 compounds were obtained from literature and docked against 3CLPro and 16 compounds showed higher binding affinity with 3CLPro with their values lying between -8.9 kcal/mol to -9.6 kcal/mol. The top two compounds, Myricitrin (CID: 5352000) and Quercetin-3-O-glucuronide (CID: 12004528) gave high binding affinity values of -9.6 kcal/mol and -9.4 kcal/mol respectively and also display favourable binding interactions with the 3CLPro. Both the compounds were further subjected to molecular dynamics simulation and MM-PBSA based binding free energy calculations. ADMET and drug-likeness properties were studied to assess the pharmacokinetic properties of the compounds. Favourable pharmacokinetic results reinforced the applicability of the compounds assessed. Along with continuous studies being carried out with chemical compounds, research needs to expand into all areas, including the use of natural compounds as drug compounds. The identified hits from this study can be taken further for in vitro and in vivo studies to examine their efficacy against COVID-19.
Collapse
|
31
|
Al-Azzam S, Ding Y, Liu J, Pandya P, Ting JP, Afshar S. Peptides to combat viral infectious diseases. Peptides 2020; 134:170402. [PMID: 32889022 PMCID: PMC7462603 DOI: 10.1016/j.peptides.2020.170402] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Viral infectious diseases have resulted in millions of deaths throughout history and have created a significant public healthcare burden. Tremendous efforts have been placed by the scientific communities, health officials and government organizations to detect, treat, and prevent viral infection. However, the complicated life cycle and rapid genetic mutations of viruses demand continuous development of novel medicines with high efficacy and safety profiles. Peptides provide a promising outlook as a tool to combat the spread and re-emergence of viral infection. This article provides an overview of five viral infectious diseases with high global prevalence: influenza, chronic hepatitis B, acquired immunodeficiency syndrome, severe acute respiratory syndrome, and coronavirus disease 2019. The current and potential peptide-based therapies, vaccines, and diagnostics for each disease are discussed.
Collapse
Affiliation(s)
- Shams Al-Azzam
- Professional Scientific Services, Eurofins Lancaster Laboratories, Lancaster, PA, 17605, USA
| | - Yun Ding
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Jinsha Liu
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Priyanka Pandya
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Joey Paolo Ting
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA
| | - Sepideh Afshar
- Protein Engineering, Lilly Biotechnology Center, Eli Lilly and Company, San Diego, CA, 92121, USA.
| |
Collapse
|
32
|
Vlachakis D, Papakonstantinou E, Mitsis T, Pierouli K, Diakou I, Chrousos G, Bacopoulou F. Molecular mechanisms of the novel coronavirus SARS-CoV-2 and potential anti-COVID19 pharmacological targets since the outbreak of the pandemic. Food Chem Toxicol 2020; 146:111805. [PMID: 33038452 PMCID: PMC7543766 DOI: 10.1016/j.fct.2020.111805] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/02/2020] [Accepted: 10/05/2020] [Indexed: 12/26/2022]
Abstract
The novel coronavirus SARS-CoV-2 has emerged as a severe threat against public health and global economies. COVID-19, the disease caused by this virus, is highly contagious and has led to an ongoing pandemic. SARS-CoV-2 affects, mainly, the respiratory system, with most severe cases primarily showcasing acute respiratory distress syndrome. Currently, no targeted therapy exists, and since the number of infections and death toll keeps rising, it has become a necessity to study possible therapeutic targets. Antiviral drugs can target various stages of the viral infection, and in the case of SARS-CoV-2, both structural and non-structural proteins have been proposed as potential drug targets. This review focuses on the most researched SARS-CoV-2 proteins, their structure, function, and possible therapeutic approaches.
Collapse
Affiliation(s)
- Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece; University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece; Department of Informatics, Faculty of Natural and Mathematical Sciences, King's College London, Strand, London WC2R 2LS, UK
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Thanasis Mitsis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos, Athens, 11855, Greece
| | - George Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece; Lab of Molecular Endocrinology, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, 4 Soranou Ephessiou Street, Athens, 11527, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, and UNESCO Chair on Adolescent Health Care, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, 8 Levadias Street, Athens, 11527, Greece.
| |
Collapse
|
33
|
Ramadhan DSF, Fakih TM, Arfan A. Activity Prediction of Bioactive Compounds Contained in Etlingera elatior Against the SARS-CoV-2 Main Protease: An In Silico Approach. BORNEO JOURNAL OF PHARMACY 2020. [DOI: 10.33084/bjop.v3i4.1634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The COVID-19 pandemic has become a serious problem today, with its prevalence increasing every day. The SARS-CoV-2 main protease (MPro) is a promising therapeutic target to inhibit replicating and spreading the virus that causes COVID-19. The compounds contained in the Etlingera elatior plant has the potential. This study aimed to examine the compounds' activity in E. elatior against SARS-CoV-2 MPro using in silico methods. A total of seven compounds contained in E. elatior were obtained from the Knapsack database. The compounds were then docked into the SARS-CoV-2 MPro receptor's active site with the PDB ID 6LU7. Afterward, the biological activities were predicted by the PASS prediction webserver. The molecular docking results showed that ergosterol peroxide and sitostenone had the best binding energy with -10.40 kcal/mol and -9.17 kcal/mol, respectively. The in silico PASS prediction showed it has potential as antiviral therapy. It concluded ergosterol peroxide and sitostenone has the potential as SARS-CoV-2 MPro inhibitor candidate.
Collapse
|
34
|
Liu P, Liu H, Sun Q, Liang H, Li C, Deng X, Liu Y, Lai L. Potent inhibitors of SARS-CoV-2 3C-like protease derived from N-substituted isatin compounds. Eur J Med Chem 2020; 206:112702. [PMID: 32798789 PMCID: PMC7395831 DOI: 10.1016/j.ejmech.2020.112702] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/30/2023]
Abstract
SARS-CoV-2 3C-like protease is the main protease of SARS-CoV-2 and has been considered as one of the key targets for drug discovery against COVID-19. We identified several N-substituted isatin compounds as potent SARS-CoV-2 3C-like protease inhibitors. The three most potent compounds inhibit SARS-CoV-2 3C-like protease with IC50's of 45 nM, 47 nM and 53 nM, respectively. Our study indicates that N-substituted isatin compounds have the potential to be developed as broad-spectrum anti-coronavirus drugs.
Collapse
Affiliation(s)
- Pei Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hongbo Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qi Sun
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Hao Liang
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chunmei Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xiaobing Deng
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Ying Liu
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Luhua Lai
- BNLMS, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China; Center for Quantitative Biology, Peking University, Beijing, 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
35
|
Zhou QA, Kato-Weinstein J, Li Y, Deng Y, Granet R, Garner L, Liu C, Polshakov D, Gessner C, Watkins S. Potential Therapeutic Agents and Associated Bioassay Data for COVID-19 and Related Human Coronavirus Infections. ACS Pharmacol Transl Sci 2020; 3:813-834. [PMID: 33062950 PMCID: PMC7447080 DOI: 10.1021/acsptsci.0c00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/07/2023]
Abstract
The COVID-19 pandemic, caused by the novel coronavirus SARS-CoV-2, has led to several million confirmed cases and hundreds of thousands of deaths worldwide. To support the ongoing research and development of COVID-19 therapeutics, this report provides an overview of protein targets and corresponding potential drug candidates with bioassay and structure-activity relationship data found in the scientific literature and patents for COVID-19 or related virus infections. Highlighted are several sets of small molecules and biologics that act on specific targets, including 3CLpro, PLpro, RdRp, S-protein-ACE2 interaction, helicase/NTPase, TMPRSS2, and furin, which are involved in the viral life cycle or in other aspects of the disease pathophysiology. We hope this report will be valuable to the ongoing drug repurposing efforts and the discovery of new therapeutics with the potential for treating COVID-19.
Collapse
Affiliation(s)
- Qiongqiong Angela Zhou
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | | | - Yingzhu Li
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Yi Deng
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Roger Granet
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Linda Garner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Cynthia Liu
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Dmitrii Polshakov
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Chris Gessner
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| | - Steven Watkins
- CAS, a division
of the American Chemical Society, 2540 Olentangy River Road, Columbus, Ohio 43210-3012, United States
| |
Collapse
|
36
|
Ullrich S, Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett 2020; 30:127377. [PMID: 32738988 PMCID: PMC7331567 DOI: 10.1016/j.bmcl.2020.127377] [Citation(s) in RCA: 491] [Impact Index Per Article: 98.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/08/2023]
Abstract
The unprecedented pandemic of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is threatening global health. The virus emerged in late 2019 and can cause a severe disease associated with significant mortality. Several vaccine development and drug discovery campaigns are underway. The SARS-CoV-2 main protease is considered a promising drug target, as it is dissimilar to human proteases. Sequence and structure of the main protease are closely related to those from other betacoronaviruses, facilitating drug discovery attempts based on previous lead compounds. Covalently binding peptidomimetics and small molecules are investigated. Various compounds show antiviral activity in infected human cells.
Collapse
Affiliation(s)
- Sven Ullrich
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia.
| |
Collapse
|
37
|
Rakib A, Paul A, Chy MNU, Sami SA, Baral SK, Majumder M, Tareq AM, Amin MN, Shahriar A, Uddin MZ, Dutta M, Tallei TE, Emran TB, Simal-Gandara J. Biochemical and Computational Approach of Selected Phytocompounds from Tinospora crispa in the Management of COVID-19. Molecules 2020; 25:3936. [PMID: 32872217 PMCID: PMC7504753 DOI: 10.3390/molecules25173936] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
A pandemic caused by the novel coronavirus (SARS-CoV-2 or COVID-19) began in December 2019 in Wuhan, China, and the number of newly reported cases continues to increase. More than 19.7 million cases have been reported globally and about 728,000 have died as of this writing (10 August 2020). Recently, it has been confirmed that the SARS-CoV-2 main protease (Mpro) enzyme is responsible not only for viral reproduction but also impedes host immune responses. The Mpro provides a highly favorable pharmacological target for the discovery and design of inhibitors. Currently, no specific therapies are available, and investigations into the treatment of COVID-19 are lacking. Therefore, herein, we analyzed the bioactive phytocompounds isolated by gas chromatography-mass spectroscopy (GC-MS) from Tinospora crispa as potential COVID-19 Mpro inhibitors, using molecular docking study. Our analyses unveiled that the top nine hits might serve as potential anti-SARS-CoV-2 lead molecules, with three of them exerting biological activity and warranting further optimization and drug development to combat COVID-19.
Collapse
Affiliation(s)
- Ahmed Rakib
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.)
| | - Arkajyoti Paul
- Drug Discovery, GUSTO A Research Group, Chittagong 4000, Bangladesh; (A.P.); (M.N.U.C.); (M.M.)
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; (M.Z.U.); (M.D.)
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh;
| | - Md. Nazim Uddin Chy
- Drug Discovery, GUSTO A Research Group, Chittagong 4000, Bangladesh; (A.P.); (M.N.U.C.); (M.M.)
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Saad Ahmed Sami
- Department of Pharmacy, Faculty of Biological Sciences, University of Chittagong, Chittagong 4331, Bangladesh; (A.R.); (S.A.S.)
| | - Sumit Kumar Baral
- Department of Microbiology, Jagannath University, Dhaka 1100, Bangladesh;
| | - Mohuya Majumder
- Drug Discovery, GUSTO A Research Group, Chittagong 4000, Bangladesh; (A.P.); (M.N.U.C.); (M.M.)
| | - Abu Montakim Tareq
- Department of Pharmacy, International Islamic University Chittagong, Chittagong 4318, Bangladesh;
| | - Mohammad Nurul Amin
- Department of Pharmacy, Atish Dipankar University of Science and Technology, Dhaka 1230, Bangladesh;
| | - Asif Shahriar
- Department of Microbiology, Stamford University Bangladesh, 51 Siddeswari Road, Dhaka 1217, Bangladesh;
| | - Md. Zia Uddin
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; (M.Z.U.); (M.D.)
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Mycal Dutta
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; (M.Z.U.); (M.D.)
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, Indonesia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh; (M.Z.U.); (M.D.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo–Ourense Campus, E32004 Ourense, Spain
| |
Collapse
|
38
|
Abstract
During the last three decades or so, many efforts have been made to study the protein cleavage
sites by some disease-causing enzyme, such as HIV (Human Immunodeficiency Virus) protease
and SARS (Severe Acute Respiratory Syndrome) coronavirus main proteinase. It has become increasingly
clear <i>via</i> this mini-review that the motivation driving the aforementioned studies is quite wise,
and that the results acquired through these studies are very rewarding, particularly for developing peptide
drugs.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, MA 02478, United States
| |
Collapse
|
39
|
Chou KC. An Insightful 10-year Recollection Since the Emergence of the 5-steps Rule. Curr Pharm Des 2020; 25:4223-4234. [PMID: 31782354 DOI: 10.2174/1381612825666191129164042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 11/25/2019] [Indexed: 11/22/2022]
Abstract
OBJECTIVE One of the most challenging and also the most difficult problems is how to formulate a biological sequence with a vector but considerably keep its sequence order information. METHODS To address such a problem, the approach of Pseudo Amino Acid Components or PseAAC has been developed. RESULTS AND CONCLUSION It has become increasingly clear via the 10-year recollection that the aforementioned proposal has been indeed very powerful.
Collapse
Affiliation(s)
- Kuo-Chen Chou
- Gordon Life Science Institute, Boston, Massachusetts 02478, United States.,Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
40
|
Kuo C, Liang P. Characterization and Inhibition of the Main Protease of Severe Acute Respiratory Syndrome Coronavirus. CHEMBIOENG REVIEWS 2015. [PMCID: PMC7159133 DOI: 10.1002/cben.201400031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chih‐Jung Kuo
- National Chung Hsing University, College of Veterinary Medicine, Department of Veterinary Medicine, Taichung 402, Taiwan
| | - Po‐Huang Liang
- National Chung Hsing University, College of Veterinary Medicine, Department of Veterinary Medicine, Taichung 402, Taiwan
| |
Collapse
|
41
|
Developments in the Search for Small-Molecule Inhibitors for Treatment of Severe Acute Respiratory Syndrome Coronavirus. Antiviral Res 2014. [DOI: 10.1128/9781555815493.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Ramajayam R, Tan KP, Liu HG, Liang PH. Synthesis and evaluation of pyrazolone compounds as SARS-coronavirus 3C-like protease inhibitors. Bioorg Med Chem 2010; 18:7849-54. [PMID: 20947359 PMCID: PMC7127448 DOI: 10.1016/j.bmc.2010.09.050] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 09/20/2010] [Accepted: 09/21/2010] [Indexed: 11/23/2022]
Abstract
A series of pyrazolone compounds as possible SARS-CoV 3CL protease inhibitors were designed, synthesized, and evaluated by in vitro protease assay using fluorogenic substrate peptide in which several showed potent inhibition against the 3CL protease. Interestingly, one of the inhibitors was also active against 3C protease from coxsackievirus B3. These inhibitors could be potentially developed into anti-coronaviral and anti-picornaviral agents.
Collapse
Affiliation(s)
- R. Ramajayam
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Taipei 11529, Taiwan
| | - Kian-Pin Tan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Hun-Ge Liu
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | - Po-Huang Liang
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Taipei 11529, Taiwan
- Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
43
|
Du QS, Huang RB, Chou KC. Advances in visual representation of molecular potentials. Expert Opin Drug Discov 2010; 5:513-27. [DOI: 10.1517/17460441.2010.484837] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
44
|
Study of Inhibitors Against SARS Coronavirus by Computational Approaches. VIRAL PROTEASES AND ANTIVIRAL PROTEASE INHIBITOR THERAPY 2009. [PMCID: PMC7122585 DOI: 10.1007/978-90-481-2348-3_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
45
|
Ye Y, Wei J, Dai X, Gao Q. Computational studies of the binding modes of A 2A adenosine receptor antagonists. Amino Acids 2008; 35:389-96. [PMID: 17978889 PMCID: PMC7087644 DOI: 10.1007/s00726-007-0604-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Accepted: 09/12/2007] [Indexed: 11/25/2022]
Abstract
A molecular docking study was performed on several structurally diverse A(2A) AR antagonists, including xanthines, and non-xanthine type antagonists to investigate their binding modes with A(2A) adenosine receptor (AR), one of the four subtypes of AR, which is currently of great interest as a target for therapeutic intervention, in particular for Parkinson's disease. The high-affinity binding site was found to be a hydrophobic pocket with the involvement of hydrogen bonding interactions as well as pi-pi stacking interactions with the ligands. The detailed binding modes for both xanthine and non-xanthine type A(2A) antagonists were compared and the essential features were extracted and converted to database searchable queries for virtual screening study of novel A(2A) AR antagonists. Findings from this study are helpful for elucidating the binding pattern of A(2A) AR antagonists and for the design of novel active ligands.
Collapse
Affiliation(s)
- Y. Ye
- />School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - J. Wei
- />School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - X. Dai
- />Chemistry Department, XenoPort Inc., Santa Clara, CA U.S.A
| | - Q. Gao
- />Chemistry Department, XenoPort Inc., Santa Clara, CA U.S.A
| |
Collapse
|
46
|
Housaindokht MR, Bozorgmehr MR, Bahrololoom M. Analysis of ligand binding to proteins using molecular dynamics simulations. J Theor Biol 2008; 254:294-300. [PMID: 18599089 DOI: 10.1016/j.jtbi.2008.04.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 04/28/2008] [Accepted: 04/30/2008] [Indexed: 11/19/2022]
Abstract
This work aims to explore theoretically the molecular mechanisms of ligand binding to proteins through the use of molecular dynamics simulations. The binding of sodium dodecyl sulfate (SDS) to cobra cardio toxin A3 (CTX A3) and thiourea (TOU) to lysozyme have been chosen as the two model systems. Data acquisitions were made by Gromacs software. To begin with, the collisions of ligand molecules with every residue of CTX A3 and lysozyme were evaluated. With this information in hand, the average numbers of collisions with each residue was defined and then assessed. Next, a measure of the affinity of a residue, P(i), referred to as conformational factor, toward a ligand molecule was established. Based on the results provided, all site-making residues for CTX A3 and lysozyme were identified. The results are in good agreement with the experimental data. Finally, based on this method, all site-making residues of bovine carbonic anhydrase (BCA) toward the SDS ligand were predicted.
Collapse
Affiliation(s)
- M R Housaindokht
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, P.O. Box 91775-1436, Mashhad, Iran.
| | | | | |
Collapse
|
47
|
Lee TC, Lee ASG, Li KB. Incorporating the amino acid properties to predict the significance of missense mutations. Amino Acids 2008; 35:615-26. [DOI: 10.1007/s00726-008-0087-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2008] [Accepted: 02/26/2008] [Indexed: 11/25/2022]
|
48
|
Guo XL, Li L, Wei DQ, Zhu YS, Chou KC. Cleavage mechanism of the H5N1 hemagglutinin by trypsin and furin. Amino Acids 2008; 35:375-82. [PMID: 18235997 PMCID: PMC7088033 DOI: 10.1007/s00726-007-0611-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2007] [Accepted: 09/23/2007] [Indexed: 01/05/2023]
Abstract
The cleavage property of hemagglutinin (HA) by different proteases was the prime determinant for influenza A virus pathogenicity. In order to understand the cleavage mechanism, molecular modeling tools were utilized to study the coupled model systems of the proteases, i.e., trypsin and furin and peptides of the cleavage sites specific to H5N1 and H1 HAs, which constitute models of HA precursor in complex with cleavage proteases. The peptide segments ‘RERRRKKR ↓ G’ and ‘SIQSR ↓ G’ from the high pathogenic H5N1 H5 and the low pathogenic H1N1 H1 cleavage sites were docking to the trypsin and furin active pockets, respectively. It was observed through the docking studies that trypsin was able to recognize and cleave both the high pathogenic and low pathogenic hemagglutinin, while furin could only cleave the high pathogenic hemagglutinin. An analysis of binding energies indicated that furin got most of its selectivity due to the interactions with P1, P4, and P6, while having less interaction with P2 and little interactions with P3, P5, P7, and P8. Some mutations of H5N1 H5 cleavage sequence fitted less well into furin and would reduce high pathogenicity of the virus. These findings hint that we should focus at the subsites P1, P4, and P6 for developing drugs against H5N1 viruses.
Collapse
Affiliation(s)
- X-L Guo
- College of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | |
Collapse
|
49
|
Du Q, Huang R, Wei Y, Wang C, Chou K. Peptide reagent design based on physical and chemical properties of amino acid residues. J Comput Chem 2007; 28:2043-50. [PMID: 17450553 PMCID: PMC7166493 DOI: 10.1002/jcc.20732] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2007] [Revised: 02/18/2007] [Accepted: 02/19/2007] [Indexed: 11/30/2022]
Abstract
It has tremendous values for both drug discovery and basic research to develop a solid bioinformatical tool for guiding peptide reagent design. Based on the physical and chemical properties of amino acids, a new strategy for peptide reagent design, the so-called AABPD (amino acid based-peptide design), is proposed. The peptide samples in a training dataset are described by a series of HMLP (heuristic molecular lipophilicity potential) parameters and other physicochemical properties of amino acid residues that form a three-dimensional data matrix where each component is defined by three indexes: the first index refers to the peptide samples, the second to the amino acid positions, and the third to the amino acid parameters. The binding free energy between a peptide ligand and its protein receptor is calculated by a linear free energy equation through the physicochemical parameters, resulting in a set of simultaneous linear equations between the bioactivity of the peptides and the physicochemical properties of amino acids. An iterative double least square technique is developed for the solution of the three-dimensional simultaneous linear equation set to determine the amino acid position coefficients of peptide sequence and the physicochemical parameter coefficients of amino acid residues alternately. The two sets of coefficients thus obtained are used for predicting the bioactivity of other query peptide reagents. Two calculation examples, the peptide substrate specificity of the SARS coronavirus 3C-like proteinase and the affinity prediction for epitope-peptides with Class I MHC molecules are studied by using the peptide reagent design strategy.
Collapse
Affiliation(s)
- Qi‐Shi Du
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi, 530004, China
- Institute of Bioinformatics and Drug Discovery, Tianjin Normal University, Tianjin, 300074, China
- Gordon Life Science Institute, San Diego, California 92130, USA
| | - Ri‐Bo Huang
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi, 530004, China
- Guangxi Academy of Sciences, 98 Daling Road, Nanning, Guangxi 530004, China
| | - Yu‐Tuo Wei
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi, 530004, China
| | - Cheng‐Hua Wang
- Guangxi Key Laboratory of Subtropical Bioresource Conservation and Utilization, Guangxi University, Nanning, Guangxi, 530004, China
| | - Kuo‐Chen Chou
- Gordon Life Science Institute, San Diego, California 92130, USA
| |
Collapse
|
50
|
Zhang SW, Zhang YL, Pan Q, Cheng YM, Chou KC. Estimating residue evolutionary conservation by introducing von Neumann entropy and a novel gap-treating approach. Amino Acids 2007; 35:495-501. [PMID: 17710364 PMCID: PMC7088136 DOI: 10.1007/s00726-007-0586-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Accepted: 02/23/2007] [Indexed: 11/24/2022]
Abstract
Evolutionary conservation derived from a multiple sequence alignment is a powerful indicator of the functional significance of a residue, and it can help to predict active sites, ligand-binding sites, and protein interaction interfaces. The results of the existing algorithms in identifying the residue’s conservation strongly depend on the sequence alignment, making the results highly variable. Here, by introducing the amino acid similarity matrix, we propose a novel gap-treating approach by combining the evolutionary information and von Neumann entropies to compute the residue conservation scores. It is indicated through a series of tested results that the new approach is quite encouraging and promising and may become a useful tool in complementing the existing methods.
Collapse
Affiliation(s)
- S-W Zhang
- College of Automation, Northwestern Polytechnical University, Xi'an, China.
| | | | | | | | | |
Collapse
|