1
|
Pan K, Shi X, Liu K, Wang J, Chen Y. Efficacy, Pharmacokinetics, Biodistribution and Excretion of a Novel Acylated Long-Acting Insulin Analogue INS061 in Rats. Drug Des Devel Ther 2021; 15:3487-3498. [PMID: 34408401 PMCID: PMC8364340 DOI: 10.2147/dddt.s317327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Purpose Long-acting insulin analogues are known to be a major player in the management of glucose levels in type I diabetic patients. However, highly frequent hypo- and hyperglycemic incidences of current long-acting insulins are the important factor to limit stable management of glucose level for clinical benefits. To further optimize the properties for steadily controlling glucose level, a novel long-acting insulin INS061 was designed and its efficacy, pharmacokinetics, biodistribution and excretion profiles were investigated in rats. Methods The glucose-lowering effects were evaluated in a streptozocin-induced diabetic rats compared to commercial insulins via subcutaneous administration. The pharmacokinetics, biodistribution, and excretion were examined by validated analytical methods including radioactivity assay and radioactivity assay after the precipitation with TCA and the separation by HPLC. Results INS061 exhibited favorable blood glucose lowering effects up to 24 h compared to Degludec. Pharmacokinetic study revealed that the concentration-time curves of INS061 between two administration routes were remarkably different. Following intravenous administration, INS061 was quickly distributed to various organs and tissues and slowly eliminated over time with urinary excretion being the major route for elimination, and the maximum plasma concentrations (Cmax) and systemic exposures (AUC) increased in a linear manner. Conclusion The present structural modifications of human insulin possessed a long-acting profile and glucose-lowering function along with favorable in vivo properties in rats, which establish a foundation for further preclinical and clinical evaluation.
Collapse
Affiliation(s)
- Kai Pan
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People's Republic of China.,Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, 222047, People's Republic of China
| | - Xiaolei Shi
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, 222047, People's Republic of China
| | - Kai Liu
- Fujian Suncadia Medicine Co., Ltd, Xiamen, 361026, People's Republic of China
| | - Ju Wang
- Jiangsu Hengrui Medicine Co., Ltd., Lianyungang, 222047, People's Republic of China
| | - Yijun Chen
- State Key Laboratory of Natural Medicines and Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, Jiangsu Province, 211198, People's Republic of China
| |
Collapse
|
2
|
van Noorden B, Knopp JL, Chase JG. A subcutaneous insulin pharmacokinetic model for insulin Detemir. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2019; 178:1-9. [PMID: 31416537 DOI: 10.1016/j.cmpb.2019.06.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 05/16/2019] [Accepted: 06/07/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Type 2 diabetes (T2D) is rapidly increasing in incidence and has significant social and economic costs. Given the increasing cost of complications, even relatively short delays in the onset of T2D can significantly reduce long-term complications and costs. Equally, recent studies have shown the onset of T2D can be delayed by use of long-acting insulin, despite the risk and concomitant low adherence. Thus, there is a strong potential motivation to develop models of long-acting insulin analogues to enable safe, effective use in model-based dosing systems. In particular, there are no current models of long-acting insulin Detemir and its unique action for model-based control. The objective of this work is to develop a first model of insulin Detemir and its unique action, and validate it against existing data in the literature. METHODS This study develops a detailed compartment model for insulin Detemir. Model specific parameters are identified using data from a range of published clinical studies on the pharmacokinetic of insulin Detemir. Model validity and robustness are assessed by identifying the model for each study and using average identified parameters over several dose sizes and study cohorts. Comparisons to peak concentration, time of peak concentration and overall error versus measured plasma concentrations are used to assess model accuracy and validity. RESULTS Almost all studies and cohorts fit literature data to within one standard deviation of error, even when using averaged identified model parameters. However, there appears to be a noticeable dose dependent dynamic not included in this first model, nor reported in the literature studies. CONCLUSIONS A first model of insulin Detemir including its unique albumin binding kinetics is derived and provisionally validated against clinical pharmacokinetic data. The pharmacokinetic curves are suitable for model-based control and general enough for use. While there are limitations in the studies used for validation that prevent a more complete understanding, the results provide an effective first model and justify the design and implementation of further, more precise human trials.
Collapse
Affiliation(s)
- Ben van Noorden
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - Jennifer L Knopp
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand
| | - J Geoffrey Chase
- Department of Mechanical Engineering, Centre for Bio-Engineering, University of Canterbury, Christchurch, New Zealand.
| |
Collapse
|
3
|
Feeding-produced subchronic high plasma levels of uric acid improve behavioral dysfunction in 6-hydroxydopamine-induced mouse model of Parkinson's disease. Behav Pharmacol 2019; 30:89-94. [PMID: 29847340 DOI: 10.1097/fbp.0000000000000413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The development of Parkinson's disease (PD) involves the degeneration of dopaminergic neurons caused by oxidative stress. Accumulating clinical evidence indicates that high blood levels of uric acid (UA), an intrinsic antioxidative substance, are associated with reduced risk of PD. However, this hypothesis has not been confirmed by in-vivo experiments. The present study investigated the effects of UA on behavioral abnormalities in the development of PD. We used unilateral 6-hydroxydopamine-lesioned mice, which were fed on a diet containing 1% UA and 2.5% potassium oxonate (an uricase inhibitor) to induce hyperuricemia. A significant elevation in UA levels was found in groups that were fed a UA diet. The 6-hydroxydopamine-lesioned mice showed impaired rotarod performance and increased apomorphine-induced contralateral rotations. These behavioral abnormalities were significantly reversed by feeding a UA diet for 1 week before and 5 weeks after surgery (subchronic hyperuricemia). These behavioral improvements occurred in parallel with recovery of tyrosine hydroxylase protein levels in the lesioned striatal side. The present study with a dietary hyperuricemia mice model confirms that UA exerts a neuroprotective effect on dopaminergic neuronal loss, improving motor dysfunction and ameliorating PD development.
Collapse
|
4
|
Wang F, Sun JH, Zhu B. A Potential Mechanism Underlying the Antidepressant Effect of Insulin. Basic Clin Pharmacol Toxicol 2016; 119:241-2. [PMID: 27112793 DOI: 10.1111/bcpt.12583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fu Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Jian-Hui Sun
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Bin Zhu
- Department of Critical Care Medicine, The Third Affiliated Hospital of Soochow University, Changzhou, China.
| |
Collapse
|
5
|
Bodenlenz M, Ellmerer M, Schaupp L, Jacobsen LV, Plank J, Brunner GA, Wutte A, Aigner B, Mautner SI, Pieber TR. Bioavailability of insulin detemir and human insulin at the level of peripheral interstitial fluid in humans, assessed by open-flow microperfusion. Diabetes Obes Metab 2015; 17:1166-72. [PMID: 26260082 DOI: 10.1111/dom.12551] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 07/30/2015] [Accepted: 08/06/2015] [Indexed: 11/28/2022]
Abstract
AIMS To find an explanation for the lower potency of insulin detemir observed in humans compared with unmodified human insulin by investigating insulin detemir and human insulin concentrations directly at the level of peripheral insulin-sensitive tissues in humans in vivo. METHODS Euglycaemic-hyperinsulinaemic clamp experiments were performed in healthy volunteers. Human insulin was administered i.v. at 6 pmol/kg/min and insulin detemir at 60 pmol/kg/min, achieving a comparable steady-state pharmacodynamic action. In addition, insulin detemir was doubled to 120 pmol/kg/min. Minimally invasive open-flow microperfusion (OFM) sampling methodology was combined with inulin calibration to quantify human insulin and insulin detemir in the interstitial fluid (ISF) of subcutaneous adipose and skeletal muscle tissue. RESULTS The human insulin concentration in the ISF was ∼115 pmol/l or ∼30% of the serum concentration, whereas the insulin detemir concentration in the ISF was ∼680 pmol/l or ∼2% of the serum concentration. The molar insulin detemir interstitial concentration was five to six times higher than the human insulin interstitial concentration and metabolic clearance of insulin detemir from serum was substantially reduced compared with human insulin. CONCLUSIONS OFM proved useful for target tissue measurements of human insulin and the analogue insulin detemir. Our tissue data confirm a highly effective retention of insulin detemir in the vascular compartment. The higher insulin detemir relative to human insulin tissue concentrations at comparable pharmacodynamics, however, indicate that the lower potency of insulin detemir in humans is attributable to a reduced effect in peripheral insulin-sensitive tissues and is consistent with the reduced in vitro receptor affinity.
Collapse
MESH Headings
- Adult
- Biological Availability
- Calibration
- Cross-Over Studies
- Dose-Response Relationship, Drug
- Extracellular Fluid/metabolism
- Glucose Clamp Technique
- Humans
- Hypoglycemic Agents/administration & dosage
- Hypoglycemic Agents/blood
- Hypoglycemic Agents/metabolism
- Hypoglycemic Agents/pharmacokinetics
- Infusions, Intravenous
- Insulin Detemir/administration & dosage
- Insulin Detemir/blood
- Insulin Detemir/metabolism
- Insulin Detemir/pharmacokinetics
- Insulin, Regular, Human/administration & dosage
- Insulin, Regular, Human/blood
- Insulin, Regular, Human/metabolism
- Insulin, Regular, Human/pharmacokinetics
- Inulin/administration & dosage
- Inulin/blood
- Inulin/metabolism
- Inulin/pharmacokinetics
- Lipoylation
- Male
- Metabolic Clearance Rate
- Muscle, Skeletal/metabolism
- Subcutaneous Fat/metabolism
- Tissue Distribution
- Young Adult
Collapse
Affiliation(s)
- M Bodenlenz
- HEALTH, Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Graz, Austria
| | - M Ellmerer
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - L Schaupp
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | | | - J Plank
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - G A Brunner
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - A Wutte
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - B Aigner
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- Division of General Dermatology, Department of Dermatology and Venereology, Medical University of Graz, Graz, Austria
| | - S I Mautner
- HEALTH, Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Graz, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - T R Pieber
- HEALTH, Institute for Biomedicine and Health Sciences, Joanneum Research Forschungsgesellschaft m.b.H, Graz, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| |
Collapse
|
6
|
Russell‐Jones D, Danne T, Hermansen K, Niswender K, Robertson K, Thalange N, Vasselli JR, Yildiz B, Häring HU. Weight-sparing effect of insulin detemir: a consequence of central nervous system-mediated reduced energy intake? Diabetes Obes Metab 2015; 17:919-27. [PMID: 25974283 PMCID: PMC4744774 DOI: 10.1111/dom.12493] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/23/2015] [Accepted: 05/11/2015] [Indexed: 01/10/2023]
Abstract
Insulin therapy is often associated with adverse weight gain. This is attributable, at least in part, to changes in energy balance and insulin's anabolic effects. Adverse weight gain increases the risk of poor macrovascular outcomes in people with diabetes and should therefore be mitigated if possible. Clinical studies have shown that insulin detemir, a basal insulin analogue, exerts a unique weight-sparing effect compared with other basal insulins. To understand this property, several hypotheses have been proposed. These explore the interplay of efferent and afferent signals between the muscles, brain, liver, renal and adipose tissues in response to insulin detemir and comparator basal insulins. The following models have been proposed: insulin detemir may reduce food intake through direct or indirect effects on the central nervous system (CNS); it may have favourable actions on hepatic glucose metabolism through a selective effect on the liver, or it may influence fluid homeostasis through renal effects. Studies have consistently shown that insulin detemir reduces energy intake, and moreover, it is clear that this shift in energy balance is not a consequence of reduced hypoglycaemia. CNS effects may be mediated by direct action, by indirect stimulation by peripheral mediators and/or via a more physiological counter-regulatory response to insulin through restoration of the hepatic-peripheral insulin gradient. Although the precise mechanism remains unclear, it is likely that the weight-sparing effect of insulin detemir can be explained by a combination of mechanisms. The evidence for each hypothesis is considered in this review.
Collapse
Affiliation(s)
- D. Russell‐Jones
- Diabetes and EndocrinologyRoyal Surrey County Hospital and University of SurreyGuildfordUK
| | - T. Danne
- Diabetes‐Zentrum für Kinder und JugendlicheKinderkrankenhaus auf der BultHannoverGermany
| | - K. Hermansen
- Department of Endocrinology and Internal MedicineAarhus University HospitalAarhusDenmark
| | - K. Niswender
- Tennessee Valley Healthcare System and Vanderbilt University School of Medicine, Vanderbilt UniversityNashvilleTNUSA
| | | | - N. Thalange
- Jenny Lind Children's DepartmentNorfolk and Norwich University HospitalNorwichUK
| | - J. R. Vasselli
- New York Obesity Nutrition Research Center, Columbia UniversityNew YorkNYUSA
| | - B. Yildiz
- Division of Endocrinology and Metabolism, Department of Internal MedicineHacettepe University School of MedicineAnkaraTurkey
| | - H. U. Häring
- Division of Endocrinology, Diabetology, Vascular Disease, Nephrology and Clinical Chemistry, Department of Internal MedicineUniversity of Tübingen, Member of the German Center for Diabetes Research (DZD)TübingenGermany
| |
Collapse
|
7
|
Begg DP, May AA, Mul JD, Liu M, D'Alessio DA, Seeley RJ, Woods SC. Insulin Detemir Is Transported From Blood to Cerebrospinal Fluid and Has Prolonged Central Anorectic Action Relative to NPH Insulin. Diabetes 2015; 64:2457-66. [PMID: 25667307 PMCID: PMC4477354 DOI: 10.2337/db14-1364] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 01/30/2015] [Indexed: 02/04/2023]
Abstract
Insulin detemir (DET) reduces glycemia comparably to other long-acting insulin formulations but causes less weight gain. Insulin signaling in the brain is catabolic, reducing food intake. We hypothesized that DET reduces weight gain, relative to other insulins, owing to increased transport into the central nervous system and/or increased catabolic action within the brain. Transport of DET and NPH insulin into the cerebrospinal fluid (CSF) was compared over several hours and after the administration of different doses peripherally in rats. DET and NPH had comparable saturable, receptor-mediated transport into the CSF. CSF insulin remained elevated significantly longer after intraperitoneal DET than after NPH. When administered acutely into the 3rd cerebral ventricle, both DET and NPH insulin reduced food intake and body weight at 24 h, and both food intake and body weight remained lower after DET than after NPH after 48 h. In direct comparison with another long-acting insulin, insulin glargine (GLAR), DET led to more prolonged increases in CSF insulin despite a shorter plasma half-life in both rats and mice. Additionally, peripheral DET administration reduced weight gain and increased CSF insulin compared with saline or GLAR in mice. Overall, these data support the hypothesis that DET has distinct effects on energy balance through enhanced and prolonged centrally mediated reduction of food intake.
Collapse
Affiliation(s)
- Denovan P Begg
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH School of Psychology, UNSW Australia, Sydney, NSW, Australia
| | - Aaron A May
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - Joram D Mul
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH Joslin Diabetes Center, Harvard Medical School, Boston, MA
| | - Min Liu
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| | - David A D'Alessio
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH Department of Medicine, Duke University, Durham, NC
| | - Randy J Seeley
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH Department of Surgery, University of Michigan, Ann Arbor, MI
| | - Stephen C Woods
- Metabolic Diseases Institute, University of Cincinnati, Cincinnati, OH
| |
Collapse
|
8
|
Effects of insulin detemir and NPH insulin on body weight and appetite-regulating brain regions in human type 1 diabetes: a randomized controlled trial. PLoS One 2014; 9:e94483. [PMID: 24739875 PMCID: PMC3989203 DOI: 10.1371/journal.pone.0094483] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 03/13/2014] [Indexed: 02/08/2023] Open
Abstract
Studies in rodents have demonstrated that insulin in the central nervous system induces satiety. In humans, these effects are less well established. Insulin detemir is a basal insulin analog that causes less weight gain than other basal insulin formulations, including the current standard intermediate-long acting Neutral Protamine Hagedorn (NPH) insulin. Due to its structural modifications, which render the molecule more lipophilic, it was proposed that insulin detemir enters the brain more readily than other insulins. The aim of this study was to investigate whether insulin detemir treatment differentially modifies brain activation in response to food stimuli as compared to NPH insulin. In addition, cerebral spinal fluid (CSF) insulin levels were measured after both treatments. Brain responses to viewing food and non-food pictures were measured using functional Magnetic Resonance Imaging in 32 type 1 diabetic patients, after each of two 12-week treatment periods with insulin detemir and NPH insulin, respectively, both combined with prandial insulin aspart. CSF insulin levels were determined in a subgroup. Insulin detemir decreased body weight by 0.8 kg and NPH insulin increased weight by 0.5 kg (p = 0.02 for difference), while both treatments resulted in similar glycemic control. After treatment with insulin detemir, as compared to NPH insulin, brain activation was significantly lower in bilateral insula in response to visual food stimuli, compared to NPH (p = 0.02 for right and p = 0.05 for left insula). Also, CSF insulin levels were higher compared to those with NPH insulin treatment (p = 0.003). Our findings support the hypothesis that in type 1 diabetic patients, the weight sparing effect of insulin detemir may be mediated by its enhanced action on the central nervous system, resulting in blunted activation in bilateral insula, an appetite-regulating brain region, in response to food stimuli. Trial Registration ClinicalTrials.gov NCT00626080.
Collapse
|
9
|
Moore MC, Smith MS, Sinha VP, Beals JM, Michael MD, Jacober SJ, Cherrington AD. Novel PEGylated basal insulin LY2605541 has a preferential hepatic effect on glucose metabolism. Diabetes 2014; 63:494-504. [PMID: 24089512 PMCID: PMC5361402 DOI: 10.2337/db13-0826] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 09/23/2013] [Indexed: 01/08/2023]
Abstract
The impact of the novel basal insulin LY2605541 (LY) on hepatic and nonhepatic glucose uptake (non-HGU) was evaluated. Conscious dogs underwent euglycemic clamps with tracer and hepatic balance measurements. Clamp period infusions were peripheral venous regular insulin (0.1 nmol ⋅ kg(-1) ⋅ h(-1) [control], n = 6) or LY (bolus [nmol/kg], continuous [nmol ⋅ kg(-1) ⋅ h(-1)]: 0.5, 0.5 [n = 6]; 0.375, 0.375 [n = 5]; 0.25, 0.25 [n = 4]), somatostatin, and glucose, as well as intraportal glucagon (basal). During the clamp, the dogs switched from net hepatic glucose output to uptake (rates reached 2.1 ± 1.2, 0.9 ± 2.1, 8.6 ± 2.3, and 6.0 ± 1.1 µmol ⋅ kg(-1) ⋅ min(-1) within 5 h in control, LY0.25, LY0.375, and LY0.5, respectively). Non-HGU in LY increased less than in control; the ratio of change from basal in non-HGU to change in net hepatic glucose balance, calculated when glucose infusion rates (GIRs) were ~20 µmol ⋅ kg(-1) ⋅ min(-1) in all groups, was higher in control (1.17 ± 0.38) versus LY0.25 (0.39 ± 0.33), LY0.375 (-0.01 ± 0.13), and LY0.5 (-0.09 ± 0.07). Likewise, the change from baseline in glucose Rd-to-Ra ratio was greatest in control (1.4 ± 0.3 vs. 0.6 ± 0.4, 0.5 ± 0.2, and 0.6 ± 0.2 in LY0.25, LY0.375, and LY0.5, respectively). In contrast to exogenously administered human insulin, LY demonstrated preferential hepatic effects, similar to endogenously secreted insulin. Therefore, the analog might reduce complications associated with current insulin therapy.
Collapse
Affiliation(s)
- Mary Courtney Moore
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Marta S. Smith
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| | - Vikram P. Sinha
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - John M. Beals
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | - M. Dodson Michael
- Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN
| | | | - Alan D. Cherrington
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
10
|
Mehta DC, Short JL, Nicolazzo JA. Reduced CNS exposure of memantine in a triple transgenic mouse model of Alzheimer's disease assessed using a novel LC–MS technique. J Pharm Biomed Anal 2013; 85:198-206. [DOI: 10.1016/j.jpba.2013.07.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 07/17/2013] [Accepted: 07/17/2013] [Indexed: 02/02/2023]
|
11
|
Mehta DC, Short JL, Nicolazzo JA. Memantine Transport across the Mouse Blood–Brain Barrier Is Mediated by a Cationic Influx H+ Antiporter. Mol Pharm 2013; 10:4491-8. [DOI: 10.1021/mp400316e] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Dharmini C. Mehta
- Drug Delivery, Disposition and
Dynamics, and ‡Drug Discovery Biology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Jennifer L. Short
- Drug Delivery, Disposition and
Dynamics, and ‡Drug Discovery Biology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A. Nicolazzo
- Drug Delivery, Disposition and
Dynamics, and ‡Drug Discovery Biology, Monash Institute
of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| |
Collapse
|
12
|
Altered brain uptake of therapeutics in a triple transgenic mouse model of Alzheimer's disease. Pharm Res 2013; 30:2868-79. [PMID: 23794039 DOI: 10.1007/s11095-013-1116-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 06/04/2013] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this study was to systematically assess the impact of Alzheimer's disease (AD)-associated blood-brain barrier (BBB) alterations on the uptake of therapeutics into the brain. METHODS The brain uptake of probe compounds was measured in 18-20 month old wild type (WT) and triple transgenic (3×TG) AD mice using an in situ transcardiac perfusion technique. These results were mechanistically correlated with immunohistochemical and molecular studies. RESULTS The brain uptake of the paracellular marker, [(14)C] sucrose, did not differ between WT and 3×TG mice. The brain uptake of passively diffusing markers, [(3)H] diazepam and [(3)H] propranolol, decreased 54-60% in 3×TG mice, consistent with a 33.5% increase in the thickness of the cerebrovascular basement membrane in 3×TG mice. Despite a 42.4% reduction in P-gp expression in isolated brain microvessels from a sub-population of 3×TG mice (relative to WT mice), the brain uptake of P-gp substrates ([(3)H] digoxin, [(3)H] loperamide and [(3)H] verapamil) was not different between genotypes, likely due to a compensatory thickening in the cerebrovascular basement membrane counteracting any reduced efflux of these lipophilic substrates. CONCLUSION These studies systematically assessed the impact of AD on BBB drug transport in a relevant animal model, and have demonstrated a reduction in the brain uptake of passively-absorbed molecules in this mouse model of AD.
Collapse
|
13
|
Abstract
Insulin detemir (Levemir®) is a long-acting insulin analogue indicated for use as basal insulin therapy in patients with type 1 or 2 diabetes mellitus. The protracted action of insulin detemir is explained by increased self-association and reversible binding to albumin, which slows its systemic absorption from the injection site. In glucose-clamp studies, less within-patient variability in glucose-lowering effect was seen with insulin detemir than with neutral protamine Hagedorn (NPH) insulin or insulin glargine in patients with type 1 or 2 diabetes. The beneficial effect of insulin detemir on glycaemic control was shown in numerous randomized, open-label, multicentre trials, including when used as basal-bolus therapy in patients with type 1 or 2 diabetes and as basal therapy in addition to oral antidiabetic drugs in insulin-naive patients with type 2 diabetes. In terms of glycosylated haemoglobin (HbA(1c)).[primary endpoint in most trials], insulin detemir was generally at least as effective as NPH insulin, insulin glargine or insulin lispro protamine suspension in patients with type 1 or 2 diabetes, and at least as effective as biphasic insulin aspart in patients with type 2 diabetes. Less within-patient variability in blood glucose was also generally seen with insulin detemir than with NPH insulin in patients with type 1 or 2 diabetes. Significantly less weight gain was generally seen with insulin detemir than with NPH insulin in patients with type 1 diabetes or with insulin detemir than with NPH insulin, insulin glargine, insulin lispro protamine suspension or biphasic insulin aspart (in one study) in patients with type 2 diabetes (i.e. insulin detemir generally had a weight-sparing effect). The addition of insulin detemir to liraglutide plus metformin improved glycaemic control in insulin-naive patients with type 2 diabetes and inadequate glycaemic control, although a significantly greater reduction in bodyweight was seen in patients receiving liraglutide plus metformin than in those receiving add-on therapy with insulin detemir. Results of two trials in patients aged 2-16 or 6-17 years (and a subgroup analysis in children aged 2-5 years) indicate that a basal-bolus insulin regimen incorporating insulin detemir appears to be a suitable option for use in paediatric patients with type 1 diabetes. Less within-patient variation in self-measured fasting plasma glucose was seen with insulin detemir than with NPH insulin in one of the studies. Insulin detemir was noninferior to NPH insulin in pregnant women with type 1 diabetes in terms of the HbA(1c) value achieved at 36 gestational weeks. In addition, maternal and neonatal outcomes with insulin detemir were similar to those seen with NPH insulin. Subcutaneous insulin detemir was generally well tolerated in the treatment of patients with type 1 or 2 diabetes, including in paediatric patients and pregnant women with type 1 diabetes. The majority of adverse events, including serious adverse events, reported in insulin detemir recipients were not considered to be related to the study drug. Insulin detemir was generally associated with a significantly lower risk of nocturnal hypoglycaemia than NPH insulin in patients with type 1 or 2 diabetes, particularly nocturnal minor hypoglycaemia. In conclusion, insulin detemir is a useful option for use as basal insulin therapy in patients with type 1 or 2 diabetes.
Collapse
|
14
|
Banks WA, Owen JB, Erickson MA. Insulin in the brain: there and back again. Pharmacol Ther 2012; 136:82-93. [PMID: 22820012 PMCID: PMC4134675 DOI: 10.1016/j.pharmthera.2012.07.006] [Citation(s) in RCA: 421] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/12/2022]
Abstract
Insulin performs unique functions within the CNS. Produced nearly exclusively by the pancreas, insulin crosses the blood-brain barrier (BBB) using a saturable transporter, affecting feeding and cognition through CNS mechanisms largely independent of glucose utilization. Whereas peripheral insulin acts primarily as a metabolic regulatory hormone, CNS insulin has an array of effects on brain that may more closely resemble the actions of the ancestral insulin molecule. Brain endothelial cells (BECs), the cells that form the vascular BBB and contain the transporter that translocates insulin from blood to brain, are themselves regulated by insulin. The insulin transporter is altered by physiological and pathological factors including hyperglycemia and the diabetic state. The latter can lead to BBB disruption. Pericytes, pluripotent cells in intimate contact with the BECs, protect the integrity of the BBB and its ability to transport insulin. Most of insulin's known actions within the CNS are mediated through two canonical pathways, the phosphoinositide-3 kinase (PI3)/Akt and Ras/mitogen activated kinase (MAPK) cascades. Resistance to insulin action within the CNS, sometimes referred to as diabetes mellitus type III, is associated with peripheral insulin resistance, but it is possible that variable hormonal resistance syndromes exist so that resistance at one tissue bed may be independent of that at others. CNS insulin resistance is associated with Alzheimer's disease, depression, and impaired baroreceptor gain in pregnancy. These aspects of CNS insulin action and the control of its entry by the BBB are likely only a small part of the story of insulin within the brain.
Collapse
Affiliation(s)
- William A Banks
- Geriatrics Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care Center, Seattle, WA, USA.
| | | | | |
Collapse
|
15
|
Banks WA. Brain meets body: the blood-brain barrier as an endocrine interface. Endocrinology 2012; 153:4111-9. [PMID: 22778219 PMCID: PMC3423627 DOI: 10.1210/en.2012-1435] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 06/19/2012] [Indexed: 12/30/2022]
Abstract
The blood-brain barrier (BBB) separates the central nervous system (CNS) from the peripheral tissues. However, this does not prevent hormones from entering the brain, but shifts the main control of entry to the BBB. In general, steroid hormones cross the BBB by transmembrane diffusion, a nonsaturable process resulting in brain levels that reflect blood levels, whereas thyroid hormones and many peptides and regulatory proteins cross using transporters, a saturable process resulting in brain levels that reflect blood levels and transporter characteristics. Protein binding, brain-to-blood transport, and pharmacokinetics modulate BBB penetration. Some hormones have the opposite effect within the CNS than they do in the periphery, suggesting that these hormones cross the BBB to act as their own counterregulators. The cells making up the BBB are also endocrine like, both responding to circulating substances and secreting substances into the circulation and CNS. By dividing a hormone's receptors into central and peripheral pools, the former of which may not be part of the hormone's negative feed back loop, the BBB fosters the development of variable hormone resistance syndromes, as exemplified by evidence that altered insulin action in the CNS can contribute to Alzheimer's disease. In summary, the BBB acts as a regulatory interface in an endocrine-like, humoral-based communication between the CNS and peripheral tissues.
Collapse
Affiliation(s)
- William A Banks
- Veterans Affairs Puget Sound Health Care System and Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.
| |
Collapse
|
16
|
Mooradian AD. Special considerations with insulin therapy in older adults with diabetes mellitus. Drugs Aging 2012; 28:429-38. [PMID: 21639404 DOI: 10.2165/11590570-000000000-00000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Aging is associated with alterations in insulin secretion and action. However, aging per se does not alter the pharmacokinetics of commercially available insulin and its analogues. Insulin therapy in older adults is complicated by psychosocial and physiological changes of aging. Several new insulin and insulin analogue preparations are now available for clinical use. Used as prandial (e.g. insulin lispro, insulin aspart or insulin glulisine) and basal insulin (e.g. insulin glargine, insulin detemir), these analogues simulate physiological insulin profiles more closely than the older conventional insulins. The availability of multiple insulin products provides new opportunities to achieve control of diabetes mellitus. The choice of initial insulin therapy can be made based on blood glucose profiles. Overall, these profiles can be divided into three general patterns that include: (i) round-the-clock hyperglycaemia; (ii) fasting hyperglycaemia with daytime euglycaemia; and (iii) daytime hyperglycaemia with normal fasting blood glucose levels. The prescription of insulin is a dynamic process, and the insulin regimen should be adjusted based on individual response. The goal of diabetes care in older adults is to enhance quality of life without subjecting individuals to complicated treatment regimens that may interfere with their independence in carrying out daily activities.
Collapse
Affiliation(s)
- Arshag D Mooradian
- Department of Medicine, University of Florida College of Medicine, Jacksonville, USA.
| |
Collapse
|
17
|
Abstract
The risk for developing type 2 diabetes (T2DM) is greater among obese individuals. Following onset of the disease, patients with T2DM become more likely to be afflicted with diabetic micro- and macrovascular complications. Decreasing body weight has been shown to lower glycosylated hemoglobin and improve other metabolic parameters in patients with T2DM. Medications used to lower blood glucose may increase body weight in patients with T2DM and this has been repeatedly shown to be the case for conventional, human insulin formulations. Insulin detemir is a neutral, soluble, long-acting insulin analog in which threonine-30 of the insulin B-chain is deleted, and the C-terminal lysine is acetylated with myristic acid, a C14 fatty acid chain. Insulin detemir binds to albumin, a property that enhances its pharmacokinetic/pharmacodynamic profile. Results from clinical trials have demonstrated that treatment with insulin detemir is associated with less weight gain than either insulin glargine or neutral protamine Hagedorn insulin. There are many potential reasons for the lower weight gain observed among patients treated with insulin detemir, including lower risk for hypoglycemia and therefore decreased defensive eating due to concern about this adverse event, along with other effects that may be related to the albumin binding of this insulin that may account for lower within-patient variability and consistent action. These might include faster transport across the blood-brain barrier, induction of satiety signaling in the brain, and preferential inhibition of hepatic glucose production versus peripheral glucose uptake. Experiments in diabetic rats have also indicated that insulin detemir increases adiponectin levels, which is associated with both weight loss and decreased eating.
Collapse
Affiliation(s)
- Priscilla A Hollander
- Baylor Endocrine Center, Dallas, Texas, USA
- Baylor Medical Center, Dallas, Texas, USA
- Correspondence: Priscilla A Hollander, Baylor Endocrine Center, Baylor Medical Center, 3600 Gaston Avenue, Suite 656, Dallas, Texas 75246, USA, Tel +1 214 820 3459, Fax +1 214 820 3468, Email
| |
Collapse
|
18
|
Moore MC, Smith MS, Turney MK, Boysen S, Williams PE. Comparison of insulins detemir and glargine: effects on glucose disposal, hepatic glucose release and the central nervous system. Diabetes Obes Metab 2011; 13:832-40. [PMID: 21554521 PMCID: PMC3144987 DOI: 10.1111/j.1463-1326.2011.01418.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
AIMS The effects of insulins detemir (Det) and glargine (Glar) on endogenous glucose production (EGP) and net hepatic glucose output (NHGO) were compared. METHODS Arteriovenous difference and tracer ([3-(3) H]glucose) techniques were employed during a two-step hyperinsulinemic euglycaemic clamp in conscious dogs (6 groups, n = 5-6/group). After equilibration and basal sampling (0-120 min), somatostatin was infused and basal glucagon was replaced intraportally. Det or Glar was infused via portal vein (Po), peripheral vein (IV), or bilateral carotid and vertebral arteries (H) at 0.1 and 0.3 mU/kg/min (low Insulin; Glar vs. Det, respectively, 120-420 min) and 4× the low insulin rate (high insulin; 420-540 min). RESULTS NHGO and EGP were suppressed and glucose R(d) and infusion rate were stimulated similarly by Det and Glar at both Low and high insulin with each infusion route. Non-esterified fatty acid (NEFA) concentrations during low insulin were 202 ± 37 versus 323 ± 75 µM in DetPo and GlarPo (p < 0.05) and 125 ± 39 versus 263 ± 48 µM in DetIV and GlarIV, respectively (p < 0.05). In DetH versus GlarH, pAkt/Akt (1.7 ± 0.2 vs. 1.0 ± 0.2) and pSTAT3/STAT3 (1.4 ± 0.2 vs. 1.0 ± 0.1) were significantly increased in the liver but not in the hypothalamus. CONCLUSIONS Det and Glar have similar net effects on acute regulation of hepatic glucose metabolism in vivo regardless of delivery route. Portal and IV detemir delivery reduces circulating NEFA to a greater extent than glargine, and head detemir infusion enhances molecular signalling in the liver. These findings indicate a need for further examination of Det's central and hepatic effects.
Collapse
Affiliation(s)
- M C Moore
- Department of Molecular Physiology & Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232-0615, USA.
| | | | | | | | | |
Collapse
|
19
|
Rojas JM, Printz RL, Niswender KD. Insulin detemir attenuates food intake, body weight gain and fat mass gain in diet-induced obese Sprague-Dawley rats. Nutr Diabetes 2011; 1:e10. [PMID: 23449422 PMCID: PMC3302138 DOI: 10.1038/nutd.2011.6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE Initiation and intensification of insulin therapy commonly causes weight gain, a barrier to therapy. A contrasting body of evidence indicates that insulin functions as an adiposity negative feedback signal and reduces food intake, weight gain and adiposity via action in the central nervous system. Basal insulin analogs, detemir (Det) and glargine (Glar), have been associated with less hypoglycemia compared with neutral protamine hagedorn insulin, and Det with less weight gain, especially in patients with higher body mass index (BMI). We sought to determine whether insulin therapy per se causes body weight and fat mass gain when delivered via a clinically relevant subcutaneous (SC) route in the absence of hypoglycemia and glycosuria in non-diabetic lean and diet-induced obese rats. MATERIALS AND METHODS Rats were exposed to either a low-fat diet (LFD; 13.5% fat) or high-fat diet (HFD; 60% fat), and received Det (0.5 U kg(-1)), Glar (0.2 U kg(-1)) or vehicle (Veh) SC once daily for 4 weeks. These dosages of insulin were equipotent in rats with respect to blood-glucose concentration and did not induce hypoglycemia. RESULTS As predicted by current models of energy homeostasis, neither insulin Det nor Glar therapy affected food intake and weight gain in LFD rats. Det treatment significantly attenuated food intake, body weight gain and fat mass gain relative to the Glar and Veh in high-fat fed animals, mirroring observations in humans. CONCLUSIONS That neither insulin group gained excess weight, suggests weight gain with SC basal insulin therapy may not be inevitable. Our data further suggest that Det possesses a unique property to attenuate the development of obesity associated with a HFD.
Collapse
Affiliation(s)
- J M Rojas
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | |
Collapse
|