1
|
Lu K, Wu J, Tang S, Peng D, Bibi A, Ding L, Zhang Y, Liang XF. Transcriptome analysis reveals the importance of phototransduction during the first-feeding in mandarin fish (Siniperca chuatsi). Funct Integr Genomics 2024; 24:197. [PMID: 39453417 DOI: 10.1007/s10142-024-01471-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/01/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
The mandarin fish (Siniperca chuatsi), as a typical freshwater carnivorous fish, has high economic value. Mandarin fish have a peculiar feeding habit of feeding on other live fry during the first-feeding period, while rejecting zooplankton or particulate feed, which may be attributed to the low expression of zooplankton-associated gene sws1 in mandarin fish. The domesticated strain of mandarin fish could feed on Artemia at 3 days post hatching (dph). However, the mechanism of mandarin fish larvae recognize and forage Artemia as food is still unclear. In this study, we employed transcriptional analysis to identify the representative differential pathways between mandarin fish larvae unfed and fed with Artemia at 3 dph. The comparative transcriptome analysis has unveiled a tapestry of genetic expression, highlighting 403 genes that have been up-regulated and 259 that have been down-regulated, all of which constitute the differentially expressed genes (DEGs). KEGG pathway analysis revealed that the number of differentially expressed genes in the photoconductive signaling pathway was the largest. Next, the Vorinostat (suberoylanilide hydroxamic acid, SAHA) was used to assess whether sws1 induced ingestion of Artemia in mandarin fish larvae. We discovered that SAHA-treated larvae had more food intake of Artemia and up-regulated the transcription level of npy, which might have been associated with the up-regulated of sws1 opsin. Additionally, exposure to 0.5 µM SAHA increased the expression of genes involved in phototransduction pathway. These findings would provide insights on the molecular processes involved in mandarin fish larvae feeding on Artemia at the first-feeding stage.
Collapse
Affiliation(s)
- Ke Lu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Jiaqi Wu
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Shulin Tang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Di Peng
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Asma Bibi
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China
| | - Liyun Ding
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang, 330039, China
| | - Yanping Zhang
- Poyang Lake Fisheries Research Centre of Jiangxi Province, Jiangxi Fisheries Research Institute, Nanchang, 330039, China
| | - Xu-Fang Liang
- College of Fisheries, Chinese Perch Research Center, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, Hubei, 430070, China.
- Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Wuhan, 430070, China.
| |
Collapse
|
2
|
Fujishiro K, Miyanishi H. Visual Perception of Density and Density-Dependent Growth in Medaka ( Oryzias latipes): A Suitable Model for Studying Density Effects in Fish. Zoolog Sci 2023; 40:404-413. [PMID: 37818889 DOI: 10.2108/zs230018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/13/2023] [Indexed: 10/13/2023]
Abstract
High stocking densities have negative effects on fish. However, the mechanism mediating density perception and growth inhibition is still unknown. This study was conducted to confirm the occurrence of growth inhibition and evaluate changes in growth-related factors in fish reared under high-stocking-density conditions and to determine the role of vision in density perception of medaka. In the graduated-stocking experiment, growth inhibition was clearly observed in fish reared at higher densities, although environmental factors, such as water quality, dissolved oxygen, and feeding conditions, were the same in each experimental group. Differences in growth were observed between the 6-fish and 8-fish groups, indicating that medaka have a superior sense that allows them to accurately perceive the number of individuals in their surroundings. In the pseudo-high stocking experiment, the inner 2-L tank in both groups contained six fish; however, the outer 3-L tank in the pseudo group contained several fish, while that of the control group contained only water. Growth inhibition was observed among the fish in the inner tank of the pseudo group despite having similar spatial density with the control group. These findings suggest that vision is important for density perception. The gene expression of growth-related and metabolic-regulatory hormones decreased in the high-density group. Furthermore, neuropeptide Y expression increased, while pro-opiomelanocortin expression decreased in the high-density group. This study is the first to report that fish can visually perceive density and the resulting growth inhibition, and concluded that medaka is a suitable model for studying density effects and perception in fish.
Collapse
Affiliation(s)
- Kouyou Fujishiro
- Course of Marine Biology and Environmental Sciences, Graduate School of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hiroshi Miyanishi
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan,
| |
Collapse
|
3
|
Neuropeptide Y in Spotted Scat (Scatophagus Argus), Characterization and Functional Analysis towards Feed Intake Regulation. FISHES 2022. [DOI: 10.3390/fishes7030111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Neuropeptide Y (Npy) is an intricate neuropeptide regulating numerous physiological processes. It is a highly conserved peptide known to improve feed intake in many vertebrates, including fishes. To enlighten the mechanism of Npy in spotted scat feed intake control, we cloned and identified the Npy cDNA sequence. We further examined its expression in some tissues and explored its expression effects at different time frames (hours and days). Here, we discovered that spotted scat Npy comprised a 300 bp open reading frame (ORF) and a 99 amino acid sequence. Npy was identified to be expressed in all tissues examined. Using in situ hybridization examination, we proved that npy has a wide expression in the brain of the spotted scat. Furthermore, the expression of npy in the hypothalamus significantly increased one hour after feeding (p < 0.05). Further, it was revealed that npy expression significantly increased in fish that were fasted for up to 5 days and significantly increased after refeeding from the 8th to the 10th day. This suggests that Npy is an orexigenic peptide, and hence, it increases food intake and growth in the spotted scat. Additionally, results from in vitro and in vivo experiments revealed that Npy locally interacts with other appetite-regulating peptides in the spotted scat hypothalamus. This research aimed to set a fundamental study in developing the feed intake regulation, improving growth and reproduction, which is significant to the aquaculture industry of the spotted scat.
Collapse
|
4
|
Yu X, Yan H, Li W. Recent advances in neuropeptide-related omics and gene editing: Spotlight on NPY and somatostatin and their roles in growth and food intake of fish. Front Endocrinol (Lausanne) 2022; 13:1023842. [PMID: 36267563 PMCID: PMC9576932 DOI: 10.3389/fendo.2022.1023842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Feeding and growth are two closely related and important physiological processes in living organisms. Studies in mammals have provided us with a series of characterizations of neuropeptides and their receptors as well as their roles in appetite control and growth. The central nervous system, especially the hypothalamus, plays an important role in the regulation of appetite. Based on their role in the regulation of feeding, neuropeptides can be classified as orexigenic peptide and anorexigenic peptide. To date, the regulation mechanism of neuropeptide on feeding and growth has been explored mainly from mammalian models, however, as a lower and diverse vertebrate, little is known in fish regarding the knowledge of regulatory roles of neuropeptides and their receptors. In recent years, the development of omics and gene editing technology has accelerated the speed and depth of research on neuropeptides and their receptors. These powerful techniques and tools allow a more precise and comprehensive perspective to explore the functional mechanisms of neuropeptides. This paper reviews the recent advance of omics and gene editing technologies in neuropeptides and receptors and their progresses in the regulation of feeding and growth of fish. The purpose of this review is to contribute to a comparative understanding of the functional mechanisms of neuropeptides in non-mammalians, especially fish.
Collapse
|
5
|
Yu X, Xin Y, Cui L, Jia J, Yuan X, Fu S, Zhang J, Sun C, Miao X, Li W. Effects of neuropeptide Y as a feed additive on stimulating the growth of tilapia (Oreochromis niloticus) fed low fish meal diets. Peptides 2021; 138:170505. [PMID: 33539872 DOI: 10.1016/j.peptides.2021.170505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 01/04/2021] [Accepted: 01/09/2021] [Indexed: 10/22/2022]
Abstract
Neuropeptide Y is known to stimulate food intake in fish. In this study, we investigated tilapia NPY (tNPY) both for its effects on the growth of tilapia (Oreochromis niloticus, GIFT) in low fish meal and for its thermal stability. Three diets were formulated containing 0, 3 and 10 % fish meal (NF, LF and HF). From these diets, six experimental diets were prepared by spraying either tNPY solution (0.3 μg/g feed) or distilled water (DW) onto the surface of formulated feeds (NF + DW, NF + tNPY, LF + DW, LF + tNPY, HF + DW and HF + tNPY). Tilapia were fed the six experimental diets for 8 weeks. Fish in the NF + tNPY, LF + tNPY and HF + tNPY groups showed increasing trends in the weight gain rate and specific growth rate compared to its corresponding control group. The feed coefficient of group HF + tNPY was significantly lower than that of the control group. The growth performance of the LF + tNPY approached that of the HF + DW group. The mRNA levels of npy in NF + tNPY were significantly higher than those in NF + DW. A field experiment in which tNPY was sprayed in feeds by the vacuum spray method with doses of 0, 0.2 and 0.4 μg/g feed was performed for three months, and the FBW of tilapia receiving tNPY at 0.2 and 0.4 μg/g feed was higher than that of the control group although not significantly. The bioactivity of tNPY was confirmed by its ability to reduce cAMP levels and activate the ERK1/2 pathway. These results demonstrated that tNPY could promote tilapia growth with oral administration low fish meal diets.
Collapse
Affiliation(s)
- Xiaozheng Yu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Ying Xin
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Lili Cui
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China; College of Animal, Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jirong Jia
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xi Yuan
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Shiwei Fu
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China
| | - Jiahui Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Caiyun Sun
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiangjun Miao
- Yunnan Academy of Fishery Sciences, Yunnan Agricultural University, Kunming, China
| | - Wensheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Lab Oratory for Aquatic Economic Animals, Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
6
|
Deng X, Lei L, Yuan D, Zheng Z, Zhu C, Luo H, Ye H, Li D, Wang J, Li B, Lv G, Zhou C. Cloning, expression profiling, and effects of fasting status on neuropeptide Y in Schizothorax davidi. J Food Biochem 2019; 43:e12892. [PMID: 31353745 DOI: 10.1111/jfbc.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 03/25/2019] [Accepted: 04/23/2019] [Indexed: 11/28/2022]
Abstract
To better comprehend the mechanism that neuropeptide Y (npy) regulates feeding in Schizothorax davidi, we cloned and identified the full-length cDNA sequence of the npy gene in this species using RACE technology. Subsequently, we explored the npy mRNA distribution in 18 tissues and investigated the expression of npy mRNA at postprandial and fasting stages. We found that the npy full-length cDNA sequence is 803 bp. Moreover, npy mRNAs extensively expressed in all detected tissues, with the highest expression in hypothalamus. In postprandial study, the expression of npy mRNA in the hypothalamus was significantly decreased after eating (p < 0.01). In addition, the expression of the npy gene was significantly increased on the fifth day after fasting (p < 0.05). However, after refeeding, the expression of the npy gene was decreased significantly on days 9, 11, and 14 (p < 0.01). Our research suggest that npy may have an orexigenic role in S. davidi. PRACTICAL APPLICATIONS: S. davidi, a coldwater fish native to China, has high economic value, and it has gained great popularity. To date, there is still no large-scale breeding of S. davidi in China. How to strengthen the production performance of S. davidi is a hot research area. Neuropeptide Y (NPY), a 36-amino-acid single-chain polypeptide, is one of the main appetite regulation factors. However, to date, no studies have reported on the biological function of npy in the feeding of S. davidi. In our study, we revealed that the trend of hypothalamic npy expression during the postprandial and fasting stages. The results suggested that npy might be an appetite-promoting factor in this species. Overall, we provide the theoretical basis for how to strengthen the production performance of S. davidi through appetite regulation.
Collapse
Affiliation(s)
- Xingxing Deng
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Luo Lei
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Dengyue Yuan
- Department of Aquaculture, College of Life Sciences, Neijiang Normal University, Neijiang, People's Republic of China
| | - Zonglin Zheng
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chengke Zhu
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Hui Luo
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Hua Ye
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Dongmei Li
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Jian Wang
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Baohai Li
- Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| | - Guangjun Lv
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China
| | - Chaowei Zhou
- College of Animal Sciences, Southwest University, Chongqing, People's Republic of China.,Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, People's Republic of China
| |
Collapse
|
7
|
Yu H, You X, Li J, Zhang X, Zhang S, Jiang S, Lin X, Lin HR, Meng Z, Shi Q. A genome-wide association study on growth traits in orange-spotted grouper (Epinephelus coioides) with RAD-seq genotyping. SCIENCE CHINA-LIFE SCIENCES 2018. [DOI: 10.1007/s11427-017-9161-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
8
|
González-Stegmaier R, Villarroel-Espíndola F, Manríquez R, López M, Monrás M, Figueroa J, Enríquez R, Romero A. New immunomodulatory role of neuropeptide Y (NPY) in Salmo salar leucocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 76:303-309. [PMID: 28676307 DOI: 10.1016/j.dci.2017.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/30/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Neuropeptide Y (NPY) plays different roles in mammals such as: regulate food intake, memory retention, cardiovascular functions, and anxiety. It has also been shown in the modulation of chemotaxis, T lymphocyte differentiation, and leukocyte migration. In fish, NPY expression and functions have been studied but its immunomodulatory role remains undescribed. This study confirmed the expression and synthesis of NPY in S. salar under inflammation, and validated a commercial antibody for NPY detection in teleost. Additionally, immunomodulatory effects of NPY were assayed in vitro and in vivo. Phagocytosis and superoxide anion production in leukocytes and SHK cells were induced under stimulation with a synthetic peptide. IL-8 mRNA was selectively and strongly induced in the spleen, head kidney, and isolated cells, after in vivo challenge with NPY. All together suggest that NPY is expressed in immune tissues and modulates the immune response in teleost fish.
Collapse
Affiliation(s)
- Roxana González-Stegmaier
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| | | | - René Manríquez
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio López
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Mónica Monrás
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Jaime Figueroa
- Instituto de Bioquímica y Microbiología, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile
| | - Ricardo Enríquez
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile
| | - Alex Romero
- Instituto de Patología Animal, Universidad Austral de Chile, Valdivia, Chile; Centro FONDAP: Interdisciplinary Center for Aquaculture Research (INCAR), Chile.
| |
Collapse
|
9
|
Sudhakumari CC, Anitha A, Murugananthkumar R, Tiwari DK, Bhasker D, Senthilkumaran B, Dutta-Gupta A. Cloning, localization and differential expression of Neuropeptide-Y during early brain development and gonadal recrudescence in the catfish, Clarias gariepinus. Gen Comp Endocrinol 2017; 251:54-65. [PMID: 28322767 DOI: 10.1016/j.ygcen.2017.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/06/2017] [Accepted: 03/08/2017] [Indexed: 11/22/2022]
Abstract
Neuropeptide-Y (NPY) has diverse physiological functions which are extensively studied in vertebrates. However, regulatory role of NPY in relation to brain ontogeny and recrudescence with reference to reproduction is less understood in fish. Present report for the first time evaluated the significance of NPY by transient esiRNA silencing and also analyzed its expression during brain development and gonadal recrudescence in the catfish, Clarias gariepinus. As a first step, full-length cDNA of NPY was cloned from adult catfish brain, which shared high homology with its counterparts from other teleosts upon phylogenetic analysis. Tissue distribution revealed dominant expression of NPY in brain and testis. NPY expression increased during brain development wherein the levels were higher in 100 and 150days post hatch females than the respective age-matched males. Seasonal cycle analysis showed high expression of NPY in brain during pre-spawning phase in comparison with other reproductive phases. Localization studies exhibited the presence of NPY, abundantly, in the regions of preoptic area, hypothalamus and pituitary. Transient silencing of NPY-esiRNA directly into the brain significantly decreased NPY expression in both the male and female brain of catfish which further resulted in significant decrease of transcripts of tryptophan hydroxylase 2, catfish gonadotropin-releasing hormone (cfGnRH), tyrosine hydroxylase and 3β-hydroxysteroid dehydrogenase in brain and luteinizing hormone-β/gonadotropin-II (lh-β/GTH-II) in pituitary exhibiting its influence on gonadal axis. In addition, significant decrease of several ovary-related transcripts was observed in NPY-esiRNA silenced female catfish, indicating the plausible role of NPY in ovary through cfGnRH-GTH axis.
Collapse
Affiliation(s)
- Cheni-Chery Sudhakumari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Arumugam Anitha
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Raju Murugananthkumar
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dinesh Kumar Tiwari
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Dharavath Bhasker
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| | - Balasubramanian Senthilkumaran
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India.
| | - Aparna Dutta-Gupta
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, P.O. Central University, Hyderabad 500046, Telangana, India
| |
Collapse
|
10
|
Rønnestad I, Gomes AS, Murashita K, Angotzi R, Jönsson E, Volkoff H. Appetite-Controlling Endocrine Systems in Teleosts. Front Endocrinol (Lausanne) 2017; 8:73. [PMID: 28458653 PMCID: PMC5394176 DOI: 10.3389/fendo.2017.00073] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/27/2017] [Indexed: 12/15/2022] Open
Abstract
Mammalian studies have shaped our understanding of the endocrine control of appetite and body weight in vertebrates and provided the basic vertebrate model that involves central (brain) and peripheral signaling pathways as well as environmental cues. The hypothalamus has a crucial function in the control of food intake, but other parts of the brain are also involved. The description of a range of key neuropeptides and hormones as well as more details of their specific roles in appetite control continues to be in progress. Endocrine signals are based on hormones that can be divided into two groups: those that induce (orexigenic), and those that inhibit (anorexigenic) appetite and food consumption. Peripheral signals originate in the gastrointestinal tract, liver, adipose tissue, and other tissues and reach the hypothalamus through both endocrine and neuroendocrine actions. While many mammalian-like endocrine appetite-controlling networks and mechanisms have been described for some key model teleosts, mainly zebrafish and goldfish, very little knowledge exists on these systems in fishes as a group. Fishes represent over 30,000 species, and there is a large variability in their ecological niches and habitats as well as life history adaptations, transitions between life stages and feeding behaviors. In the context of food intake and appetite control, common adaptations to extended periods of starvation or periods of abundant food availability are of particular interest. This review summarizes the recent findings on endocrine appetite-controlling systems in fish, highlights their impact on growth and survival, and discusses the perspectives in this research field to shed light on the intriguing adaptations that exist in fish and their underlying mechanisms.
Collapse
Affiliation(s)
- Ivar Rønnestad
- Department of Biology, University of Bergen, Bergen, Norway
| | - Ana S. Gomes
- Department of Biology, University of Bergen, Bergen, Norway
| | - Koji Murashita
- Department of Biology, University of Bergen, Bergen, Norway
- Research Center for Aquaculture Systems, National Research Institute of Aquaculture, Japan Fisheries Research and Education Agency, Tamaki, Mie, Japan
| | - Rita Angotzi
- Department of Biology, University of Bergen, Bergen, Norway
| | - Elisabeth Jönsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St John’s, NL, Canada
| |
Collapse
|
11
|
Li M, Tan X, Sui Y, Jiao S, Wu Z, Wang L, You F. The stimulatory effect of neuropeptide Y on growth hormone expression, food intake, and growth in olive flounder (Paralichthys olivaceus). FISH PHYSIOLOGY AND BIOCHEMISTRY 2017; 43:11-18. [PMID: 27406384 DOI: 10.1007/s10695-016-0263-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/04/2016] [Indexed: 06/06/2023]
Abstract
Neuropeptide Y (NPY) is a 36-amino acid peptide known to be a strong orexigenic (appetite-stimulating) factor in many species. In this study, we investigated the effect of NPY on food intake and growth in the olive flounder (Paralichthys olivaceus). Recombinant full-length NPY was injected intraperitoneally into olive flounder at the dose of 1 μg/g body weight; phosphate buffered saline was used as the negative control. In a long-term experiment, NPY and control groups were injected every fifth day over a period of 30 days. In a short-term experiment, NPY and control groups were given intraperitoneal injections and maintained for 24 h. Food intake and growth rates were significantly higher in fish injected with recombinant NPY than in the control fish (P < 0.05). Higher growth hormone (GH) and NPY mRNA transcript levels were observed in both experiments, indicating a stimulatory effect of NPY on GH release. These findings demonstrate that NPY is an effective appetite-stimulating factor in olive flounder with the potential to improve the growth of domestic fish species and enhance efficiency in aquaculture.
Collapse
Affiliation(s)
- Meijie Li
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, People's Republic of China
| | - Xungang Tan
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China.
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Yulei Sui
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shuang Jiao
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhihao Wu
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lijuan Wang
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Feng You
- Key Laboratory of Experimental Marine Biology, National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, No. 7 Nanhai Road, Qingdao, 266071, People's Republic of China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
12
|
Jørgensen EH, Bernier NJ, Maule AG, Vijayan MM. Effect of long-term fasting and a subsequent meal on mRNA abundances of hypothalamic appetite regulators, central and peripheral leptin expression and plasma leptin levels in rainbow trout. Peptides 2016; 86:162-170. [PMID: 26471905 DOI: 10.1016/j.peptides.2015.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Revised: 08/11/2015] [Accepted: 08/14/2015] [Indexed: 01/02/2023]
Abstract
Knowledge about neuroendocrine mechanisms regulating appetite in fish, including the role of leptin, is inconclusive. We investigated leptin mRNA abundance in various tissues, plasma leptin levels and the hypothalamic gene expression of putative orexigenic (neuropeptide Y and agouti-regulated peptide) and anorexigenic (melanocortin receptor, proopiomelanocortins (POMCs), cocaine- and amphetamine-regulated transcript and corticotropin-releasing factor) neuropeptides in relation to feeding status in rainbow trout (Oncorhynchus mykiss). Blood and tissues were first (Day 1) sampled from trout that had been fed or fasted for 4 months and the day after (Day 2) from fasted fish after they had been given a large meal, and their continuously fed counterparts. The fasted fish ate vigorously when they were presented a meal. There were no differences between fed, fasted and re-fed fish in hypothalamic neuropeptide transcript levels, except for pomca1 and pomcb, which were higher in fasted fish than in fed fish at Day 1, and which, for pomcb, decreased to the level in fed fish after the meal at Day 2. Plasma leptin levels did not differ between fasted, re-fed and fed fish. A higher leptina1 transcript level was seen in the belly flap of fasted fish than in fed fish, even after re-feeding on Day 2. The data do not reveal causative roles of the investigated brain neuropeptides, or leptin, in appetite regulation. It is suggested that the elevated pomc transcript levels provide a satiety signal that reduces energy expenditure during prolonged fasting. The increase in belly flap leptin transcript with fasting, which did not decrease upon re-feeding, indicates a tissue-specific role of leptin in long-term regulation of energy homeostasis.
Collapse
Affiliation(s)
- Even H Jørgensen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, NO-9037 Tromsø, Norway.
| | - Nicholas J Bernier
- Department of Integrative Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Alec G Maule
- USGS, WFRC, Columbia River Research Laboratory, 5501 Cook-Underwood Rd. Cook, WA 98605, USA
| | - Mathilakath M Vijayan
- Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| |
Collapse
|
13
|
Striberny A, Ravuri CS, Jobling M, Jørgensen EH. Seasonal Differences in Relative Gene Expression of Putative Central Appetite Regulators in Arctic Charr (Salvelinus alpinus) Do Not Reflect Its Annual Feeding Cycle. PLoS One 2015; 10:e0138857. [PMID: 26421838 PMCID: PMC4589418 DOI: 10.1371/journal.pone.0138857] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/04/2015] [Indexed: 11/22/2022] Open
Abstract
The highly seasonal anadromous Arctic charr (Salvelinus alpinus) was used to investigate the possible involvement of altered gene expression of brain neuropeptides in seasonal appetite regulation. Pro-opiomelanocortin (POMCA1, POMCA2), Cocaine and amphetamine regulated transcript (CART), Agouti related Peptide (AgRP), Neuropeptide Y (NPY) and Melanocortin Receptor 4 (MC4-R) genes were examined. The function of centrally expressed Leptin (Lep) in fish remains unclear, so Lep (LepA1, LepA2) and Leptin Receptor (LepR) genes were included in the investigation. In a ten months study gene expression was analysed in hypothalamus, mesencephalon and telencephalon of immature charr held under natural photoperiod (69°38’N) and ambient temperature and given excess feed. From April to the beginning of June the charr did not feed and lost weight, during July and August they were feeding and had a marked increase in weight and condition factor, and from November until the end of the study the charr lost appetite and decreased in weight and condition factor. Brain compartments were sampled from non-feeding charr (May), feeding charr (July), and non-feeding charr (January). Reverse transcription real-time quantitative PCR revealed temporal patterns of gene expression that differed across brain compartments. The non-feeding charr (May, January) had a lower expression of the anorexigenic LepA1, MC4-R and LepR in hypothalamus and a higher expression of the orexigenic NPY and AgRP in mesencephalon, than the feeding charr (July). In the telencephalon, LepR was more highly expressed in January and May than in July. These results do not indicate that changes in central gene expression of the neuropeptides investigated here directly induce seasonal changes in feeding in Arctic charr.
Collapse
Affiliation(s)
- Anja Striberny
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Chandra Sekhar Ravuri
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Malcolm Jobling
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
| | - Even Hjalmar Jørgensen
- Department of Arctic and Marine Biology, UiT—The Arctic University of Norway, Tromsø, Norway
- * E-mail:
| |
Collapse
|
14
|
Wang F, Chen W, Lin H, Li W. Cloning, expression, and ligand-binding characterization of two neuropeptide Y receptor subtypes in orange-spotted grouper, Epinephelus coioides. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1693-1707. [PMID: 25007879 DOI: 10.1007/s10695-014-9960-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Accepted: 06/24/2014] [Indexed: 06/03/2023]
Abstract
As one of the most important multifunctional peptides, neuropeptide Y (NPY) performs its physiological functions through different subtype receptors. In this study, full-length cDNAs of two NPY receptors (YRs) in orange-spotted grouper (Epinephelus coioides) were cloned and named npy8br (y8b) and npy2r (y2). Phylogenetic analysis indicated that the Y8b receptor is an ortholog of the teleostean Y8b receptor, which belongs to the Y1 subfamily, and the Y2 receptor is an ortholog of the teleostean Y2 receptor, which belongs to the Y2 subfamily. Both of the YRs have G protein-coupled receptor family profiles. Multiple alignments demonstrate that the extracellular loop regions of YRs have distinctive residues of each species. Expression profile analysis revealed that the grouper Y8b receptor mRNA is primarily expressed in the brain, stomach and intestine, while the grouper Y2 receptor mRNA is primarily expressed in the brain, ovary, liver and heart. Double immunofluorescence analysis determined that the grouper YRs interact with the grouper NPY around the human embryonic kidney 293T cell surface. Furthermore, site-directed mutagenesis in a phage display system revealed that Asp(6.59) might be a common NPY-binding site, while Asp(2.68) of the Y8b receptor and Glu(5.24) of the Y2 receptor could be likely involved in subtype-specific binding. Combining the expression profile and ligand-binding feature, the grouper Y8b receptor could be involved in regulating food intake via the brain-gut axis and the grouper Y2 receptor might play a role in balancing the regulatory activity of the Y8b receptor and participate in metabolism in the liver and ovary.
Collapse
Affiliation(s)
- Fei Wang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | | | | | | |
Collapse
|
15
|
Babichuk NA, Volkoff H. Changes in expression of appetite-regulating hormones in the cunner (Tautogolabrus adspersus) during short-term fasting and winter torpor. Physiol Behav 2013; 120:54-63. [PMID: 23831740 DOI: 10.1016/j.physbeh.2013.06.022] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 05/26/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022]
Abstract
Feeding in vertebrates is controlled by a number of appetite stimulating (orexigenic, e.g., orexin and neuropeptide Y, NPY) and appetite suppressing (anorexigenic, e.g., cholecystokinin, CCK and cocaine- and amphetamine-regulated transcript, CART) hormones. Cunners (Tautogolabrus adspersus) survive the winter in shallow coastal waters by entering a torpor-like state, during which they forgo feeding. In order to better understand the mechanisms regulating appetite/fasting in these fish, quantitative real-time PCR was used to measure transcript expression levels of four appetite-regulating hormones: NPY, CART, orexin and CCK in the forebrain (hypothalamus and telencephalon) and CCK in the gut of fed, short-term summer fasted, and natural winter torpor cunners. Summer fasting induced a decrease in hypothalamic orexin levels and telencephalon NPY, CART and CCK mRNA levels. All brain hormone mRNA levels decreased during natural torpor as compared to fed summer fish. In the gut, CCK expression levels decreased during summer fasting. These results indicate that, in cunner, orexin, NPY, CART and CCK may play a role in appetite regulation and might mediate different physiological responses to short-term summer fasting and torpor-induced long-term fasting.
Collapse
Affiliation(s)
- Nicole A Babichuk
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | | |
Collapse
|
16
|
Wu S, Li B, Lin H, Li W. Stimulatory effects of neuropeptide Y on the growth of orange-spotted grouper (Epinephelus coioides). Gen Comp Endocrinol 2012; 179:159-66. [PMID: 22926329 DOI: 10.1016/j.ygcen.2012.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 07/28/2012] [Accepted: 08/05/2012] [Indexed: 01/18/2023]
Abstract
Neuropeptide Y (NPY) is a member of the pancreatic polypeptide family which is a potent orexigenic peptide known to date in mammals and teleost. This study was carried out to investigate the effects of NPY on food intake and growth of orange-spotted grouper (Epinephelus coioides). Synthetic grouper NPY (gNPY) was given orally at the dose of 0.5, 1.0 and 2.0 μg/g feed for 50 days, results showed that NPY treatment (1.0 and 2.0 μg/g feed) significantly increased growth rate, weight gain, feed conversion efficiency (FCE) and pituitary growth hormone (GH) mRNA level than the control group (p<0.05). Furthermore, high level secretion of gNPY was expressed and purified in the Pichia pastoris expression system. The bioactivity of recombinant gNPY was confirmed by its ability to up-regulate GH mRNA expression in vivo and in vitro and down-regulate preprosomatostatin I (PSSI) mRNA expression in vivo. These results demonstrate that NPY has stimulatory effects on food intake as well as growth of grouper as in other teleost fish, also indicate that recombinant gNPY from P. pastoris has the same bioactivity as synthetic gNPY and has the potential to be used as a feed additive for both research and aquatic application.
Collapse
Affiliation(s)
- Shuge Wu
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | | | | | | |
Collapse
|
17
|
Li S, Zhao L, Xiao L, Liu Q, Zhou W, Qi X, Chen H, Yang H, Liu X, Zhang Y, Lin H. Structural and functional characterization of neuropeptide Y in a primitive teleost, the Japanese eel (Anguilla japonica). Gen Comp Endocrinol 2012; 179:99-106. [PMID: 22902242 DOI: 10.1016/j.ygcen.2012.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 07/17/2012] [Accepted: 07/23/2012] [Indexed: 01/22/2023]
Abstract
In the present study, the first full-length cDNA encoding Neuropeptide Y (NPY) was cloned from the brain of Japanese eel (Anguilla japonica). The open reading frame of Japanese eel NPY gene is 294 bp in length, encoding a precursor protein of 97 amino acids, which contains a 36-amino-acid mature peptide. Sequence analysis showed that the Japanese eel NPY peptide is similar to that of other species. Real-time PCR revealed that NPY in Japanese eel is mainly expressed in the brain, especially in the hypothalamus and the optic tectum thalamus. The effect of a negative energy balance on NPY gene expression was examined subsequently. The mRNA level of NPY in the hypothalamus and the optic tectum thalamus showed a pronounced increase after 4 days of food deprivation. The biological activities of Japanese eel NPY were further investigated in vivo and in vitro. Intraperitoneal injection of the NPY peptide into Japanese eel could potently elevate the expression of the mammalian gonadotropin-releasing hormone (mGnRH) in hypothalamus and the follicle-stimulating hormone beta (FSHβ), the luteinizing hormone beta (LHβ) and growth hormone (GH) in pituitary. In static incubation studies, the stimulatory effects of NPY on mGnRH expression in hypothalamic fragments and on FSHβ, LHβ and GH expression in pituitary cells were also observed. However, in vivo and in vitro studies showed that NPY exhibits an inhibitory action on the expression of thyroid-stimulating hormone beta (TSHβ) in pituitary. The results indicate that NPY is involved in the regulation of multiple physiological processes in Japanese eel.
Collapse
Affiliation(s)
- Shuisheng Li
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals, Sun Yat-Sen University, Guangzhou 510275, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Shi L, Ko ML, Abbott LC, Ko GYP. Identification of Peptide lv, a novel putative neuropeptide that regulates the expression of L-type voltage-gated calcium channels in photoreceptors. PLoS One 2012; 7:e43091. [PMID: 22912796 PMCID: PMC3418253 DOI: 10.1371/journal.pone.0043091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 07/16/2012] [Indexed: 01/07/2023] Open
Abstract
Neuropeptides are small protein-like signaling molecules with diverse roles in regulating neural functions such as sleep/wake cycles, pain modulation, synaptic plasticity, and learning and memory. Numerous drugs designed to target neuropeptides, their receptors, or relevant pathways have been developed in the past few decades. Hence, the discovery and characterization of new neuropeptides and their functions have received considerable attention from scientific research. Computational bioinformatics coupled with functional assays are powerful tools to address the difficulties in discovering new bioactive peptides. In this study, a new bioinformatic strategy was designed to screen full length human and mouse cDNA databases to search for novel peptides. One was discovered and named peptide Lv because of its ability to enhance L-type voltage-gated calcium channel (L-VGCC) currents in retinal photoreceptors. Using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), peptide Lv was detected in the culture media, which indicated that it was secreted from 661W cells transfected with the gene. In vitro treatments with either glutathione S-transferase (GST) fusion peptide Lv or synthesized peptide Lv enhanced L-VGCC channel activities in cone photoreceptors. At the molecular level, peptide Lv stimulated cAMP production, enhanced phosphorylation of extracellular signal-regulated kinase (ERK), and increased the protein expression of L-VGCCα1 subunits in cone photoreceptors. Therefore, the biological activities of peptide Lv may be very important in the modulation of L-VGCC dependent neural plasticity.
Collapse
Affiliation(s)
- Liheng Shi
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Michael L. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Louise C. Abbott
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Gladys Y. -P. Ko
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
19
|
Hoskins LJ, Volkoff H. The comparative endocrinology of feeding in fish: insights and challenges. Gen Comp Endocrinol 2012; 176:327-35. [PMID: 22226758 DOI: 10.1016/j.ygcen.2011.12.025] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 12/17/2011] [Accepted: 12/19/2011] [Indexed: 12/28/2022]
Abstract
Studying the endocrine regulation of food intake in fish can be challenging due to the diversity in appetite-regulating hormones and the diversity within the fish group itself. Studies show that although the structure of the hormones is relatively conserved among vertebrates, their functions might vary between fish and mammals as well as among fish species. In addition, feeding behavior and the action of appetite regulators can be largely modulated by the feeding and reproductive status of the fish as well as the environment in which they evolve. This review gives a brief perspective of the endocrine regulation of feeding in fish, some of the methods used, and challenges encountered when using a comparative approach.
Collapse
Affiliation(s)
- Leah J Hoskins
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9
| | | |
Collapse
|
20
|
Lugo JM, Oliva A, Morales A, Reyes O, Garay HE, Herrera F, Cabrales A, Pérez E, Estrada MP. The biological role of pituitary adenylate cyclase-activating polypeptide (PACAP) in growth and feeding behavior in juvenile fish. J Pept Sci 2011; 16:633-43. [PMID: 20853308 DOI: 10.1002/psc.1275] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
To date, many technologies have been developed to increase efficiency in aquaculture, but very few successful biotechnology molecules have arrived on the market. In this context, marine biotechnology has an opportunity to develop products to improve the output of fish in aquaculture. Published in vivo studies on the action of the pituitary adenylate cyclase-activating polypeptide (PACAP) in fish are scarce. Recently, our group, for the first time, demonstrated the biological role of this neuropeptide administrated by immersion baths in the growth and development of larval fish. In this work, we have evaluated the effects of recombinant Clarias gariepinus PACAP administration by intraperitoneal injection on growth performance and feeding behavior in juvenile fish. Our results showed the physiological role of this peptide for growth control in fish, including the juvenile stage, and confirm that its biological functions are well conserved in fish, since C. gariepinus PACAP stimulated growth in juvenile tilapia Oreochromis niloticus. In addition, we have observed that the growth-promoting effect of PACAP in juvenile tilapia was correlated with higher GH concentration in serum. With regard to the neuroendocrine regulation of growth control by PACAP, it was demonstrated that PACAP stimulates food intake in juvenile tilapia. In general, PACAP appears to act in the regulation of the growth control in juvenile fish. These findings propose that PACAP is a prominent target with the potential to stimulate fish growth in aquaculture.
Collapse
Affiliation(s)
- Juana Maria Lugo
- Aquatic Biotechnology Department, Animal Biotechnology Division, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana 10600, Cuba
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
The endocrine regulation network of growth hormone synthesis and secretion in fish: Emphasis on the signal integration in somatotropes. SCIENCE CHINA-LIFE SCIENCES 2010; 53:462-70. [DOI: 10.1007/s11427-010-0084-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 01/06/2010] [Indexed: 01/21/2023]
|
22
|
Peddu SC, Breves JP, Kaiya H, Gordon Grau E, Riley LG. Pre- and postprandial effects on ghrelin signaling in the brain and on the GH/IGF-I axis in the Mozambique tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2009; 161:412-8. [PMID: 19245815 DOI: 10.1016/j.ygcen.2009.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 11/26/2008] [Accepted: 02/13/2009] [Indexed: 11/21/2022]
Abstract
The discovery of ghrelin (GRLN) has broadened our understanding of the regulation of energy homeostasis in vertebrates. In addition to stimulating growth hormone release from the pituitary, GRLN has been implicated as a hunger signal stimulating food intake in mammals and goldfish. Indeed, GRLN levels rise preprandial and fall following a meal. The current study investigated pre- and postprandial changes (3 h before and after a meal) in GRLN signaling in the tilapia (Oreochromis mossambicus). Significant elevations in preprandial brain mRNA levels of the GRLN receptor (GHS-R1a) and GRLN were observed; though not significant brain neuropeptide Y (NPY) mRNA levels did increase preprandially. GHS-R1b, and NPY mRNA levels were reduced significantly 3 h after a meal; whereas GHS-R1a levels were unaltered postprandially. Brain ghrelin mRNA levels exhibited a transient significant increase 1 h postprandially. Tilapia that missed the scheduled feeding exhibited no changes in brain GHS-R1a, GRLN and NPY postprandial mRNA levels; whereas GHS-R1b mRNA levels were significantly reduced 1 and 3 h postprandially. Brain GHSR preprocessed RNA (heteronuclear mRNA) levels were significantly elevated 3 h preprandially. GHS-R hnRNA levels were significantly elevated 1h postprandial in fed and fasted tilapia. No preprandial rise in plasma GRLN was observed. Following a meal, plasma GRLN levels were significantly elevated; whereas there was no change in tilapia missing the scheduled feeding. Stomach mRNA levels of GRLN rose preprandially and remained unchanged following a meal. In animals that missed the scheduled feeding stomach GRLN levels dropped significantly 1 h following a meal. There was no change in plasma growth hormone levels in the fed fish, although there was a significant rise in the fasted fish 1h after the scheduled feeding. Postprandial levels of plasma IGF-I were elevated in both fed and fasted tilapia. These results suggest that brain derived GRLN is likely driving day-to-day appetite through GHS-R1a and NPY; while systemic GRLN may play a role in postprandial metabolism.
Collapse
Affiliation(s)
- Sarath Chandra Peddu
- Department of Biology, California State University at Fresno, Fresno, CA 93740, USA
| | | | | | | | | |
Collapse
|
23
|
Production of recombinant leptin and its effects on food intake in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol B Biochem Mol Biol 2008; 150:377-84. [PMID: 18539064 DOI: 10.1016/j.cbpb.2008.04.007] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2008] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 11/21/2022]
Abstract
Leptin is a key factor for the regulation of food intake and energy homeostasis in mammals, but information regarding its role in teleosts is still limited. There are large differences between mammalian and teleost leptin at both gene and protein levels, and in order to characterize the function of leptin in fish, preparation of species-specific leptin is therefore a key step. In this study, full-length cDNA coding for rainbow trout leptin was identified. In spite of low amino acid sequence similarity with other animals, leptin is highly conserved between trout and salmon (98.7%). Based on the cDNA, we produced pure recombinant trout leptin (rt-leptin) in E. coli, with a final yield of 20 mg/L culture medium. We then examined the effects of intraperitoneal (IP) injection of rt-leptin on feeding behavior and gene expression of hypothalamic NPY and POMCs (POMC A1, A2 and B) in a short-term (8 h) experiment. The rt-leptin suppressed food intake and led to transient reduction of NPY mRNA levels, while the expression of POMCs A1 and A2, was elevated compared with vehicle-injected controls. These results for rainbow trout are the first that describe a physiological role of leptin using a species-specific orthologue in teleosts, and they suggest that leptin suppresses food intake mediated by hypothalamic regulation. This anorexic effect is similar to that observed in mammals and frogs and supports that the neuroendocrine pathways that control feeding by leptin are ancient and have been conserved through evolution.
Collapse
|