1
|
Wani SS, Qadri H, Shah AH, Dar TA. Dual Antifungal and Antiproliferative Activities of a Novel Protein Fraction from a Medicinally Important Herb Trillium govanianum Wall. ex. D. Don. Appl Biochem Biotechnol 2024; 196:5080-5098. [PMID: 38038807 DOI: 10.1007/s12010-023-04786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2023] [Indexed: 12/02/2023]
Abstract
Antimicrobial resistance of microorganisms and the unwanted side effects of chemoradiation therapy in cancer are major issues in healthcare. In recent times, protein-based drugs have emerged as promising candidates due to their high specificity, less side effects, etc. In this context, the rhizome of Trillium govanianum was first explored for biologically active proteins/peptides. For this, three protein fractions namely Aqueous protein fraction (APF), Hexane-Methanol-treated aqueous protein fraction (HMAPF), and Methanol-treated aqueous protein fraction (MAPF) were prepared and evaluated for antimicrobial and antiproliferative activities. In antifungal activity, HMAPF showed the lowest MIC90 values of 1.56 µg/ml against Candida parapsilosis and Candida glabrata and 3.12 µg/ml against Candida albicans and Candida auris. The antifungal activity was further confirmed by a chitinase assay, a growth kinetics and a proteinase inhibitory assay. Surprisingly, none of the three protein fractions exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. Moreover, APF exhibited potent antiproliferative and antioxidant activities with IC50 values of 18 µg/ml and 227 µg /ml, respectively. For HMAPF, an IC50 value of 70 µg/ml against the MDA-MB-231 cell line was observed. The present results demonstrate that the protein fractions, particularly HMAPF and APF, might serve as potential sources of a dual antifungal and antiproliferative protein-based drug.
Collapse
Affiliation(s)
- Snober S Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006
| | - Hafsa Qadri
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006
| | - Abdul H Shah
- Department of Bioresources, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006.
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar, Jammu and Kashmir, India, 190006.
| |
Collapse
|
2
|
Chidike Ezeorba TP, Ezugwu AL, Chukwuma IF, Anaduaka EG, Udenigwe CC. Health-promoting properties of bioactive proteins and peptides of garlic (Allium sativum). Food Chem 2024; 435:137632. [PMID: 37801762 DOI: 10.1016/j.foodchem.2023.137632] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/08/2023]
Abstract
Garlic is a popular food spice with diverse and well-established medicinal properties. Many research interests have been directed toward the biological activities of the phytochemical constituents of garlic. However, prospects of its bioactive proteins and peptides have been understudied to date. With the advances in food proteomics/peptide research, a review of studies on garlic bioactive proteins and peptides, especially on their nature, extraction, and biological activities, is timely. Garlic has been reported to express several proteins, endogenous and protein-derived peptides with interesting bioactivities, including antioxidant, anti-inflammatory, antibacterial, antifungal, anti-proliferative, antiviral, anti-hypertensive and immunomodulatory activities, suggesting their therapeutic and pharmacological potentials. Compared to legumes, the low protein contents of garlic bulbs and their low stability are possible limitations that would hinder future applications. We suggest adopting heterologous expression systems for peptide overproduction and stability enhancement. Therefore, we recommend increased scientific interest in the bioactive peptides of garlic and other spice plants.
Collapse
Affiliation(s)
- Timothy Prince Chidike Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Molecular Biotechnology, School of Biosciences, University of Birmingham Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Arinze Linus Ezugwu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Ifeoma Felicia Chukwuma
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Emeka Godwin Anaduaka
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria; Department of Genetics and Biotechnology, Faculty of Biological Sciences, University of Nigeria, Enugu State 410001, Nigeria
| | - Chibuike C Udenigwe
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa K1H 8M5, Canada.
| |
Collapse
|
3
|
Shruthishree D. Padiyappa, Hemavathi Avalappa, Yeldur P. Venkatesh, Nagaraj Parisara, B. T. Prabhakar, Pramod.S.N.. Characterization of antioxidant, anti-cancer, and immunomodulatory functions of partially purified garlic (Allium sativum L.) lectin. Biomedicine (Taipei) 2022. [DOI: 10.51248/.v42i4.1862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Introduction and Aim: The metabolic and oxidative stress induces highly reactive free radicals that are known to harm normal physiology and play a role in the development of cancer. Elevated levels of these free radicals contribute to excessive neovascularization leading to angiogenesis mediated cancer progression. Targeting these free radicals through dietary source is important strategy in regulation of cancer. Allium sativum L. (AsL) garlic has important multi pharmacological properties. On the other hand, dietary lectins are proven to be the best anti-cancer molecules. The study presents investigation that focus to assess the antioxidant, immunomodulatory and anticancer activities of partially purified garlic lectin (PPAsL).
Materials and Methods: Fresh garlic bulbs were processed and evaluated for lectin induced HA activity. Further the garlic lectins (AsL) were partially purified by ammonium sulphate precipitation and dialysis and analyzed through SDS-PAGE. Further lectins were characterized by producing Anti-AsL polyclonal antibodies and purification by affinity chromatography. Pharmacological evaluations of the lectins were assessed through antioxidant, anti-proliferative and antiangiogenic mediated anti-cancer activity.
Results: Lectin positive activity was confirmed by HA activity and partial purification lectin identified ?12kDa protein having Glc/Man glycan specificity. The polyclonal antibodies raised against PPAsL, confirmed that it has potent immunogen. Pharmacological evaluation confirmed that PPAsL has potent antioxidant, antiangiogenic and antiproliferative effect both in-vitro and in-vivo.
Conclusion: PPAsL is potent antioxidant, anti-proliferative and anti-cancer molecule. The dietary recommendation of the garlic lectin is an important therapeutic strategy against the cancer.
Collapse
|
4
|
Abstract
Biologically active plant peptides, consisting of secondary metabolites, are compounds (amino acids) utilized by plants in their defense arsenal. Enzymatic processes and metabolic pathways secrete these plant peptides. They are also known for their medicinal value and have been incorporated in therapeutics of major human diseases. Nevertheless, its limitations (low bioavailability, high cytotoxicity, poor absorption, low abundance, improper metabolism, etc.) have demanded a need to explore further and discover other new plant compounds that overcome these limitations. Keeping this in mind, therapeutic plant proteins can be excellent remedial substitutes for bodily affliction. A multitude of these peptides demonstrates anti-carcinogenic, anti-microbial, anti-HIV, and neuro-regulating properties. This article's main aim is to list out and report the status of various therapeutic plant peptides and their prospective status as peptide-based drugs for multiple diseases (infectious and non-infectious). The feasibility of these compounds in the imminent future has also been discussed.
Collapse
|
5
|
Wani SS, Dar PA, Zargar SM, Dar TA. Therapeutic Potential of Medicinal Plant Proteins: Present Status and Future Perspectives. Curr Protein Pept Sci 2021; 21:443-487. [PMID: 31746291 DOI: 10.2174/1389203720666191119095624] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 10/10/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
Biologically active molecules obtained from plant sources, mostly including secondary metabolites, have been considered to be of immense value with respect to the treatment of various human diseases. However, some inevitable limitations associated with these secondary metabolites like high cytotoxicity, low bioavailability, poor absorption, low abundance, improper metabolism, etc., have forced the scientific community to explore medicinal plants for alternate biologically active molecules. In this context, therapeutically active proteins/peptides from medicinal plants have been promoted as a promising therapeutic intervention for various human diseases. A large number of proteins isolated from the medicinal plants have been shown to exhibit anti-microbial, anti-oxidant, anti-HIV, anticancerous, ribosome-inactivating and neuro-modulatory activities. Moreover, with advanced technological developments in the medicinal plant research, medicinal plant proteins such as Bowman-Birk protease inhibitor and Mistletoe Lectin-I are presently under clinical trials against prostate cancer, oral carcinomas and malignant melanoma. Despite these developments and proteins being potential drug candidates, to date, not a single systematic review article has documented the therapeutical potential of the available biologically active medicinal plant proteome. The present article was therefore designed to describe the current status of the therapeutically active medicinal plant proteins/peptides vis-à-vis their potential as future protein-based drugs for various human diseases. Future insights in this direction have also been highlighted.
Collapse
Affiliation(s)
- Snober Shabeer Wani
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Parvaiz A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| | - Sajad M Zargar
- Division of Plant Biotechnology, S. K. University of Agricultural Sciences and Technology of Srinagar, Shalimar-190025, Srinagar, Jammu and Kashmir, India
| | - Tanveer A Dar
- Department of Clinical Biochemistry, University of Kashmir, Srinagar-190006, Jammu and Kashmir, India
| |
Collapse
|
6
|
Mijiti Y, Jian Y, Rozi R, Nuermaimaiti N, Mirzaakhmedov SY, Ziyavitdinov ZF, Yili A, Salikhov SI, Aisa HA. Antimicrobial Peptides from Fritillaria pallidiflora. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03011-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
|
8
|
Jabeen U, Khanum A. Isolation and characterization of potential food preservative peptide from Momordica charantia L. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2014.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
9
|
Biological Properties and Characterization of ASL50 Protein from Aged Allium sativum Bulbs. Appl Biochem Biotechnol 2015; 176:1914-27. [PMID: 26043852 DOI: 10.1007/s12010-015-1687-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/25/2015] [Indexed: 10/23/2022]
Abstract
Allium sativum is well known for its medicinal properties. The A. sativum lectin 50 (ASL50, 50 kDa) was isolated from aged A. sativum bulbs and purified by gel filtration chromatography on Sephacryl S-200 column. Agar well diffusion assay were used to evaluate the antimicrobial activity of ASL50 against Candida species and bacteria then minimal inhibitory concentration (MIC) was determined. The lipid A binding to ASL50 was determined by surface plasmon resonance (SPR) technology with varying concentrations. Electron microscopic studies were done to see the mode of action of ASL50 on microbes. It exerted antimicrobial activity against clinical Candida isolates with a MIC of 10-40 μg/ml and clinical Pseudomonas aeruginosa isolates with a MIC of 10-80 μg/ml. The electron microscopic study illustrates that it disrupts the cell membrane of the bacteria and cell wall of fungi. It exhibited antiproliferative activity on oral carcinoma KB cells with an IC50 of 36 μg/ml after treatment for 48 h and induces the apoptosis of cancer cells by inducing 2.5-fold higher caspase enzyme activity than untreated cells. However, it has no cytotoxic effects towards HEK 293 cells as well as human erythrocytes even at higher concentration of ASL50. Biological properties of ASL50 may have its therapeutic significance in aiding infection and cancer treatments.
Collapse
|
10
|
|
11
|
Sen T, Samanta SK. Medicinal plants, human health and biodiversity: a broad review. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 147:59-110. [PMID: 25001990 DOI: 10.1007/10_2014_273] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Biodiversity contributes significantly towards human livelihood and development and thus plays a predominant role in the well being of the global population. According to WHO reports, around 80 % of the global population still relies on botanical drugs; today several medicines owe their origin to medicinal plants. Natural substances have long served as sources of therapeutic drugs, where drugs including digitalis (from foxglove), ergotamine (from contaminated rye), quinine (from cinchona), and salicylates (willow bark) can be cited as some classical examples.Drug discovery from natural sources involve a multifaceted approach combining botanical, phytochemical, biological, and molecular techniques. Accordingly, medicinal-plant-based drug discovery still remains an important area, hitherto unexplored, where a systematic search may definitely provide important leads against various pharmacological targets.Ironically, the potential benefits of plant-based medicines have led to unscientific exploitation of the natural resources, a phenomenon that is being observed globally. This decline in biodiversity is largely the result of the rise in the global population, rapid and sometimes unplanned industrialization, indiscriminate deforestation, overexploitation of natural resources, pollution, and finally global climate change.Therefore, it is of utmost importance that plant biodiversity be preserved, to provide future structural diversity and lead compounds for the sustainable development of human civilization at large. This becomes even more important for developing nations, where well-planned bioprospecting coupled with nondestructive commercialization could help in the conservation of biodiversity, ultimately benefiting mankind in the long run.Based on these findings, the present review is an attempt to update our knowledge about the diverse therapeutic application of different plant products against various pharmacological targets including cancer, human brain, cardiovascular function, microbial infection, inflammation, pain, and many more.
Collapse
Affiliation(s)
- Tuhinadri Sen
- Department of Pharmaceutical Technology and School of Natural Product Studies, Jadavpur University, Kolkata, 700032, India,
| | | |
Collapse
|
12
|
A review on the role of nutraceuticals as simple as se(2+) to complex organic molecules such as glycyrrhizin that prevent as well as cure diseases. Indian J Clin Biochem 2013; 29:119-32. [PMID: 24757291 DOI: 10.1007/s12291-013-0362-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 06/30/2013] [Indexed: 10/26/2022]
Abstract
Nutraceuticals are nutritional medicines which are present in edible food items. Most of them are antioxidants with various other biological properties viz, anti inflammatory, anti atherogenic, anticancer, anti viral, anti aging properties etc. They are as simple as minerals like Se(2+) to complex organic molecules such as glycyrrhizin (Ca(2+), K(+) salts of glycyrrhizic acid). They can prevent as well as cure various diseases. Most of the medical people are not aware of the importance of the nutraceuticals as such matters are not part of their text books. Many still think that vitamins are the major nutritional medicines. Actually other dietary principles like terpenes, carotenes, phytosterols, polyphenols, flavanoids, di and poly sulphides, their sulfoxides and their precursor amino acids are necessary to scavenge free radicals in the body which are reactive oxygen species to protect and maintain the vitamin levels in the body. They down regulate the activities of those enzymes which are increased in diseases and they increase those that remove oxidants and detoxify carcinogens. They are immune boosters too. Recently glucosinolates, non toxic alkaloids, certain proteins and even fiber are included in the list of nutraceuticals.
Collapse
|
13
|
Xu W, Wei L, Qu W, Liang Z, Wang J, Peng X, Zhang Y, Huang K. A novel antifungal peptide from foxtail millet seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2011; 91:1630-1637. [PMID: 21445868 DOI: 10.1002/jsfa.4359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 11/28/2010] [Accepted: 01/25/2011] [Indexed: 05/30/2023]
Abstract
BACKGROUND Antifungal proteins (AFP) help plants to combat phytopathogenic fungi and thus protect plants from the devastating damage caused by fungal infections and prevent massive economic losses. To date, several proteins with antibacterial and/or antifungal properties have been isolated and characterized from different plant species and tissues; however, there are no reports concerning the antifungal peptide from foxtail millet seeds. RESULTS An antifungal peptide with a molecular mass of 26.9 kDa was isolated from dry seeds of the foxtail millet (Setaria italica (L.) Beauv.), using a procedure that involved four chromatographic steps. The antifungal peptide was adsorbed on CM-Sepharose, Affi-gel blue gel and Superdex 75. It was further purified by C(18) reverse-phase high-performance liquid chromatography and submitted for analysis of peptide mass fingerprint. The Mascot peptide mass fingerprint of the isolated protein hit no existing protein (score >60), and it was proved to be a novel antifungal peptide. It inhibited mycelial growth in Alternaria alternate with an IC(50) of 1.3 µmol L(-1) , and it also exhibited antifungal activity against Trichoderma viride, Botrytis cinerea and Fusarium oxysporum. Transmission electron microscopy of mold forms of Alternaria alternate after incubation with 20 µg mL(-1) of the antifungal protein for 48 h revealed marked ultrastructural changes in the fungus. CONCLUSION A novel antifungal peptide with high potency was isolated from foxtail millet seeds.
Collapse
Affiliation(s)
- Wentao Xu
- Laboratory of Food safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Clement F, Pramod SN, Venkatesh YP. Identity of the immunomodulatory proteins from garlic (Allium sativum) with the major garlic lectins or agglutinins. Int Immunopharmacol 2010; 10:316-24. [PMID: 20004743 DOI: 10.1016/j.intimp.2009.12.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 11/12/2009] [Accepted: 12/03/2009] [Indexed: 10/20/2022]
Abstract
Garlic (Allium sativum), an important medicinal spice, displays a plethora of biological effects including immunomodulation. Although some immunomodulatory proteins from garlic have been described, their identities are still unknown. The present study was envisaged to isolate immunomodulatory proteins from raw garlic, and examine their effects on certain cells of the immune system (lymphocytes, mast cells, and basophils) in relation to mitogenicity and hypersensitivity. Three protein components of approximately 13 kD (QR-1, QR-2, and QR-3 in the ratio 7:28:1) were separated by Q-Sepharose chromatography of 30 kD ultrafiltrate of raw garlic extract. All the 3 proteins exhibited mitogenic activity towards human peripheral blood lymphocytes, murine splenocytes and thymocytes. The mitogenicity of QR-2 was the highest among the three immunomodulatory proteins. QR-1 and QR-2 displayed hemagglutination and mannose-binding activities; QR-3 showed only mannose-binding activity. Immunoreactivity of rabbit anti-QR-1 and anti-QR-2 polyclonal antisera showed specificity for their respective antigens as well as mutual cross-reactivity; QR-3 was better recognized by anti-QR-2 (82%) than by anti-QR-1 (55%). QR-2 induced a 2-fold higher histamine release in vitro from leukocytes of atopic subjects compared to that of non-atopic subjects. In all functional studies, QR-2 was more potent compared to QR-1. Taken together, all these results indicate that the two major proteins QR-2 and QR-1 present in a ratio of 4:1 in raw garlic contribute to garlic's immunomodulatory activity, and their characteristics are markedly similar to the abundant Allium sativum agglutinins (ASA) I and II, respectively.
Collapse
Affiliation(s)
- Fatima Clement
- Department of Biochemistry and Nutrition, Central Food Technological Research Institute (CSIR Laboratory), Mysore, Karnataka State, India
| | | | | |
Collapse
|
15
|
Mendieta JR, Fimognari C, Daleo GR, Hrelia P, Guevara MG. Cytotoxic effect of potato aspartic proteases (StAPs) on Jurkat T cells. Fitoterapia 2009; 81:329-35. [PMID: 19825400 DOI: 10.1016/j.fitote.2009.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 09/21/2009] [Accepted: 10/05/2009] [Indexed: 11/19/2022]
Abstract
StAPs are potato aspartic proteases with cytotoxic activity against plant pathogens and spermatozoa. StAPs cytotoxic activity is selective, since these proteins do not exert toxic effect on plant cells and erythrocytes. In this work, we investigated the capacity of StAPs to exert cytotoxicity on human leukaemia cells. Obtained results show that StAPs induce apoptosis on Jurkat T cells after a short time of incubation in a dose-dependent manner. However, no significative effect on the T lymphocytes viability was observed at all StAPs incubation times and concentrations tested. These results suggest that StAPs can be conceptually promising leads for cancer therapy.
Collapse
Affiliation(s)
- Julieta R Mendieta
- Institute of Biological Research, University of Mar del Plata, Mar del Plata, Argentina
| | | | | | | | | |
Collapse
|
16
|
Munawir A, Sohn ET, Kang C, Lee SH, Yoon TJ, Kim JS, Kim E. Proteinaceous cytotoxic component of Allium sativum induces apoptosis of INT-407 intestinal cells. J Med Food 2009; 12:776-81. [PMID: 19735176 DOI: 10.1089/jmf.2008.1106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Garlic has long been known for its wide array of therapeutic effects, including hypolipidemic, antihypertensive, antimicrobial, and possibly anticancer effects; conversely, some adverse effects of garlic, such as acute pain and neurogenic inflammation, have also been reported. However, information detailing the toxicological significance of garlic is scarce. In this study, the cytotoxicities of fresh garlic extract (FGE) and boiled garlic extract (BGE) and their underlying toxic mechanisms were investigated using INT-407 intestinal epithelial cells. A brief exposure (20 minutes) to FGE induced a concentration-dependent increase in cell death (37 +/- 2% at 300 microg/mL), but no cytotoxic effects were induced after exposure to BGE. For FGE, only the high-molecular-mass (>10-kDa) proteins were associated with cytotoxic effects. FGE-treated cells showed morphological changes such as increased cell rounding and fragmentation, suggesting programmed cell death (apoptosis). Apoptosis of FGE-treated cells was evaluated by observing the fragmented multinuclei stained with Hoechst 33342. From the cell cycle analysis, the increase in hypodiploidic cells and in the G2/M phase cell population suggested not only apoptosis but also cell cycle arrest of FGE-treated cells. Pretreatment with N-acetyl-l-cysteine almost completely prevented FGE-induced cell death, suggesting that reactive oxygen species (ROS) may play a key role in FGE-associated cytotoxicity. Consumption of fresh garlic may be linked to potential cytotoxicity of intestinal cells when ROS scavengers are not present.
Collapse
Affiliation(s)
- Al Munawir
- Department of Pharmacology and Toxicology, College of Veterinary Medicine, Gyeongsang National University, Jinju, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
17
|
Wang HX, Ng TB. An antifungal peptide from red lentil seeds. Peptides 2007; 28:547-52. [PMID: 17123664 DOI: 10.1016/j.peptides.2006.10.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 10/13/2006] [Accepted: 10/13/2006] [Indexed: 11/22/2022]
Abstract
An antifungal peptide, with a molecular mass of 11 kDa, was isolated from dry seeds of the red lentil (Lens culinaris) using a procedure that involved four chromatographic steps. The antifungal peptide was unadsorbed on DEAE-cellulose, and adsorbed on Affi-gel blue gel and S-Sepharose. The final chromatographic step involved gel filtration by fast protein liquid chromatography on Superdex 75. The antifungal peptide inhibited mycelial growth in Mycosphaerella arachidicola with an IC50 of 36 microM. It also exhibited antifungal activity against Fusarium oxysporum, but there was no inhibitory activity toward tumor cell lines and human immunodeficiency virus type 1 reverse transcriptase (RT).
Collapse
Affiliation(s)
- H X Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China.
| | | |
Collapse
|
18
|
Wang HX, Ng TB. An antifungal protein from the pea Pisum sativum var. arvense Poir. Peptides 2006; 27:1732-7. [PMID: 16574276 DOI: 10.1016/j.peptides.2006.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 01/27/2006] [Accepted: 01/30/2006] [Indexed: 10/24/2022]
Abstract
An antifungal protein with a molecular mass of 11 kDa and a lysine-rich N-terminal sequence was isolated from the seeds of the pea Pisum sativum var. arvense Poir. The antifungal protein was unadsorbed on DEAE-cellulose but adsorbed on Affi-gel blue gel and CM-cellulose. It exerted antifungal activity against Physalospora piricola with an IC50 of 0.62 microM, and also antifungal activity against Fusarium oxysporum and Mycosphaerella arachidicola. It inhibited human immunodeficiency virus type 1 reverse transcriptase with an IC50 of 4.7 microM.
Collapse
Affiliation(s)
- H X Wang
- State Key Laboratory for Agrobiotechnology and Department of Microbiology, China Agricultural University, Beijing, China
| | | |
Collapse
|
19
|
Chu KT, Ng TB. Smilaxin, a novel protein with immunostimulatory, antiproliferative, and HIV-1-reverse transcriptase inhibitory activities from fresh Smilax glabra rhizomes. Biochem Biophys Res Commun 2006; 340:118-24. [PMID: 16375860 DOI: 10.1016/j.bbrc.2005.12.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Accepted: 12/03/2005] [Indexed: 11/30/2022]
Abstract
A protein, with a novel N-terminal amino acid sequence and a molecular mass of 30 kDa, was purified from fresh Smilax glabra rhizomes by adsorption on DEAE-cellulose, CM-cellulose, Con A-Sepharose, and Mono S, and by fast protein liquid chromatography-gel filtration on Superdex 75. The protein, designated as smilaxin, stimulated uptake of [methyl-3H]thymidine by murine splenocytes, peritoneal macrophages, and bone marrow cells, and production of nitric oxide by peritoneal macrophages. It inhibited uptake of [methyl-3H]thymidine by MBL2 and PU5 tumor cells but not uptake by S180 and L1210 cells. Smilaxin augmented glucose uptake into rat adipose tissue. It attenuated the activity of HIV-1-reverse transcriptase with an IC50 of 5.6 microM. However, it did not display hemagglutinating, antifungal or translation-inhibitory activities, indicating that it is not a lectin, an antifungal protein, or a ribosome-inactivating protein.
Collapse
Affiliation(s)
- K T Chu
- Department of Biochemistry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, China
| | | |
Collapse
|
20
|
Gorinstein S, Leontowicz H, Leontowicz M, Drzewiecki J, Najman K, Katrich E, Barasch D, Yamamoto K, Trakhtenberg S. Raw and boiled garlic enhances plasma antioxidant activity and improves plasma lipid metabolism in cholesterol-fed rats. Life Sci 2005; 78:655-63. [PMID: 16165163 DOI: 10.1016/j.lfs.2005.05.069] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2005] [Accepted: 05/16/2005] [Indexed: 10/25/2022]
Abstract
UNLABELLED In the present study the effect of garlic, in a form more similar to how most people eat garlic, on lipid and antioxidant metabolism in rats was investigated. The antioxidant activity was determined by the efficacy to scavenge 2, 2'-azino-bis (3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) derived radicals in garlic samples. The highest results were estimated in aqueous fraction in comparison with other extracts divided on the basis of polarity. Wistar male rats were randomly divided into 10 diet groups, each with seven animals. The groups were named: Control, RG (raw garlic), BG (boiled garlic for 20 min), AERG (aqueous extract of raw garlic), AEBG (aqueous extract of boiled garlic), Ch (Cholesterol), Ch/RG, Ch/BG, Ch/AERG and Ch/AEBG. All experimental diets were supplemented with 25 mg of lyophilized garlic/kg body weight obtained from raw, boiled and their aqueous extracts over a period of 30 days. Serum lipid (total cholesterol, LDL-cholesterol and triglycerides) concentrations were higher in all groups fed cholesterol (Ch); however, the increase was significant only in Ch group, without garlic supplementation. In groups of rats fed diets with cholesterol, garlic samples significantly hindered the rise of TC and LDL-C (P < 0.05). A significant increase (P < 0.05) in the plasma antioxidant activity was registered in experimental groups of rats fed cholesterol-free diets supplemented with garlic; oppositely, a significant decrease was only in group of rats given food containing cholesterol without garlic. The protein spectra has shown that during short boiling some proteins change their functional properties such as solubility and mobility, resulting in a number of protein bands in SDS-electrophoresis. CONCLUSIONS Raw and boiled garlic improved plasma lipid metabolism and plasma antioxidant activity in an experiment on rats. Thus, dietary hypolipidemic garlic was effective in reducing the oxidant stress, which was indicated by an increase of antioxidant activity and a decrease of lipids in the rats' blood. It was found that garlic boiled for 20 min has the same bioactivity as raw garlic in its antioxidant and protein spectra. Therefore it should be added at this time to foods. The selenium and copper content of raw garlic is not altered by boiling. The protein electrophoretic pattern of raw garlic is altered by boiling.
Collapse
Affiliation(s)
- Shela Gorinstein
- Department of Medicinal Chemistry and Natural Products, School of Pharmacy, The Hebrew University, Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | | | | | | | | | |
Collapse
|