1
|
Adao DMT, Ching C, Fish JE, Simmons CA, Billia F. Endothelial cell-cardiomyocyte cross-talk: understanding bidirectional paracrine signaling in cardiovascular homeostasis and disease. Clin Sci (Lond) 2024; 138:1395-1419. [PMID: 39492693 DOI: 10.1042/cs20241084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 11/05/2024]
Abstract
To maintain homeostasis in the heart, endothelial cells and cardiomyocytes engage in dynamic cross-talk through paracrine signals that regulate both cardiac development and function. Here, we review the paracrine signals that endothelial cells release to regulate cardiomyocyte growth, hypertrophy and contractility, and the factors that cardiomyocytes release to influence angiogenesis and vascular tone. Dysregulated communication between these cell types can drive pathophysiology of disease, as seen in ischemia-reperfusion injury, diabetes, maladaptive hypertrophy, and chemotherapy-induced cardiotoxicity. Investingating the role of cross-talk is critical in developing an understanding of tissue homeostasis, regeneration, and disease pathogenesis, with the potential to identify novel targets for diagnostic and therapeutic purposes.
Collapse
Affiliation(s)
- Doris M T Adao
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
| | - Crizza Ching
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Department of Laboratory Medicine and Pathobiology, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| | - Craig A Simmons
- Institute of Biomedical Engineering, University of Toronto, 164 College St., Toronto, Ontario, Canada, M5S 3G9
- Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, 661 University Ave., Toronto, Ontario, Canada, M5G 1M1
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Rd., Toronto, Ontario, Canada, M5S 3G8
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network, 100 College St., Toronto, Ontario Canada, M5G 1L7
- Institute of Medical Science, University of Toronto, 1 King's College Cir., Toronto, Ontario, Canada, M5G 1A8
- Peter Munk Cardiac Centre, University Health Network, 585 University Ave., Toronto, Ontario, Canada, M5G 2N2
| |
Collapse
|
2
|
Dickinson YA, Moyes AJ, Hobbs AJ. C-type natriuretic peptide (CNP): The cardiovascular system and beyond. Pharmacol Ther 2024; 262:108708. [PMID: 39154787 DOI: 10.1016/j.pharmthera.2024.108708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/30/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
C-type natriuretic peptide (CNP) represents the 'local' member of the natriuretic peptide family, functioning in an autocrine or paracrine capacity to modulate a hugely diverse portfolio of physiological processes. Whilst the best-characterised of these regulatory roles are in the cardiovascular system, akin to its predominantly endocrine siblings atrial (ANP) and brain (BNP) natriuretic peptides, CNP governs many additional, unrelated mechanisms including bone growth, gamete maturation, auditory processing, and neuronal integrity. Furthermore, there is currently great interest in mimicking the biological activity of CNP for therapeutic gain in many of these disparate organ systems. Herein, we provide an overview of the physiology, pathophysiology and pharmacology of CNP in both cardiovascular and non-cardiovascular settings.
Collapse
Affiliation(s)
- Yasmin A Dickinson
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Amie J Moyes
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Faculty of Medicine and Dentistry, Barts & The London, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
3
|
Fato BR, de Alwis N, Beard S, Binder NK, Pritchard N, Kaitu'u-Lino TJ, Bubb KJ, Hannan NJ. Exploring the Therapeutic Potential of C-Type Natriuretic Peptide for Preeclampsia. Hypertension 2024; 81:1883-1894. [PMID: 39016006 DOI: 10.1161/hypertensionaha.124.22820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/21/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Preeclampsia is a serious condition of pregnancy, complicated by aberrant maternal vascular dysfunction. CNP (C-type natriuretic peptide) contributes to vascular homeostasis, acting through NPR-B (natriuretic peptide receptor-B) and NPR-C (natriuretic peptide receptor-C). CNP mitigates vascular dysfunction of arteries in nonpregnant cohorts; this study investigates whether CNP can dilate maternal arteries in ex vivo preeclampsia models. METHODS Human omental arteries were dissected from fat biopsies collected during cesarean section. CNP, NPR-B, and NPR-C mRNA expression was assessed in arteries collected from pregnancies complicated by preeclampsia (n=6) and normotensive controls (n=11). Using wire myography, we investigated the effects of CNP on dilation of arteries from normotensive pregnancies. Arteries were preconstricted with either serum from patients with preeclampsia (n=6) or recombinant ET-1 (endothelin-1; vasoconstrictor elevated in preeclampsia; n=6) to model vasoconstriction associated with preeclampsia. Preconstricted arteries were treated with recombinant CNP (0.001-100 µmol/L) or vehicle and vascular relaxation assessed. In further studies, arteries were preincubated with NPR-B (5 µmol/L) and NPR-C (10 µmol/L) antagonists before serum-induced constriction (n=4-5) to explore mechanistic signaling. RESULTS CNP, NPR-B, and NPR-C mRNAs were not differentially expressed in omental arteries from preeclamptic pregnancies. CNP potently stimulated maternal artery vasorelaxation in our model of preeclampsia (using preeclamptic serum). Its vasodilatory actions were driven through the activation of NPR-B predominantly; antagonism of this receptor alone dampened CNP vasorelaxation. Interestingly, CNP did not reduce ET-1-driven omental artery constriction. CONCLUSIONS Collectively, these data suggest that enhancing CNP signaling through NPR-B offers a potential therapeutic strategy to reduce systemic vascular constriction in preeclampsia.
Collapse
Affiliation(s)
- Bianca R Fato
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Natasha de Alwis
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Sally Beard
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Natalie K Binder
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Natasha Pritchard
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Tu'uhevaha J Kaitu'u-Lino
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| | - Kristen J Bubb
- Department of Physiology, Biomedicine Discovery Institute (K.J.B.), Monash University, Clayton, Victoria, Australia
- Victorian Heart Institute, Faculty of Medicine, Nursing and Health Sciences (K.J.B.), Monash University, Clayton, Victoria, Australia
| | - Natalie J Hannan
- Therapeutics Discovery and Vascular Function in Pregnancy Group (B.R.F., N.d.A., S.B., N.K.B., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
- Department of Obstetrics, Gynecology and Newborn Health, Mercy Hospital for Women (B.R.F., N.d.A., S.B., N.K.B., N.P., T.J.K.-L., N.J.H.), University of Melbourne, Heidelberg, Victoria, Australia
| |
Collapse
|
4
|
Giovou AE, Gladka MM, Christoffels VM. The Impact of Natriuretic Peptides on Heart Development, Homeostasis, and Disease. Cells 2024; 13:931. [PMID: 38891063 PMCID: PMC11172276 DOI: 10.3390/cells13110931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
During mammalian heart development, the clustered genes encoding peptide hormones, Natriuretic Peptide A (NPPA; ANP) and B (NPPB; BNP), are transcriptionally co-regulated and co-expressed predominately in the atrial and ventricular trabecular cardiomyocytes. After birth, expression of NPPA and a natural antisense transcript NPPA-AS1 becomes restricted to the atrial cardiomyocytes. Both NPPA and NPPB are induced by cardiac stress and serve as markers for cardiovascular dysfunction or injury. NPPB gene products are extensively used as diagnostic and prognostic biomarkers for various cardiovascular disorders. Membrane-localized guanylyl cyclase receptors on many cell types throughout the body mediate the signaling of the natriuretic peptide ligands through the generation of intracellular cGMP, which interacts with and modulates the activity of cGMP-activated kinase and other enzymes and ion channels. The natriuretic peptide system plays a fundamental role in cardio-renal homeostasis, and its potent diuretic and vasodilatory effects provide compensatory mechanisms in cardiac pathophysiological conditions and heart failure. In addition, both peptides, but also CNP, have important intracardiac actions during heart development and homeostasis independent of the systemic functions. Exploration of the intracardiac functions may provide new leads for the therapeutic utility of natriuretic peptide-mediated signaling in heart diseases and rhythm disorders. Here, we review recent insights into the regulation of expression and intracardiac functions of NPPA and NPPB during heart development, homeostasis, and disease.
Collapse
Affiliation(s)
| | | | - Vincent M. Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, 1105AZ Amsterdam, The Netherlands; (A.E.G.); (M.M.G.)
| |
Collapse
|
5
|
CNP, the Third Natriuretic Peptide: Its Biology and Significance to the Cardiovascular System. BIOLOGY 2022; 11:biology11070986. [PMID: 36101368 PMCID: PMC9312265 DOI: 10.3390/biology11070986] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 11/19/2022]
Abstract
Simple Summary CNP is the third natriuretic peptide to be isolated and is widely expressed in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by the other two natriuretic peptides, ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. Research into the actions of CNP has shown that CNP attenuates cardiac remodeling in animal models of cardiac hypertrophy, myocardial infarction, and myocarditis. Studies examining CNP/GC-B signaling showed that it contributes to the prevention of cardiac stiffness. Endogenous CNP, perhaps acting in part through CNP/NPR-C signaling, contributes to the regulation of vascular function and blood pressure. CNP regulates vascular remodeling and angiogenesis via CNP/GC-B/CGK signaling. CNP attenuates interstitial fibrosis and fibrosis-related gene expression in pressure overload and myocardial infarction models. The clinical application of CNP as a therapeutic agent for cardiovascular diseases is anticipated. Abstract The natriuretic peptide family consists of three biologically active peptides: ANP, BNP, and CNP. CNP is more widely expressed than the other two peptides, with significant levels in the central nervous system, osteochondral system, and vascular system. The receptor that is mainly targeted by CNP is GC-B, which differs from GC-A, the receptor targeted by ANP and BNP. Consequently, the actions of CNP differ somewhat from those of ANP and BNP. CNP knockout leads to severe dwarfism, and there has been important research into the role of CNP in the osteochondral system. As a result, a CNP analog is now available for clinical use in patients with achondroplasia. In the cardiovascular system, CNP and its downstream signaling are involved in the regulatory mechanisms underlying myocardial remodeling, cardiac function, vascular tone, angiogenesis, and fibrosis, among others. This review focuses on the roles of CNP in the cardiovascular system and considers its potential for clinical application in the treatment of cardiovascular diseases.
Collapse
|
6
|
Physiological and Pathophysiological Effects of C-Type Natriuretic Peptide on the Heart. BIOLOGY 2022; 11:biology11060911. [PMID: 35741432 PMCID: PMC9219612 DOI: 10.3390/biology11060911] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/30/2022] [Accepted: 06/08/2022] [Indexed: 01/06/2023]
Abstract
Simple Summary C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), CNP was not previously regarded as an important cardiac modulator. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with its cognate natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. In this review, I introduce the history of research on CNP in the cardiac field. Abstract C-type natriuretic peptide (CNP) is the third member of the natriuretic peptide family. Unlike other members, i.e., atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), which are cardiac hormones secreted from the atrium and ventricle of the heart, respectively, CNP is regarded as an autocrine/paracrine regulator with broad expression in the body. Because of its low expression levels compared to ANP and BNP, early studies failed to show its existence and role in the heart. However, recent studies have revealed the physiological and pathophysiological importance of CNP in the heart; in concert with the distribution of its specific natriuretic peptide receptor-B (NPR-B), CNP has come to be regarded as the major heart-protective natriuretic peptide in the failed heart. NPR-B generates intracellular cyclic guanosine 3′,5′-monophosphate (cGMP) upon CNP binding, followed by various molecular effects including the activation of cGMP-dependent protein kinases, which generates diverse cytoprotective actions in cardiomyocytes, as well as in cardiac fibroblasts. CNP exerts negative inotropic and positive lusitropic responses in both normal and failing heart models. Furthermore, osteocrin, the intrinsic and specific ligand for the clearance receptor for natriuretic peptides, can augment the effects of CNP and may supply a novel therapeutic strategy for cardiac protection.
Collapse
|
7
|
Takei Y. Evolution of the membrane/particulate guanylyl cyclase: From physicochemical sensors to hormone receptors. Gen Comp Endocrinol 2022; 315:113797. [PMID: 33957096 DOI: 10.1016/j.ygcen.2021.113797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/19/2021] [Accepted: 04/28/2021] [Indexed: 12/26/2022]
Abstract
Guanylyl cyclase (GC) is an enzyme that produces 3',5'-cyclic guanosine monophosphate (cGMP), one of the two canonical cyclic nucleotides used as a second messenger for intracellular signal transduction. The GCs are classified into two groups, particulate/membrane GCs (pGC) and soluble/cytosolic GCs (sGC). In relation to the endocrine system, pGCs include hormone receptors for natriuretic peptides (GC-A and GC-B) and guanylin peptides (GC-C), while sGC is a receptor for nitric oxide and carbon monoxide. Comparing the functions of pGCs in eukaryotes, it is apparent that pGCs perceive various environmental factors such as light, temperature, and various external chemical signals in addition to endocrine hormones, and transmit the information into the cell using the intracellular signaling cascade initiated by cGMP, e.g., cGMP-dependent protein kinases, cGMP-sensitive cyclic nucleotide-gated ion channels and cGMP-regulated phosphodiesterases. Among vertebrate pGCs, GC-E and GC-F are localized on retinal epithelia and are involved in modifying signal transduction from the photoreceptor, rhodopsin. GC-D and GC-G are localized in olfactory epithelia and serve as sensors at the extracellular domain for external chemical signals such as odorants and pheromones. GC-G also responds to guanylin peptides in the urine, which alters sensitivity to other chemicals. In addition, guanylin peptides that are secreted into the intestinal lumen, a pseudo-external environment, act on the GC-C on the apical membrane for regulation of epithelial transport. In this context, GC-C and GC-G appear to be in transition from exocrine pheromone receptor to endocrine hormone receptor. The pGCs also exist in various deuterostome and protostome invertebrates, and act as receptors for environmental, exocrine and endocrine factors including hormones. Tracing the evolutionary history of pGCs, it appears that pGCs first appeared as a sensor for physicochemical signals in the environment, and then evolved to function as hormone receptors. In this review, the author proposes an evolutionary history of pGCs that highlights the emerging role of the GC/cGMP system for signal transduction in hormone action.
Collapse
Affiliation(s)
- Yoshio Takei
- Laboratory of Physiology, Department of Marine Bioscience, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan.
| |
Collapse
|
8
|
Rukavina Mikusic NL, Kouyoumdzian NM, Puyó AM, Fernández BE, Choi MR. Role of natriuretic peptides in the cardiovascular-adipose communication: a tale of two organs. Pflugers Arch 2022; 474:5-19. [PMID: 34173888 DOI: 10.1007/s00424-021-02596-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 05/31/2021] [Accepted: 06/11/2021] [Indexed: 12/23/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in the energy metabolism of several substrates in humans and animals, thus interrelating the heart, as an endocrine organ, with various insulin-sensitive tissues and organs such as adipose tissue, muscle skeletal, and liver. Adipose tissue dysfunction is associated with altered regulation of the natriuretic peptide system, also indicated as a natriuretic disability. Evidence points to a contribution of this natriuretic disability to the development of obesity, type 2 diabetes mellitus, and cardiometabolic complications; although the causal relationship is not fully understood at present. However, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on the current literature on the metabolic functions of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Natriuretic peptide system alterations could be proposed as one of the linking mechanisms between adipose tissue dysfunction and cardiovascular disease.
Collapse
Affiliation(s)
- Natalia Lucía Rukavina Mikusic
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - Nicolás Martín Kouyoumdzian
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana María Puyó
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Marcelo Roberto Choi
- Departamento de Ciencias Biológicas, Cátedra de Anatomía e Histología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Alberto C. Taquini de Investigaciones en Medicina Traslacional (IATIMET), CONICET - Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto Universitario de Ciencias de la Salud, Fundación H.A. Barceló, Buenos Aires, Argentina
| |
Collapse
|
9
|
Cabiati M, Sgalippa A, Federico G, Del Ry S. C-type natriuretic peptide in childhood obesity. Peptides 2021; 145:170639. [PMID: 34425175 DOI: 10.1016/j.peptides.2021.170639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022]
Abstract
According to the World Health Organization obesity is the result of an energy imbalance between calories assumed and expended and over the past 30 years its incidence has dramatically increased. Recently, the problem of obesity has drastically increased also in childhood, assuming a social relevance. Childhood obesity, in fact, increases the possibility to be obese in adulthood, representing a risk for cardiovascular morbidity and mortality. Aim of this review was to carry out a revision of the literature on childhood obesity focusing on natriuretic peptides (NPs) and in particular on the role of C-type natriuretic peptide (CNP). In obesity NPs play a fundamental role in the regulation of body weight and energy metabolism. Data on plasma CNP levels in children are scarce. The review of the literature relating to the role of CNP in adolescents showed a progressive reduction in the CNP plasma levels in overweight/obese adolescents compared to normal-weight subjects, as previously observed in obese adults, as well as a different modulation in CNP mRNA expression. An independent association between CNP levels and obesity as well as a significant association with the endothelial dysfunction index was reported, indicating that the peptide could play a very important role as a marker of risk of developing obesity. The results of these studies indicate the importance of adopting healthy lifestyles to improve glucometabolic control as well as to provide the rationale for designing and developing new drugs to modulate the NPs system.
Collapse
Affiliation(s)
- Manuela Cabiati
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Agnese Sgalippa
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Giovanni Federico
- Unit of Pediatric Endocrinology and Diabetes, Dep. Clinical and Experimental Medicine, University of Pisa, Italy
| | - Silvia Del Ry
- Laboratory of Biochemistry and Molecular Biology, Institute of Clinical Physiology, CNR, Pisa, Italy.
| |
Collapse
|
10
|
Vitiello A, Ferrara F. Pharmacological agents modifying the renin angiotensin and natriuretic peptide systems in COVID-19 patients. Wien Klin Wochenschr 2021; 133:983-988. [PMID: 33877436 PMCID: PMC8055751 DOI: 10.1007/s00508-021-01855-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 12/17/2022]
Affiliation(s)
- Antonio Vitiello
- Pharmaceutical Department, Usl Umbria 1, A. Migliorati street, 06132 Perugia, Italy
| | - Francesco Ferrara
- Pharmaceutical Department, Usl Umbria 1, A. Migliorati street, 06132 Perugia, Italy
| |
Collapse
|
11
|
da Silva GJJ, Altara R, Booz GW, Cataliotti A. Atrial Natriuretic Peptide 31-67: A Novel Therapeutic Factor for Cardiovascular Diseases. Front Physiol 2021; 12:691407. [PMID: 34305645 PMCID: PMC8297502 DOI: 10.3389/fphys.2021.691407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/14/2021] [Indexed: 12/11/2022] Open
Abstract
The characterization of the cardiac hormone atrial natriuretic peptide (ANP99–126), synthesized and secreted predominantly by atrial myocytes under stimulation by mechanical stretch, has established the heart as an endocrine organ with potent natriuretic, diuretic, and vasodilating actions. Three additional distinct polypeptides resulting from proteolytic cleavage of proANP have been identified in the circulation in humans. The mid-sequence proANP fragment 31–67 (also known as proANP31–67) has unique potent and prolonged diuretic and natriuretic properties. In this review, we report the main effects of this circulating hormone in different tissues and organs, and its mechanisms of actions. We further highlight recent evidence on the cardiorenal protective actions of chronic supplementation of synthetic proANP31–67 in preclinical models of cardiorenal disease. Finally, we evaluate the use of proANP31–67 as a new therapeutic strategy to repair end-organ damage secondary to hypertension, diabetes mellitus, renal diseases, obesity, heart failure, and other morbidities that can lead to impaired cardiac function and structure.
Collapse
Affiliation(s)
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway.,Department of Pathology, School of Medicine, University of Mississippi Medical Center Jackson, Jackson, MS, United States
| | - George W Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS, United States
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
12
|
Cardiac morphological and functional changes induced by C-type natriuretic peptide are different in normotensive and spontaneously hypertensive rats. J Hypertens 2021; 38:2305-2317. [PMID: 32649642 DOI: 10.1097/hjh.0000000000002570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Inflammation and fibrosis are key mechanisms in cardiovascular remodeling. C-type natriuretic peptide (CNP) is an endothelium-derived factor with a cardiovascular protective role, although its in-vivo effect on cardiac remodeling linked to hypertension has not been investigated. The aim of this study was to determine the effects of chronic administration of CNP on inflammatory and fibrotic cardiac mechanisms in normotensive Wistar rats and spontaneously hypertensive rats (SHR). METHODS Twelve-week-old male SHR and normotensive rats were infused with CNP (0.75 μg/h/100 g) or isotonic saline (NaCl 0.9%) for 14 days (subcutaneous micro-osmotic pumps). Echocardiograms and electrocardiograms were performed, and SBP was measured. After treatment, transforming growth factor-beta 1, Smad proteins, tumor necrosis factor-alpha, interleukin-1 and interleukin-6, nitric oxide (NO) system and 2-thiobarbituric acid-reactive substances were evaluated in left ventricle. Histological studies were also performed. RESULTS SHR showed lower cardiac output with signs of fibrosis and hypertrophy in left ventricle, higher NO-system activity and more oxidative damage, as well as higher pro-inflammatory and pro-fibrotic markers than normotensive rats. Chronic CNP treatment-attenuated hypertension and ventricular hypertrophy in SHR, with no changes in normotensive rats. In left ventricle, CNP induced an anti-inflammatory and antifibrotic response, decreasing both pro-fibrotic and pro-inflammatory cytokines in SHR. In addition, CNP reduced oxidative damage as well as collagen content, and upregulated the NO system in both groups. CONCLUSION Chronic CNP treatment appears to attenuate hypertension and associated end-organ damage in the heart by reducing inflammation and fibrosis.
Collapse
|
13
|
Pang Z, Pan C, Yao Z, Ren Y, Tian L, Cui J, Liu X, Zhang L, Chen Y. A study of the sequential treatment of acute heart failure with sacubitril/valsartan by recombinant human brain natriuretic peptide: A randomized controlled trial. Medicine (Baltimore) 2021; 100:e25621. [PMID: 33879733 PMCID: PMC8078236 DOI: 10.1097/md.0000000000025621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 04/03/2021] [Indexed: 01/04/2023] Open
Abstract
This study aimed to investigate the effects of the basic treatment for heart failure and sequential treatment with rh-brain natriuretic peptide (rhBNP) alone or the combination of rhBNP and sacubitril/valsartan. Cardiac structure, pulmonary artery pressure, inflammation and oxidative stress in patients with acute heart failure were evaluated.Three hundred patients with acute heart failure were included. According to the random number table method, the patients were divided into 3 groups of 100 patients per group: the standard treatment group (treated with an angiotensin-converting enzyme inhibitor, β receptor blocker, and corticosteroid antagonist), rhBNP group (basic treatment combined with rhBNP) and sequential treatment group (basic treatment for heart failure combined with rhBNP followed by sacubitril/valsartan). The changes in NT-probrain natriuretic peptide (BNP) levels, cardiac troponin T (cTnT) levels, cardiac structure, pulmonary artery pressure, and the levels inflammatory factors and oxidative stress factors were compared among the 3 groups at 1, 4, 12, and 36 weeks after treatment.The sequential treatment group displayed superior outcomes than the standard treatment group and the rhBNP group in terms of left atrium diameter, left ventricular end diastolic volume, left ventricular ejection fraction, pulmonary artery pressure, NT-proBNP levels, and cTnT levels, which respond to damage to the heart structure and myocardium. This result may be related to the decreased levels of inflammatory factors and the correction of oxidative stress imbalance.Sacubitril/valsartan significantly reduce the serum levels of inflammatory factors in patients with acute heart failure while decreasing the levels of oxidizing factors and increasing the levels of antioxidant factors. These changes may be one of the explanations for the better cardiac structure and better pulmonary artery pressure observed in the sequential treatment group.
Collapse
|
14
|
Vitiello A, La Porta R, Ferrara F. Scientific hypothesis and rational pharmacological for the use of sacubitril/valsartan in cardiac damage caused by COVID-19. Med Hypotheses 2021; 147:110486. [PMID: 33460992 PMCID: PMC7788318 DOI: 10.1016/j.mehy.2021.110486] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/30/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022]
Abstract
On March 11, 2020 the World Health Organization (WHO) declared the state of global pandemic caused by the new SARS-CoV-2 (COVID-19). To date, no antivirals directed against SARS-CoV-2 or effective vaccines to combat the viral infection are available. Severe acute respiratory syndrome caused by SARS-CoV-2 is treated empirically with antivirals, anti-inflammatory, anticoagulants. The approval of an effective vaccine still takes time. In this state, it may be useful to find new therapeutic solutions from drugs already on the market. Recent hypotheses suggest that the use of AT-1 receptor antagonists (ARB) in combination with neprilisin inhibitors (NEPi) could indirectly provide clinical benefits to patients with SARS-CoV-2 and cardiac involvement. In this article we investigate and describe a possible innovative pharmacological approach for the treatment of the most severe stages of COVID-19 infection.
Collapse
Affiliation(s)
- Antonio Vitiello
- Pharmaceutical Department, Usl Umbria 1, XIV Settembre Street, 06132 Perugia, Italy.
| | - Raffaele La Porta
- Clinical Pathology, Asur Marche, Viale Guido Da Montefeltro, Urbino, Italy.
| | - Francesco Ferrara
- Pharmaceutical Department, Usl Umbria 1, A. Migliorati Street, 06132 Perugia, Italy.
| |
Collapse
|
15
|
Abstract
Heart failure (HF) is a common consequence of several cardiovascular diseases and is understood as a vicious cycle of cardiac and hemodynamic decline. The current inventory of treatments either alleviates the pathophysiological features (eg, cardiac dysfunction, neurohumoral activation, and ventricular remodeling) and/or targets any underlying pathologies (eg, hypertension and myocardial infarction). Yet, since these do not provide a cure, the morbidity and mortality associated with HF remains high. Therefore, the disease constitutes an unmet medical need, and novel therapies are desperately needed. Cyclic guanosine-3',5'-monophosphate (cGMP), synthesized by nitric oxide (NO)- and natriuretic peptide (NP)-responsive guanylyl cyclase (GC) enzymes, exerts numerous protective effects on cardiac contractility, hypertrophy, fibrosis, and apoptosis. Impaired cGMP signaling, which can occur after GC deactivation and the upregulation of cyclic nucleotide-hydrolyzing phosphodiesterases (PDEs), promotes cardiac dysfunction. In this study, we review the role that NO/cGMP and NP/cGMP signaling plays in HF. After considering disease etiology, the physiological effects of cGMP in the heart are discussed. We then assess the evidence from preclinical models and patients that compromised cGMP signaling contributes to the HF phenotype. Finally, the potential of pharmacologically harnessing cardioprotective cGMP to rectify the present paucity of effective HF treatments is examined.
Collapse
|
16
|
Zhao J, Pei L. Cardiac Endocrinology: Heart-Derived Hormones in Physiology and Disease. ACTA ACUST UNITED AC 2020; 5:949-960. [PMID: 33015416 PMCID: PMC7524786 DOI: 10.1016/j.jacbts.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 12/11/2022]
Abstract
The heart plays a central role in the circulatory system and provides essential oxygen, nutrients, and growth factors to the whole organism. The heart can synthesize and secrete endocrine signals to communicate with distant target organs. Studies of long-known and recently discovered heart-derived hormones highlight a shared theme and reveal a unified mechanism of heart-derived hormones in coordinating cardiac function and target organ biology. This paper reviews the biochemistry, signaling, function, regulation, and clinical significance of representative heart-derived hormones, with a focus on the cardiovascular system. This review also discusses important and exciting questions that will advance the field of cardiac endocrinology.
Collapse
Key Words
- ANP, atrial natriuretic peptide
- ActR, activin receptor
- BNP, brain natriuretic peptide
- CNP, C-type natriuretic peptide
- FGF, fibroblast growth factor
- FSTL, follistatin-like
- GDF, growth differentiation factor
- GDF15
- GFRAL, GDNF family receptor α-like
- NPR, natriuretic peptide receptors
- PCSK, proprotein convertase subtilisin/kexin type
- ST2, suppression of tumorigenesis-2
- TGF, transforming growth factor
- cardiac endocrinology
- heart
- heart-derived hormones
Collapse
Affiliation(s)
- Juanjuan Zhao
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Liming Pei
- Center for Mitochondrial and Epigenomic Medicine, Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania.,Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
17
|
Ragusa R, Di Molfetta A, Amodeo A, Trivella MG, Caselli C. Pathophysiology and molecular signalling in pediatric heart failure and VAD therapy. Clin Chim Acta 2020; 510:751-759. [PMID: 32949569 DOI: 10.1016/j.cca.2020.09.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/04/2020] [Accepted: 09/09/2020] [Indexed: 02/06/2023]
Abstract
Heart Failure (HF) is a progressive clinical syndrome characterized by molecular and structural abnormalities that result in impaired ventricular filling and a reduced blood ejection. In pediatric patients, HF represents an important cause of morbidity and mortality, but underlying cause, presentation and disease course remains unclear in many cases. It is evident that a child is not a "small adult" and findings are not comparable. The adoption of a standardized clinical and surgical tools as well as increased biomolecular research and therapeutic trials targeting pediatric patients with HF would greatly improve the management of this special class of patients. This review examines the most current information about the pathophysiology and molecular mechanisms related to HF in children to identify gaps in our knowledge base to further improve clinical care and outcomes.
Collapse
Affiliation(s)
- Rosetta Ragusa
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy; Institute of Clinical Physiology, CNR, Pisa, Italy
| | - Arianna Di Molfetta
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | - Antonio Amodeo
- Department of Cardiothoracic Surgery, Ospedale Pediatrico Bambino Gesù, Rome, Italy
| | | | | |
Collapse
|
18
|
Caprnda M, Zulli A, Shiwani HA, Kubatka P, Filipova S, Valentova V, Gazdikova K, Mozos I, Berukstis A, Laucevicius A, Rihacek I, Dragasek J, Prosecky R, Egom EE, Staffa R, Kruzliak P, Krasnik V. The therapeutic effect of B-type natriuretic peptides in acute decompensated heart failure. Clin Exp Pharmacol Physiol 2020; 47:1120-1133. [PMID: 32083749 DOI: 10.1111/1440-1681.13290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/03/2020] [Accepted: 02/19/2020] [Indexed: 12/23/2022]
Abstract
B-type natriuretic peptide (BNP) exhibits roles in natriuresis and diuresis, making it an ideal drug that may aid in diuresing a fluid-overloaded patient with poor or worsening renal function. Several randomized clinical trials have tested the hypothesis that infusions of pharmacological doses of BNP to acute heart failure (HF) patients may enhance decongestion and preserve renal function in this clinical setting. Unfortunately, none of these have demonstrated beneficial outcomes. The current challenge for BNP research in acute HF lies in addressing a failure of concept and a reluctance to abandon an ineffective research model. Future success will necessitate a detailed understanding of the mechanism of action of BNP, as well as better integration of basic and clinical science.
Collapse
Affiliation(s)
- Martin Caprnda
- First Department of Internal Medicine, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| | - Anthony Zulli
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Haaris A Shiwani
- Royal Lancaster Infirmary, University Hospitals of Morecambe Bay NHS Trust, Lancaster, UK
| | - Peter Kubatka
- Department of Medical Biology, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Division of Oncology, Department of Experimental Carcinogenesis, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
| | - Slavomira Filipova
- Department of Cardiology, National Institute of Cardiovascular Diseases and Slovak Medical University, Bratislava, Slovakia
| | - Vanda Valentova
- Division of Oncology, Department of Experimental Carcinogenesis, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, Martin, Slovakia
- Independent Researcher, Mosjøen, Norway
| | - Katarina Gazdikova
- Department of Nutrition, Faculty of Nursing and Professional Health Studies, Slovak Medical University, Bratislava, Slovakia
- Department of General Medicine, Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Ioana Mozos
- Department of Functional Sciences, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
- Center for Translational Research and Systems Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Andrius Berukstis
- Clinic of Heart and Vessel Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Aleksandras Laucevicius
- Clinic of Heart and Vessel Diseases, Faculty of Medicine, Vilnius University, Vilnius, Lithuania
| | - Ivan Rihacek
- Second Department of Internal Medicine, Faculty of Medicine, Masaryk University and St, Anne´s University Hospital, Brno, Czech Republic
| | - Jozef Dragasek
- First Department of Psychiatry, Faculty of Medicine, Luis Pasteur University Hospital, Pavol Jozef Safarik University, Kosice, Slovakia
| | - Robert Prosecky
- Department of Internal Medicine, Brothers of Mercy Hospital, Brno, Czech Republic
| | - Emmanuel E Egom
- Egom Clinical & Translational Research Services Ltd, Dartmouth, NS, Canada
- Jewish General Hospital and Lady Davis Research Institute, Montreal, QC, Canada
| | - Robert Staffa
- Second Department of Surgery, Faculty of Medicine, St. Anne´s University Hospital, Masaryk University, Brno, Czech Republic
| | - Peter Kruzliak
- Department of Internal Medicine, Brothers of Mercy Hospital, Brno, Czech Republic
- Second Department of Surgery, Faculty of Medicine, St. Anne´s University Hospital, Masaryk University, Brno, Czech Republic
| | - Vladimir Krasnik
- Department of Ophthalmology, Faculty of Medicine, Comenius University and University Hospital, Bratislava, Slovakia
| |
Collapse
|
19
|
Moyes AJ, Chu SM, Aubdool AA, Dukinfield MS, Margulies KB, Bedi KC, Hodivala-Dilke K, Baliga RS, Hobbs AJ. C-type natriuretic peptide co-ordinates cardiac structure and function. Eur Heart J 2020; 41:1006-1020. [PMID: 30903134 PMCID: PMC7068173 DOI: 10.1093/eurheartj/ehz093] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/21/2018] [Accepted: 02/26/2019] [Indexed: 12/11/2022] Open
Abstract
AIMS C-type natriuretic peptide (CNP) is an essential endothelium-derived signalling species that governs vascular homoeostasis; CNP is also expressed in the heart but an intrinsic role for the peptide in cardiac function is not established. Herein, we employ unique transgenic strains with cell-specific deletion of CNP to define a central (patho)physiological capacity of CNP in maintaining heart morphology and contractility. METHODS AND RESULTS Cardiac structure and function were explored in wild type (WT), cardiomyocyte (cmCNP-/-), endothelium (ecCNP-/-), and fibroblast (fbCNP-/-)-specific CNP knockout mice, and global natriuretic peptide receptor (NPR)-B-/-, and NPR-C-/- animals at baseline and in experimental models of myocardial infarction and heart failure (HF). Endothelium-specific deletion of CNP resulted in impaired coronary responsiveness to endothelium-dependent- and flow-mediated-dilatation; changes mirrored in NPR-C-/- mice. Ex vivo, global ischaemia resulted in larger infarcts and diminished functional recovery in cmCNP-/- and NPR-C-/-, but not ecCNP-/-, vs. WT. The cardiac phenotype of cmCNP-/-, fbCNP-/-, and NPR-C-/- (but not ecCNP-/- or NPR-B-/-) mice was more severe in pressure overload- and sympathetic hyperactivation-induced HF compared with WT; these adverse effects were rescued by pharmacological CNP administration in WT, but not NPR-C-/-, mice. At a molecular level, CNP/NPR-C signalling is impaired in human HF but attenuates activation of well-validated pro-hypertrophic and pro-fibrotic pathways. CONCLUSION C-type natriuretic peptide of cardiomyocyte, endothelial and fibroblast origins co-ordinates and preserves cardiac structure, function, and coronary vasoreactivity via activation of NPR-C. Targeting NPR-C may prove an innovative approach to treating HF and ischaemic cardiovascular disorders.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Sandy M Chu
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Aisah A Aubdool
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Matthew S Dukinfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Kenneth B Margulies
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kenneth C Bedi
- Heart Failure and Transplant Program, Perelman School of Medicine, University of Pennsylvania, Translational Research Center, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Kairbaan Hodivala-Dilke
- Barts Cancer Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Reshma S Baliga
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| |
Collapse
|
20
|
Tsutamoto T, Sakai H, Yamamoto T, Nakagawa Y. Heart is the Target Organ of Endogenous Cardiac Natriuretic Peptides. Int Heart J 2020; 61:77-82. [PMID: 31956150 DOI: 10.1536/ihj.19-379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study aimed to evaluate whether the heart is the target organ of endogenous atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) in patients with heart failure (HF) with reduced ejection fraction (HFrEF).We measured the plasma levels of cyclic guanosine monophosphate (cGMP), which is a second messenger of ANP and BNP, in the aortic root (AO) and coronary sinus (CS) in 237 patients with HFrEF. Plasma levels of cGMP were significantly higher in the CS than those in the AO in 237 patients with HFrEF (10.0 ± 4.5 versus 10.5 ± 4.3 pmoL/mL, P < 0.0001) and were significantly higher in the CS than those in the AO (8.0 ± 3.6 versus 8.9 ± 3.8 pmoL/mL, P < 0.0001) in mild HF patients (New York Heart Association (NYHA) II, n = 114), but there was no difference in plasma cGMP between the AO and the CS (11.9 ± 4.4 versus 11.9 ± 4.3 pmoL/mL, NS) in severe HF patients (NYHA III-IV, n = 123). In mild HF patients, log (ANP + BNP) in the AO was an independent predictor of (CS-AO) cGMP among hemodynamics and nitrate therapy. There was a significant correlation between log [(CS-AO) ANP + (CS-AO) BNP] and (CS-AO) cGMP (r = 0.455, P < 0.0001) in mild HF patients.These findings indicate that cGMP is produced from the failing heart and that the heart is the target organ of endogenous ANP and BNP in patients with HFrEF. In severe HF patients, cGMP production may be attenuated because of the downregulation of biological receptors and/or increased cGMP degradation in the failing heart.
Collapse
Affiliation(s)
| | - Hiroshi Sakai
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Takashi Yamamoto
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| | - Yoshihisa Nakagawa
- Department of Cardiovascular Medicine, Shiga University of Medical Science
| |
Collapse
|
21
|
Ding DZ, Jia YN, Zhang B, Guan CM, Zhou S, Li X, Cui X. C‑type natriuretic peptide prevents angiotensin II‑induced atrial connexin 40 and 43 dysregulation by activating AMP‑activated kinase signaling. Mol Med Rep 2019; 20:5091-5099. [PMID: 31638216 PMCID: PMC6854524 DOI: 10.3892/mmr.2019.10744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
C‑type natriuretic peptide (CNP), from the family of natriuretic peptides (NPs), has been shown to induce antihypertrophic and antifibrotic effects in cardiomyocytes. However, the roles of CNP in the atrial dysregulation of connexin (Cx)40 and Cx43 remain to be elucidated. The present study aimed to investigate the effects of CNP on angiotensin (Ang) II‑induced Cx40 and Cx43 dysregulation in isolated perfused beating rat left atria. A rat isolated perfused beating atrial model was used and the protein levels were determined via western blotting. Ang II significantly upregulated NF‑κB, activator protein‑1, transforming growth factor‑β1 (TGF‑β1), collagen I and matrix metalloproteinase 2, leading to atrial fibrosis, and downregulated expression of Cx40 and Cx43. The changes in Cx40 and Cx43 induced by Ang II were abolished by CNP through upregulation of phosphorylated AMP‑activated kinase a1 (AMPK) and downregulation of TGF‑β1. The effects of CNP on AMPK and TGF‑β1 levels were inhibited by KT5823 and pertussis toxin, inhibitors of protein kinase G (PKG) and NP receptor type C (NPR‑C), respectively. Thus, CNP can prevent Ang II‑induced dysregulation of Cx40 and Cx43 through activation of AMPK via the CNP‑PKG and CNP‑NPR‑C pathways in isolated beating rat atria. The present findings suggested that CNP may be therapeutically useful for clinical conditions involving cardiac dysregulation of Cx expression‑related diseases.
Collapse
Affiliation(s)
- Da-Zhi Ding
- Department of Cardiology, Institute of Clinical Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Ya-Nan Jia
- Department of Cardiology, Institute of Clinical Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Bo Zhang
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Cheng-Ming Guan
- Department of Cardiology, Institute of Clinical Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Shuai Zhou
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xiang Li
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
| | - Xun Cui
- Department of Physiology, College of Medicine, Yanbian University, Yanji, Jilin 133002, P.R. China
- Key Laboratory of Organism Functional Factors of The Changbai Mountain, Ministry of Education, Yanbian University, Yanji, Jilin 133002, P.R. China
- Cellular Function Research Center, Yanbian University, Yanji, Jilin 133002, P.R. China
| |
Collapse
|
22
|
Fu S, Chang Z, Luo L, Deng J. Therapeutic Progress and Knowledge Basis on the Natriuretic Peptide System in Heart Failure. Curr Top Med Chem 2019; 19:1850-1866. [PMID: 31448711 DOI: 10.2174/1568026619666190826163536] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/25/2019] [Accepted: 07/25/2019] [Indexed: 01/26/2023]
Abstract
Notwithstanding substantial improvements in diagnosis and treatment, Heart Failure (HF) remains a major disease burden with high prevalence and poor outcomes worldwide. Natriuretic Peptides (NPs) modulate whole cardiovascular system and exhibit multiple cardio-protective effects, including the counteraction of the Renin-Angiotensin-Aldosterone System (RAAS) and Sympathetic Nervous System (SNS), promotion of vasodilatation and natriuresis, and inhibition of hypertrophy and fibrosis. Novel pharmacological therapies based on NPs may achieve a valuable shift in managing patients with HF from inhibiting RAAS and SNS to a reversal of neurohormonal imbalance. Enhancing NP bioavailability through exogenous NP administration and inhibiting Neutral Endopeptidase (NEP) denotes valuable therapeutic strategies for HF. On the one hand, NEP-resistant NPs may be more specific as therapeutic choices in patients with HF. On the other hand, NEP Inhibitors (NEPIs) combined with RAAS inhibitors have proved to exert beneficial effects and reduce adverse events in patients with HF. Highly effective and potentially safe Angiotensin Receptor Blocker Neprilysin Inhibitors (ARNIs) have been developed after the failure of NEPIs and Vasopeptidase Inhibitors (VPIs) due to lacking efficacy and safety. Therapeutic progress and knowledge basis on the NP system in HF are summarized in the current review.
Collapse
Affiliation(s)
- Shihui Fu
- Department of Geriatric Cardiology, National Clinical Research Center of Geriatrics Disease, Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Chinese People's Liberation Army General Hospital, Beijing, China.,Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| | - Zhenyu Chang
- Department of Hepatobiliary and Pancreatic Surgical Oncology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Leiming Luo
- Department of Geriatric Cardiology, National Clinical Research Center of Geriatrics Disease, Beijing Key Laboratory of Precision Medicine for Chronic Heart Failure, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Juelin Deng
- Department of Cardiology, Hainan Hospital of Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
23
|
Tuscany Sangiovese grape juice imparts cardioprotection by regulating gene expression of cardioprotective C-type natriuretic peptide. Eur J Nutr 2019; 59:2953-2968. [PMID: 31707544 DOI: 10.1007/s00394-019-02134-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 10/29/2019] [Indexed: 01/02/2023]
Abstract
PURPOSE A regular intake of red grape juice has cardioprotective properties, but its role on the modulation of natriuretic peptides (NPs), in particular of C-type NP (CNP), has not yet been proven. The aims were to evaluate: (1) in vivo the effects of long-term intake of Tuscany Sangiovese grape juice (SGJ) on the NPs system in a mouse model of myocardial infarction (MI); (2) in vitro the response to SGJ small RNAs of murine MCEC-1 under physiological and ischemic condition; (3) the activation of CNP/NPR-B/NPR-C in healthy human subjects after 7 days' SGJ regular intake. METHODS (1) C57BL/6J male and female mice (n = 33) were randomly subdivided into: SHAM (n = 7), MI (n = 15) and MI fed for 4 weeks with a normal chow supplemented with Tuscany SGJ (25% vol/vol, 200 µl/per day) (MI + SGJ, n = 11). Echocardiography and histological analyses were performed. Myocardial NPs transcriptional profile was investigated by Real-Time PCR. (2) MCEC-1 were treated for 24 h with a pool of SGJ small RNAs and cell viability under 24 h exposure to H2O2 was evaluated by MTT assay. (3) Human blood samples were collected from seven subjects before and after the 7 days' intake of Tuscany SGJ. NPs and miRNA transcriptional profile were investigated by Real-Time PCR in MCEC-1 and human blood. RESULTS Our experimental data, obtained in a multimodal pipeline, suggest that the long-term intake of SGJ promotes an adaptive response of the myocardium to the ischemic microenvironment through the modulation of the cardiac CNP/NPR-B/NPR-C system. CONCLUSIONS Our results open new avenue in the development of functional foods aimed at enhancing cardioprotection of infarcted hearts through action on the myocardial epigenome.
Collapse
|
24
|
Hardy-Rando E, Fernandez-Patron C. Emerging pathways of communication between the heart and non-cardiac organs. J Biomed Res 2019; 33:145-155. [PMID: 29970623 PMCID: PMC6551427 DOI: 10.7555/jbr.32.20170137] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The breakthrough discovery of cardiac natriuretic peptides provided the first direct demonstration of the connection between the heart and the kidneys for the maintenance of sodium and volume homeostasis in health and disease. Yet, little is still known about how the heart and other organs cross-talk. Here, we review three physiological mechanisms of communication linking the heart to other organs through: i) cardiac natriuretic peptides, ii) the microRNA-208a/mediator complex subunit-13 axis and iii) the matrix metalloproteinase-2 (MMP-2)/C-C motif chemokine ligand-7/cardiac secreted phospholipase A2 (sPLA2) axis – a pathway which likely applies to the many cytokines, which are cleaved and regulated by MMP-2. We also suggest experimental strategies to answer still open questions on the latter pathway. In short, we review evidence showing how the cardiac secretome influences the metabolic and inflammatory status of non-cardiac organs as well as the heart.
Collapse
Affiliation(s)
- Eugenio Hardy-Rando
- Biotechnology Laboratory, Study Center for Research and Biological Evaluations, Institute of Pharmacy and Foods, University of Havana, Havana PO Box 430, Cuba
| | - Carlos Fernandez-Patron
- Department of Biochemistry, Cardiovascular Research Centre, Mazankowski Alberta Heart Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
25
|
Moyes AJ, Hobbs AJ. C-type Natriuretic Peptide: A Multifaceted Paracrine Regulator in the Heart and Vasculature. Int J Mol Sci 2019; 20:E2281. [PMID: 31072047 PMCID: PMC6539462 DOI: 10.3390/ijms20092281] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 12/11/2022] Open
Abstract
C-type natriuretic peptide (CNP) is an autocrine and paracrine mediator released by endothelial cells, cardiomyocytes and fibroblasts that regulates vital physiological functions in the cardiovascular system. These roles are conveyed via two cognate receptors, natriuretic peptide receptor B (NPR-B) and natriuretic peptide receptor C (NPR-C), which activate different signalling pathways that mediate complementary yet distinct cellular responses. Traditionally, CNP has been deemed the endothelial component of the natriuretic peptide system, while its sibling peptides, atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), are considered the endocrine guardians of cardiac function and blood volume. However, accumulating evidence indicates that CNP not only modulates vascular tone and blood pressure, but also governs a wide range of cardiovascular effects including the control of inflammation, angiogenesis, smooth muscle and endothelial cell proliferation, atherosclerosis, cardiomyocyte contractility, hypertrophy, fibrosis, and cardiac electrophysiology. This review will focus on the novel physiological functions ascribed to CNP, the receptors/signalling mechanisms involved in mediating its cardioprotective effects, and the development of therapeutics targeting CNP signalling pathways in different disease pathologies.
Collapse
Affiliation(s)
- Amie J Moyes
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK.
| |
Collapse
|
26
|
Öztop M, Özbek M, Liman N, Beyaz F, Ergün E, Ergün L. Localization profiles of natriuretic peptides in hearts of pre-hibernating and hibernating Anatolian ground squirrels (Spermophilus xanthoprymnus). Vet Res Commun 2019; 43:45-65. [PMID: 30689110 DOI: 10.1007/s11259-019-9745-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 01/22/2019] [Indexed: 01/13/2023]
Abstract
The Anatolian ground squirrel (Spermophilus xanthoprymnus) is a typical example of true mammalian hibernators. In order to adapt to extreme external and internal environments during hibernation, they lower their body temperatures, heart rates and oxygen consumption; however, pathological events such as ischemia and ventricular fibrillation do not occur in their cardiovascular systems. During the hibernation, maintenance of cardiac function is very important for survival of ground squirrels. Natriuretic peptides (NPs) are key factors in the regulation of cardiovascular hemostasis. Since NPs' role on the protection of heart during hibernation are less clear, the aim of this study was to investigate dynamic changes in NPs content in the cardiac chambers and to reveal the possible role of NPs on establishing cardiac function in ground squirrel during hibernation using immunohistochemistry. The immunohistochemical results indicate that cardiac NP expressions in atrial and ventricular cardiomyocytes were different from each other and were sex-independent. ANP and BNP were expressed in a chamber-dependent manner in female and male squirrel hearts. Furthermore, cardiac NPs expression levels in hibernation period were lower than those at the pre-hibernation period. During prehibernation period, ANP, BNP and CNP were expressed in the white and beige adipocytes of epicardial adipose tissue (EAT); while during hibernation period, the brown adipocytes of EAT were positive for BNP and CNP. These data suggest that the hibernation-dependent reduction in levels of NPs, particularly ANP, in cardiac chambers and EAT may be associated with low heart rate and oxygen consumption during hibernation. However, further studies are needed to better delineate the roles of NPs during the hibernation.
Collapse
Affiliation(s)
- Mustafa Öztop
- Department of Biology, Faculty of Science and Art, Mehmet Akif Ersoy University, Burdur, Turkey.
| | - Mehmet Özbek
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Mehmet Akif Ersoy University, Burdur, Turkey
| | - Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Feyzullah Beyaz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Emel Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| | - Levent Ergün
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
27
|
Moscato S, Cabiati M, Bianchi F, Vaglini F, Morales MA, Burchielli S, Botta L, Sabbatini ARM, Falleni A, Del Ry S, Mattii L. Connexin 26 Expression in Mammalian Cardiomyocytes. Sci Rep 2018; 8:13975. [PMID: 30228305 PMCID: PMC6143590 DOI: 10.1038/s41598-018-32405-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Connexins are a family of membrane-spanning proteins named according to their molecular weight. They are known to form membrane channels mediating cell-cell communication, which play an essential role in the propagation of electrical activity in the heart. Cx26 has been described in a number of tissues but not in the heart, and its mutations are frequently associated with deafness and skin diseases. The aim of this study was to assess the possible Cx26 expression in heart tissues of different mammalian species and to demonstrate its localization at level of cardiomyocytes. Samples of pig, human and rat heart and H9c2 cells were used for our research. Immunohistochemical and molecular biology techniques were employed to test the expression of Cx26. Interestingly, this connexin was found in cardiomyocytes, at level of clusters scattered over the cell cytoplasm but not at level of the intercalated discs where the other cardiac connexins are usually located. Furthermore, the expression of Cx26 in H9c2 myoblast cells increased when they were differentiated into cardiac-like phenotype. To our knowledge, the expression of Cx26 in pig, human and rat has been demonstrated for the first time in the present paper.
Collapse
Affiliation(s)
- S Moscato
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, Pisa, Italy
| | - M Cabiati
- Biochemistry and Molecular Biology Laboratory, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - F Bianchi
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, Pisa, Italy
| | - F Vaglini
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy
| | - M A Morales
- Biochemistry and Molecular Biology Laboratory, Institute of Clinical Physiology, CNR, Pisa, Italy
| | | | - L Botta
- Department of Cardiac Surgery, Niguarda Ca' Granda Hospital, Milan, Italy
| | - A R M Sabbatini
- Department of Surgical, Medical and Molecular Pathology and of Emergency Medicine, University of Pisa, Pisa, Italy
| | - A Falleni
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, Pisa, Italy
| | - S Del Ry
- Biochemistry and Molecular Biology Laboratory, Institute of Clinical Physiology, CNR, Pisa, Italy
| | - L Mattii
- Department of Clinical and Experimental Medicine, Unit of Histology, University of Pisa, Pisa, Italy.
| |
Collapse
|
28
|
Öztop M, Cinar K, Turk S. Immunolocalization of natriuretic peptides and their receptors in goat (Capra hircus) heart. Biotech Histochem 2018; 93:389-404. [PMID: 30124338 DOI: 10.1080/10520295.2018.1425911] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Natriuretic peptides are structurally similar, but genetically distinct, hormones that participate in cardiovascular homeostasis by regulating blood and extracellular fluid volume and blood pressure. We investigated the distribution of natriuretic peptides and their receptors in goat (Capra hircus) heart tissue using the peroxidase-anti-peroxidase (PAP) immunohistochemical method. Strong staining of atrial natriuretic peptide (ANP) was observed in atrial cardiomyocytes, while strong staining for brain natriuretic peptide (BNP) was observed in ventricular cardiomyocytes. Slightly stronger cytoplasmic C-type natriuretic peptide (CNP) immunostaining was detected in the ventricles compared to the atria. Natriuretic peptide receptor-A (NPR-A) immunoreactivity was more prominent in the atria, while natriuretic peptide receptor-B (NPR-B) immunoreactivity was stronger in the ventricles. Cytoplasmic natriuretic peptide receptor-C (NPR-C) immunoreactivity was observed in both the atria and ventricles, although staining was more prominent in the ventricles. ANP immunoreactivity ranged from weak to strong in endothelial and vascular smooth muscle cells. Endothelial cells exhibited moderate to strong BNP immunoreactivity, while vascular smooth cells displayed weak to strong staining. Endothelial cells exhibited weak to strong cytoplasmic CNP immunoreactivity. Vascular smooth muscle cells were labeled moderately to strongly for CNP. Weak to strong cytoplasmic NPR-A immunoreactivity was found in the endothelial cells and vascular smooth muscle cells stained weakly to moderately for NPR-A. Endothelial and vascular smooth cells exhibited weak to strong cytoplasmic NPR-B immunoreactivity. Moderate to strong NPR-C immunoreactivity was observed in the endothelial and smooth muscle cells. Small gender differences in the immunohistochemical distribution of natriuretic peptides and receptors were observed. Our findings suggest that endothelial cells, vascular smooth cells and cardiomyocytes express both natriuretic peptides and their receptors.
Collapse
Affiliation(s)
- M Öztop
- a Department of Biology , Mehmet Akif Ersoy University , Burdur
| | - K Cinar
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| | - S Turk
- b Department of Biology , Süleyman Demirel University , Isparta , Turkey
| |
Collapse
|
29
|
Abstract
Natriuretic peptides are structurally related, functionally diverse hormones. Circulating atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP) are delivered predominantly by the heart. Two C-type natriuretic peptides (CNPs) are paracrine messengers, notably in bone, brain, and vessels. Natriuretic peptides act by binding to the extracellular domains of three receptors, NPR-A, NPR-B, and NPR-C of which the first two are guanylate cyclases. NPR-C is coupled to inhibitory proteins. Atrial wall stress is the major regulator of ANP secretion; however, atrial pressure changes plasma ANP only modestly and transiently, and the relation between plasma ANP and atrial wall tension (or extracellular volume or sodium intake) is weak. Absence and overexpression of ANP-related genes are associated with modest blood pressure changes. ANP augments vascular permeability and reduces vascular contractility, renin and aldosterone secretion, sympathetic nerve activity, and renal tubular sodium transport. Within the physiological range of plasma ANP, the responses to step-up changes are unimpressive; in man, the systemic physiological effects include diminution of renin secretion, aldosterone secretion, and cardiac preload. For BNP, the available evidence does not show that cardiac release to the blood is related to sodium homeostasis or body fluid control. CNPs are not circulating hormones, but primarily paracrine messengers important to ossification, nervous system development, and endothelial function. Normally, natriuretic peptides are not powerful natriuretic/diuretic hormones; common conclusions are not consistently supported by hard data. ANP may provide fine-tuning of reno-cardiovascular relationships, but seems, together with BNP, primarily involved in the regulation of cardiac performance and remodeling. © 2017 American Physiological Society. Compr Physiol 8:1211-1249, 2018.
Collapse
Affiliation(s)
- Peter Bie
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
30
|
Fu S, Ping P, Wang F, Luo L. Synthesis, secretion, function, metabolism and application of natriuretic peptides in heart failure. J Biol Eng 2018; 12:2. [PMID: 29344085 PMCID: PMC5766980 DOI: 10.1186/s13036-017-0093-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022] Open
Abstract
As a family of hormones with pleiotropic effects, natriuretic peptide (NP) system includes atrial NP (ANP), B-type NP (BNP), C-type NP (CNP), dendroaspis NP and urodilatin, with NP receptor-A (guanylate cyclase-A), NP receptor-B (guanylate cyclase-B) and NP receptor-C (clearance receptor). These peptides are genetically distinct, but structurally and functionally related for regulating circulatory homeostasis in vertebrates. In humans, ANP and BNP are encoded by NP precursor A (NPPA) and NPPB genes on chromosome 1, whereas CNP is encoded by NPPC on chromosome 2. NPs are synthesized and secreted through certain mechanisms by cardiomyocytes, fibroblasts, endotheliocytes, immune cells (neutrophils, T-cells and macrophages) and immature cells (embryonic stem cells, muscle satellite cells and cardiac precursor cells). They are mainly produced by cardiovascular, brain and renal tissues in response to wall stretch and other causes. NPs provide natriuresis, diuresis, vasodilation, antiproliferation, antihypertrophy, antifibrosis and other cardiometabolic protection. NPs represent body's own antihypertensive system, and provide compensatory protection to counterbalance vasoconstrictor-mitogenic-sodium retaining hormones, released by renin-angiotensin-aldosterone system (RAAS) and sympathetic nervous system (SNS). NPs play central roles in regulation of heart failure (HF), and are inactivated through not only NP receptor-C, but also neutral endopeptidase (NEP), dipeptidyl peptidase-4 and insulin degrading enzyme. Both BNP and N-terminal proBNP are useful biomarkers to not only make the diagnosis and assess the severity of HF, but also guide the therapy and predict the prognosis in patients with HF. Current NP-augmenting strategies include the synthesis of NPs or agonists to increase NP bioactivity and inhibition of NEP to reduce NP breakdown. Nesiritide has been established as an available therapy, and angiotensin receptor blocker NEP inhibitor (ARNI, LCZ696) has obtained extremely encouraging results with decreased morbidity and mortality. Novel pharmacological approaches based on NPs may promote a therapeutic shift from suppressing the RAAS and SNS to re-balancing neuroendocrine dysregulation in patients with HF. The current review discussed the synthesis, secretion, function and metabolism of NPs, and their diagnostic, therapeutic and prognostic values in HF.
Collapse
Affiliation(s)
- Shihui Fu
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, 100853 China
- Department of Cardiology and Hainan Branch, Chinese People’s Liberation Army, General Hospital, Beijing, China
| | - Ping Ping
- Department of Pharmaceutical Care, Chinese People’s, Liberation Army General Hospital, Beijing, China
| | - Fengqi Wang
- Department of Cardiology and Hainan Branch, Chinese People’s Liberation Army, General Hospital, Beijing, China
| | - Leiming Luo
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, 100853 China
| |
Collapse
|
31
|
Miyazaki T, Otani K, Chiba A, Nishimura H, Tokudome T, Takano-Watanabe H, Matsuo A, Ishikawa H, Shimamoto K, Fukui H, Kanai Y, Yasoda A, Ogata S, Nishimura K, Minamino N, Mochizuki N. A New Secretory Peptide of Natriuretic Peptide Family, Osteocrin, Suppresses the Progression of Congestive Heart Failure After Myocardial Infarction. Circ Res 2018; 122:742-751. [PMID: 29326144 DOI: 10.1161/circresaha.117.312624] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 01/03/2018] [Accepted: 01/10/2018] [Indexed: 01/06/2023]
Abstract
RATIONALE An increase of severe ischemic heart diseases results in an increase of the patients with congestive heart failure (CHF). Therefore, new therapies are expected in addition to recanalization of coronary arteries. Previous clinical trials using natriuretic peptides (NPs) prove the improvement of CHF by NPs. OBJECTIVE We aimed at investigating whether OSTN (osteocrin) peptide potentially functioning as an NPR (NP clearance receptor) 3-blocking peptide can be used as a new therapeutic peptide for treating CHF after myocardial infarction (MI) using animal models. METHODS AND RESULTS We examined the effect of OSTN on circulation using 2 mouse models; the continuous intravenous infusion of OSTN after MI and the OSTN-transgenic (Tg) mice with MI. In vitro studies revealed that OSTN competitively bound to NPR3 with atrial NP. In both OSTN-continuous intravenous infusion model and OSTN-Tg model, acute inflammation within the first week after MI was reduced. Moreover, both models showed the improvement of prognosis at 28 days after MI by OSTN. Consistent with the in vitro study binding of OSTN to NPR3, the OSTN-Tg exhibited an increased plasma atrial NP and C-type NP, which might result in the improvement of CHF after MI as indicated by the reduced weight of hearts and lungs and by the reduced fibrosis. CONCLUSIONS OSTN might suppress the worsening of CHF after MI by inhibiting clearance of NP family peptides.
Collapse
Affiliation(s)
- Takahiro Miyazaki
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Kentaro Otani
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Ayano Chiba
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Hirohito Nishimura
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Takeshi Tokudome
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Haruko Takano-Watanabe
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Ayaka Matsuo
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Hiroyuki Ishikawa
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Keiko Shimamoto
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Hajime Fukui
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Yugo Kanai
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Akihiro Yasoda
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Soshiro Ogata
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Kunihiro Nishimura
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Naoto Minamino
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki)
| | - Naoki Mochizuki
- From the Department of Cell Biology (T.M., A.C., H.T.-W., H.I., K.S., H.F., N. Mochizuki), Department of Regenerative Medicine and Tissue Engineering (K.O.), Department of Biochemistry (H.N., T.T.), Omics Research Center, National Cerebral and Cardiovascular Center Research Institute (A.M., N. Minamino), Department of Diabetes, Endocrinology, and Nutrition, Graduate School of Medicine, Kyoto University, Japan (Y.K., A.Y.); Center for Cerebral and Cardiovascular Disease Information, National Cerebral and Cardiovascular Center, Suita, Japan (S.O., K.N.); and AMED-CREST, Suita, Japan (N. Mochizuki).
| |
Collapse
|
32
|
Cabiati M, Vozzi F, Gemma F, Montemurro F, De Maria C, Vozzi G, Domenici C, Del Ry S. Cardiac tissue regeneration: A preliminary study on carbon-based nanotubes gelatin scaffold. J Biomed Mater Res B Appl Biomater 2017; 106:2750-2762. [PMID: 29206329 DOI: 10.1002/jbm.b.34056] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 11/06/2017] [Accepted: 11/18/2017] [Indexed: 01/15/2023]
Abstract
The aim of this study was set-up and test of gelatin and carbon nanotubes scaffolds. Gelatin-based (5%) genipin cross-linked (0.2%) scaffolds embedding single-walled carbon nanotubes (SWCNTs, 0.3, 0.5, 0.7, 0.9, and 1.3% w/w) were prepared and mechanically/electrically characterized. For biological evaluation, H9c2 cell line was cultured for 10 days. Cytotoxicity, cell growth and differentiation, immunohistochemistry, and real-time PCR analysis were performed. Myoblast and cardiac differentiation were obtained by serum reduction to 1% (C1% ) and stimulation with 50 nM all trans-retinoic acid (CRA ), respectively. Immunohistochemistry showed elongated myotubes in C1% while round and multinucleated cells in CRA with also a significantly increased expression of natriuretic peptides (NP) and ET-1 receptors in parallel with a decreased ET-1. On scaffolds, cell viability was similar for Gel-SWCNT0.3%/0.9% ; NP and ET systems expression decreased in both concentrations with respect to control and CX-43, mainly due to a lacking of complete differentiation in cardiac phenotype during that time. Although further analyses on novel biomaterials are necessary, these results represent a useful starting point to develop new biomaterial-based scaffolds. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2750-2762, 2018.
Collapse
Affiliation(s)
| | | | | | - Francesca Montemurro
- Research Centre "E. Piaggio" and Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Carmelo De Maria
- Research Centre "E. Piaggio" and Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Giovanni Vozzi
- Research Centre "E. Piaggio" and Department of Information Engineering, University of Pisa, Pisa, Italy
| | | | | |
Collapse
|
33
|
Verboven K, Hansen D, Jocken JWE, Blaak EE. Natriuretic peptides in the control of lipid metabolism and insulin sensitivity. Obes Rev 2017; 18:1243-1259. [PMID: 28901677 DOI: 10.1111/obr.12598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/08/2017] [Accepted: 07/20/2017] [Indexed: 12/24/2022]
Abstract
Natriuretic peptides have long been known for their cardiovascular function. However, a growing body of evidence emphasizes the role of natriuretic peptides in human substrate and energy metabolism, thereby connecting the heart with several insulin-sensitive organs like adipose tissue, skeletal muscle and liver. Obesity may be associated with an impaired regulation of the natriuretic peptide system, also indicated as a natriuretic handicap. Evidence points towards a contribution of this natriuretic handicap to the development of obesity, type 2 diabetes mellitus and cardiometabolic complications, although the causal relationship is not fully understood. Nevertheless, targeting the natriuretic peptide pathway may improve metabolic health in obesity and type 2 diabetes mellitus. This review will focus on current literature regarding the metabolic roles of natriuretic peptides with emphasis on lipid metabolism and insulin sensitivity. Furthermore, it will be discussed how exercise and lifestyle intervention may modulate the natriuretic peptide-related metabolic effects.
Collapse
Affiliation(s)
- K Verboven
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands.,REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - D Hansen
- REVAL - Rehabilitation Research Center, BIOMED - Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium.,Heart Centre Hasselt, Jessa Hospital, Hasselt, Belgium
| | - J W E Jocken
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - E E Blaak
- Department of Human Biology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
34
|
Compartmentation of Natriuretic Peptide Signalling in Cardiac Myocytes: Effects on Cardiac Contractility and Hypertrophy. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/978-3-319-54579-0_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
35
|
Gentile D, Lazzerini PE, Gamberucci A, Natale M, Selvi E, Vanni F, Alì A, Taddeucci P, Del-Ry S, Cabiati M, Della-Latta V, Abraham DJ, Morales MA, Fulceri R, Laghi-Pasini F, Capecchi PL. Searching Novel Therapeutic Targets for Scleroderma: P2X7-Receptor Is Up-regulated and Promotes a Fibrogenic Phenotype in Systemic Sclerosis Fibroblasts. Front Pharmacol 2017; 8:638. [PMID: 28955239 PMCID: PMC5602350 DOI: 10.3389/fphar.2017.00638] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/29/2017] [Indexed: 11/13/2022] Open
Abstract
Objectives: Systemic sclerosis (SSc) is a connective tissue disorder presenting fibrosis of the skin and internal organs, for which no effective treatments are currently available. Increasing evidence indicates that the P2X7 receptor (P2X7R), a nucleotide-gated ionotropic channel primarily involved in the inflammatory response, may also have a key role in the development of tissue fibrosis in different body districts. This study was aimed at investigating P2X7R expression and function in promoting a fibrogenic phenotype in dermal fibroblasts from SSc patients, also analyzing putative underlying mechanistic pathways. Methods: Fibroblasts were isolated by skin biopsy from 9 SSc patients and 8 healthy controls. P2X7R expression, and function (cytosolic free Ca2+ fluxes, α-smooth muscle actin [α-SMA] expression, cell migration, and collagen release) were studied. Moreover, the role of cytokine (interleukin-1β, interleukin-6) and connective tissue growth factor (CTGF) production, and extracellular signal-regulated kinases (ERK) activation in mediating P2X7R-dependent pro-fibrotic effects in SSc fibroblasts was evaluated. Results: P2X7R expression and Ca2+ permeability induced by the selective P2X7R agonist 2'-3'-O-(4-benzoylbenzoyl)ATP (BzATP) were markedly higher in SSc than control fibroblasts. Moreover, increased αSMA expression, cell migration, CTGF, and collagen release were observed in lipopolysaccharides-primed SSc fibroblasts after BzATP stimulation. While P2X7-induced cytokine changes did not affect collagen production, it was completely abrogated by inhibition of the ERK pathway. Conclusion: In SSc fibroblasts, P2X7R is overexpressed and its stimulation induces Ca2+-signaling activation and a fibrogenic phenotype characterized by increased migration and collagen production. These data point to the P2X7R as a potential, novel therapeutic target for controlling exaggerated collagen deposition and tissue fibrosis in patients with SSc.
Collapse
Affiliation(s)
- Daniela Gentile
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pietro E Lazzerini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Gamberucci
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Mariarita Natale
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Enrico Selvi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Francesca Vanni
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Alessandra Alì
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Paolo Taddeucci
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | | | | | | | - David J Abraham
- Division of Medicine, Department of Inflammation, Centre for Rheumatology and Connective Tissue Diseases, University College London, London, United Kingdom
| | | | - Rosella Fulceri
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Franco Laghi-Pasini
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pier L Capecchi
- Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| |
Collapse
|
36
|
Meier S, Andressen KW, Aronsen JM, Sjaastad I, Hougen K, Skomedal T, Osnes JB, Qvigstad E, Levy FO, Moltzau LR. PDE3 inhibition by C-type natriuretic peptide-induced cGMP enhances cAMP-mediated signaling in both non-failing and failing hearts. Eur J Pharmacol 2017; 812:174-183. [PMID: 28697992 DOI: 10.1016/j.ejphar.2017.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 07/04/2017] [Accepted: 07/05/2017] [Indexed: 12/28/2022]
Abstract
We have previously shown that the natriuretic peptide receptor B (NPR-B) agonist C-type natriuretic peptide (CNP) enhances cyclic adenosine 3´,5´-monophosphate (cAMP)-mediated signaling in failing hearts, through cyclic guanosine 3´,5´-monophosphate (cGMP)-mediated phosphodiesterase (PDE) 3 inhibition. As several signaling pathways are importantly changed in failing hearts, it could not be taken for granted that this crosstalk would be the same in non-failing hearts. Thus, we wanted to clarify to which extent this effect of CNP occurred also in non-failing hearts. Inotropic and lusitropic responses were measured in muscle strips and cGMP levels, localized cAMP levels, cAMP-PDE activity and mRNA levels were analyzed in isolated cardiomyocytes from left ventricles of non-failing and failing rat hearts. CNP increased cGMP and enhanced β1- and β2-adrenoceptor-mediated inotropic and β1-adrenoceptor-mediated lusitropic responses, in non-failing and failing hearts. The NPR-A agonist brain natriuretic peptide (BNP) increased cGMP, but did not affect inotropic or lusitropic responses, indicating different compartmentation of cGMP from the two natriuretic peptide receptors. cAMP-PDE activity of PDE3 was concentration-dependently inhibited by cGMP with the same potency and to the same extent in non-failing and failing cardiomyocytes. CNP enhanced β1-adrenoceptor-induced cAMP increase in living cardiomyocytes in the absence, but not in the presence of a PDE3 inhibitor indicating involvement of PDE3. In summary, CNP sensitizes cAMP-mediated signaling in non-failing as in failing hearts, via NPR-B-mediated increase of cGMP that inhibits the cAMP-PDE activity of PDE3.
Collapse
Affiliation(s)
- Silja Meier
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Kjetil Wessel Andressen
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan Magnus Aronsen
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Institute for Experimental Medical Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Bjørknes College, Oslo, Norway
| | - Ivar Sjaastad
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Institute for Experimental Medical Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Karina Hougen
- Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Institute for Experimental Medical Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Tor Skomedal
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Jan-Bjørn Osnes
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Eirik Qvigstad
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Finn Olav Levy
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway.
| | - Lise Román Moltzau
- Department of Pharmacology, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway; Center for Heart Failure Research, Faculty of Medicine, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
37
|
Lu J, Pan SS. Elevated C-type natriuretic peptide elicits exercise preconditioning-induced cardioprotection against myocardial injury probably via the up-regulation of NPR-B. J Physiol Sci 2017; 67:475-487. [PMID: 27557795 PMCID: PMC10717239 DOI: 10.1007/s12576-016-0477-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/08/2016] [Indexed: 02/02/2023]
Abstract
To evaluate exercise preconditioning (EP)-induced cardioprotective effects against exercise-induced acute myocardial injury and investigate the alterations of C-type natriuretic peptide (CNP) and its specific receptor, natriuretic peptide receptor B (NPR-B), during EP-induced cardioprotection. Rats were subjected to treadmill exercise as an EP model (4 periods of 10 min each at 30 m/min with intervening periods of rest lasting 10 min). High-intensity exercise was performed 0.5 and 24 h after the EP. EP attenuated high-intensity exercise-induced myocardial injury in both the early and late phases. After EP and high-intensity exercise, CNP and NPR-B levels increased robustly, but no alterations in the plasma CNP were observed. The enhanced NPR-B, plasma and tissue CNP, and its mRNA levels after high-intensity exercise were significantly elevated by EP. These results suggest that cardiac CNP and NPR-B play an important role in EP-mediated cardioprotection against high-intensity exercise-induced myocardial injury in rats.
Collapse
Affiliation(s)
- Jiao Lu
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China
| | - Shan-Shan Pan
- School of Kinesiology, Shanghai University of Sport, 399 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
38
|
Moro C. Targeting cardiac natriuretic peptides in the therapy of diabetes and obesity. Expert Opin Ther Targets 2016; 20:1445-1452. [DOI: 10.1080/14728222.2016.1254198] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
39
|
Del Ry S, Cabiati M, Della Latta V, Zimbone S, Natale M, Lazzerini PE, Diciolla F, Capecchi PL, Laghi-Pasini F, Morales MA. Adenosine receptors expression in cardiac fibroblasts of patients with left ventricular dysfunction due to valvular disease. J Recept Signal Transduct Res 2016; 37:283-289. [PMID: 27807997 DOI: 10.1080/10799893.2016.1247860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
CONTEXT Adenosine restores tissue homeostasis through the interaction with its membrane receptors (AR) expressed on fibroblasts, endothelial cells, smooth muscle cells and leukocytes, but their modulation is still not fully understood. OBJECTIVE To evaluate whether changes in the transcriptomic profiling of adenosine receptors (AR) occur in cardiac fibroblasts (CF) of patients (pts) with LV dysfunction due to valvular disease (V). The secondary aim was to compare in the same pts the results obtained at cardiac level with those found in circulating leukocytes. MATERIALS AND METHODS Auricle fragments were excised from 13 pts during prosthetic implantation while blood samples were collected from pts (n = 9) and from healthy subjects (C, n = 7). In 7 pts cardiac biopsy and blood samples were taken simultaneously. A human CF atrial cell line (cc) was used as control. RESULTS AR higher levels of mRNA expression were observed with real-time PCR in Vpts compared to C, both at cardiac (overexpression A1R:98%, A2AR:63%, A2BR:87%, A3R:85%, CD39:92%, CD73:93%) and at peripheral level (A1R vs C: p = .0056; A2AR vs C: p = .0173; A2BR vs C: p = .0272; A3R vs C: p = .855; CD39 vs C: p = .0001; CD73 vs C: p = .0091). CONCLUSION All AR subtypes were overexpressed in CF of Vpts. The same trends in AR expression at cardiac level was assessed on circulating leukocytes, thus opening a new road to minimally invasive studies of the adenosinergic system in cardiac patients.
Collapse
Affiliation(s)
- Silvia Del Ry
- a CNR, Institute of Clinical Physiology , Pisa , Italy
| | | | - Veronica Della Latta
- a CNR, Institute of Clinical Physiology , Pisa , Italy.,b Department of Medical Sciences, Surgery and Neurosciences , University of Siena , Siena , Italy
| | - Stefania Zimbone
- b Department of Medical Sciences, Surgery and Neurosciences , University of Siena , Siena , Italy
| | - Mariarita Natale
- b Department of Medical Sciences, Surgery and Neurosciences , University of Siena , Siena , Italy
| | - Pietro Enea Lazzerini
- b Department of Medical Sciences, Surgery and Neurosciences , University of Siena , Siena , Italy
| | - Francesco Diciolla
- c Department of Heart, Vessels and Thorax , University Hospital of Siena , Siena , Italy
| | - Pier Leopoldo Capecchi
- b Department of Medical Sciences, Surgery and Neurosciences , University of Siena , Siena , Italy
| | - Franco Laghi-Pasini
- b Department of Medical Sciences, Surgery and Neurosciences , University of Siena , Siena , Italy
| | | |
Collapse
|
40
|
Rossi J. Central natriuretic peptide receptor (NPR)-B and peripheral lipid accumulation. Peptides 2016; 84:68-9. [PMID: 27554311 DOI: 10.1016/j.peptides.2016.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 08/15/2016] [Indexed: 11/18/2022]
Affiliation(s)
- Jari Rossi
- Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
41
|
Buttgereit J, Shanks J, Li D, Hao G, Athwal A, Langenickel TH, Wright H, da Costa Goncalves AC, Monti J, Plehm R, Popova E, Qadri F, Lapidus I, Ryan B, Özcelik C, Paterson DJ, Bader M, Herring N. C-type natriuretic peptide and natriuretic peptide receptor B signalling inhibits cardiac sympathetic neurotransmission and autonomic function. Cardiovasc Res 2016; 112:637-644. [PMID: 27496871 PMCID: PMC5157132 DOI: 10.1093/cvr/cvw184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/07/2016] [Accepted: 07/13/2016] [Indexed: 01/26/2023] Open
Abstract
Aims B-type natriuretic peptide (BNP)–natriuretic peptide receptor A (NPR-A) receptor signalling inhibits cardiac sympathetic neurotransmission, although C-type natriuretic peptide (CNP) is the predominant neuropeptide of the nervous system with expression in the heart and vasculature. We hypothesized that CNP acts similarly to BNP, and that transgenic rats (TGRs) with neuron-specific overexpression of a dominant negative NPR-B receptor would develop heightened sympathetic drive. Methods and results Mean arterial pressure and heart rate (HR) were significantly (P < 0.05) elevated in freely moving TGRs (n = 9) compared with Sprague Dawley (SD) controls (n = 10). TGR had impaired left ventricular systolic function and spectral analysis of HR variability suggested a shift towards sympathoexcitation. Immunohistochemistry demonstrated co-staining of NPR-B with tyrosine hydroxylase in stellate ganglia neurons. In SD rats, CNP (250 nM, n = 8) significantly reduced the tachycardia during right stellate ganglion stimulation (1–7 Hz) in vitro whereas the response to bath-applied norepinephrine (NE, 1 μM, n = 6) remained intact. CNP (250 nM, n = 8) significantly reduced the release of 3H-NE in isolated atria and this was prevented by the NPR-B antagonist P19 (250 nM, n = 6). The neuronal Ca2+ current (n = 6) and intracellular Ca2+ transient (n = 9, using fura-2AM) were also reduced by CNP in isolated stellate neurons. Treatment of the TGR (n = 9) with the sympatholytic clonidine (125 µg/kg per day) significantly reduced mean arterial pressure and HR to levels observed in the SD (n = 9). Conclusion C-type natriuretic peptide reduces cardiac sympathetic neurotransmission via a reduction in neuronal calcium signalling and NE release through the NPR-B receptor. Situations impairing CNP–NPR-B signalling lead to hypertension, tachycardia, and impaired left ventricular systolic function secondary to sympatho-excitation.
Collapse
Affiliation(s)
- Jens Buttgereit
- Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité Medical Faculty, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Julia Shanks
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Dan Li
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Guoliang Hao
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Arvinder Athwal
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Thomas H Langenickel
- Translational Medicine, Clinical Pharmacology and Profiling, Novartis Pharma AG, Basel, Switzerland
| | - Hannah Wright
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | | | - Jan Monti
- Helios Clinic Bad Saarow, Pieskower Strasse 33, Bad Saarow, Germany
| | - Ralph Plehm
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Elena Popova
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Fatimunnisa Qadri
- Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité Medical Faculty, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Irina Lapidus
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Brent Ryan
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Cemil Özcelik
- Experimental and Clinical Research Center (ECRC), a joint institution of the Max Delbrück Center for Molecular Medicine (MDC) and the Charité Medical Faculty, Berlin, Germany.,Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - David J Paterson
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| | - Michael Bader
- Max Delbrück Center for Molecular Medicine (MDC), Campus Berlin-Buch, Robert-Rössle-Strasse 10, 13092 Berlin, Germany
| | - Neil Herring
- Burdon Sanderson Cardiac Science Centre, Department of Physiology, Anatomy and Genetics, University of Oxford, Parks Road, Oxford OX13PT, UK
| |
Collapse
|
42
|
Yamashita Y, Yamada-Goto N, Katsuura G, Ochi Y, Kanai Y, Miyazaki Y, Kuwahara K, Kanamoto N, Miura M, Yasoda A, Ohinata K, Inagaki N, Nakao K. Brain-specific natriuretic peptide receptor-B deletion attenuates high-fat diet-induced visceral and hepatic lipid deposition in mice. Peptides 2016; 81:38-50. [PMID: 27020246 DOI: 10.1016/j.peptides.2016.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/16/2016] [Accepted: 03/23/2016] [Indexed: 12/19/2022]
Abstract
C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B (NPR-B), are abundantly distributed in the hypothalamus. To explore the role of central CNP/NPR-B signaling in energy regulation, we generated mice with brain-specific NPR-B deletion (BND mice) by crossing Nestin-Cre transgenic mice and mice with a loxP-flanked NPR-B locus. Brain-specific NPR-B deletion prevented body weight gain induced by a high-fat diet (HFD), and the mesenteric fat and liver weights were significantly decreased in BND mice fed an HFD. The decreased liver weight in BND mice was attributed to decreased lipid accumulation in the liver, which was confirmed by histologic findings and lipid content. Gene expression analysis revealed a significant decrease in the mRNA expression levels of CD36, Fsp27, and Mogat1 in the liver of BND mice, and uncoupling protein 2 mRNA expression was significantly lower in the mesenteric fat of BND mice fed an HFD than in that of control mice. This difference was not observed in the epididymal or subcutaneous fat. Although previous studies reported that CNP/NPR-B signaling inhibits SNS activity in rodents, SNS is unlikely to be the underlying mechanism of the metabolic phenotype observed in BND mice. Taken together, CNP/NPR-B signaling in the brain could be a central factor that regulates visceral lipid accumulation and hepatic steatosis under HFD conditions. Further analyses of the precise mechanisms will enhance our understanding of the contribution of the CNP/NPR-B system to energy regulation.
Collapse
Affiliation(s)
- Yui Yamashita
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan.
| | - Nobuko Yamada-Goto
- Division of Endocrinology, Metabolism and Nephrology, Department of Internal Medicine, Keio University, School of Medicine, 35, Shinano-machi, Shinjyuku-ku, Tokyo 160-8582, Japan.
| | - Goro Katsuura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yukari Ochi
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yugo Kanai
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Yuri Miyazaki
- Division of Food Science and Biotechnology, Kyoto University Graduate School of Agriculture, Gokasyo, Uji-shi, Kyoto 611-0011, Japan
| | - Koichiro Kuwahara
- Department of Cardiovascular Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Naotetsu Kanamoto
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Masako Miura
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Akihiro Yasoda
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kousaku Ohinata
- Division of Food Science and Biotechnology, Kyoto University Graduate School of Agriculture, Gokasyo, Uji-shi, Kyoto 611-0011, Japan
| | - Nobuya Inagaki
- Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, 54, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kazuwa Nakao
- Kyoto University Graduate School of Medicine Medical Innovation Center, 53, Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| |
Collapse
|
43
|
Abstract
cGMP controls many cellular functions ranging from growth, viability, and differentiation to contractility, secretion, and ion transport. The mammalian genome encodes seven transmembrane guanylyl cyclases (GCs), GC-A to GC-G, which mainly modulate submembrane cGMP microdomains. These GCs share a unique topology comprising an extracellular domain, a short transmembrane region, and an intracellular COOH-terminal catalytic (cGMP synthesizing) region. GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure/volume and energy balance. GC-B is activated by C-type natriuretic peptide, stimulating endochondral ossification in autocrine way. GC-C mediates the paracrine effects of guanylins on intestinal ion transport and epithelial turnover. GC-E and GC-F are expressed in photoreceptor cells of the retina, and their activation by intracellular Ca(2+)-regulated proteins is essential for vision. Finally, in the rodent system two olfactorial GCs, GC-D and GC-G, are activated by low concentrations of CO2and by peptidergic (guanylins) and nonpeptidergic odorants as well as by coolness, which has implications for social behaviors. In the past years advances in human and mouse genetics as well as the development of sensitive biosensors monitoring the spatiotemporal dynamics of cGMP in living cells have provided novel relevant information about this receptor family. This increased our understanding of the mechanisms of signal transduction, regulation, and (dys)function of the membrane GCs, clarified their relevance for genetic and acquired diseases and, importantly, has revealed novel targets for therapies. The present review aims to illustrate these different features of membrane GCs and the main open questions in this field.
Collapse
Affiliation(s)
- Michaela Kuhn
- Institute of Physiology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
44
|
Chen S, Huang J, Zhao Q, Chen J, Jaquish CE, He J, Lu X, Yang X, Gu CC, Hixson JE, Liu F, Rice TK, Cao J, Chen J, Gu D. Associations Between Genetic Variants of the Natriuretic Peptide System and Blood Pressure Response to Dietary Sodium Intervention: The GenSalt Study. Am J Hypertens 2016. [PMID: 26224401 DOI: 10.1093/ajh/hpv129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The aim of this study was to comprehensively test the association of genetic variants in the natriuretic peptide (NP) system with blood pressure (BP) response to dietary sodium intervention in a Chinese population. METHODS We conducted a 7-day low-sodium intervention followed by a 7-day high-sodium intervention among 1,906 participants in rural China. BP measurements were obtained at baseline and each dietary intervention using a random-zero sphygmomanometer. Linear mixed-effect models were used to assess the associations of 48 single-nucleotide polymorphisms (SNPs) in 6 genes of NP system with BP response to dietary sodium intervention. RESULTS SNP rs5063 in the NPPA gene and SNP rs2077386 in the NPPC gene exhibited significant associations with BP response to low-sodium dietary intervention under recessive genetic model. For rs5063, absolute mean arterial pressure responses (95% confidence interval) to the low-sodium intervention were 1.31 (-1.08, 3.70) mm Hg for TT genotype and -3.74 (-4.01, -3.46) mm Hg for CC or TC genotype, respectively (P = 4.1 × 10(-5)). Individuals with at least one copy of the C allele of rs2077386 had significantly reduction in systolic BP during the low-sodium intervention compared to those with genotype GG with responses of -5.48 (-5.83, -5.14) vs. -2.76 (-3.52, -2.00) mm Hg, respectively (P = 1.9 × 10(-13)). CONCLUSIONS These novel findings suggested that genetic variants of NP system may contribute to the variation of BP response to sodium intervention in Chinese population. Certainly, replication of these results in other populations and further functional studies are warranted to clarify their role in the regulation of BP and hypertension.
Collapse
Affiliation(s)
- Shufeng Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China;
| | - Jianfeng Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Jing Chen
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Cashell E Jaquish
- National Heart, Lung, and Blood Institute, National Institute of Health, Bethesda, Maryland, USA
| | - Jiang He
- Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA
| | - Xiangfeng Lu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xueli Yang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Charles C Gu
- School of Medicine, Washington University, St. Louis, Missouri, USA
| | - James E Hixson
- School of Public Health, University of Texas, Houston, Texas, USA
| | - Fangchao Liu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Treva K Rice
- School of Medicine, Washington University, St. Louis, Missouri, USA
| | - Jie Cao
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jichun Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dongfeng Gu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
45
|
Kimura T, Nojiri T, Hino J, Hosoda H, Miura K, Shintani Y, Inoue M, Zenitani M, Takabatake H, Miyazato M, Okumura M, Kangawa K. C-type natriuretic peptide ameliorates pulmonary fibrosis by acting on lung fibroblasts in mice. Respir Res 2016; 17:19. [PMID: 26895702 PMCID: PMC4761143 DOI: 10.1186/s12931-016-0335-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 02/13/2016] [Indexed: 12/31/2022] Open
Abstract
Background Pulmonary fibrosis has high rates of mortality and morbidity; however, no effective pharmacological therapy has been established. C-type natriuretic peptide (CNP), a member of the natriuretic peptide family, selectively binds to the transmembrane guanylyl cyclase (GC)-B receptor and exerts anti-inflammatory and anti-fibrotic effects in various organs through vascular endothelial cells and fibroblasts that have a cell-surface GC-B receptor. Given the pathophysiological importance of fibroblast activation in pulmonary fibrosis, we hypothesized that the anti-fibrotic and anti-inflammatory effects of exogenous CNP against bleomycin (BLM)-induced pulmonary fibrosis were exerted in part by the effect of CNP on pulmonary fibroblasts. Methods C57BL/6 mice were divided into two groups, CNP-treated (2.5 μg/kg/min) and vehicle, to evaluate BLM-induced (1 mg/kg) pulmonary fibrosis and inflammation. A periostin-CNP transgenic mouse model exhibiting CNP overexpression in fibroblasts was generated and examined for the anti-inflammatory and anti-fibrotic effects of CNP via fibroblasts in vivo. Additionally, we assessed CNP attenuation of TGF-β-induced differentiation into myofibroblasts by using immortalized human lung fibroblasts stably expressing GC-B receptors. Furthermore, to investigate whether CNP acts on human lung fibroblasts in a clinical setting, we obtained primary-cultured fibroblasts from surgically resected lungs of patients with lung cancer and analyzed levels of GC-B mRNA transcription. Results CNP reduced mRNA levels of the profibrotic cytokines interleukin (IL)-1β and IL-6, as well as collagen deposition and the fibrotic area in lungs of mice with bleomycin-induced pulmonary fibrosis. Furthermore, similar CNP effects were observed in transgenic mice exhibiting fibroblast-specific CNP overexpression. In cultured-lung fibroblasts, CNP treatment attenuated TGF-β–induced phosphorylation of Smad2 and increased mRNA and protein expression of α-smooth muscle actin and SM22α, indicating that CNP suppresses fibroblast differentiation into myofibroblasts. Furthermore, human lung fibroblasts from patients with or without interstitial lung disease substantially expressed GC-B receptor mRNA. Conclusions These data suggest that CNP ameliorates bleomycin-induced pulmonary fibrosis by suppressing TGF-β signaling and myofibroblastic differentiation in lung fibroblasts. Therefore, we propose consideration of CNP for clinical application to pulmonary fibrosis treatment.
Collapse
Affiliation(s)
- Toru Kimura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Takashi Nojiri
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Jun Hino
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Hiroshi Hosoda
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center, Suita-City, Osaka, Japan.
| | - Koichi Miura
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Yasushi Shintani
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Masayoshi Inoue
- Department of General Thoracic Surgery, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan.
| | - Masahiro Zenitani
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Hiroyuki Takabatake
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan. .,Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Mikiya Miyazato
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| | - Meinoshin Okumura
- Department of General Thoracic Surgery, Osaka University Graduate School of Medicine, Suita-City, Osaka, Japan.
| | - Kenji Kangawa
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita-city, Osaka, 565-8565, Japan.
| |
Collapse
|
46
|
Huang SC. C-type atriuretic peptide causes relaxation of the internal anal sphincter through natriuretic peptide receptor B. Tzu Chi Med J 2015. [DOI: 10.1016/j.tcmj.2015.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
47
|
Exogenous C-type natriuretic peptide infusion ameliorates unilateral ureteral obstruction-induced tubulointerstitial fibrosis in rats. J Transl Med 2015; 95:263-72. [PMID: 25437644 DOI: 10.1038/labinvest.2014.149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 07/28/2014] [Accepted: 09/12/2014] [Indexed: 11/08/2022] Open
Abstract
Although many experimental therapeutic roles for C-type natriuretic peptide (CNP) have been documented in the field of cardiovascular and pulmonary-vascular disease, the therapeutic uses of CNP to nephropathies are not as well documented. In this study, we established a rat model of unilateral ureteral obstruction (UUO) to observe the beneficial effects of CNP on tubulointerstitial fibrosis (TIF). In UUO rats, CNP administration induced a significant increase in plasma CNP levels, and caused a significant decrease in blood urea nitrogen and creatinine levels. In addition, CNP infusion also alleviated the pathological lesions and collagen IV accumulation in the obstructed kidneys through downregulation of tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression. In conclusion, exogenous CNP infusion can ameliorate UUO-induced TIF in rats. However, the use of CNP as a therapeutic agent requires further evaluation before being considered for human TIF.
Collapse
|
48
|
Urinary C-type natriuretic peptide: an emerging biomarker for heart failure and renal remodeling. Clin Chim Acta 2014; 443:108-13. [PMID: 25512164 DOI: 10.1016/j.cca.2014.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Revised: 11/30/2014] [Accepted: 12/08/2014] [Indexed: 12/18/2022]
Abstract
The public health and economic burden of heart failure (HF) is staggering and the need for relevant pathophysiologic and clinical biomarkers to advance the field and improve HF therapy remains high. Renal dysfunction is common among HF patients and is associated with increased HF hospitalization and mortality. It is widely recognized that mechanisms contributing to HF pathogenesis include a complex bidirectional interaction between the kidney and heart, encompassed by the term cardiorenal syndrome (CRS). Among a new wave of urinary biomarkers germane to CRS, C-type natriuretic peptide (CNP) has emerged as an innovative biomarker of renal structural and functional impairment in HF and chronic renal disease states. CNP is a hormone, synthesized in the kidney, and is an important regulator of cell proliferation and organ fibrosis. Hypoxia, cytokines and fibrotic growth factors, which are inherent to both cardiac and renal remodeling processes, are among the recognized stimuli for CNP production and release. In this review we aim to highlight current knowledge regarding the biology and pathophysiological correlates of urinary CNP, and its potential clinical utility as a diagnostic and prognostic biomarker in HF and renal disease states.
Collapse
|
49
|
Lok DJ, Klip IJT, Voors AA, Lok SI, Bruggink-André de la Porte PW, Hillege HL, Jaarsma T, van Veldhuisen DJ, van der Meer P. Prognostic value of N-terminal pro C-type natriuretic peptide in heart failure patients with preserved and reduced ejection fraction. Eur J Heart Fail 2014; 16:958-66. [DOI: 10.1002/ejhf.140] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dirk J. Lok
- University Medical Center Groningen; Groningen The Netherlands
- Deventer Hospital; Deventer The Netherlands
| | | | | | - Sjoukje I. Lok
- University Medical Center Utrecht; Utrecht The Netherlands
| | | | - Hans L. Hillege
- University Medical Center Groningen; Groningen The Netherlands
| | | | | | | |
Collapse
|
50
|
D'Alessandro R, Masarone D, Buono A, Gravino R, Rea A, Salerno G, Golia E, Ammendola E, Del Giorno G, Santangelo L, Russo MG, Calabrò R, Bossone E, Pacileo G, Limongelli G. Natriuretic peptides: molecular biology, pathophysiology and clinical implications for the cardiologist. Future Cardiol 2014; 9:519-34. [PMID: 23834693 DOI: 10.2217/fca.13.32] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Natriuretic peptides (NPs) counter the effects of volume overload or adrenergic activation of the cardiovascular system. They are able to induce arterial vasodilatations, natriuresis and diuresis, and they reduce the activities of the renin-angiotensin-aldosterone system and the sympathetic nervous system. However, in addition to wall stress, other factors have been associated with elevated natriuretic peptide levels. Since 2000, because of their characteristics, NPs have become quantitative plasma biomarkers of heart failure. Nowadays, NPs play an important role not only in the diagnosis of heart failure, but also for a prognostic purpose and a guide to medical therapy. Finally, a new drug that modulates the NP system or recombinant analogs of NPs are now available in patients with heart failure.
Collapse
|