1
|
Bukovics P, Lőrinczy D. Deconvolution Analysis of G and F-Actin Unfolding: Insights into the Thermal Stability and Structural Modifications Induced by PACAP. Int J Mol Sci 2025; 26:3336. [PMID: 40244223 PMCID: PMC11989792 DOI: 10.3390/ijms26073336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Actin, a key component of the cytoskeleton, undergoes significant structural and thermal changes in response to various regulatory factors, including the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP). In this study, we applied deconvolution analysis to previously obtained differential scanning calorimetry (DSC) data to resolve overlapping thermal transitions in G- and F-actin unfolding. Our findings reveal that PACAP38 and PACAP6-38 significantly alter actin stability, increasing structural cooperativity in G-actin while reducing monomer-monomer interactions in F-actin. These thermodynamic changes suggest a potential role for PACAP in modulating actin polymerization and depolymerization dynamics, contributing to cytoskeletal remodeling.
Collapse
Affiliation(s)
- Péter Bukovics
- Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, H-7624 Pécs, Hungary;
| | | |
Collapse
|
2
|
Sakurai M, Yamanishi K, Hata M, Mukai K, Ogino S, Hosoi Y, Gamachi N, Takabayashi N, Watanabe Y, Yamanishi C, Matsunaga H. Exploring immunological and molecular mechanisms involved in obsessive-compulsive disorder with comorbid neurodevelopmental disorders. J Psychiatr Res 2025; 184:56-64. [PMID: 40036942 DOI: 10.1016/j.jpsychires.2025.02.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
INTRODUCTION Obsessive-compulsive disorder (OCD) is a psychiatric disease with a prevalence of 2%-3%. Despite the effectiveness of antidepressants, such as serotonin reuptake inhibitors, for treating OCD, its pathogenesis remains unclear. Recent research has implicated immunological mechanisms, particularly in OCD patients with comorbid neurodevelopmental disorders (NDD), such as autism spectrum disorder, attention deficit/hyperactive disorder, and Tourette's disorder. To examine these mechanisms, we investigated immunological factors involved in OCD patients with any NDD comorbidity (OCD + NDD group), compared with those without comorbid NDD (OCD group). MATERIALS AND METHODS Twenty-eight OCD patients treated at Hyogo Medical University Hospital were recruited for this study. Of them, 14 patients with NDD comorbidity (OCD + NDD) were compared with 14 patients without comorbid NDD (OCD). RNA was extracted from blood samples and analyzed using RNA sequencing and Ingenuity Pathway Analysis (IPA). Plasma levels of IL11 and IL17A were measured with ELISA. RESULTS RNA sequencing identified 716 significantly differentially expressed genes, with 47 related to immune functions, in the OCD + NDD group compared with the OCD group. IL11 and IL17A were central, with IL11 linked to neutrophil production and IL17A to T cell migration and cytokine secretion. Pathway analysis indicated complex interactions among these genes. DISCUSSION This study highlights significant immunological changes in OCD patients with any NDD. Decreased anti-inflammatory IL11 and increased proinflammatory IL17A suggest a shift towards inflammation, which may contribute to neurodevelopmental issues. CONCLUSION Immunological dysregulation in OCD with comorbid NDD may offer potential therapeutic targets. Immune gene interactions should be further investigated in effort to improve treatment strategies for treatment-refractory OCD patients, especially those with neurodevelopmental comorbidities.
Collapse
Affiliation(s)
- Masahiko Sakurai
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Kyosuke Yamanishi
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan; Department of Psychoimmunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, 94304, USA.
| | - Masaki Hata
- Department of Psychoimmunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Keiichiro Mukai
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Shun Ogino
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Yukihiko Hosoi
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Naomi Gamachi
- Department of Psychoimmunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| | - Noriyuki Takabayashi
- Hirakata General Hospital for Developmental Disorders, 2-1-1, Tsudahigashi, Hirakata, Osaka, 573-0122, Japan.
| | - Yuko Watanabe
- Hirakata General Hospital for Developmental Disorders, 2-1-1, Tsudahigashi, Hirakata, Osaka, 573-0122, Japan.
| | - Chiaki Yamanishi
- Hirakata General Hospital for Developmental Disorders, 2-1-1, Tsudahigashi, Hirakata, Osaka, 573-0122, Japan.
| | - Hisato Matsunaga
- Department of Neuropsychiatry, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan; Department of Psychoimmunology, School of Medicine, Hyogo Medical University, Nishinomiya, Hyogo, 663-8501, Japan.
| |
Collapse
|
3
|
Benita BA, Koss KM. Peptide discovery across the spectrum of neuroinflammation; microglia and astrocyte phenotypical targeting, mediation, and mechanistic understanding. Front Mol Neurosci 2024; 17:1443985. [PMID: 39634607 PMCID: PMC11616451 DOI: 10.3389/fnmol.2024.1443985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/24/2024] [Indexed: 12/07/2024] Open
Abstract
Uncontrolled and chronic inflammatory states in the Central Nervous System (CNS) are the hallmark of neurodegenerative pathology and every injury or stroke-related insult. The key mediators of these neuroinflammatory states are glial cells known as microglia, the resident immune cell at the core of the inflammatory event, and astroglia, which encapsulate inflammatory insults in proteoglycan-rich scar tissue. Since the majority of neuroinflammation is exclusively based on the responses of said glia, their phenotypes have been identified to be on an inflammatory spectrum encompassing developmental, homeostatic, and reparative behaviors as opposed to their ability to affect devastating cell death cascades and scar tissue formation. Recently, research groups have focused on peptide discovery to identify these phenotypes, find novel mechanisms, and mediate or re-engineer their actions. Peptides retain the diverse function of proteins but significantly reduce the activity dependence on delicate 3D structures. Several peptides targeting unique phenotypes of microglia and astroglia have been identified, along with several capable of mediating deleterious behaviors or promoting beneficial outcomes in the context of neuroinflammation. A comprehensive review of the peptides unique to microglia and astroglia will be provided along with their primary discovery methodologies, including top-down approaches using known biomolecules and naïve strategies using peptide and phage libraries.
Collapse
Affiliation(s)
| | - Kyle M. Koss
- Department of Surgery, University of Arizona, Tucson, AZ, United States
- Department of Neurobiology, University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
- Sealy Institute for Drug Discovery (SIDD), University of Texas Medical Branch (UTMB) at Galvestion, Galvestion, TX, United States
| |
Collapse
|
4
|
Castorina A, Scheller J, Keay KA, Marzagalli R, Rose-John S, Campbell IL. Increased Expression of the Neuropeptides PACAP/VIP in the Brain of Mice with CNS Targeted Production of IL-6 Is Mediated in Part by Trans-Signalling. Int J Mol Sci 2024; 25:9453. [PMID: 39273398 PMCID: PMC11395455 DOI: 10.3390/ijms25179453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences.
Collapse
Affiliation(s)
- Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Jurgen Scheller
- Institute of Biochemistry and Molecular Biology II, Medical Faculty, Heinrich-Heine University, 40225 Düsseldorf, Germany;
| | - Kevin A. Keay
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia;
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW 2007, Australia;
| | - Stefan Rose-John
- Institute of Biochemistry, Medical Faculty, Christian Albrechts University, 24098 Kiel, Germany;
| | - Iain L. Campbell
- School of Molecular Bioscience, University of Sydney, Sydney, NSW 2006, Australia;
| |
Collapse
|
5
|
Slabe Z, Balesar RA, Verwer RWH, Drevenšek G, Swaab DF. Increased pituitary adenylate cyclase-activating peptide genes expression in the prefrontal cortex in schizophrenia in relation to suicide. Front Mol Neurosci 2023; 16:1277958. [PMID: 38025265 PMCID: PMC10652791 DOI: 10.3389/fnmol.2023.1277958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Pituitary adenylate cyclase-activating peptide (PACAP) is a stress-related neuropeptide that is produced in several brain areas. It acts by 3 receptors: PACAP type-1 (PAC1), vasoactive intestinal peptide (VIP) -1 and -2 (VPAC1 and 2). Data on polymorphisms in PACAP and PAC1 indicate a relationship of the PACAP system with schizophrenia (SCZ). Methods The prefrontal cortex was chosen to measure PACAP-gene related expression changes, since this is a central structure in the symptoms of schizophrenia (SCZ). We investigated alterations in the expression of the PACAP-related genes by qPCR in the human dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex (ACC) of 35 SCZ patients and 34 matched controls in relation to SCZ, suicide, gender and medication. Results The ACC revealed an upregulation in PACAP, PAC1, VPAC1 and VPAC2 in SCZ suicide (S) completers compared to controls. An increase in PACAP, VPAC1 and VPAC2 expression was also present in the ACC in SCZ-S compared to SCZ patients who died naturally (SCZ-N). In the DLPFC, an increase in PAC1 was found in SCZ-N patients compared to SCZ-S and controls. Moreover, an increase in all PACAP-related genes was present in SCZ-N male patients compared to SCZ-N females. Concluding, expression changes were found in PACAP-related genes in relation to SCZ, suicide and gender. In particular, there was a higher PACAP-related gene expression in SCZ patients in the ACC in relation to suicide and in DLPFC in relation to SCZ. Discussion These findings suggest a potential link between PACAP and the pathophysiology of SCZ and suicide. Further research is needed to understand the functional significance and potential clinical applications of these changes.
Collapse
Affiliation(s)
- Zala Slabe
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Rawien A. Balesar
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Ronald W. H. Verwer
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Gorazd Drevenšek
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, Netherlands
- Institute of Pharmacology and Experimental Toxicology, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
6
|
Obara EAA, Georg B, Hannibal J. Development of a New Enzyme-Linked Immunosorbent Assay (ELISA) for Measuring the Content of PACAP in Mammalian Tissue and Plasma. Int J Mol Sci 2023; 24:15102. [PMID: 37894782 PMCID: PMC10606438 DOI: 10.3390/ijms242015102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a naturally occurring neuropeptide found in both the central and peripheral nervous systems of vertebrates. Recent studies have revealed the presence of PACAP and its corresponding receptors, namely, the pituitary adenylate cyclase-activating polypeptide type I receptor (PAC1R), vasoactive intestinal peptide receptor 1 (VIPR1), and vasoactive intestinal peptide receptor 2 (VIPR2), in various structures implicated in migraine pathophysiology, including sensory trigeminal neurons. Human studies have demonstrated that when infused, PACAP can cause dilation of cranial vessels and result in delayed migraine-like attacks. In light of this, we present a novel ELISA assay that has been validated for quantifying PACAP in tissue extracts and human plasma. Using two well characterized antibodies specifically targeting PACAP, we successfully developed a sandwich ELISA assay, capable of detecting and accurately quantifying PACAP without any cross-reactivity to closely related peptides. The quantification range was between 5.2 pmol/L and 400 pmol/L. The recovery in plasma ranged from 98.2% to 100%. The increasing evidence pointing to the crucial role of PACAP in migraine pathophysiology necessitates the availability of tools capable of detecting changes in the circulatory levels of PACAP and its potential application as a reliable biomarker.
Collapse
Affiliation(s)
- Elisabeth Anne Adanma Obara
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Nielsine Nielsens Vej 4, 2400 Copenhagen, NV, Denmark
| | - Birgitte Georg
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Nielsine Nielsens Vej 4, 2400 Copenhagen, NV, Denmark
| | - Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Nielsine Nielsens Vej 4, 2400 Copenhagen, NV, Denmark
| |
Collapse
|
7
|
Broome ST, Mandwie M, Gorrie CA, Musumeci G, Marzagalli R, Castorina A. Early Alterations of PACAP and VIP Expression in the Female Rat Brain Following Spinal Cord Injury. J Mol Neurosci 2023; 73:724-737. [PMID: 37646964 PMCID: PMC10694121 DOI: 10.1007/s12031-023-02151-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 08/21/2023] [Indexed: 09/01/2023]
Abstract
Previous evidence shows that rapid changes occur in the brain following spinal cord injury (SCI). Here, we interrogated the expression of the neuropeptides pituitary adenylyl cyclase-activating peptide (PACAP), vasoactive intestinal peptides (VIP), and their binding receptors in the rat brain 24 h following SCI. Female Sprague-Dawley rats underwent thoracic laminectomy; half of the rats received a mild contusion injury at the level of the T10 vertebrate (SCI group); the other half underwent sham surgery (sham group). Twenty-four hours post-surgery, the hypothalamus, thalamus, amygdala, hippocampus (dorsal and ventral), prefrontal cortex, and periaqueductal gray were collected. PACAP, VIP, PAC1, VPAC1, and VPAC2 mRNA and protein levels were measured by real-time quantitative polymerase chain reaction and Western blot. In SCI rats, PACAP expression was increased in the hypothalamus (104-141% vs sham) and amygdala (138-350%), but downregulated in the thalamus (35-95%) and periaqueductal gray (58-68%). VIP expression was increased only in the thalamus (175-385%), with a reduction in the amygdala (51-68%), hippocampus (40-75%), and periaqueductal gray (74-76%). The expression of the PAC1 receptor was the least disturbed by SCI, with decrease expression in the ventral hippocampus (63-68%) only. The expression levels of VPAC1 and VPAC2 receptors were globally reduced, with more prominent reductions of VPAC1 vs VPAC2 in the amygdala (21-70%) and ventral hippocampus (72-75%). In addition, VPAC1 downregulation also extended to the dorsal hippocampus (69-70%). These findings demonstrate that as early as 24 h post-SCI, there are region-specific disruptions of PACAP, VIP, and related receptor transcript and protein levels in supraspinal regions controlling higher cognitive functions.
Collapse
MESH Headings
- Female
- Rats
- Animals
- Pituitary Adenylate Cyclase-Activating Polypeptide/genetics
- Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide/metabolism
- Rats, Sprague-Dawley
- Receptors, Pituitary Hormone/genetics
- Receptors, Pituitary Hormone/metabolism
- Vasoactive Intestinal Peptide/genetics
- Vasoactive Intestinal Peptide/metabolism
- Receptors, Vasoactive Intestinal Polypeptide, Type I/genetics
- Receptors, Vasoactive Intestinal Polypeptide, Type I/metabolism
- Receptors, Vasoactive Intestinal Peptide, Type II/genetics
- Receptors, Vasoactive Intestinal Peptide, Type II/metabolism
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/genetics
- Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I/metabolism
- Spinal Cord Injuries/metabolism
- Brain/metabolism
Collapse
Affiliation(s)
- Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Mawj Mandwie
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Catherine A Gorrie
- Neural Injury Research Unit, School of Life Science, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Anatomy, Histology and Movement Sciences Section, School of Medicine, University of Catania, Catania, Italy
| | - Rubina Marzagalli
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Science, Faculty of Science, University of Technology Sydney, PO Box 123 Broadway, Sydney, NSW, 2007, Australia.
| |
Collapse
|
8
|
Fu Y, Das A, Wang D, Braun R, Yi R. Reconstruction of 3-dimensional tissue organization at the single-cell resolution. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522502. [PMID: 36711844 PMCID: PMC9881965 DOI: 10.1101/2023.01.04.522502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Recent advances in spatial transcriptomics (ST) have allowed for the mapping of tissue heterogeneity, but this technique lacks the resolution to investigate gene expression patterns, cell-cell communications and tissue organization at the single-cell resolution. ST data contains a mixed transcriptome from multiple heterogeneous cells, and current methods predict two-dimensional (2D) coordinates for individual cells within a predetermined space, making it difficult to reconstruct and study three-dimensional (3D) tissue organization. Here we present a new computational method called scHolography that uses deep learning to map single-cell transcriptome data to 3D space. Unlike existing methods, which generate a projection between transcriptome data and 2D spatial coordinates, scHolography uses neural networks to create a high-dimensional transcriptome-to-space map that preserves the distance information between cells, allowing for the construction of a cell-cell proximity matrix beyond the 2D ST scaffold. Furthermore, the neighboring cell profile of a given cell type can be extracted to study spatial cell heterogeneity. We apply scHolography to human skin, human skin cancer and mouse brain datasets, providing new insights into gene expression patterns, cell-cell interactions and spatial microenvironment. Together, scHolography offers a computational solution for digitizing transcriptome and spatial information into high-dimensional data for neural network-based mapping and the reconstruction of 3D tissue organization at the single-cell resolution.
Collapse
Affiliation(s)
- Yuheng Fu
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Arpan Das
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Dongmei Wang
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rosemary Braun
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208, USA
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
- Department of Physics and Astronomy, Northwestern University, Evanston, IL 60208, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL 60208, USA
| | - Rui Yi
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology and Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
9
|
Broome ST, Musumeci G, Castorina A. PACAP and VIP Mitigate Rotenone-Induced Inflammation in BV-2 Microglial Cells. J Mol Neurosci 2022; 72:2163-2175. [PMID: 35199308 PMCID: PMC9726775 DOI: 10.1007/s12031-022-01968-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/05/2022] [Indexed: 12/16/2022]
Abstract
Rotenone is a commercial pesticide commonly used to model Parkinson's disease (PD) due to its ability to induce dopaminergic degeneration. Studies have confirmed that rotenone causes microglial activation, which seems to contribute to the toxic effects seen in rodent models. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are two structurally related neuropeptides that have robust neuroprotective and anti-inflammatory properties. However, their ability to regulate microglial activity in response to rotenone is not fully understood. Using rotenone as an inflammatory stimulus, we tested whether PACAP or VIP could mitigate microglial activation in BV2 microglial cells. Rotenone dose-dependently reduced cell viability and the percentage of apoptotic cells. It also increased the release of nitric oxide (NO) in culture media and the expression of microglial activation markers and pro-inflammatory markers, including CD11b, MMP-9 and IL-6, and heightened the endogenous levels of PACAP and its preferring receptor PAC1. Co-treatment with PACAP or VIP prevented rotenone-induced increase of NO, CD11b, MMP-9 and IL-6. These results indicate that both PACAP and VIP are able to prevent the pro-inflammatory effects of rotenone in BV2 cells, supporting the idea that these molecules can have therapeutic value in slowing down PD progression.
Collapse
Affiliation(s)
- Sarah Thomas Broome
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia
| | - Giuseppe Musumeci
- Section of Human Anatomy, Histology and Movement Science, Department of Biomedical and Biotechnological Sciences, University of Catania, via S. Sofia, 87, 95123, Catania, Italy
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience (LCMN), School of Life Sciences, Faculty of Science, University of Technology Sydney, PO Box 123, Broadway, NSW, 2007, Australia.
| |
Collapse
|
10
|
Hirrlinger J, Nimmerjahn A. A perspective on astrocyte regulation of neural circuit function and animal behavior. Glia 2022; 70:1554-1580. [PMID: 35297525 PMCID: PMC9291267 DOI: 10.1002/glia.24168] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/19/2022] [Accepted: 02/27/2022] [Indexed: 12/16/2022]
Abstract
Studies over the past two decades have demonstrated that astrocytes are tightly associated with neurons and play pivotal roles in neural circuit development, operation, and adaptation in health and disease. Nevertheless, precisely how astrocytes integrate diverse neuronal signals, modulate neural circuit structure and function at multiple temporal and spatial scales, and influence animal behavior or disease through aberrant excitation and molecular output remains unclear. This Perspective discusses how new and state-of-the-art approaches, including fluorescence indicators, opto- and chemogenetic actuators, genetic targeting tools, quantitative behavioral assays, and computational methods, might help resolve these longstanding questions. It also addresses complicating factors in interpreting astrocytes' role in neural circuit regulation and animal behavior, such as their heterogeneity, metabolism, and inter-glial communication. Research on these questions should provide a deeper mechanistic understanding of astrocyte-neuron assemblies' role in neural circuit function, complex behaviors, and disease.
Collapse
Affiliation(s)
- Johannes Hirrlinger
- Carl-Ludwig-Institute for Physiology, Medical Faculty,
University of Leipzig, Leipzig, Germany
- Department of Neurogenetics, Max-Planck-Institute for
Multidisciplinary Sciences, Göttingen, Germany
| | - Axel Nimmerjahn
- Waitt Advanced Biophotonics Center, The Salk Institute for
Biological Studies, La Jolla, California
| |
Collapse
|
11
|
Sobolczyk M, Boczek T. Astrocytic Calcium and cAMP in Neurodegenerative Diseases. Front Cell Neurosci 2022; 16:889939. [PMID: 35663426 PMCID: PMC9161693 DOI: 10.3389/fncel.2022.889939] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 05/05/2022] [Indexed: 12/18/2022] Open
Abstract
It is commonly accepted that the role of astrocytes exceeds far beyond neuronal scaffold and energy supply. Their unique morphological and functional features have recently brough much attention as it became evident that they play a fundamental role in neurotransmission and interact with synapses. Synaptic transmission is a highly orchestrated process, which triggers local and transient elevations in intracellular Ca2+, a phenomenon with specific temporal and spatial properties. Presynaptic activation of Ca2+-dependent adenylyl cyclases represents an important mechanism of synaptic transmission modulation. This involves activation of the cAMP-PKA pathway to regulate neurotransmitter synthesis, release and storage, and to increase neuroprotection. This aspect is of paramount importance for the preservation of neuronal survival and functionality in several pathological states occurring with progressive neuronal loss. Hence, the aim of this review is to discuss mutual relationships between cAMP and Ca2+ signaling and emphasize those alterations at the Ca2+/cAMP crosstalk that have been identified in neurodegenerative disorders, such as Alzheimer's and Parkinson's disease.
Collapse
|
12
|
Caulino-Rocha A, Rodrigues NC, Ribeiro JA, Cunha-Reis D. Endogenous VIP VPAC 1 Receptor Activation Modulates Hippocampal Theta Burst Induced LTP: Transduction Pathways and GABAergic Mechanisms. BIOLOGY 2022; 11:biology11050627. [PMID: 35625355 PMCID: PMC9138116 DOI: 10.3390/biology11050627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 12/16/2022]
Abstract
Simple Summary Regulation of synaptic plasticity through control of disinhibition is an important process in the prevention of excessive plasticity in both physiological and pathological conditions. Interneuron-selective interneurons, such as the ones expressing VIP in the hippocampus, may play a crucial role in this process. In this paper we showed that endogenous activation of VPAC1—not VPAC2 receptors—exerts an inhibitory control of long-term potentiation (LTP) induced by theta-burst stimulation (TBS) in the hippocampus, through a mechanism dependent on GABAergic transmission. This suggests that VPAC1-mediated modulation of synaptic transmission at GABAergic synapses to interneurons will ultimately influence NMDA-dependent LTP expression by modulating inhibitory control of pyramidal cell dendrites and postsynaptic depolarization during LTP induction. Accordingly, the transduction pathways mostly involved in this effect were the ones involved in TBS-induced LTP expression like NMDA receptor activation and CaMKII activity. In addition, the actions of endogenous VIP through VPAC1 receptors may indirectly influence the control of dendritic excitability by Kv4.2 channels. Abstract Vasoactive intestinal peptide (VIP), acting on both VPAC1 and VPAC2 receptors, is a key modulator of hippocampal synaptic transmission, pyramidal cell excitability and long-term depression (LTD), exerting its effects partly through modulation GABAergic disinhibitory circuits. Yet, the role of endogenous VIP and its receptors in modulation of hippocampal LTP and the involvement of disinhibition in this modulation have scarcely been investigated. We studied the modulation of CA1 LTP induced by TBS via endogenous VIP release in hippocampal slices from young-adult Wistar rats using selective VPAC1 and VPAC2 receptor antagonists, evaluating its consequence for the phosphorylation of CamKII, GluA1 AMPA receptor subunits and Kv4.2 potassium channels in total hippocampal membranes obtained from TBS stimulated slices. Endogenous VIP, acting on VPAC1 (but not VPAC2) receptors, inhibited CA1 hippocampal LTP induced by TBS in young adult Wistar rats and this effect was dependent on GABAergic transmission and relied on the integrity of NMDA and CaMKII-dependent LTP expression mechanisms but not on PKA and PKC activity. Furthermore, it regulated the autophosphorylation of CaMKII and the expression and Ser438 phosphorylation of Kv4.2 potassium channels responsible for the A-current while inhibiting phosphorylation of Kv4.2 on Thr607. Altogether, this suggests that endogenous VIP controls the expression of hippocampal CA1 LTP by regulating disinhibition through activation of VPAC1 receptors in interneurons. This may impact the autophosphorylation of CaMKII during LTP, as well as the expression and phosphorylation of Kv4.2 K+ channels at hippocampal pyramidal cell dendrites.
Collapse
Affiliation(s)
- Ana Caulino-Rocha
- Departamento de Química e Bioquímica Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Nádia Carolina Rodrigues
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
| | - Joaquim Alexandre Ribeiro
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Diana Cunha-Reis
- Departamento de Química e Bioquímica Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;
- BioISI—Instituto de Biosistemas e Ciências Integrativas, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
- Unidade de Neurociências, Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal; (N.C.R.); (J.A.R.)
- Correspondence:
| |
Collapse
|
13
|
de Almeida Miranda D, Araripe J, de Morais Magalhães NG, de Siqueira LS, de Abreu CC, Pereira PDC, Henrique EP, da Silva Chira PAC, de Melo MAD, do Rêgo PS, Diniz DG, Sherry DF, Diniz CWP, Guerreiro-Diniz C. Shorebirds' Longer Migratory Distances Are Associated With Larger ADCYAP1 Microsatellites and Greater Morphological Complexity of Hippocampal Astrocytes. Front Psychol 2022; 12:784372. [PMID: 35185684 PMCID: PMC8855117 DOI: 10.3389/fpsyg.2021.784372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/29/2021] [Indexed: 12/12/2022] Open
Abstract
For the epic journey of autumn migration, long-distance migratory birds use innate and learned information and follow strict schedules imposed by genetic and epigenetic mechanisms, the details of which remain largely unknown. In addition, bird migration requires integrated action of different multisensory systems for learning and memory, and the hippocampus appears to be the integration center for this task. In previous studies we found that contrasting long-distance migratory flights differentially affected the morphological complexity of two types of hippocampus astrocytes. Recently, a significant association was found between the latitude of the reproductive site and the size of the ADCYAP1 allele in long distance migratory birds. We tested for correlations between astrocyte morphological complexity, migratory distances, and size of the ADCYAP1 allele in three long-distance migrant species of shorebird and one non-migrant. Significant differences among species were found in the number and morphological complexity of the astrocytes, as well as in the size of the microsatellites of the ADCYAP1 gene. We found significant associations between the size of the ADCYAP1 microsatellites, the migratory distances, and the degree of morphological complexity of the astrocytes. We suggest that associations between astrocyte number and morphological complexity, ADCYAP1 microsatellite size, and migratory behavior may be part of the adaptive response to the migratory process of shorebirds.
Collapse
Affiliation(s)
- Diego de Almeida Miranda
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil.,Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Juliana Araripe
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Nara G de Morais Magalhães
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Lucas Silva de Siqueira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Cintya Castro de Abreu
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Patrick Douglas Corrêa Pereira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Ediely Pereira Henrique
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Pedro Arthur Campos da Silva Chira
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Mauro A D de Melo
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| | - Péricles Sena do Rêgo
- Laboratório de Genética e Conservação, Instituto de Estudos Costeiros (IECOS), Universidade Federal do Pará, Bragança, Brazil
| | - Daniel Guerreiro Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil.,Laboratório de Microscopia Eletrônica, Instituto Evandro Chagas, Belém, Brazil
| | - David Francis Sherry
- Department of Psychology, Advanced Facility for Avian Research, University of Western Ontario, London, ON, Canada
| | - Cristovam W P Diniz
- Laboratório de Investigações em Neurodegeneração e Infecção, Instituto de Ciências Biológicas, Universidade Federal do Pará, Hospital Universitário João de Barros Barreto, Belém, Brazil
| | - Cristovam Guerreiro-Diniz
- Instituto Federal de Educação Ciência e Tecnologia do Pará, Campus Bragança, Laboratório de Biologia Molecular e Neuroecologia, Bragança, Brazil
| |
Collapse
|
14
|
Ruel J, Guitton MJ, Gratias P, Lenoir M, Shen S, Puel JL, Brabet P, Wang J. Endogenous Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Plays a Protective Effect Against Noise-Induced Hearing Loss. Front Cell Neurosci 2021; 15:658990. [PMID: 33828461 PMCID: PMC8019930 DOI: 10.3389/fncel.2021.658990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 01/07/2023] Open
Abstract
Pituitary adenylyl cyclase-activating polypeptide (PACAP) is a member of the vasoactive intestinal polypeptide (VIP)-the secretin-glucagon family of neuropeptides. They act through two classes of receptors: PACAP type 1 (PAC1) and type 2 (VPAC1 and VPAC2). Among their pleiotropic effects throughout the body, PACAP functions as neuromodulators and neuroprotectors, rescuing neurons from apoptosis, mostly through the PAC1 receptor. To explore the potential protective effect of endogenous PACAP against Noise-induced hearing loss (NIHL), we used a knockout mouse model lacking PAC1 receptor expression (PACR1−/−) and a transgenic humanized mouse model expressing the human PAC1 receptor (TgHPAC1R). Based on complementary approaches combining electrophysiological, histochemical, and molecular biological evaluations, we show PAC1R expression in spiral ganglion neurons and in cochlear apical cells of the organ of Corti. Wild-type (WT), PAC1R−/−, and TgHPAC1R mice exhibit similar auditory thresholds. For most of the frequencies tested after acute noise damage, however, PAC1R−/− mice showed a larger elevation of the auditory threshold than did their WT counterparts. By contrast, in a transgene copy number-dependent fashion, TgHPAC1R mice showed smaller noise-induced elevations of auditory thresholds compared to their WT counterparts. Together, these findings suggest that PACAP could be a candidate for endogenous protection against noise-induced hearing loss.
Collapse
Affiliation(s)
- Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France.,Laboratoire de Neurosciences Cognitives, UMR7291 CNRS, Aix-Marseille Université, Marseille, France
| | - Matthieu J Guitton
- CERVO Brain Research Center, Faculty of Medicine, Laval University, Quebec City, QC, Canada
| | - Paul Gratias
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Marc Lenoir
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Sanbing Shen
- Regenerative Medicine Institute, National University of Ireland (NUI), Galway, Ireland
| | - Jean-Luc Puel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Philippe Brabet
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, Montpellier, France
| |
Collapse
|
15
|
Mesenchymal Stem Cell Secretome Enhancement by Nicotinamide and Vasoactive Intestinal Peptide: A New Therapeutic Approach for Retinal Degenerative Diseases. Stem Cells Int 2020; 2020:9463548. [PMID: 32676122 PMCID: PMC7336242 DOI: 10.1155/2020/9463548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/16/2020] [Accepted: 06/04/2020] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal stem cells (MSC) secrete neuroprotective molecules that may be useful as an alternative to cell transplantation itself. Our purpose was to develop different pharmaceutical compositions based on conditioned medium (CM) of adipose MSC (aMSC) stimulated by and/or combined with nicotinamide (NIC), vasoactive intestinal peptide (VIP), or both factors; and to evaluate in vitro their proliferative and neuroprotective potential. Nine pharmaceutical compositions were developed from 3 experimental approaches: (1) unstimulated aMSC-CM collected and combined with NIC, VIP, or both factors (NIC+VIP), referred to as the aMSC-CM combined composition; (2) aMSC-CM collected just after stimulation with the mentioned factors and containing them, referred to as the aMSC-CM stimulated-combined composition; and (3) aMSC-CM previously stimulated with the factors, referred to as the aMSC stimulated composition. The potential of the pharmaceutical compositions to increase cell proliferation under oxidative stress and neuroprotection were evaluated in vitro by using a subacute oxidative stress model of retinal pigment epithelium cells (line ARPE-19) and spontaneous degenerative neuroretina model. Results showed that oxidatively stressed ARPE-19 cells exposed to aMSC-CM stimulated and stimulated-combined with NIC or NIC+VIP tended to have better recovery from the oxidative stress status. Neuroretinal explants cultured with aMSC-CM stimulated-combined with NIC+VIP had better preservation of the neuroretinal morphology, mainly photoreceptors, and a lower degree of glial cell activation. In conclusion, aMSC-CM stimulated-combined with NIC+VIP contributed to improving the proliferative and neuroprotective properties of the aMSC secretome. Further studies are necessary to evaluate higher concentrations of the drugs and to characterize specifically the aMSC-secreted factors related to neuroprotection. However, this study supports the possibility of improving the potential of new effective pharmaceutical compositions based on the secretome of MSC plus exogenous factors or drugs without the need to inject cells into the eye, which can be very useful in retinal pathologies.
Collapse
|
16
|
Sueviriyapan N, Tso CF, Herzog ED, Henson MA. Astrocytic Modulation of Neuronal Activity in the Suprachiasmatic Nucleus: Insights from Mathematical Modeling. J Biol Rhythms 2020; 35:287-301. [PMID: 32285754 PMCID: PMC7401727 DOI: 10.1177/0748730420913672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The suprachiasmatic nucleus (SCN) of the hypothalamus consists of a highly heterogeneous neuronal population networked together to allow precise and robust circadian timekeeping in mammals. While the critical importance of SCN neurons in regulating circadian rhythms has been extensively studied, the roles of SCN astrocytes in circadian system function are not well understood. Recent experiments have demonstrated that SCN astrocytes are circadian oscillators with the same functional clock genes as SCN neurons. Astrocytes generate rhythmic outputs that are thought to modulate neuronal activity through pre- and postsynaptic interactions. In this study, we developed an in silico multicellular model of the SCN clock to investigate the impact of astrocytes in modulating neuronal activity and affecting key clock properties such as circadian rhythmicity, period, and synchronization. The model predicted that astrocytes could alter the rhythmic activity of neurons via bidirectional interactions at tripartite synapses. Specifically, astrocyte-regulated extracellular glutamate was predicted to increase neuropeptide signaling from neurons. Consistent with experimental results, we found that astrocytes could increase the circadian period and enhance neural synchronization according to their endogenous circadian period. The impact of astrocytic modulation of circadian rhythm amplitude, period, and synchronization was predicted to be strongest when astrocytes had periods between 0 and 2 h longer than neurons. Increasing the number of neurons coupled to the astrocyte also increased its impact on period modulation and synchrony. These computational results suggest that signals that modulate astrocytic rhythms or signaling (e.g., as a function of season, age, or treatment) could cause disruptions in circadian rhythm or serve as putative therapeutic targets.
Collapse
Affiliation(s)
- Natthapong Sueviriyapan
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Chak Foon Tso
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
- Current Affiliation: Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Erik D. Herzog
- Department of Biology, Washington University in St. Louis, Saint Louis, MO 63130, USA
| | - Michael A. Henson
- Department of Chemical Engineering and the Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
17
|
Denes V, Geck P, Mester A, Gabriel R. Pituitary Adenylate Cyclase-Activating Polypeptide: 30 Years in Research Spotlight and 600 Million Years in Service. J Clin Med 2019; 8:jcm8091488. [PMID: 31540472 PMCID: PMC6780647 DOI: 10.3390/jcm8091488] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022] Open
Abstract
Emerging from the depths of evolution, pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors (i.e., PAC1, VPAC1, VPAC2) are present in multicellular organisms from Tunicates to humans and govern a remarkable number of physiological processes. Consequently, the clinical relevance of PACAP systems spans a multifaceted palette that includes more than 40 disorders. We aimed to present the versatility of PACAP1-38 actions with a focus on three aspects: (1) when PACAP1-38 could be a cause of a malfunction, (2) when PACAP1-38 could be the cure for a malfunction, and (3) when PACAP1-38 could either improve or impair biology. PACAP1-38 is implicated in the pathophysiology of migraine and post-traumatic stress disorder whereas an outstanding protective potential has been established in ischemia and in Alzheimer’s disease. Lastly, PACAP receptors could mediate opposing effects both in cancers and in inflammation. In the light of the above, the duration and concentrations of PACAP agents must be carefully set at any application to avoid unwanted consequences. An enormous amount of data accumulated since its discovery (1989) and the first clinical trials are dated in 2017. Thus in the field of PACAP research: “this is not the end, not even the beginning of the end, but maybe the end of the beginning.”
Collapse
Affiliation(s)
- Viktoria Denes
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Peter Geck
- Department of Immunology, School of Medicine, Tufts University, Boston, MA 02111, USA.
| | - Adrienn Mester
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, 7624 Pécs, Hungary.
| |
Collapse
|
18
|
Zhou Z, Ikegaya Y, Koyama R. The Astrocytic cAMP Pathway in Health and Disease. Int J Mol Sci 2019; 20:E779. [PMID: 30759771 PMCID: PMC6386894 DOI: 10.3390/ijms20030779] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/11/2022] Open
Abstract
Astrocytes are major glial cells that play critical roles in brain homeostasis. Abnormalities in astrocytic functions can lead to brain disorders. Astrocytes also respond to injury and disease through gliosis and immune activation, which can be both protective and detrimental. Thus, it is essential to elucidate the function of astrocytes in order to understand the physiology of the brain to develop therapeutic strategies against brain diseases. Cyclic adenosine monophosphate (cAMP) is a major second messenger that triggers various downstream cellular machinery in a wide variety of cells. The functions of astrocytes have also been suggested as being regulated by cAMP. Here, we summarize the possible roles of cAMP signaling in regulating the functions of astrocytes. Specifically, we introduce the ways in which cAMP pathways are involved in astrocyte functions, including (1) energy supply, (2) maintenance of the extracellular environment, (3) immune response, and (4) a potential role as a provider of trophic factors, and we discuss how these cAMP-regulated processes can affect brain functions in health and disease.
Collapse
Affiliation(s)
- Zhiwen Zhou
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
- Center for Information and Neural Networks, Suita City, Osaka 565-0871, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
19
|
Nakamachi T, Tanigawa A, Konno N, Shioda S, Matsuda K. Expression Patterns of PACAP and PAC1R Genes and Anorexigenic Action of PACAP1 and PACAP2 in Zebrafish. Front Endocrinol (Lausanne) 2019; 10:227. [PMID: 31031705 PMCID: PMC6473066 DOI: 10.3389/fendo.2019.00227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/21/2019] [Indexed: 11/13/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with potent suppressive effects on feeding behavior in rodents, chicken, and goldfish. Teleost fish express two PACAPs (PACAP1, encoded by the adcyap1a gene, and PACAP2, encoded by the adcyap1b gene) and two PACAP receptors (PAC1Rs; PAC1Ra, encoded by the adcyap1r1a gene, and PAC1Rb, encoded by the adcyap1r1b gene). However, the mRNA expression patterns of the two PACAPs and PAC1Rs, and the influence and relationship of the two PACAPs on feeding behavior in teleost fish remains unclear. Therefore, we first examined mRNA expression patterns of PACAP and PAC1R in tissue and brain. All PACAP and PAC1Rs mRNAs were dominantly expressed in the zebrafish brain. However, adcyap1a mRNA was also detected in the gut and testis. In the brain, adcyap1b and adcyap1r1a mRNA levels were greater than that of adcyap1a and adcyap1r1b, respectively. Moreover, adcyap1b and adcyap1r1a mRNA were dominantly expressed in telencephalon and diencephalon. The highest adcyap1a mRNA levels were detected in the brain stem and diencephalon, while the highest levels of adcyap1r1b were detected in the cerebellum. To clarify the relationship between PACAP and feeding behavior in the zebrafish, the effects of zebrafish (zf) PACAP1 or zfPACAP2 intracerebroventricular (ICV) injection were examined on food intake, and changes in PACAP mRNA levels were assessed against feeding status. Food intake was significantly decreased by ICV injection of zfPACAP1 (2 pmol/g body weight), zfPACAP2 (2 or 20 pmol/g body weight), or mammalian PACAP (2 or 20 pmol/g). Meanwhile, the PACAP injection group did not change locomotor activity. Real-time PCR showed adcyap1 mRNA levels were significantly increased at 2 and 3 h after feeding compared with the pre-feeding level, but adcyap1b, adcyap1r1a, and adcyap1r1b mRNA levels did not change after feeding. These results suggest that the expression levels and distribution of duplicated PACAP and PAC1R genes are different in zebrafish, but the anorexigenic effects of PACAP are similar to those seen in other vertebrates.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- *Correspondence: Tomoya Nakamachi
| | - Ayano Tanigawa
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - Seiji Shioda
- Innovative Drug Discovery, Global Research Center for Innovative Life Science, Hoshi University, Tokyo, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| |
Collapse
|
20
|
Kaddour H, Hamdi Y, Amri F, Bahdoudi S, Bouannee I, Leprince J, Zekri S, Vaudry H, Tonon MC, Vaudry D, Amri M, Mezghani S, Masmoudi-Kouki O. Antioxidant and Anti-Apoptotic Activity of Octadecaneuropeptide Against 6-OHDA Toxicity in Cultured Rat Astrocytes. J Mol Neurosci 2018; 69:1-16. [PMID: 30343367 DOI: 10.1007/s12031-018-1181-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 09/21/2018] [Indexed: 12/12/2022]
Abstract
Oxidative stress, associated with various neurodegenerative diseases, promotes ROS generation, impairs cellular antioxidant defenses, and finally, triggers both neurons and astroglial cell death by apoptosis. Astrocytes specifically synthesize and release endozepines, a family of regulatory peptides, including the octadecaneuropeptide (ODN). We have previously reported that ODN acts as a potent neuroprotective agent that prevents 6-OHDA-induced apoptotic neuronal death. The purpose of the present study was to investigate the potential glioprotective effect of ODN on 6-OHDA-induced oxidative stress and cell death in cultured rat astrocytes. Incubation of astrocytes with graded concentrations of ODN (10-14 to 10-8 M) inhibited 6-OHDA-evoked cell death in a concentration- and time-dependent manner. In addition, ODN prevented the decrease of mitochondrial activity and caspase-3 activation induced by 6-OHDA. 6-OHDA-treated cells also exhibited enhanced levels of ROS associated with a generation of H2O2 and O2°-, and a reduction of both superoxide dismutase (SOD) and catalase (CAT) activities. Co-treatment of astrocytes with low concentrations of ODN dose-dependently blocked 6-OHDA-evoked production of ROS and inhibition of antioxidant enzyme activities. Concomitantly, ODN stimulated Mn-SOD, CAT, glutathione peroxidase-1, and sulfiredoxin-1 gene transcription and rescued 6-OHDA-associated reduced expression of endogenous antioxidant enzymes. Taken together, these data indicate that, in rat astrocytes, ODN exerts anti-apoptotic and anti-oxidative activities, and hence prevents 6-OHDA-induced oxidative assault and cell death. ODN is thus a potential candidate to delay neuronal damages in various pathological conditions involving oxidative neurodegeneration.
Collapse
Affiliation(s)
- Hadhemi Kaddour
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,CIRB, CNRS UMR 7241/INSERM U1050, PSL University, Labex MemoLife, Collège de France, 11 place Marcelin Berthelot, 75231, Paris, France.,Imagine Institute and Center of Psychiatry and Neuroscience, Université Paris Descartes, 102-108 rue de la Santé, 75014, Paris, France
| | - Yosra Hamdi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Fatma Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Seyma Bahdoudi
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.,UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - Ibtissem Bouannee
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Jérôme Leprince
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Sami Zekri
- USCR Transmission Electron Microscopy, Faculty of Medicine, University Tunis El Manar, Tunis, Tunisia
| | - Hubert Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Marie-Christine Tonon
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France
| | - David Vaudry
- UNIROUEN, Inserm U1239, Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Normandie Univ, 76000, Rouen, France.,UNIROUEN, Regional Cell Imaging Platform of Normandy (PRIMACEN), Normandie Univ, 76000, Rouen, France
| | - Mohamed Amri
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Sana Mezghani
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia
| | - Olfa Masmoudi-Kouki
- University Tunis El Manar, Faculty of Sciences of Tunis, LR18ES03, Laboratory of Neurophysiology, Cellular Physiopathology and Biomelcules Valorisation, 2092, Tunis, Tunisia.
| |
Collapse
|
21
|
Nakamachi T, Kamata E, Tanigawa A, Konno N, Shioda S, Matsuda K. Distribution of pituitary adenylate cyclase-activating polypeptide 2 in zebrafish brain. Peptides 2018. [PMID: 29535004 DOI: 10.1016/j.peptides.2018.03.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a multipotent neuropeptide with an amino acid sequence that is well conserved among vertebrates. In teleosts, including zebrafish, the PACAP gene (adcyap1) has been duplicated to yield adcyap1a (coding PACAP1) and adcyap1b (coding PACAP2). This study aims to determine the distribution of these PACAPs and their mRNAs in zebrafish. We generated a zebrafish PACAP2-specific antibody. Using real-time PCR, we observed that adcyap1b mRNA was primarily localized in the brain, with the highest level in the telencephalon, followed by the diencephalon. Using immunostaining of brain tissue samples, PACAP2 immunoreactivity was observed mainly in the telencephalon, hypothalamus, and cerebellum, and the immunopositive fibers formed a line to the habenula. PACAP2-immunopositive cells were observed in the ventral and dorsal regions of the telencephalon and in the hypothalamic nucleus of the diencephalon in the colchicine-injected brain. This distribution of PACAP2 suggests its involvement in higher brain functions in teleosts, such as learning and cognition, as well as instinctive behaviors such as feeding and emotional regulation.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan.
| | - Eri Kamata
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | - Ayano Tanigawa
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| | - Seiji Shioda
- Innovative Drug Discovery, Global Research Center for Innovative Life Science, Hoshi University, 4-41 Ebara 2-chome, Shinagawa-ku, Tokyo 142-8501, Japan
| | - Kouhei Matsuda
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama, Toyama 930-8555, Japan
| |
Collapse
|
22
|
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
23
|
Verkhratsky A, Nedergaard M. Physiology of Astroglia. Physiol Rev 2018; 98:239-389. [PMID: 29351512 PMCID: PMC6050349 DOI: 10.1152/physrev.00042.2016] [Citation(s) in RCA: 1073] [Impact Index Per Article: 153.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/22/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Astrocytes are neural cells of ectodermal, neuroepithelial origin that provide for homeostasis and defense of the central nervous system (CNS). Astrocytes are highly heterogeneous in morphological appearance; they express a multitude of receptors, channels, and membrane transporters. This complement underlies their remarkable adaptive plasticity that defines the functional maintenance of the CNS in development and aging. Astrocytes are tightly integrated into neural networks and act within the context of neural tissue; astrocytes control homeostasis of the CNS at all levels of organization from molecular to the whole organ.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| | - Maiken Nedergaard
- The University of Manchester , Manchester , United Kingdom ; Achúcarro Basque Center for Neuroscience, IKERBASQUE, Basque Foundation for Science , Bilbao , Spain ; Department of Neuroscience, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain ; Center for Basic and Translational Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen , Copenhagen , Denmark ; and Center for Translational Neuromedicine, University of Rochester Medical Center , Rochester, New York
| |
Collapse
|
24
|
Lestanova Z, Puerta F, Alanazi M, Bacova Z, Kiss A, Castejon AM, Bakos J. Downregulation of Oxytocin Receptor Decreases the Length of Projections Stimulated by Retinoic Acid in the U-87MG Cells. Neurochem Res 2016; 42:1006-1014. [DOI: 10.1007/s11064-016-2133-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 11/03/2016] [Accepted: 12/03/2016] [Indexed: 12/24/2022]
|
25
|
Abstract
Neurodegenerative disorders (NDDs) are characterized by neuronal death in the brain. The mechanism of the neuronal death is too complicated to be fully understood, although in many NDDs, aging and neurotoxins are known risk factors. In the central and peripheral nervous system, vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide, is released to support neuronal survival in both physiological and pathological condition. VIP can inhibit the neurodegeneration induced by the loss of neurons. The indirect protection effect is mainly mediated by glial cells through the production of neurotrophic factor(s) and inhibition of proinflammatory mediators. By remolding the structure and improving the transfer efficiency of VIP, its nerve protective function could be further improved. Its neuroprotective action and efficacy in inhibiting a broad range of inflammatory responses make VIP or related peptides becoming a novel therapeutic method to NDDs. In this review, we aim to summarize the relationship between VIP and NDDs.
Collapse
Affiliation(s)
- Guangxiu Deng
- a National Glycoengineering Research Center , Shandong University , Jinan , China
| | - Lan Jin
- a National Glycoengineering Research Center , Shandong University , Jinan , China
| |
Collapse
|
26
|
Maduna T, Lelievre V. Neuropeptides shaping the central nervous system development: Spatiotemporal actions of VIP and PACAP through complementary signaling pathways. J Neurosci Res 2016; 94:1472-1487. [PMID: 27717098 DOI: 10.1002/jnr.23915] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/04/2016] [Accepted: 08/15/2016] [Indexed: 01/18/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal peptide (VIP) are neuropeptides with wide, complementary, and overlapping distributions in the central and peripheral nervous systems, where they exert important regulatory roles in many physiological processes. VIP and PACAP display a large range of biological cellular targets and functions in the adult nervous system including regulation of neurotransmission and neuroendocrine secretion and neuroprotective and neuroimmune responses. As the main focus of the present review, VIP and PACAP also have been long implicated in nervous system development and maturation through their interaction with the seven transmembrane domain G protein-coupled receptors, PAC1, VPAC1, and VPAC2, initiating multiple signaling pathways. Compared with PAC1, which solely binds PACAP with very high affinity, VPACs exhibit high affinities for both VIP and PACAP but differ from each other because of their pharmacological profile for both natural accessory peptides and synthetic or chimeric molecules, with agonistic and antagonistic properties. Complementary to initial pharmacological studies, transgenic animals lacking these neuropeptides or their receptors have been used to further characterize the neuroanatomical, electrophysiological, and behavioral roles of PACAP and VIP in the developing central nervous system. In this review, we recapitulate the critical steps and processes guiding/driving neurodevelopment in vertebrates and superimposing the potential contribution of PACAP and VIP receptors on the given timeline. We also describe how alterations in VIP/PACAP signaling may contribute to both (neuro)developmental and adult pathologies and suggest that tuning of VIP/PACAP signaling in a spatiotemporal manner may represent a novel avenue for preventive therapies of neurological and psychiatric disorders. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tando Maduna
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France
| | - Vincent Lelievre
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique UPR3212, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
27
|
Resveratrol promotes myenteric neuroprotection in the ileum of rats after ischemia-reperfusion injury. Life Sci 2016; 166:54-59. [PMID: 27671039 DOI: 10.1016/j.lfs.2016.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/21/2016] [Accepted: 09/22/2016] [Indexed: 01/31/2023]
Abstract
AIMS The present study evaluated the effects of resveratrol in the myenteric plexus after intestinal ischemia-reperfusion (I/R) injury caused by occluding the superior mesenteric artery for 45min, followed by 7days of reperfusion. MAIN METHODS Forty-two male Wistar rats were divided into seven groups: control (C group), untreated sham surgery control (SC group), sham surgery control treated with resveratrol before surgery (STA group), sham surgery control treated with resveratrol before and after surgery (STAD group), ischemic control (IRC group), ischemic treated before I/R (IRTA group), and ischemic treated before and after I/R (IRTAD group). Resveratrol (10mg/kg) was administered for 4days and 2h prior to surgery and/or 7days later. Morphometric analyses were performed, and the density of the general neuronal population (HuC/D-immunoreactive [IR]), nitrergic subpopulation (neuronal nitric oxide synthase [nNOS]-IR), vasoactive intestinal peptide (VIP)ergic varicosities (VIP-IR), and glial cells (S100-IR) was determined. KEY FINDINGS Injury that was caused by I/R significantly reduced (p<0.01) the HuC/D-IR general neuronal population. Treatment with resveratrol before and after ischemia had a neuroprotective effect. Morphometric changes caused by I/R in nitrergic neurons and varicosities were also attenuated by resveratrol. Ischemia/reperfusion promoted the proliferation of enteric glial cells, and resveratrol treatment before and after I/R reversed this effect. SIGNIFICANCE Resveratrol had neuroprotective effects, showing promise for application in intestinal surgery and transplants.
Collapse
|
28
|
Douiri S, Bahdoudi S, Hamdi Y, Cubì R, Basille M, Fournier A, Vaudry H, Tonon MC, Amri M, Vaudry D, Masmoudi-Kouki O. Involvement of endogenous antioxidant systems in the protective activity of pituitary adenylate cyclase-activating polypeptide against hydrogen peroxide-induced oxidative damages in cultured rat astrocytes. J Neurochem 2016; 137:913-30. [DOI: 10.1111/jnc.13614] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 02/09/2016] [Accepted: 02/24/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Salma Douiri
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| | - Seyma Bahdoudi
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
| | - Yosra Hamdi
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| | - Roger Cubì
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
| | - Magali Basille
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
| | - Alain Fournier
- INRS - Institut Armand-Frappier; Laval Quebec Canada
- Laboratoire International Associé Samuel de Champlain; Institut Armand-Frappier; Laval Quebec Canada
- International Associated Laboratory Samuel de Champlain; University of Rouen; Mont-Saint-Aignan France
| | - Hubert Vaudry
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
- International Associated Laboratory Samuel de Champlain; University of Rouen; Mont-Saint-Aignan France
| | - Marie-Christine Tonon
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
| | - Mohamed Amri
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| | - David Vaudry
- Inserm U982; Laboratory of Neuronal and Neuroendocrine Communication and Differentiation; University of Rouen; Mont-Saint-Aignan France
- Regional Platform for Cell Imaging of Normandie (PRIMACEN); Institute for Biomedical Research and Innovation; University of Rouen; Mont-Saint-Aignan France
- International Associated Laboratory Samuel de Champlain; University of Rouen; Mont-Saint-Aignan France
| | - Olfa Masmoudi-Kouki
- Laboratory of Functional Neurophysiology and Pathology; Research Unit UR/11ES09; Department of Biological Sciences; Faculty of Science of Tunis; University Tunis El Manar; Tunis Tunisia
| |
Collapse
|
29
|
Yelkenli İH, Ulupinar E, Korkmaz OT, Şener E, Kuş G, Filiz Z, Tunçel N. Modulation of Corpus Striatal Neurochemistry by Astrocytes and Vasoactive Intestinal Peptide (VIP) in Parkinsonian Rats. J Mol Neurosci 2016; 59:280-9. [DOI: 10.1007/s12031-016-0757-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/11/2016] [Indexed: 12/29/2022]
|
30
|
Shioda S, Nakamachi T. PACAP as a neuroprotective factor in ischemic neuronal injuries. Peptides 2015; 72:202-7. [PMID: 26275482 DOI: 10.1016/j.peptides.2015.08.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 08/06/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a 27- or 38-amino acid neuropeptide, which belongs to the vasoactive intestinal polypeptide/glucagon/secretin family. PACAP and its three receptor subtypes are expressed in neural tissues, with PACAP known to exert pleiotropic effects on the nervous system. This review provides an overview of current knowledge regarding the neuroprotective effects, mechanisms of action, and therapeutic potential of PACAP in response to ischemic brain injuries.
Collapse
Affiliation(s)
- Seiji Shioda
- Global Research Center for Innovative Life Science, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo 142-8501, Japan.
| | - Tomoya Nakamachi
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190 Gofuku, Toyama 930-8555, Japan
| |
Collapse
|
31
|
Neuropeptides of the VIP family inhibit glioblastoma cell invasion. J Neurooncol 2015; 122:63-73. [PMID: 25563813 DOI: 10.1007/s11060-014-1697-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 12/20/2014] [Indexed: 10/24/2022]
Abstract
Vasoactive intestinal peptide (VIP) and pituitary adenylate cyclase-activating polypeptide (PACAP) are neuropeptides acting through VPAC1, VPAC2 and PAC1 receptors (referred here as the VIP-receptor system). In the central nervous system, VIP and PACAP are involved in neurogenesis, cell differentiation and migration, suggesting that they could be implicated in the development of glioblastoma (GBM). The infiltrative nature of GBM remains a major problem for the therapy of these tumors. We previously demonstrated that the VIP-receptor system regulated cell migration of the human cell lines M059J and M059K, derived from a single human GBM. Here, we evaluated the involvement of the VIP-receptor system in GBM cell invasion. In Matrigel invasion assays, M059K cells that express more the VIP-receptor system than M059J cells were less invasive. Invasion assays performed in the presence of agonists, antagonists or anti-PACAP antibodies as well as experiments with transfected M059J cells overexpressing the VPAC1 receptor indicated that the more the VIP-receptor system was expressed and activated, the less the cells were able to invade. Western immunoblotting experiments revealed that the VIP-receptor system inactivated the signaling protein AKT. Invasion assays carried out in the presence of an AKT inhibitor demonstrated the involvement of this signaling kinase in the regulation of cell invasion by the VIP-receptor system in M059K cells. The inhibition by VIP of invasion and AKT was also observed in U87 cells. In conclusion, VIP and PACAP act as anti-invasive factors in different GBM cell lines, a function mediated by VPAC1 inhibition of AKT signaling in M059K cells.
Collapse
|
32
|
Resch JM, Albano R, Liu X, Hjelmhaug J, Lobner D, Baker DA, Choi S. Augmented cystine-glutamate exchange by pituitary adenylate cyclase-activating polypeptide signaling via the VPAC1 receptor. Synapse 2014; 68:604-612. [PMID: 25066643 DOI: 10.1002/syn.21772] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 07/08/2014] [Accepted: 07/22/2014] [Indexed: 01/17/2023]
Abstract
In the central nervous system, cystine import in exchange for glutamate through system xc- is critical for the production of the antioxidant glutathione by astrocytes, as well as the maintenance of extracellular glutamate. Therefore, regulation of system xc- activity affects multiple aspects of cellular physiology and may contribute to disease states. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuronally derived peptide that has already been demonstrated to modulate multiple aspects of glutamate signaling suggesting PACAP may also target activity of cystine-glutamate exchange via system xc-. In this study, 24-h treatment of primary cortical cultures containing neurons and glia with PACAP concentration-dependently increased system xc- function as measured by radiolabeled cystine uptake. Furthermore, the increase in cystine uptake was completely abolished by the system xc- inhibitor, (S)-4-carboxyphenylglycine (CPG), attributing increases in cystine uptake specifically to system xc- activity. Time course and quantitative PCR results indicate that PACAP signaling may increase cystine-glutamate exchange by increasing expression of xCT, the catalytic subunit of system xc-. Furthermore, the potentiation of system xc- activity by PACAP occurs via a PKA-dependent pathway that is not mediated by the PAC1R, but rather the shared vasoactive intestinal polypeptide receptor VPAC1R. Finally, assessment of neuronal, astrocytic, and microglial-enriched cultures demonstrated that only astrocyte-enriched cultures exhibit enhanced cystine uptake following both PACAP and VIP treatment. These data introduce a novel mechanism by which both PACAP and VIP regulate system xc- activity. Synapse 68:604-612, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Jon M Resch
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Rebecca Albano
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Xiaoqian Liu
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Julie Hjelmhaug
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - David A Baker
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| | - Sujean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin, 53201
| |
Collapse
|
33
|
Nakamachi T, Sugiyama K, Watanabe J, Imai N, Kagami N, Hori M, Arata S, Shioda S. Comparison of expression and proliferative effect of pituitary adenylate cyclase-activating polypeptide (PACAP) and its receptors on human astrocytoma cell lines. J Mol Neurosci 2014; 54:388-94. [PMID: 25091859 DOI: 10.1007/s12031-014-0362-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/24/2014] [Indexed: 12/21/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a pleiotropic neuropeptide considered to be a potent regulator of astrocytes. It has been reported that PACAP also affects astrocytoma cell properties, but the proliferative effects of this peptide in previous reports were inconsistent. The purpose of this study was to search for correlations between malignant potential, PACAP/PACAP receptor expression, and the proliferative potential of four astrocytoma cell lines (KNS-81, KINGS-1, SF-126, and YH-13). Immunohistochemical observations were performed using astrocyte lineage markers with a view to establishing malignant potential, which is inversely correlated to differentiation status in astrocytoma cells. YH-13 showed the most undifferentiated astrocyte-like status, and was immunopositive to a cancer stem cell marker, CD44. These observations suggest that YH-13 is the most malignant of the astrocytoma cell lines tested. Moreover, the strongest PAC1-R immunoreactivity was observed in YH-13 cells. Using real-time PCR analysis, no significant differences among cell lines were detected with respect to PACAP mRNA, but PAC1-R and VPAC1-R mRNA levels were significantly increased in YH-13 cells compared with the other cell lines. Furthermore, when cell lines were treated with PACAP (10(-11) M) for 3 days, the YH-13 cell line, but not of the other cell lines, exhibited a significantly increased cell number. These results suggest that PACAP receptor expression is correlated with the malignant and proliferative potential of astrocytoma cell lines.
Collapse
Affiliation(s)
- Tomoya Nakamachi
- Department of Anatomy, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-Ku, Tokyo, 142-8555, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Resch JM, Maunze B, Phillips KA, Choi S. Inhibition of food intake by PACAP in the hypothalamic ventromedial nuclei is mediated by NMDA receptors. Physiol Behav 2014; 133:230-5. [PMID: 24878316 DOI: 10.1016/j.physbeh.2014.05.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Revised: 05/02/2014] [Accepted: 05/07/2014] [Indexed: 11/17/2022]
Abstract
Central injections of pituitary adenylate cyclase-activating polypeptide (PACAP) into the ventromedial nuclei (VMN) of the hypothalamus produce hypophagia that is dependent upon the PAC1 receptor; however, the signaling downstream of this receptor in the VMN is unknown. Though PACAP signaling has many targets, this neuropeptide has been shown to influence glutamate signaling in several brain regions through mechanisms involving NMDA receptor potentiation via activation of the Src family of protein tyrosine kinases. With this in mind, we examined the Src-NMDA receptor signaling pathway as a target for PACAP signaling in the VMN that may mediate its effects on feeding behavior. Under nocturnal feeding conditions, NMDA receptor antagonism prior to PACAP administration into the VMN attenuated PACAP-mediated decreases in feeding suggesting that glutamatergic signaling via NMDA receptors is necessary for PACAP-induced hypophagia. Furthermore, PACAP administration into the VMN resulted in increased tyrosine phosphorylation of the GluN2B subunit of the NMDA receptor, and inhibition of Src kinase activity also blocked the effects of PACAP administration into the VMN on feeding behavior. These results indicate that PACAP neurotransmission in the VMN likely augments glutamate signaling by potentiating NMDA receptors activity through the tyrosine phosphorylation events mediated by the Src kinase family, and modulation of NMDA receptor activity by PACAP in the hypothalamus may be a primary mechanism for its regulation of food intake.
Collapse
Affiliation(s)
- Jon M Resch
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Brian Maunze
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - Kailynn A Phillips
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA
| | - SuJean Choi
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI 53201, USA.
| |
Collapse
|
35
|
Ferreira PEB, Lopes CRP, Alves AMP, Alves &EPB, Linden DR, Zanoni JN, Buttow NC. Diabetic neuropathy: an evaluation of the use of quercetin in the cecum of rats. World J Gastroenterol 2013; 19:6416-26. [PMID: 24151360 PMCID: PMC3801312 DOI: 10.3748/wjg.v19.i38.6416] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 05/20/2013] [Accepted: 06/19/2013] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the effect of quercetin supplementation on the myenteric neurons and glia in the cecum of diabetic rats. METHODS Total preparations of the muscular tunic were prepared from the ceca of twenty-four rats divided into the following groups: control (C), control supplemented with quercetin (200 mg/kg quercetin body weight) (CQ), diabetic (D) and diabetic supplemented with quercetin (DQ). Immunohistochemical double staining technique was performed with HuC/D (general population)/nitric oxide synthase (nNOS), HuC-D/S-100 and VIP. Density analysis of the general neuronal population HuC/D-IR, the nNOS-IR (nitrergic subpopulation) and the enteric glial cells (S-100) was performed, and the morphometry and the reduction in varicosity population (VIP-IR) in these populations were analyzed. RESULTS Diabetes promoted a significant reduction (25%) in the neuronal density of the HuC/D-IR (general population) and the nNOS-IR (nitrergic subpopulation) compared with the C group. Diabetes also significantly increased the areas of neurons, glial cells and VIP-IR varicosities. Supplementation with quercetin in the DQ group prevented neuronal loss in the general population and increased its area (P < 0.001) and the area of nitrergic subpopulation (P < 0.001), when compared to C group. Quercetin induced a VIP-IR and glial cells areas (P < 0.001) in DQ group when compared to C, CQ and D groups. CONCLUSION In diabetes, quercetin exhibited a neuroprotective effect by maintaining the density of the general neuronal population but did not affect the density of the nNOS subpopulation.
Collapse
|
36
|
Neuroprotective effect of endogenous pituitary adenylate cyclase-activating polypeptide on spinal cord injury. J Mol Neurosci 2012; 48:508-17. [PMID: 22674051 DOI: 10.1007/s12031-012-9817-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2012] [Accepted: 05/17/2012] [Indexed: 02/06/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuroprotective peptide expressed in the central nervous system. To date, changes in the expression and effect of endogenous PACAP have not been clarified with respect to spinal cord injury (SCI). The aim of this study was to elucidate the expression pattern and function of endogenous PACAP on the contusion model of SCI using heterozygous PACAP knockout (PACAP(+/-)) and wild-type mice. Real-time polymerase chain reaction methods revealed that the level of PACAP mRNA increased gradually for 14 days after SCI and that PAC1R mRNA levels also increased for 7 days compared with intact control mice. PACAP and PAC1R immunoreactivities colabeled with a neuronal marker in the intact spinal cord. Seven days after SCI, PAC1R immunoreactivity was additionally co-expressed with an astrocyte marker. Wild-type mice gradually recovered motor function after 14 days, but PACAP(+/-) mice showed significantly impaired recovery from 3 days compared with wild-type mice. The injury volume at day 7 in PACAP(+/-) mice, and the number of single-stranded DNA-immunopositive cells as a marker of neuronal cell death at day 3 were significantly higher than values measured in wild-type mice. These data suggest that endogenous PACAP is upregulated by SCI and has a neuroprotective effect on the damaged spinal cord.
Collapse
|
37
|
Podda MV, Leone L, Piacentini R, Cocco S, Mezzogori D, D'Ascenzo M, Grassi C. Expression of olfactory-type cyclic nucleotide-gated channels in rat cortical astrocytes. Glia 2012; 60:1391-405. [PMID: 22653779 DOI: 10.1002/glia.22360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/03/2012] [Indexed: 12/31/2022]
Abstract
Cyclic nucleotide-gated (CNG) channels are nonselective cation channels activated by cyclic AMP (cAMP) or cyclic GMP (cGMP). They were originally identified in retinal and olfactory receptors, but evidence has also emerged for their expression in several mammalian brain areas. Because cGMP and cAMP control important aspects of glial cell physiology, we wondered whether CNG channels are expressed in astrocytes, the most functionally relevant glial cells in the CNS. Immunoblot and immunofluorescence experiments demonstrated expression of the CNG channel olfactory-type A subunit, CNGA2, in cultured rat cortical astrocytes. In patch-clamp experiments, currents elicited in these cells by voltage ramps from -100 to +100 mV in the presence of the cGMP analogue, dB-cGMP, were significantly reduced by the CNG channel blockers, L-cis-diltiazem (LCD) and Cd(2+) . The reversal potentials of the LCD- and Cd(2+) -sensitive currents were more positive than that of K(+) , as expected for a mixed cation current. Noninactivating, voltage-independent currents were also elicited by extracellular application of the membrane permeant cGMP analogue, 8-Br-cGMP. These effects were blocked by LCD and were mimicked by natriuretic peptide receptor activation and inhibition of phosphodiesterase activity. Voltage-independent, LCD-sensitive currents were also elicited by 8-Br-cGMP in astrocytes of hippocampal and neocortical brain slices. Immunohistochemistry confirmed a broad distribution of CNG channels in astrocytes of the rat forebrain, midbrain, and hindbrain. These findings suggest that CNG channels are downstream targets of cyclic nucleotides in astrocytes, and they may be involved in the glial-mediated regulation of CNS functions under physiological and pathological conditions.
Collapse
Affiliation(s)
- Maria Vittoria Podda
- Institute of Human Physiology, Medical School, Università Cattolica, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
38
|
Protective Effects of Vasoactive Intestinal Peptide (VIP) in Ischemic Retinal Degeneration. J Mol Neurosci 2012; 48:501-7. [DOI: 10.1007/s12031-012-9774-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 04/09/2012] [Indexed: 01/19/2023]
|
39
|
Delgado M, Ganea D. Vasoactive intestinal peptide: a neuropeptide with pleiotropic immune functions. Amino Acids 2011; 45:25-39. [PMID: 22139413 DOI: 10.1007/s00726-011-1184-8] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 11/22/2011] [Indexed: 01/07/2023]
Abstract
Vasoactive intestinal peptide (VIP), a 28-amino acid neuropeptide/neurotransmitter, is widely distributed in both the central and peripheral nervous system. VIP is released by both neurons and immune cells. Various cell types, including immune cells, express VIP receptors. VIP has pleiotropic effects as a neurotransmitter, immune regulator, vasodilator and secretagogue. This review is focused on VIP production and effects on immune cells, VIP receptor signaling as related to immune functions, and the involvement of VIP in inflammatory and autoimmune disorders. The review addresses present clinical use of VIP and future therapeutic directions.
Collapse
Affiliation(s)
- Mario Delgado
- Instituto de Parasitologia y Biomedicina, IPBLN-CSIC, Granada, Spain
| | | |
Collapse
|
40
|
Sokołowska P, Urbańska A, Namiecińska M, Biegańska K, Zawilska JB. Orexins promote survival of rat cortical neurons. Neurosci Lett 2011; 506:303-6. [PMID: 22138089 DOI: 10.1016/j.neulet.2011.11.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 11/14/2011] [Accepted: 11/16/2011] [Indexed: 11/24/2022]
Abstract
Orexin A and B (hypocretin-1 and -2) are hypothalamic peptides that exert their biological functions by stimulation of two specific, membrane-bound receptors, OX(1)R and OX(2)R. Recently, we have demonstrated the expression of both types of orexin receptors in rat cortical neurons, with the OX(2)R level being markedly higher compared to OX(1)R. In the present study we investigated the receptor-mediated effects of orexin A, an agonist of OX(1)R and OX(2) R, orexin B and [Ala(11)-D-Leu(15)]orexin B, preferential agonists of OX(2)R, on survival of cultured neurons derived from rat cerebral cortex. The three tested peptides markedly increased neuronal viability in a concentration-dependent manner. The pro-survival properties of orexins were associated with an attenuation of caspase-3 activity. Comparable potency of orexin A, orexin B and [Ala(11)-D-Leu(15)]orexin B suggests a predominant role of OX(2)R in the studied phenomenon. Our findings provide new insights into the role of orexins in CNS as potential neuroprotective factors.
Collapse
Affiliation(s)
- Paulina Sokołowska
- Institute of Medical Biology, Polish Academy of Sciences, Lodowa 106, PL 93-232 Łódź, Poland.
| | | | | | | | | |
Collapse
|
41
|
Vincze A, Reglodi D, Helyes Z, Hashimoto H, Shintani N, Abrahám H. Role of endogenous pituitary adenylate cyclase activating polypeptide (PACAP) in myelination of the rodent brain: lessons from PACAP-deficient mice. Int J Dev Neurosci 2011; 29:923-35. [PMID: 21726625 DOI: 10.1016/j.ijdevneu.2011.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 06/01/2011] [Accepted: 06/18/2011] [Indexed: 11/26/2022] Open
Abstract
Pituitary adenylate-cyclase activator polypeptide (PACAP), as a consequence of its effect on the elevation of intracellular cAMP level, strongly influences brain development including myelination. While proliferation of oligodendroglial progenitors is stimulated by PACAP applied in vitro, their differentiation is inhibited. However, the in vivo role of PACAP on myelination has never been examined. In the present study the role of endogenous PACAP in myelination was examined in PACAP-deficient mice, in several areas of the brain with a special attention to the cerebral cortex. In young postnatal and adult mice myelination was studied with immunohistochemistry detecting a protein present in the myelin sheath, the myelin basic protein, with Luxol Fast Blue staining and with electron microscopy. Results obtained in PACAP-deficient mice were compared to age-matched wild type controls. We found that the sequence of myelination in the PACAP-deficient animals was similar to that observed in controls. According to this, in both PACAP-deficient and wild type mice, the somatosensory cortex was myelinated before motor areas that preceded the myelination of associational cortical areas. Archicortical associational areas such as the cingulate cortex were myelinated before neocortical areas. Myelination in the corpus callosum followed the known rostro-caudal direction in both PACAP-deficient and wild type animals, and the ventrolateral part of the corpus callosum was myelinated earlier than the dorsomedial part in both groups. In contrast to the similarity in its sequence, striking difference was found in the onset of myelination that started earlier in PACAP-deficient mice than in wild type controls in all of the examined brain regions, including cerebral archi- and neocortex. The first myelinated axons in each of the examined brain regions were observed earlier in the PACAP-deficient mice than in controls. When age-matched animals of the two groups were compared, density of myelinated fibers in the PACAP-deficient mice was higher than in controls in all of the examined areas. We propose that endogenous PACAP exerts an inhibitory role on myelination in vivo. Since myelin sheath of the central nervous system contains several factors blocking neurite outgrowth, inhibition of myelination by PACAP gives time for axonal development and synapse formation, and therefore, strengthens neuronal plasticity.
Collapse
Affiliation(s)
- András Vincze
- Central Electron Microscopic Laboratory, University of Pécs Medical School, Pécs, Hungary
| | | | | | | | | | | |
Collapse
|
42
|
Gasperini L, Piubelli C, Carboni L. Proteomics of rat hypothalamus, hippocampus and pre-frontal/frontal cortex after central administration of the neuropeptide PACAP. Mol Biol Rep 2011; 39:2921-35. [PMID: 21687973 DOI: 10.1007/s11033-011-1054-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2010] [Accepted: 06/08/2011] [Indexed: 11/25/2022]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that exerts pleiotropic functions, acting as a hypophysiotropic factor, a neurotrophic and a neuroprotective agent. The molecular pathways activated by PACAP to exert its physiological roles in brain are incompletely understood. In this study, adrenocorticotropic hormone (ACTH), prolactin, luteinising hormone (LH), follicle-stimulating hormone (FSH), thyroid-stimulating hormone (TSH), brain-derived neurotrophic factor and corticosterone blood levels were determined before and 20, 40, 60, and 120 min after PACAP intracerebroventricular administration. PACAP treatment increased ACTH, corticosterone, LH and FSH blood concentrations, while it decreased TSH levels. A proteomics investigation was carried out in hypothalamus, hippocampus and pre-frontal/frontal cortex (P/FC) using 2-dimensional gel electrophoresis at 120 min, the end-point suggested by studies on PACAP hypophysiotropic activities. Spots showing statistically significant alterations after PACAP treatment were identified by Matrix-assisted laser desorption/ionization-Time of flight mass spectrometry. Identified proteins were consistent with PACAP involvement in different molecular processes in brain. Altered expression levels were observed for proteins involved in cytoskeleton modulation and synaptic plasticity: actin in the hypothalamus; stathmin, dynamin, profilin and cofilin in hippocampus; synapsin in P/FC. Proteins involved in cellular differentiation were also modulated: glutathione-S-transferase α and peroxiredoxin in hippocampus; nucleoside diphosphate kinase in P/FC. Alterations were detected in proteins involved in neuroprotection, neurodegeneration and apoptosis: ubiquitin carboxyl-terminal hydrolase isozyme L1 and heat shock protein 90-β in hypothalamus; α-synuclein in hippocampus; glyceraldehyde-3-phosphate dehydrogenase and prohibitin in P/FC. This proteomics study identified new proteins involved in molecular mechanisms mediating PACAP functions in the central nervous system.
Collapse
Affiliation(s)
- Lisa Gasperini
- Neurosciences CEDD, GlaxoSmithKline Medicines Research Centre, Via A Fleming 4, 37135 Verona, Italy
| | | | | |
Collapse
|
43
|
Rat D, Schmitt U, Tippmann F, Dewachter I, Theunis C, Wieczerzak E, Postina R, van Leuven F, Fahrenholz F, Kojro E. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice. FASEB J 2011; 25:3208-18. [PMID: 21593432 PMCID: PMC3157688 DOI: 10.1096/fj.10-180133] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) has neuroprotective and neurotrophic properties and is a potent α-secretase activator. As PACAP peptides and their specific receptor PAC1 are localized in central nervous system areas affected by Alzheimer's disease (AD), this study aims to examine the role of the natural peptide PACAP as a valuable approach in AD therapy. We investigated the effect of PACAP in the brain of an AD transgenic mouse model. The long-term intranasal daily PACAP application stimulated the nonamyloidogenic processing of amyloid precursor protein (APP) and increased expression of the brain-derived neurotrophic factor and of the antiapoptotic Bcl-2 protein. In addition, it caused a strong reduction of the amyloid β-peptide (Aβ) transporter receptor for advanced glycation end products (RAGE) mRNA level. PACAP, by activation of the somatostatin-neprilysin cascade, also enhanced expression of the Aβ-degrading enzyme neprilysin in the mouse brain. Furthermore, daily PAC1-receptor activation via PACAP resulted in an increased mRNA level of both the PAC1 receptor and its ligand PACAP. Our behavioral studies showed that long-term PACAP treatment of APP[V717I]-transgenic mice improved cognitive function in animals. Thus, nasal application of PACAP was effective, and our results indicate that PACAP could be of therapeutic value in treating AD.—Rat, D., Schmitt, U., Tippmann, F., Dewachter, I., Theunis, C., Wieczerzak, E, Postina, R., van Leuven, F., Fahrenholz, F., Kojro, E. Neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) slows down Alzheimer's disease-like pathology in amyloid precursor protein-transgenic mice.
Collapse
Affiliation(s)
- Dorothea Rat
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University, Mainz, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Yang J, Song TB, Zhao ZH, Qiu SD, Hu XD, Chang L. Vasoactive intestinal peptide protects against ischemic brain damage induced by focal cerebral ischemia in rats. Brain Res 2011; 1398:94-101. [PMID: 21620378 DOI: 10.1016/j.brainres.2011.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 04/26/2011] [Accepted: 05/03/2011] [Indexed: 11/15/2022]
Abstract
Vasoactive intestinal peptide (VIP) exerts neuroprotective effects under various neurotoxic conditions in vitro. In the present study, we investigated the effects of VIP on transient ischemic brain damage. Focal cerebral ischemia was induced using middle cerebral artery occlusion (MCAO) for 120 min in the adult rat brain. Either a single intracerebroventricular injection of VIP or saline was given at the beginning of reperfusion. Forty-eight hours after MCAO, the rats were sacrificed for evaluation of the infarct volume and histological analysis. ELISA was performed to assay levels of serum S100B before being sacrificed. We also evaluated the blood-brain barrier (BBB) permeability using Evans blue dye injection method. In contrast to the cases treated with vehicle, the infarct volume was significantly (P<0.05) reduced, and terminal deoxynucleotidyl transferase-mediated dUTP-nick end labeling (TUNEL) staining and immunoreactivity for S100B were also significantly (P<0.05) decreased in the ischemic hemisphere with VIP treatment. In addition, the elevations of serum S100B were significantly (P<0.01) attenuated in VIP-treated rats compared with those of control rats. Treatment with VIP did not result in a significant reduction of Evans blue leakage, although it tended to be lower than that in the control rats. Our data suggest that treatment with VIP reduces brain damage in ischemic rats, and this effect may be associated with the attenuation of apoptosis and S100B expression.
Collapse
Affiliation(s)
- Jie Yang
- Department of Human Anatomy, Histology and Embryology, School of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | | | | | | | | | | |
Collapse
|
45
|
Masmoudi-Kouki O, Douiri S, Hamdi Y, Kaddour H, Bahdoudi S, Vaudry D, Basille M, Leprince J, Fournier A, Vaudry H, Tonon MC, Amri M. Pituitary adenylate cyclase-activating polypeptide protects astroglial cells against oxidative stress-induced apoptosis. J Neurochem 2011; 117:403-11. [PMID: 21244427 DOI: 10.1111/j.1471-4159.2011.07185.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidative stress, associated with a variety of disorders including neurodegenerative diseases, results from accumulation of reactive oxygen species (ROS). Oxidative stress is not only responsible for neuron apoptosis, but can also provoke astroglial cell death. Numerous studies indicate that pituitary adenylate cyclase-activating polypeptide (PACAP) promotes neuron survival, but nothing is known regarding the action of PACAP on astroglial cell survival. Thus, the purpose of the present study was to investigate the potential glioprotective effect of PACAP on H(2)O(2)-induced astrocyte death. Pre-treatment of cultured rat astrocytes with nanomolar concentrations of PACAP prevented cell death provoked by H(2)O(2) (300 μM), whereas vasoactive intestinal polypeptide was devoid of protective activity. The effect of PACAP on astroglial cell survival was abolished by the type 1 PACAP receptor antagonist, PACAP6-38. The protective action of PACAP was blocked by the protein kinase A inhibitor H89, the protein kinase C inhibitor chelerythrine and the mitogen-activated protein (MAP)-kinase kinase (MEK) inhibitor U0126. PACAP stimulated glutathione formation, and blocked H(2)O(2)-evoked ROS accumulation and glutathione content reduction. In addition, PACAP prevented the decrease of mitochondrial activity and caspase 3 activation induced by H(2)O(2). Taken together, these data indicate for the first time that PACAP, acting through type 1 PACAP receptor, exerts a potent protective effect against oxidative stress-induced astrocyte death. The anti-apoptotic activity of PACAP on astrocytes is mediated through the protein kinase A, protein kinase C and MAPK transduction pathways, and can be accounted for by inhibition of ROS-induced mitochondrial dysfunctions and caspase 3 activation.
Collapse
Affiliation(s)
- Olfa Masmoudi-Kouki
- Department of Biological Sciences, Faculty of Science of Tunis, University Tunis El Manar, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Cochaud S, Chevrier L, Meunier AC, Brillet T, Chadéneau C, Muller JM. The vasoactive intestinal peptide-receptor system is involved in human glioblastoma cell migration. Neuropeptides 2010; 44:373-83. [PMID: 20638719 DOI: 10.1016/j.npep.2010.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 05/14/2010] [Accepted: 06/12/2010] [Indexed: 12/31/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive form of brain tumor in adults. This cancer has an infiltrative nature and the median survival of patients is about one year. Vasoactive intestinal peptide (VIP) belongs to a structurally related family of polypeptides and is a major regulatory factor in the central and peripheral nervous systems. VIP regulates proliferation of astrocytes and of numerous cancer cell lines and modulates migration in prostatic and colonic cancer cell lines. Little is known about the involvement of VIP and its receptors (VIP-receptor system) in proliferation or migration of GBM cells. The effects of VIP, PACAP and of synthetic VIP antagonists were tested in two human GBM cell lines, M059K and M059J, established from two different parts of a single tumor. In these cells, the data revealed that the VIP-receptor system did not affect proliferation but controlled cell migration. Indeed, in M059K cells which express components of the VIP receptor system, the VIP receptor antagonists and a PACAP antibody enhanced migration. The VIP receptor antagonists increased generation of typical migration-associated processes: filopodia and lamellipodia, and activation of Rac1 and Cdc42 GTPases. Reciprocally, in M059J cells which poorly express the VIP-receptor system, treatments with the agonists VIP and PACAP resulted in decreased cell migration. Furthermore, the peptides appeared to act through a subclass of binding sites displaying an uncommon very high affinity for these ligands. Taken together, these observations suggest that components of the VIP-receptor system negatively regulate cell migration, thus showing potential anti-oncogenic properties.
Collapse
Affiliation(s)
- Stéphanie Cochaud
- Institut de Physiologie et Biologie Cellulaires, Université de Poitiers, CNRS, 40 Avenue du Recteur Pineau, Poitiers F-86022, France
| | | | | | | | | | | |
Collapse
|
47
|
DellaValle B, Hempel C, Kurtzhals JAL, Penkowa M. In vivo expression of neuroglobin in reactive astrocytes during neuropathology in murine models of traumatic brain injury, cerebral malaria, and autoimmune encephalitis. Glia 2010; 58:1220-7. [PMID: 20544857 DOI: 10.1002/glia.21002] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Neuroglobin (Ngb) is proposed to be a neuron-specific, hypoxia-responsive, neuroprotective protein. However, results are conflicting concerning both Ngb's physiological and pathological significance. This study was designed to investigate the in vivo localization and regulation of Ngb in different neuropathological models representing traumatic injury, infectious, autoimmune, and excitotoxic pathogeneses. We profiled Ngb immunohistochemistry in murine models of traumatic brain injury, cerebral malaria, experimental autoimmune encephalitis, and kainic acid (KA)-mediated epileptic seizures that, to our knowledge, have not been studied in the context of Ngb. In control mice Ngb was expressed exclusively in neurons. In all pathological models except KA, in addition to neurons Ngb was present in reactive astrocytes. Ngb positive astrocytes were found within regions associated with most severe pathology and the astroglial scar. This is the first report of Ngb present in reactive astroglia and in scar-forming astrocytes in response to different pathological conditions relevant to human disease. In light of previously reported cyto-protective properties of Ngb, further insight may result in therapeutic ramifications.
Collapse
Affiliation(s)
- Brian DellaValle
- Department of Neuroscience and Pharmacology, Section of Neuroprotection, Panum Institute, University of Copenhagen, Denmark.
| | | | | | | |
Collapse
|
48
|
Effect of salvia miltiorrhiza pretreatment on the CCK and VIP expression in hepatic ischemia-reperfusion-induced digestive tract congestion. ACTA ACUST UNITED AC 2010; 4:317-22. [DOI: 10.1007/s11684-010-0035-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Accepted: 10/30/2009] [Indexed: 12/17/2022]
|
49
|
Differential regulation of vasoactive intestinal peptide (VIP) in the dentate gyrus and hippocampus via the NO-cGMP pathway following kainic acid-induced seizure in the rat. J Mol Neurosci 2010; 42:359-69. [PMID: 20369387 DOI: 10.1007/s12031-010-9353-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 03/12/2010] [Indexed: 12/14/2022]
Abstract
We have previously shown that kainic acid (KA) increases nitric oxide (NO) synthase (NOS) production in the rat dentate gyrus (DG) and hippocampus (CA3), and NOS inhibition [(by N(G)-nitro-L-arginine methylester (L-NAME)] modulates the vasoactive intestinal peptide (VIP)-responsive gene, activity-dependent neuroprotective protein, and alters neuro- and astrogliogenesis (Cosgrave et al. in Neurobiol Dis 30(3):281-292 2008, J Mol Neurosci 39(1-2):9-21, 2009, 2010). In the present study, using the same model we demonstrate that VIP synthesis is differentially regulated by the NO-cyclic guanosine monophosphate (cGMP) pathway in the DG and CA3 at 3 h and 3 days post-KA. At 3 h post-KA: In L-NAME+KA/7-nitroindazole (7-NI)+KA, stratum granulosum (SG) and subgranular zone (SGZ) cells were intensely stained for VIP when compared with L-NAME/7-NI/KA alone. Soluble guanylyl cyclase inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ, blocks cGMP production), suppressed astrocytic activation (glial fibrillary acidic protein) but other cell types were VIP(+); however, ODQ+KA suppressed overall VIP synthesis in the DG. At 3 days post-KA: In L-NAME+KA/7-NI+KA, SGZ and SG cells continued to express VIP, while in the KA alone, only SGZ cells were VIP(+). ODQ increased VIP(+) cells in the SG, and in contrast to 3 h, VIP-containing nNOS(+) cells increased in ODQ+KA when compared to vehicle+KA. In the hippocampus, 7-NI/ODQ had no effect on VIP at 3 h/3 days, while L-NAME+KA at 3 days increased VIP(+) cells, but reduced VIP-like immunoreactivity in astrocytes. These results suggest that the NO-cGMP pathway differentially regulates VIP in the DG and hippocampus during seizure.
Collapse
|
50
|
Sullivan SM, Björkman ST, Miller SM, Colditz PB, Pow DV. Structural remodeling of gray matter astrocytes in the neonatal pig brain after hypoxia/ischemia. Glia 2010; 58:181-94. [PMID: 19606499 DOI: 10.1002/glia.20911] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Astrocytes play a vital role in the brain; their structural integrity and sustained function are essential for neuronal viability, especially after injury or insult. In this study, we have examined the response of astrocytes to hypoxia/ischemia (H/I), employing multiple methods (immunohistochemistry, iontophoretic cell injection, Golgi-Kopsch staining, and D-aspartate uptake) in a neonatal pig model of H/I. We have identified morphological changes in cortical gray matter astrocytes in response to H/I. Initial astrocytic changes were evident as early as 8 h post-insult, before histological evidence for neuronal damage. By 72 h post-insult, astrocytes exhibited significantly fewer processes that were shorter, thicker, and had abnormal terminal swellings, compared with astrocytes from control brains that exhibited a complex structure with multiple fine branching processes. Quantification and image analysis of astrocytes at 72 h post-insult revealed significant decreases in the average astrocyte size, from 686 microm(2) in controls to 401 microm(2) in H/I brains. Sholl analysis revealed a significant decrease (>60%) in the complexity of astrocyte branching between 5 and 20 microm from the cell body. D-Aspartate uptake studies revealed that the H/I insult resulted in impaired astrocyte function, with significantly reduced clearance of the glutamate analog, D-aspartate. These results suggest that astrocytes may be involved in the pathophysiological events of H/I brain damage at a far earlier time point than first thought. Developing therapies that prevent or reverse these astrocytic changes may potentially improve neuronal survival and thus might be a useful strategy to minimize brain damage after an H/I insult.
Collapse
Affiliation(s)
- Susan M Sullivan
- UQ Centre for Clinical Research and Perinatal Research Centre, The University of Queensland, Herston, Brisbane, Queensland 4029, Australia.
| | | | | | | | | |
Collapse
|