1
|
Du J, Ren W, Liu W, Zhou Y, Li Y, Lai Q, Liu X, Chen T, Liu W, Chen Z, Zhang J, Zhang P, Yuan J. Experimental study of iodine-131 labeling of a novel tumor-targeting peptide, TFMP-Y4, in the treatment of hepatocellular carcinoma with internal irradiation. BMC Cancer 2025; 25:245. [PMID: 39939898 PMCID: PMC11818262 DOI: 10.1186/s12885-025-13666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
OBJECTIVE To explore and compare the value of 131I-TFMP-Y4 and 131I-Caerin 1.1 in internal irradiation therapy for hepatocellular carcinoma. METHODS (1) 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis revealed the inhibitory effects of Caerin 1.1 and TFMP-Y4 on Hepg2 and LO2 cell growth. (2) The chloramine-T method was used to prepare 131I-Caerin 1.1 and 131I-TFMP-Y4. (3) Uptake and elution assays revealed that Hepg2 cells bound and retained 131I-Caerin 1.1 and 131I-TFMP-Y4, and the inhibitory effects on Hepg2 cells were verified with cellular proliferation/toxicity assays. (4) A hormonal nude mouse model was established to study the in vivo therapeutic effects of the peptides alone, 131I-Caerin 1.1 and 131I-TFMP-Y4. RESULTS (1) Caerin 1.1 inhibited Hepg2 and LO2 cell proliferation in a concentration-dependent manner, and the half-maximal inhibitory concentrations (IC50) were 9.34 µg/mL and 22.16 µg/mL, respectively. Moreover, TFMP-Y4 did not inhibit these two cell lines. (2) The labeling rates of 131I-Caerin 1.1 and 131I-TFMP-Y4 were high and stable. Both could significantly reduce the activity of Hepg2 cells and inhibit tumor growth in vitro and in vivo. CONCLUSION 131I-Caerin 1.1 and 131I-TFMP-Y4 significantly inhibited the proliferation of Hepg2 cells in vitro and in vivo. In addition, 131I-TFMP-Y4 can reduce adverse reactions during treatment.
Collapse
Affiliation(s)
- Juan Du
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Department of Nuclear Medicine, The First People's Hospital of Guangyuan, Guangyuan, Sichuan, China
| | - Weiwei Ren
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wenjie Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yixuan Zhou
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yushan Li
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qingyi Lai
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiongying Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tongsheng Chen
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wenjuan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhuanming Chen
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jinhe Zhang
- Department of Nuclear Medicine, General Hospital of Southern Theater Command, Guangzhou, Guangdong, China.
| | - Peipei Zhang
- Department of Radiology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jianwei Yuan
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Fu Q, Luo Y, Li J, Zhang P, Tang S, Song X, Fu J, Liu M, Mo R, Wei M, Li H, Liu X, Wang T, Ni G. Improving the efficacy of cancer immunotherapy by host-defence caerin 1.1 and 1.9 peptides. Hum Vaccin Immunother 2024; 20:2385654. [PMID: 39193797 PMCID: PMC11364082 DOI: 10.1080/21645515.2024.2385654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/07/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Cancer remains a major global health challenge. Immunotherapy has revolutionized the management of cancer, yet only a limited number of patients respond to such treatments. This is largely attributed to the immunosuppressive tumor microenvironment, which diminishes the effectiveness of immunotherapy. Recent studies have underscored the potential of naturally derived caerin 1 peptides, particularly caerin 1.1 and caerin 1.9, which exhibit strong antitumor effects and enhance the efficacy of immunotherapies in animal models. This review encapsulates the current research aimed at augmenting the effectiveness of immunotherapy, focusing on the role of caerin 1.1 and caerin 1.9 in boosting immunotherapeutic outcomes, elucidating possible mechanisms, and discussing their limitations and challenges.
Collapse
Affiliation(s)
- Quanlan Fu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Junjie Li
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
| | - Pingping Zhang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Shuxian Tang
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
| | - Xinyi Song
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiawei Fu
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Mengqi Liu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Rongmi Mo
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Ming Wei
- School of Medical Sciences, Griffith University, Gold Coast, QLD, Australia
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Xiaosong Liu
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, QLD, Australia
| | - Guoying Ni
- R&D Department, Zhongao Bio-pharmaceutical Technology Co., Ltd., Zhongshan, Guangdong Province, China
- Cancer Research Institute, The First People’s Hospital of Foshan, Foshan, Guangdong, China
- The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Cheng X, Zhang Y, Zhang Y, Chen Y, Chen J, Wang W, Zhu G. Multiple strategies of HSP antimicrobial peptide optimization to enhance antimicrobial activity. Amino Acids 2024; 56:66. [PMID: 39589573 PMCID: PMC11599297 DOI: 10.1007/s00726-024-03428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Antimicrobial peptides (AMPs) have caught the attention of researchers over the last couple of years due to their unique membrane lytic mechanism for combating antibiotic resistance, which differs from the molecular targets of traditional antibiotics. Although natural AMPs exhibit potential antimicrobial activity against a wide range of microorganisms, some drawbacks, such as toxicity, low antibacterial activity, and high production costs limit their clinical application. To enhance the antimicrobial activity of a series of HSP peptides derived from the natural peptide HSP-1, this study optimized them using a variety of strategies, including net charge, hydrophobic moment, hydrophobicity, and helicity. Optimizing the antimicrobial action of HSP peptides depended mostly on net charge, hydrophobic moment, and hydrophobicity rather than helicity. HSP-M4 may be designed to combat microbial infections because the antimicrobial activity and cytotoxicity assays showed that they exhibited low cytotoxicity and prominent antimicrobial activity, respectively.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China.
| | - Yonghuang Zhang
- Department of Pharmacy, Hefei Binhu Hospital, Hefei, 230601, China
| | - Yan Zhang
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China
| | - Yajun Chen
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China
| | - Jianli Chen
- Shimadzu (China) Co., Ltd, Wuhan, 430000, China
| | - Wei Wang
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China.
| | - Guilan Zhu
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China.
| |
Collapse
|
4
|
Tang Y, Zhang Y, Zhang D, Liu Y, Nussinov R, Zheng J. Exploring pathological link between antimicrobial and amyloid peptides. Chem Soc Rev 2024; 53:8713-8763. [PMID: 39041297 DOI: 10.1039/d3cs00878a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Amyloid peptides (AMYs) and antimicrobial peptides (AMPs) are considered as the two distinct families of peptides, characterized by their unique sequences, structures, biological functions, and specific pathological targets. However, accumulating evidence has revealed intriguing pathological connections between these peptide families in the context of microbial infection and neurodegenerative diseases. Some AMYs and AMPs share certain structural and functional characteristics, including the ability to self-assemble, the presence of β-sheet-rich structures, and membrane-disrupting mechanisms. These shared features enable AMYs to possess antimicrobial activity and AMPs to acquire amyloidogenic properties. Despite limited studies on AMYs-AMPs systems, the cross-seeding phenomenon between AMYs and AMPs has emerged as a crucial factor in the bidirectional communication between the pathogenesis of neurodegenerative diseases and host defense against microbial infections. In this review, we examine recent developments in the potential interplay between AMYs and AMPs, as well as their pathological implications for both infectious and neurodegenerative diseases. By discussing the current progress and challenges in this emerging field, this account aims to inspire further research and investments to enhance our understanding of the intricate molecular crosstalk between AMYs and AMPs. This knowledge holds great promise for the development of innovative therapies to combat both microbial infections and neurodegenerative disorders.
Collapse
Affiliation(s)
- Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| | - Yanxian Zhang
- Division of Endocrinology and Diabetes, Department of Pediatrics, School of Medicine, Stanford University, Palo Alto, CA 94304, USA
| | - Dong Zhang
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia 30332, USA
| | - Yonglan Liu
- Cancer Innovation Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
- Department of Human Molecular Genetics and Biochemistry Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Ohio 44325, USA.
| |
Collapse
|
5
|
Samgina TY, Mazur DM, Lebedev AT. Assessing the Efficacy of Protease Inactivation for the Preservation of Bioactive Amphibian Skin Peptides. Int J Mol Sci 2024; 25:8759. [PMID: 39201446 PMCID: PMC11354720 DOI: 10.3390/ijms25168759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/03/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
The skin of amphibians is a rich source of peptides with a wide range of biological activities. They are stored in secretory granules in an inactive form. Upon stimulation, they are secreted together with proteases into the skin. Once activated, they rapidly exert their biological effects, including fighting microorganisms and predators, while their excess is immediately destroyed by the released proteases. To keep bioactive peptides in their initial form, it is necessary to inhibit these enzymes. Several inhibitors for this purpose have previously been mentioned; however, there has not been any reliable comparison of their efficiency so far. Here, we studied the efficiency of methanol and hydrochloric and formic acids, as well as phenylmethylsulfonyl fluoride, in the inhibition of nine frog peptides with the known sequence, belonging to five families in the secretion of Pelophylax esculentus. The results demonstrated that methanol had the highest inhibitory efficiency, while phenylmethylsulfonyl fluoride was the least efficient, probably due to its instability in aqueous media. Possible cleavages between certain amino acid residues in the sequence were established for each of the inhibitors. These results may be helpful for future studies on the nature of proteases and on prediction of the possible cleavage sites in novel peptides.
Collapse
Affiliation(s)
- Tatiana Yu. Samgina
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China; (T.Y.S.); (D.M.M.)
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Dmitrii M. Mazur
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China; (T.Y.S.); (D.M.M.)
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Albert T. Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China; (T.Y.S.); (D.M.M.)
- Department of Organic Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
| |
Collapse
|
6
|
Sani MA, Rajput S, Keizer DW, Separovic F. NMR techniques for investigating antimicrobial peptides in model membranes and bacterial cells. Methods 2024; 224:10-20. [PMID: 38295893 DOI: 10.1016/j.ymeth.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/05/2024] Open
Abstract
AMPs are short, mainly cationic membrane-active peptides found in all living organism. They perform diverse roles including signaling and acting as a line of defense against bacterial infections. AMPs have been extensively investigated as templates to facilitate the development of novel antimicrobial therapeutics. Understanding the interplay between these membrane-active peptides and the lipid membranes is considered to be a significant step in elucidating the specific mechanism of action of AMPs against prokaryotic and eukaryotic cells to aid the development of new therapeutics. In this review, we have provided a brief overview of various NMR techniques commonly used for studying AMP structure and AMP-membrane interactions in model membranes and whole cells.
Collapse
Affiliation(s)
- Marc-Antoine Sani
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Sunnia Rajput
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - David W Keizer
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Frances Separovic
- Bio21 Institute, University of Melbourne, Melbourne, VIC 3010, Australia; School of Chemistry, University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
7
|
Zhang P, Tang S, Fu Q, Luo Y, Li J, Chen Z, Li H, Ni G, Wang T, Chen G, Liu X. Proteomic analysis of anti-MRSA activity of caerin 1.1/1.9 in a murine skin infection model and their in vitro anti-biofilm effects against Acinetobacter baumannii. Microbiol Spectr 2023; 11:e0452022. [PMID: 37819110 PMCID: PMC10714828 DOI: 10.1128/spectrum.04520-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/04/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE Caerin 1.1 and caerin 1.9, natural antimicrobial peptides derived from tree frogs, have demonstrated the ability to inhibit the growth of antibiotic-resistant bacteria, comparable to certain widely used antibiotics. Additionally, these peptides exhibit the capacity to prevent or treat biofilms formed by bacteria in conjunction with bodily components. The mechanisms underlying their antibacterial effects were investigated through a mouse model of bacterial skin infection, utilizing proteomic analysis as a technological approach.
Collapse
Affiliation(s)
- Pingping Zhang
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Shuxian Tang
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Quanlan Fu
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Yuandong Luo
- Medical School of Guizhou University, Guiyang, Guizhou, China
| | - Junjie Li
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| | - Zhu Chen
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| | - Hejie Li
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, Queensland, Australia
| | - Guoying Ni
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, Queensland, Australia
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Maroochydore BC, Queensland, Australia
| | - Guoqiang Chen
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Xiaosong Liu
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
- Guiyang Hospital of Stomatology, Guiyang, Guizhou, China
| |
Collapse
|
8
|
Samgina TY, Vasileva ID, Trebše P, Torkar G, Surin AK, Meng Z, Zubarev RA, Lebedev AT. Tandem Mass Spectrometry de novo Sequencing of the Skin Defense Peptides of the Central Slovenian Agile Frog Rana dalmatina. Molecules 2023; 28:7118. [PMID: 37894596 PMCID: PMC10608968 DOI: 10.3390/molecules28207118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Peptides released on frogs' skin in a stress situation represent their only weapon against micro-organisms and predators. Every species and even population of frog possesses its own peptidome being appropriate for their habitat. Skin peptides are considered potential pharmaceuticals, while the whole peptidome may be treated as a taxonomic characteristic of each particular population. Continuing the studies on frog peptides, here we report the peptidome composition of the Central Slovenian agile frog Rana dalmatina population. The detection and top-down de novo sequencing of the corresponding peptides was conducted exclusively by tandem mass spectrometry without using any chemical derivatization procedures. Collision-induced dissociation (CID), higher energy collision-induced dissociation (HCD), electron transfer dissociation (ETD) and combined MS3 method EThcD with stepwise increase of HCD energy were used for that purpose. MS/MS revealed the whole sequence of the detected peptides including differentiation between isomeric Leu/Ile, and the sequence portion hidden in the disulfide cycle. The array of the discovered peptide families (brevinins 1 and 2, melittin-related peptides (MRPs), temporins and bradykinin-related peptides (BRPs)) is quite similar to that of R. temporaria. Since the genome of this frog remains unknown, the obtained results were compared with the recently published transcriptome of R. dalmatina.
Collapse
Affiliation(s)
- Tatiana Yu. Samgina
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Irina D. Vasileva
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Polonca Trebše
- Faculty of Health Sciences, University of Ljubljana Zdravstvena Pot 5, 1000 Ljubljana, Slovenia;
| | - Gregor Torkar
- Department for Biology, Chemistry and Home Economics, University of Ljubljana Faculty of Education, Kardeljeva Ploščad 16, 1000 Ljubljana, Slovenia;
| | - Alexey K. Surin
- Pushchino Branch, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, 142290 Moscow, Russia;
| | - Zhaowei Meng
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (Z.M.); (R.A.Z.)
| | - Roman A. Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, SE-171 77 Stockholm, Sweden; (Z.M.); (R.A.Z.)
- The National Medical Research Center for Endocrinology, 115478 Moscow, Russia
- Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, 119146 Moscow, Russia
| | - Albert T. Lebedev
- Department of Materials Science, MSU-BIT University, Shenzhen 517182, China
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia;
| |
Collapse
|
9
|
Conlon JM, Guilhaudis L, Attoub S, Coquet L, Leprince J, Jouenne T, Mechkarska M. Purification, Conformational Analysis and Cytotoxic Activities of Host-Defense Peptides from the Giant Gladiator Treefrog Boana boans (Hylidae: Hylinae). Antibiotics (Basel) 2023; 12:1102. [PMID: 37508198 PMCID: PMC10376367 DOI: 10.3390/antibiotics12071102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/16/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
Frogs from the extensive amphibian family Hylidae are a rich source of peptides with therapeutic potential. Peptidomic analysis of norepinephrine-stimulated skin secretions from the Giant Gladiator Treefrog Boana boans (Hylidae: Hylinae) collected in Trinidad led to the isolation and structural characterization of five host-defense peptides with limited structural similarity to figainin 2 and picturin peptides from other frog species belonging to the genus Boana. In addition, the skin secretions contained high concentrations of tryptophyllin-BN (WRPFPFL) in both C-terminally α-amidated and non-amidated forms. Figainin 2BN (FLGVALKLGKVLG KALLPLASSLLHSQ) and picturin 1BN (GIFKDTLKKVVAAVLTTVADNIHPK) adopt α-helical conformations in trifluroethanol-water mixtures and in the presence of cell membrane models (sodium dodecylsulfate and dodecylphosphocholine micelles). The CD data also indicate contributions from turn structures. Both peptides and picturin 2BN (GLMDMLKKVGKVALT VAKSALLP) inhibited the growth of clinically relevant Gram-negative and Gram-positive bacteria with MIC values in the range 7.8-62.5 µM. Figainin 2BN was potently cytotoxic to A549, MDA-MB-231 and HT-29 human tumor-derived cells (LC50 = 7-14 µM) but displayed comparable potency against non-neoplastic HUVEC cells (LC50 = 15 µM) indicative of lack of selectivity for cancer cells.
Collapse
Affiliation(s)
- J Michael Conlon
- Diabetes Research Centre, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK
| | - Laure Guilhaudis
- Laboratoire COBRA (UMR 6014 & FR 3038), UNIROUEN, INSA de Rouen, CNRS, Université Rouen Normandie, 76000 Rouen, France
| | - Samir Attoub
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 17666, United Arab Emirates
| | - Laurent Coquet
- CNRS UAR2026 HeRacLeS-PISSARO, CNRS UMR 6270 PBS, Université Rouen Normandie, 76821 Mont-Saint-Aignan, France
| | - Jérôme Leprince
- Inserm U1239, PRIMACEN, Institute for Research and Innovation in Biomedicine (IRIB), Université Rouen Normandie, 76000 Rouen, France
| | - Thierry Jouenne
- CNRS UAR2026 HeRacLeS-PISSARO, CNRS UMR 6270 PBS, Université Rouen Normandie, 76821 Mont-Saint-Aignan, France
| | - Milena Mechkarska
- Department of Life Sciences, Faculty of Science and Technology, St. Augustine Campus, The University of The West Indies, St. Augustine, Trinidad and Tobago
| |
Collapse
|
10
|
Wang Y, Zhu G, Wang W, Zhang Y, Zhu Y, Wang J, Geng M, Lu H, Chen Y, Zhou M, Chen J, Zhang F, Yang J, Cheng X. Rational design of HJH antimicrobial peptides to improve antimicrobial activity. Bioorg Med Chem Lett 2023; 83:129176. [PMID: 36764469 DOI: 10.1016/j.bmcl.2023.129176] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/01/2023] [Accepted: 02/05/2023] [Indexed: 02/11/2023]
Abstract
Antimicrobial peptides (AMPs) have attracted considerable interest in the past decade due to their advantages for tackling antibiotic resistance. They exhibit potential antimicrobial activity through unique cell membrane destruction mechanism based on their net charge, hydrophobic properties, and α-helix. In this work, a series of HJH peptides was rationally designed and synthesized. The antimicrobial activity and cytotoxicity assays indicated that HJH-5 and HJH-6 containing hydrophobic residues and helices displayed prominent antimicrobial activity and mild cytotoxicity, respectively. These peptides may be developed for combatting microbial infections.
Collapse
Affiliation(s)
- Yiming Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Guilan Zhu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Wei Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Yan Zhang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Yong Zhu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Jingjing Wang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Ming Geng
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Hongxia Lu
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Yajun Chen
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Minghui Zhou
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Jing Chen
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Fangyan Zhang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Junjie Yang
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China
| | - Xiaozhong Cheng
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resources Exploration, Hefei Normal University, Hefei 230601, China.
| |
Collapse
|
11
|
Baltutis V, O'Leary PD, Martin LL. Self-Assembly of Linear, Natural Antimicrobial Peptides: An Evolutionary Perspective. Chempluschem 2022; 87:e202200240. [PMID: 36198638 DOI: 10.1002/cplu.202200240] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/29/2022] [Indexed: 01/31/2023]
Abstract
Antimicrobial peptides are an ancient and innate system of host defence against a wide range of microbial assailants. Mechanistically, unstructured peptides undergo a secondary structure transition into amphipathic α-helices, upon contact with membrane surfaces. This leads to peptide binding and removal of the membrane components in a detergent-like manner or via self-organisation into trans-membrane pores (either barrel-stave or toroidal pore) thereby destroying the microbe. Self-assembly of antimicrobial peptides into oligomers and ultimately amyloid has been mostly examined in parallel, however recent findings link diseases, such as Alzheimer's disease as an aberrant activity of a protective neuropeptide with antimicrobial activity. These self-assembled oligomers can also interact with membranes. Here, we review those antimicrobial peptides reported to self-assemble into amyloid, where supported by structural evidence. We consider their membrane activities as antimicrobial peptides and present evidence of consistent self-assembly patterns across major evolutionary groups. Trends are apparent across these groups, supporting the mounting data that self-assembly of antimicrobial peptides into amyloid should be considered as synergistic to the antimicrobial peptide response.
Collapse
Affiliation(s)
- Verity Baltutis
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Paul D O'Leary
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, 3800, Clayton, Vic, Australia
| |
Collapse
|
12
|
Liu N, He T, Xiao Z, Du J, Zhu K, Liu X, Chen T, Liu W, Ni G, Liu X, Wang T, Quan J, Zhang J, Zhang P, Yuan J. 131I-Caerin 1.1 and 131I-Caerin 1.9 for the treatment of non-small-cell lung cancer. Front Oncol 2022; 12:861206. [PMID: 36046040 PMCID: PMC9420947 DOI: 10.3389/fonc.2022.861206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/21/2022] [Indexed: 11/20/2022] Open
Abstract
Objective To investigate the effect of the 131I-labeled high-affinity peptides Caerin 1.1 and Caerin 1.9 for the treatment of A549 human NSCLC cells. Methods ① 3-[4,5-Dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) and plate clone formation assays were performed to confirm the in vitro anti-tumor activity of Caerin 1.1 and Caerin 1.9. ② Chloramine-T was used to label Caerin 1.1 and Caerin 1.9 with 131I, and the Cell Counting Kit 8 assay was performed to analyze the inhibitory effect of unlabeled Caerin 1.1, unlabeled Caerin 1.9, 131I-labeled Caerin 1.1, and 131I-labeled Caerin 1.9 on the proliferation of NSCLC cells. An A549 NSCLC nude mouse model was established to investigate the in vivo anti-tumor activity of unlabeled Caerin 1.1, unlabeled Caerin 1.9, 131I-labeled Caerin 1.1, and 131I-labeled Caerin 1.9. Results ① Caerin 1.1 and Caerin 1.9 inhibited the proliferation of NSCLC cells in vitro in a concentration-dependent manner. The half-maximal inhibitory concentration was 16.26 µg/ml and 17.46 µg/ml, respectively, with no significant intergroup difference (P>0.05). ② 131I-labeled Caerin 1.1 and 131I-labeled Caerin 1.9 were equally effective and were superior to their unlabeled versions in their ability to inhibit the proliferation and growth of NSCLC cells (P>0.05). Conclusions 131I-labeled Caerin 1.1 and 131I-labeled Caerin 1.9 inhibit the proliferation and growth of NSCLC cells and may become potential treatments for NSCLC.
Collapse
Affiliation(s)
- Na Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tiantian He
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zewei Xiao
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Juan Du
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Keke Zhu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiongying Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Tongsheng Chen
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Wenjuan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Guoying Ni
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaosong Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Thoracic and Abdominal Radiotherapy Department, The First People’s Hospital of Foshan, Foshan, China
| | - Tianfang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Genecology Research Centre, University of the Sunshine Coast, Sunshine Coast, QLD, Australia
| | - Jiangtao Quan
- Department of Nuclear Medicine, General Hospital of the Southern Theatre Command, People’s Liberation Army of China, Guangzhou, China
| | - Jinhe Zhang
- Department of Nuclear Medicine, General Hospital of the Southern Theatre Command, People’s Liberation Army of China, Guangzhou, China
- *Correspondence: Jinhe Zhang, ; Peipei Zhang, ; Jianwei Yuan,
| | - Peipei Zhang
- Thoracic and Abdominal Radiotherapy Department, The First People’s Hospital of Foshan, Foshan, China
- *Correspondence: Jinhe Zhang, ; Peipei Zhang, ; Jianwei Yuan,
| | - Jianwei Yuan
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- *Correspondence: Jinhe Zhang, ; Peipei Zhang, ; Jianwei Yuan,
| |
Collapse
|
13
|
de Amaral M, Ienes-Lima J. Anurans against SARS-CoV-2: A review of the potential antiviral action of anurans cutaneous peptides. Virus Res 2022; 315:198769. [PMID: 35430319 PMCID: PMC9008983 DOI: 10.1016/j.virusres.2022.198769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 01/17/2023]
Abstract
At the end of 2019, in China, clinical signs and symptoms of unknown etiology have been reported in several patients whose sample sequencing revealed pneumonia caused by the SARS-CoV-2 virus. COVID-19 is a disease triggered by this virus, and in 2020, the World Health Organization declared it a pandemic. Since then, efforts have been made to find effective therapeutic agents against this disease. Identifying novel natural antiviral drugs can be an alternative to treatment. For this reason, antimicrobial peptides secreted by anurans' skin have gained attention for showing a promissory antiviral effect. Hence, this review aimed to elucidate how and which peptides secreted by anurans' skin can be considered therapeutic agents to treat or prevent human viral infectious diseases. Through a literature review, we attempted to identify potential antiviral frogs' peptides to combat COVID-19. As a result, the Magainin-1 and -2 peptides, from the Magainin family, the Dermaseptin-S9, from the Dermaseptin family, and Caerin 1.6 and 1.10, from the Caerin family, are molecules that already showed antiviral effects against SARS-CoV-2 in silico. In addition to these peptides, this review suggests that future studies should use other families that already have antiviral action against other viruses, such as Brevinins, Maculatins, Esculentins, Temporins, and Urumins. To apply these peptides as therapeutic agents, experimental studies with peptides already tested in silico and new studies with other families not tested yet should be considered.
Collapse
Affiliation(s)
- Marjoriane de Amaral
- Comparative Metabolism and Endocrinology Laboratory, Department of Physiology, Federal University of Rio Grande do Sul (UFRGS), Sarmento Leite, 500, Porto Alegre, Rio Grande do Sul 90050-170, Brazil.
| | - Julia Ienes-Lima
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, United States
| |
Collapse
|
14
|
Lebedev AT, Vasileva ID, Samgina TY. FT-MS in the de novo top-down sequencing of natural nontryptic peptides. MASS SPECTROMETRY REVIEWS 2022; 41:284-313. [PMID: 33347655 DOI: 10.1002/mas.21678] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 11/25/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
The present review covers available results on the application of FT-MS for the de novo sequencing of natural peptides of various animals: cones, bees, snakes, amphibians, scorpions, and so forth. As these peptides are usually bioactive, the animals efficiently use them as a weapon against microorganisms or higher animals including predators. These peptides represent definite interest as drugs of future generations since the mechanism of their activity is completely different in comparison with that of the modern antibiotics. Utilization of those peptides as antibiotics can eliminate the problem of the bacterial resistance development. Sequence elucidation of these bioactive peptides becomes even more challenging when the species genome is not available and little is known about the protein origin and other properties of those peptides in the study. De novo sequencing may be the only option to obtain sequence information. The benefits of FT-MS for the top-down peptide sequencing, the general approaches of the de novxxo sequencing, the difficult cases involving sequence coverage, isobaric and isomeric amino acids, cyclization of short peptides, the presence of posttranslational modifications will be discussed in the review.
Collapse
Affiliation(s)
- Albert T Lebedev
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Irina D Vasileva
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| | - Tatiana Y Samgina
- Organic Chemistry Department, M.V. Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Prasad AK, Tiwari C, Ray S, Holden S, Armstrong DA, Rosengren KJ, Rodger A, Panwar AS, Martin LL. Secondary Structure Transitions for a Family of Amyloidogenic, Antimicrobial Uperin 3 Peptides in Contact with Sodium Dodecyl Sulfate. Chempluschem 2022; 87:e202100408. [DOI: 10.1002/cplu.202100408] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/10/2021] [Indexed: 11/10/2022]
Affiliation(s)
- Anup K. Prasad
- IITB-Monash Research Academy Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Chandni Tiwari
- IITB-Monash Research Academy Indian Institute of Technology Bombay Powai Mumbai 400076 India
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - Sourav Ray
- IITB-Monash Research Academy Indian Institute of Technology Bombay Powai Mumbai 400076 India
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | - Stephanie Holden
- School of Chemistry Monash University Clayton VIC 3800 Australia
| | - David A. Armstrong
- School of Biomedical Sciences The University of Queensland Brisbane QLD, 4072 Australia
| | - K. Johan Rosengren
- School of Biomedical Sciences The University of Queensland Brisbane QLD, 4072 Australia
| | - Alison Rodger
- Department of Molecular Sciences Macquarie University Macquarie Park NSW, 2109 Australia
| | - Ajay S. Panwar
- Department of Metallurgical Engineering and Materials Science Indian Institute of Technology Bombay Powai Mumbai 400076 India
| | | |
Collapse
|
16
|
Xiao L, Yang X, Li J, Zhang P, Tang S, Cao D, Chen S, Li H, Zhang W, Chen G, Ni G, Wang T, Liu X. Caerin 1 Peptides, the Potential Jack-of-All-Trades for the Multiple Antibiotic-Resistant Bacterial Infection Treatment and Cancer Immunotherapy. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7841219. [PMID: 35445137 PMCID: PMC9015854 DOI: 10.1155/2022/7841219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/17/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Antibiotic resistance-related bacterial infections and cancers become huge challenges in human health in the 21st century. A number of naturally derived antimicrobial peptides possess multiple functions in host defense, including anti-infective and anticancer activities. One of which is known as the caerin 1 family peptides. The microbicidal properties of these peptides have been long discussed. The recent studies also established the usage of two members in this family, caerin 1.1 and caerin 1.9, in antimultiple antibiotic-resistant bacteria species. It is increasingly evident that caerin 1.1 and caerin 1.9 also contain additional activities in the suppression of tumor. In this review, we briefly outline the therapeutic potentials and possible mechanism of action of caerin 1.1 and 1.9 in the treatment of multiple antibiotic-resistant bacterial infection and cancer immunotherapy.
Collapse
Affiliation(s)
- Liyin Xiao
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, China
- Zhongao Biomedical Co. Ltd, Guangzhou, Guangdong 510080, China
| | - Xiaodan Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, China
| | - Junjie Li
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, China
| | - Pingping Zhang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Shuxian Tang
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Dongmin Cao
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Shu Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Hejie Li
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Wei Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, China
| | - Guoqiang Chen
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| | - Guoying Ni
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong 528000, China
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, QLD 4558, Australia
| | - Xiaosong Liu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, Guangdong 510080, China
- Zhongao Biomedical Co. Ltd, Guangzhou, Guangdong 510080, China
- Cancer Research Institute, First People's Hospital of Foshan, Foshan, Guangdong 528000, China
| |
Collapse
|
17
|
Chen S, Zhang P, Xiao L, Liu Y, Wu K, Ni G, Li H, Wang T, Wu X, Chen G, Liu X. Caerin 1.1 and 1.9 Peptides from Australian Tree Frog Inhibit Antibiotic-Resistant Bacteria Growth in a Murine Skin Infection Model. Microbiol Spectr 2021; 9:e0005121. [PMID: 34259550 PMCID: PMC8552723 DOI: 10.1128/spectrum.00051-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
The host defense peptide caerin 1.9 was originally isolated from skin secretions of an Australian tree frog and inhibits the growth of a wide range of bacteria in vitro. In this study, we demonstrated that caerin 1.9 shows high bioactivity against several bacteria strains, such as Staphylococcus aureus, Acinetobacter baumannii, methicillin-resistant Staphylococcus aureus (MRSA), and Streptococcus haemolyticus in vitro. Importantly, unlike the antibiotic Tazocin, caerin 1.9 does not induce bacterial resistance after 30 rounds of in vitro culture. Moreover, caerin 1.1, another peptide of the caerin family, has an additive antibacterial effect when used together with caerin 1.9. Furthermore, caerin 1.1 and 1.9 prepared in the form of a temperature-sensitive gel inhibit MRSA growth in a skin bacterial infection model of two murine strains. These results indicate that caerin 1.1 and 1.9 peptides could be considered an alternative for conventional antibiotics. IMPORTANCE Antibiotic-resistant bacteria cause severe problems in the clinic. We show in our paper that two short peptides isolated from an Australian frog and prepared in the form of a gel are able to inhibit the growth of antibiotic-resistant bacteria in mice, and, unlike antibiotics, these peptides do not lead to the development of peptide-resistant bacteria strains.
Collapse
Affiliation(s)
- Shu Chen
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Pingping Zhang
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Liyin Xiao
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Ying Liu
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Kuihai Wu
- Clinical Microbiological Laboratory, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Guoying Ni
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
- Department of Rheumatology, Foshan Frist People’s Hospital, Foshan, Guangdong, China
| | - Hejie Li
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| | - Xiaolian Wu
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
| | - Guoqiang Chen
- Department of Rheumatology, Foshan Frist People’s Hospital, Foshan, Guangdong, China
| | - Xiaosong Liu
- Cancer Research Institute, Foshan First People’s Hospital, Foshan, Guangdong, China
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore, QLD, Australia
| |
Collapse
|
18
|
Ajingi YS, Muhammad A, Khunrae P, Rattanarojpong T, Pattanapanyasat K, Sutthibutpong T, Jongruja N. Antibacterial Potential of a Novel Peptide from the Consensus Sequence of Dermaseptin Related Peptides Secreted by Agalychnis annae. Curr Pharm Biotechnol 2021; 22:1216-1227. [PMID: 33081682 DOI: 10.2174/1389201021666201020161428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/16/2020] [Accepted: 09/23/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The consistently increasing reports of bacterial resistance and the reemergence of bacterial epidemics have inspired the health and scientific community to discover new molecules with antibacterial potential continuously. Frog-skin secretions constitute bioactive compounds essential for finding new biopharmaceuticals. The exact antibacterial characterization of dermaseptin related peptides derived from Agalychnis annae, is limited. The resemblance in their conserved and functionally linked genomes indicates an unprecedented opportunity to obtain novel bioactive compounds. OBJECTIVE In this study, we derived a novel peptide sequence and determined its antibacterial potentials. METHODS Consensus sequence strategy was used to design the novel and active antibacterial peptide named 'AGAAN' from skin secretions of Agalychnis annae. The in-vitro activities of the novel peptide against some bacterial strains were investigated. Time kill studies, DNA retardation, cytotoxicity, betagalactosidase, and molecular computational studies were conducted. RESULTS AGAAN inhibited P. aeruginosa, E. faecalis, and S. typhimurium at 20 μM concentration. E. coli and S. aureus were inhibited at 25 μM, and lastly, B. subtilis at 50 μM. Kinetics of inactivation against exponential and stationary growing bacteria was found to be rapid within 1-5 hours of peptide exposure, depending on time and concentration. The peptide displayed weak hemolytic activity between 0.01%-7.31% at the antibacterial concentrations. AGAAN efficiently induced bacterial membrane damage with subsequent cell lysis. The peptide's DNA binding shows that it also targets intracellular DNA by retarding its movement. Our in-silico molecular docking analysis displayed a strong affinity to the bacterial cytoplasmic membrane. CONCLUSION AGAAN exhibits potential antibacterial properties that could be used to combat bacterial resistance.
Collapse
Affiliation(s)
- Ya'u Sabo Ajingi
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Auwal Muhammad
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Pongsak Khunrae
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Triwit Rattanarojpong
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| | - Kovit Pattanapanyasat
- Office for Research and Development, Department of Immunology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Thana Sutthibutpong
- Theoretical and Computational Physics Group, Department of Physics, King Mongkut's University of Technology, Thonburi, (KMUTT), Thailand
| | - Nujarin Jongruja
- Department of Microbiology, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, Thailand
| |
Collapse
|
19
|
Samgina TY, Vasileva ID, Kovalev SV, Trebse P, Torkar G, Surin AK, Zubarev RA, Lebedev AT. Differentiation of Central Slovenian and Moscow populations of Rana temporaria frogs using peptide biomarkers of temporins family. Anal Bioanal Chem 2021; 413:5333-5347. [PMID: 34235566 DOI: 10.1007/s00216-021-03506-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/22/2021] [Accepted: 06/25/2021] [Indexed: 12/18/2022]
Abstract
Skin secretion represents the only means of defense for the majority of frog species. That phenomenon is based on the fact that the main components of the secretion are peptides demonstrating greatly varying types of bioactivity. They fulfill regulatory functions, fight microorganisms and may be even helpful against predators. These peptides are considered to be rather promising pharmaceuticals of future generation as according to the present knowledge microorganisms are unlikely to develop resistance to them. Mass spectrometry sequencing of these peptides is the most efficient first step of their study providing reliably their primary structures, i.e., amino acids sequence and S-S bond motif. Besides discovering new bioactive peptides, mass spectrometry appears to be an efficient tool of taxonomy studies, allowing for distinguishing not only between closely related species, but also between populations of the same species. Application of several tandem mass spectrometry tools (CID, HCD, ETD, EThcD) available with Orbitrap mass analyzer allowed us to obtain full sequence of about 60 peptides in the secretion of Slovenian population of brown ranid frog Rana temporaria. The problem of sequence inside C-terminal cycle formed by two Cys and differentiation of isomeric Leu and Ile residues was done in top-down mode without any derivatization steps. Besides general biomarkers of Rana temporaria species, Central Slovenian population of Rana temporaria demonstrates six novel temporins and one brevinin 1, which may be treated as biomarkers of that population.
Collapse
Affiliation(s)
- T Yu Samgina
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia.
| | - I D Vasileva
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - S V Kovalev
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia
| | - P Trebse
- University of Ljubljana Faculty of Health Sciences, Zdravstvena pot 5, 1000, Ljubljana, Slovenia
| | - G Torkar
- Department for Biology, Chemistry and Home Economics, University of Ljubljana Faculty of Education, Kardeljeva ploščad 16, 1000, Ljubljana, Slovenia
| | - A K Surin
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow, 142290, Russia
| | - R A Zubarev
- Department of Medicinal Biochemistry and Biophysics, Division of Molecular Biometry, Karolinska Institutet, 17177, Stockholm, Sweden.,Department of Pharmacological & Technological Chemistry, I.M. Sechenov First Moscow State Medical University, Moscow, 119146, Russia
| | - A T Lebedev
- Department of Organic Chemistry, Lomonosov Moscow State University, 119991, Moscow, Russia.
| |
Collapse
|
20
|
Lin R, Ma B, Liu N, Zhang L, He T, Liu X, Chen T, Liu W, Liang Y, Wang T, Ni G, Liu X, Yang N, Zhang J, Yuan J. Targeted radioimmunotherapy with the iodine-131-labeled caerin 1.1 peptide for human anaplastic thyroid cancer in nude mice. Ann Nucl Med 2021; 35:811-822. [PMID: 33948902 PMCID: PMC8197720 DOI: 10.1007/s12149-021-01618-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 04/20/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The combination of two or more drugs with different mechanisms is a promising strategy for cancer treatment, and radioimmunotherapy (RIT) is a trending antitumor strategy. Radiotherapy (RT) can promote and activate antitumor immune effects, and immunotherapy can strengthen the effects of selective internal radiotherapy (SIRT); the RIT combination is synergistic and can overcome the adverse side effects of monotherapy. In this study, we developed a radioimmunoconjugate (RIC)-the iodine-131 (131I)-labeled caerin 1.1 peptide-to treat human anaplastic thyroid cancer (ATC). METHODS Antitumor activity of caerin 1.1 peptide was determined by MTT assay, plate colony formation and cell wound scratch assays, and the mechanism of the inhibition of carein 1.1 peptide on the growth of CAL-62 cells was identified by cell cycle and western blot. Then, we investigated the efficacy of the caerin 1.1 peptide as a single drug and the 131I-labeled caerin 1.1 peptide for ATC. H&E and TUNEL staining was performed to detect dead cells in the tumor tissue sections. RESULTS We found that caerin 1.1 arrested cells in the S phase to induce apoptosis and inhibited tumor growth to inhibit phosphorylation of Akt. In vivo, the iodine-131 (131I)-labeled caerin 1.1 peptide achieved better antitumor efficacy than radiotherapy alone and showed a good biosafety profile. CONCLUSIONS Our study demonstrates for the first time that the iodine-131 (131I)-labeled caerin 1.1 peptide can inhibit CAL-62 tumor growth and migration. The iodine-131 (131I)-labeled caerin 1.1 peptide, which represents a radioimmunotherapy strategy based on the combination of SIRT with a peptide-drug conjugate, could provide a treatment means for the radical cure of ATC.
Collapse
Affiliation(s)
- Ruoting Lin
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Bowei Ma
- Department of TCM Resident Training, The First Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, 510405, Guangdong, China
| | - Na Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Lu Zhang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Tiantian He
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Xiongying Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Tongsheng Chen
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Wenjuan Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Yongnan Liang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Tianfang Wang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Genecology Research Centre, University of Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Guoying Ni
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- Genecology Research Centre, University of Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Xiaosong Liu
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
- The First People's Hospital of Foshan, Foshan, 528000, Guangdong, China
- Genecology Research Centre, University of Sunshine Coast, Maroochydore DC, QLD, 4558, Australia
| | - Ning Yang
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China
| | - Jinhe Zhang
- Department of Nuclear Medicine, General Hospital of the Southern Theatre Command, People's Liberation Army of China, Guangzhou, 510010, Guangdong, China
| | - Jianwei Yuan
- Department of Nuclear Medicine, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
21
|
Samgina TY, Tolpina MD, Surin AK, Kovalev SV, Bosch RA, Alonso IP, Garcia FA, Gonzalez Lopez LJ, Lebedev AT. Manual mass spectrometry de novo sequencing of the anionic host defense peptides of the Cuban Treefrog Osteopilus septentrionalis. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2021; 35:e9061. [PMID: 33527491 DOI: 10.1002/rcm.9061] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/29/2021] [Accepted: 01/30/2021] [Indexed: 06/12/2023]
Abstract
RATIONALE Host defense peptides accumulated in the skin glands of the animals constitute the basis of the adaptive and immune system of amphibians. The peptidome of the Cuban frog Osteopilus septentrionalis was established using tandem mass spectrometry as the best analytical tool to elucidate the sequence of these peptides. METHODS Manual interpretation of complementary collision-induced dissociation (CID), higher energy collision-induced dissociation (HCD), and electron transfer dissociation (ETD) tandem mass spectra recorded with an Orbitrap Elite mass spectrometer in liquid chromatography/mass spectrometry (LC/MS) mode was used to sequence the peptide components of the frog skin secretion, obtained by mild electrostimulation. RESULTS Although the vast majority of amphibian peptides discovered so far are cationic, surprisingly only anionic peptides were identified in the skin secretion of the Cuban frog Osteopilus septentrionalis. Mass spectrometry allowed the sequences to be established of 16 representatives of new peptide families: septenins 1 and septenins 2. The highest sequence coverage when dealing with these anionic peptides was obtained with CID normalized collision energy 35 and HCD normalized collision energy 28. CONCLUSIONS Mirror-symmetrical peptides are sequenced using N-terminal acetylation. Acetylated Ser is reliably distinguished from isomeric Glu by the loss of ketene from b-ions containing the corresponding residue. Calculations of the physicochemical and structural properties of the discovered anionic septenins 1 and 2 allowed the mechanism of their interaction with microbe cells to be postulated.
Collapse
Affiliation(s)
- Tatiana Y Samgina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Maria D Tolpina
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Alexey K Surin
- Pushchino Branch, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki 6, Pushchino, Moscow, 142290, Russia
| | - Sergey V Kovalev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| | - Roberto Alonso Bosch
- Museum of Natural History "Felipe Poey", Faculty of Biology, University of Havana, Havana, Cuba
| | - Isel Pascual Alonso
- Center for Protein Studies, Faculty of Biology, University of Havana, Havana, Cuba
| | | | - Luis Javier Gonzalez Lopez
- Mass Spectrometry Laboratory, Department of Proteomics, Center for Genetic Engineering and Biotechnology, PO Box 6162, Havana, Cuba
| | - Albert T Lebedev
- Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1/3, Moscow, 119991, Russia
| |
Collapse
|
22
|
Potential Inhibitory Effect of Apis mellifera's Venom and of Its Two Main Components-Melittin and PLA 2-on Escherichia coli F 1F 0-ATPase. Antibiotics (Basel) 2020; 9:antibiotics9110824. [PMID: 33218209 PMCID: PMC7699247 DOI: 10.3390/antibiotics9110824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/16/2023] Open
Abstract
Bacterial resistance has become a worrying problem for human health, especially since certain bacterial strains of Escherichia coli (E. coli) can cause very serious infections. Thus, the search for novel natural inhibitors with new bacterial targets would be crucial to overcome resistance to antibiotics. Here, we evaluate the inhibitory effects of Apis mellifera bee venom (BV-Am) and of its two main components -melittin and phospholipase A2 (PLA2)- on E. coli F1F0-ATPase enzyme, a crucial molecular target for the survival of these bacteria. Thus, we optimized a spectrophotometric method to evaluate the enzymatic activity by quantifying the released phosphate from ATP hydrolysis catalyzed by E. coli F1F0-ATPase. The protocol developed for inhibition assays of this enzyme was validated by two reference inhibitors, thymoquinone (IC50 = 57.5 μM) and quercetin (IC50 = 30 μM). Results showed that BV-Am has a dose-dependent inhibitory effect on E. coli F1F0-ATPase with 50% inhibition at 18.43 ± 0.92 μg/mL. Melittin inhibits this enzyme with IC50 = 9.03 ± 0.27 µM, emphasizing a more inhibitory effect than the two previous reference inhibitors adopted. Likewise, PLA2 inhibits E. coli F1F0-ATPase with a dose-dependent effect (50% inhibition at 2.11 ± 0.11 μg/mL) and its combination with melittin enhanced the inhibition extent of this enzyme. Crude venom and mainly melittin and PLA2, inhibit E. coli F1F0-ATPase and could be considered as important candidates for combating resistant bacteria.
Collapse
|
23
|
Han Z, Lian C, Ma Y, Zhang C, Liu Z, Tu Y, Ma Y, Gu Y. A frog-derived bionic peptide with discriminative inhibition of tumors based on integrin αvβ3 identification. Biomater Sci 2020; 8:5920-5930. [PMID: 32959810 DOI: 10.1039/d0bm01187h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Aureins, natural active peptides extracted from skin secretions of Australian bell frogs, have become a research focus due to the antitumor effects caused by lysing cell membranes. However, clinical translation of Aureins is still limited by non-selective toxicity between normal and cancer cells. Herein, by structure-activity relationship analysis and rational linker design, a dual-function fusion peptide RA3 is designed by tactically fusing Aurein peptide A1 with strong anticancer activity, with a tri-peptide with integrin αvβ3-binding ability which was screened in our previous work. Rational design and selection of fusion linkers ensures α-helical conformation and active functions of this novel fusion peptide, inducing effective membrane rupture and selective apoptosis of cancer cells. The integrin binding and tumor recognition ability of the fusion peptide is further validated by fluorescence imaging in cell and mouse models, in comparison with the non-selective A1 peptide. Meanwhile, increased stability and superior therapeutic efficacy are achieved in vivo for the RA3 fusion peptide. Our study highlights that aided by computational simulation technologies, the biomimetic fusion RA3 peptide has been successfully designed, surmounting the poor tumor-selectivity of the natural defensive peptide, serving as a promising therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Zhihao Han
- State Key Laboratory of Natural Medicines, Department of Biomedicine Engineering, School of Engineering, China Pharmaceutical University, Nanjing, No. 24 Tongjia Lane, 210009, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Li Z, Yuan Y, Li S, Deng B, Wang Y. Antibacterial activity of a scorpion-derived peptide and its derivatives in vitro and in vivo. Toxicon 2020; 186:35-41. [PMID: 32768440 DOI: 10.1016/j.toxicon.2020.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 02/04/2023]
Abstract
Antimicrobial peptides have recently become extremely popular as a novel class of antimicrobial agents. AMP MK049518 (FLGLLGSVLGSVLPSIFK), identified from the crab-scorpion Didymocentrus krausi, only possesses significant antibacterial activity against Gram-positive bacteria. In this study, a derivative G2K-S3K was designed with an excellent antibacterial spectrum and significantly higher antibacterial activity compared to the natural peptide. G2K-S3K also demonstrated excellent serum- and thermal-stability and did not induce bacterial resistance. In the Staphylococcus aureus and Pseudomonas aeruginosa -induced skin infection in mice, G2K-S3K significantly decreased bacterial counts in the wound by topical application. Thus, G2K-S3K could be a potent topical anti-infective agent against the skin infection caused by S. aureus and P. aeruginosa.
Collapse
Affiliation(s)
- Zhongjie Li
- Medical College, Henan University of Science and Technology, Luoyang, 471003, China.
| | - Yaping Yuan
- Medical College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Shasha Li
- Medical College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Bo Deng
- Medical College, Henan University of Science and Technology, Luoyang, 471003, China
| | - Yong Wang
- Medical College, Henan University of Science and Technology, Luoyang, 471003, China
| |
Collapse
|
25
|
John T, Greene GW, Patil NA, Dealey TJA, Hossain MA, Abel B, Martin LL. Adsorption of Amyloidogenic Peptides to Functionalized Surfaces Is Biased by Charge and Hydrophilicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14522-14531. [PMID: 31537064 DOI: 10.1021/acs.langmuir.9b02063] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Surfaces are abundant in living systems, such as in the form of cellular membranes, and govern many biological processes. In this study, the adsorption of the amyloidogenic model peptides GNNQQNY, NNFGAIL, and VQIVYK as well as the amyloid-forming antimicrobial peptide uperin 3.5 (U3.5) were studied at low concentrations (100 μM) to different surfaces. The technique of a quartz crystal microbalance with dissipation monitoring (QCM-D) was applied as it enables the monitoring of mass binding to sensors at nanogram sensitivity. Gold-coated quartz sensors were used as unmodified gold surfaces or functionalized with self-assembled monolayers (SAMs) of alkanethiols (terminated as methyl, amino, carboxyl, and hydroxyl) resulting in different adsorption affinities of the peptides. Our objective was to evaluate the underlying role of the nature and feature of interfaces in biological systems which could concentrate peptides and impact or trigger peptide aggregation processes. In overall, the largely hydrophobic peptides adsorbed with preference to hydrophobic or countercharged surfaces. Further, the glycoprotein lubricin (LUB) was tested as an antiadhesive coating. Despite its hydrophilicity, the adsorption of peptides to LUB coated sensors was similar to the adsorption to unmodified gold surfaces, which indicates that some peptides diffused through the LUB layer to reach the underlying gold sensor surface. The LUB protein-antiadhesive is thus more effective as a biomaterial coating against larger biomolecules than small peptides under the conditions used here. This study provides directions toward a better understanding of amyloid peptide adsorption to biologically relevant interfaces, such as cellular membranes.
Collapse
Affiliation(s)
- Torsten John
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
- Leibniz Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Linnéstraße 3 , 04103 Leipzig , Germany
| | - George W Greene
- Institute for Frontier Materials , Deakin University , 75 Pigdons Road , Waurn Ponds , Victoria 3216 , Australia
| | - Nitin A Patil
- Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Tiara J A Dealey
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| | - Mohammed A Hossain
- Florey Institute of Neuroscience and Mental Health , The University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM) , Permoserstraße 15 , 04318 Leipzig , Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry , Leipzig University , Linnéstraße 3 , 04103 Leipzig , Germany
| | - Lisandra L Martin
- School of Chemistry , Monash University , Clayton , Victoria 3800 , Australia
| |
Collapse
|
26
|
John T, Dealey TJA, Gray NP, Patil NA, Hossain MA, Abel B, Carver JA, Hong Y, Martin LL. The Kinetics of Amyloid Fibrillar Aggregation of Uperin 3.5 Is Directed by the Peptide’s Secondary Structure. Biochemistry 2019; 58:3656-3668. [DOI: 10.1021/acs.biochem.9b00536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Torsten John
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Tiara J. A. Dealey
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Nicholas P. Gray
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Nitin A. Patil
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Mohammed A. Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM), Permoserstraße 15, 04318 Leipzig, Germany
- Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - John A. Carver
- Research School of Chemistry, The Australian National University, Acton, Australian Capital Territory 2601, Australia
| | - Yuning Hong
- Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Lisandra L. Martin
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
27
|
Glu residues of βDELSEED-motif are essential for peptide binding in Escherichia coli ATP synthase. Int J Biol Macromol 2018; 116:977-982. [DOI: 10.1016/j.ijbiomac.2018.05.118] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 11/20/2022]
|
28
|
Comparative Proteomic Study of the Antiproliferative Activity of Frog Host-Defence Peptide Caerin 1.9 and Its Additive Effect with Caerin 1.1 on TC-1 Cells Transformed with HPV16 E6 and E7. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7382351. [PMID: 29862288 PMCID: PMC5971270 DOI: 10.1155/2018/7382351] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 03/27/2018] [Indexed: 12/26/2022]
Abstract
Caerin is a family of peptides isolated from the glandular secretion of Australian tree frogs, the genus Litoria, and has been previously shown to have anticancer activity against several cancer cells. In this work, we used two host-defence peptides, caerin 1.1 and caerin 1.9, to investigate their ability to inhibit a murine derived TC-1 cell transformed with human papillomavirus 16 E6 and E7 growth in vitro. Caerin 1.9 inhibits TC-1 cell proliferation, although inhibition is more pronounced when applied in conjunction with caerin 1.1. To gain further insights into the antiproliferative mechanisms of caerin 1.9 and its additive effect with caerin 1.1, we used a proteomics strategy to quantitatively examine (i) the changes in the protein profiles of TC-1 cells and (ii) the excretory-secretory products of TC-1 cells following caerin peptides treatment. Caerin 1.9 treatment significantly altered the abundance of several immune-related proteins and related pathways, such as the Tec kinase and ILK signalling pathways, as well as the levels of proinflammatory cytokines and chemokines. In conclusion, caerin peptides inhibit TC-1 cell proliferation, associated with modification in signalling pathways that would change the tumour microenvironment which is normally immune suppressive.
Collapse
|
29
|
Yuan J, Ni G, Wang T, Mounsey K, Cavezza S, Pan X, Liu X. Genital warts treatment: Beyond imiquimod. Hum Vaccin Immunother 2018; 14:1815-1819. [PMID: 29505317 DOI: 10.1080/21645515.2018.1445947] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Genital warts are one of the most common sexually transmitted diseases worldwide. The disease is a result of infection with low-risk types of human papillomaviruses, mostly type 6 and 11. Current therapies for genital warts are mainly ablative, or alternatively topical application of imiquimod cream and sinecatechin (polyphenon E) ointment to the warts. However, low patient compliance and high recurrence rate are significant problems for the treatment of genital warts by imiquimod and ablative therapies. We summarise recent literature in this area and propose combining imiquimod with other therapies to increase the efficacy of imiquimod.
Collapse
Affiliation(s)
- Jianwei Yuan
- a Institute of Molecular Diagnosis and Target Therapy, First Affiliated Hospital , Guangdong Pharmaceutical University , Guangzhou , Guangdong , China
| | - Guoying Ni
- c Inflammation and Healing research cluster, Faculty of Science, Health , Education and Engineering, University of the Sunshine Coast , Maroochydore DC , Australia
| | - Tianfang Wang
- b Genecology Research Centre, Faculty of Science, Health, Education and Engineering , University of the Sunshine Coast , Maroochydore DC , Australia
| | - Kate Mounsey
- c Inflammation and Healing research cluster, Faculty of Science, Health , Education and Engineering, University of the Sunshine Coast , Maroochydore DC , Australia
| | - Shelley Cavezza
- c Inflammation and Healing research cluster, Faculty of Science, Health , Education and Engineering, University of the Sunshine Coast , Maroochydore DC , Australia
| | - Xuan Pan
- a Institute of Molecular Diagnosis and Target Therapy, First Affiliated Hospital , Guangdong Pharmaceutical University , Guangzhou , Guangdong , China
| | - Xiaosong Liu
- a Institute of Molecular Diagnosis and Target Therapy, First Affiliated Hospital , Guangdong Pharmaceutical University , Guangzhou , Guangdong , China.,c Inflammation and Healing research cluster, Faculty of Science, Health , Education and Engineering, University of the Sunshine Coast , Maroochydore DC , Australia
| |
Collapse
|
30
|
Martin LL, Kubeil C, Piantavigna S, Tikkoo T, Gray NP, John T, Calabrese AN, Liu Y, Hong Y, Hossain MA, Patil N, Abel B, Hoffmann R, Bowie JH, Carver JA. Amyloid aggregation and membrane activity of the antimicrobial peptide uperin 3.5. Pept Sci (Hoboken) 2018. [DOI: 10.1002/pep2.24052] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
| | - Clemens Kubeil
- School of Chemistry; Monash University; Clayton Victoria 3800 Australia
| | | | - Tarun Tikkoo
- School of Chemistry; Monash University; Clayton Victoria 3800 Australia
| | - Nicholas P. Gray
- School of Chemistry; Monash University; Clayton Victoria 3800 Australia
| | - Torsten John
- School of Chemistry; Monash University; Clayton Victoria 3800 Australia
- Leibniz Institute of Surface Engineering (IOM) and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry; Leipzig University; Leipzig 04318 Germany
| | - Antonio N. Calabrese
- Department of Chemistry and School of Physical Sciences; The University of Adelaide; Adelaide South Australia 5005 Australia
| | - Yanqin Liu
- Department of Chemistry and School of Physical Sciences; The University of Adelaide; Adelaide South Australia 5005 Australia
| | - Yuning Hong
- Department of Chemistry and Physics; La Trobe Institute for Molecular Science, La Trobe University; Melbourne Victoria 3086 Australia
| | - Mohammed A. Hossain
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne; Parkville Victoria 3010 Australia
| | - Nitin Patil
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne; Parkville Victoria 3010 Australia
| | - Bernd Abel
- Leibniz Institute of Surface Engineering (IOM) and Wilhelm-Ostwald-Institute for Physical and Theoretical Chemistry; Leipzig University; Leipzig 04318 Germany
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, and Center for Biotechnology and Biomedicine (BBZ), Universität Leipzig; Leipzig 04103 Germany
| | - John H. Bowie
- Department of Chemistry and School of Physical Sciences; The University of Adelaide; Adelaide South Australia 5005 Australia
| | - John A. Carver
- Research School of Chemistry; The Australian National University; Acton Australian Capital Territory 2601 Australia
| |
Collapse
|
31
|
John T, Abel B, Martin LL. The Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D) Technique Applied to the Study of Membrane-Active Peptides. Aust J Chem 2018. [DOI: 10.1071/ch18129] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
32
|
Wang T, Nha Tran TT, Andreazza HJ, Bilusich D, Brinkworth CS, Bowie JH. Negative ion cleavages of (M-H) - anions of peptides. Part 3. Post-translational modifications. MASS SPECTROMETRY REVIEWS 2018; 37:3-21. [PMID: 27018865 DOI: 10.1002/mas.21501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 03/03/2015] [Indexed: 06/05/2023]
Abstract
It is now 25 years since we commenced the study of the negative-ion fragmentations of peptides and we have recently concluded this research with investigations of the negative-ion chemistry of most post-translational functional groups. Our first negative-ion peptide review (Bowie, Brinkworth, & Dua, 2002) dealt with the characteristic backbone fragmentations and side-chain cleavages from (M-H)- ions of underivatized peptides, while the second (Bilusich & Bowie, 2009) included negative-ion backbone cleavages for Ser and Cys and some initial data on some post-translational groups including disulfides. This third and final review provides a brief summary of the major backbone and side chain cleavages outlined before (Bowie, Brinkworth, & Dua, 2002) and describes the quantum mechanical hydrogen tunneling associated with some proton transfers in enolate anion/enolate systems. The review then describes, in more depth, the negative-ion cleavages of the post-translational groups Kyn, isoAsp, pyroglu, disulfides, phosphates, and sulfates. Particular emphasis is devoted to disulfides (both intra- and intermolecular) and phosphates because of the extensive and spectacular anion chemistry shown by these groups. © 2016 Wiley Periodicals, Inc. Mass Spec Rev.
Collapse
Affiliation(s)
- Tianfang Wang
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
- Genecology Research Centre, University of the Sunshine Coast, Queensland, 4556, Australia
| | - T T Nha Tran
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
- Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Hayley J Andreazza
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
| | - Daniel Bilusich
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
- Defence Science and Technology Organisation, Salisbury, PO Box 1500, South Australia, 5108, Australia
| | - Craig S Brinkworth
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
- Defence Science and Technology Organisation, Land Division, Fishermans Bend, Victoria, 3207, Australia
| | - John H Bowie
- Department of Chemistry, The University of Adelaide, South Australia, 5005, Australia
| |
Collapse
|
33
|
Discovery of Phylloseptins that Defense against Gram-Positive Bacteria and Inhibit the Proliferation of the Non-Small Cell Lung Cancer Cell Line, from the Skin Secretions of Phyllomedusa Frogs. Molecules 2017; 22:molecules22091428. [PMID: 28850103 PMCID: PMC6151776 DOI: 10.3390/molecules22091428] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 08/26/2017] [Indexed: 11/22/2022] Open
Abstract
The growing occurrence of bacterial resistance to conventional antibiotics has called for the development of new classes of antimicrobial agents. Antimicrobial peptides (AMPs) with broad antimicrobial spectrum derived from frog skin secretions have been demonstrated to be promising candidates for new antibiotic development. A proven rich source of these compounds are the skin secretions of the frogs in the Phyllomedusa genus. In this study, two novel phylloseptin peptides—phylloseptin-PTa and phylloseptin-PHa—were isolated from the skin secretions of the South American frogs, Phyllomedusa tarsius (P. tarsius) and Phyllomedusa hypochondrialis (P. hypochondrialis) through parallel transcriptomic and peptidomic studies. Replicates obtained by chemical synthesis were structurally analysed and shown to adopt an α-helix configuration in an amphiphilic environment. Both peptides demonstrated antimicrobial activities against planktonic Gram-positive bacteria strains, including Staphylococcus aureus, Enterococcus faecalis and methicillin-resistant Staphylococcus aureus , biofilms, as well as cytostatic effects on the non-small cell lung cancer cell line, NCI-H157, with relatively low haemolysis on horse erythrocytes and low cytotoxicity on the human microvascular endothelial cell line, HMEC-1. The discovery of phylloseptin peptides may further inspire the development of new types of antibiotics.
Collapse
|
34
|
Nair SS, Zolotarskaya OY, Beckwith MJ, Ohman DE, Wynne KJ. A Polycation Antimicrobial Peptide Mimic without Resistance Buildup against Propionibacterium Acnes. Macromol Biosci 2017; 17. [PMID: 28605136 DOI: 10.1002/mabi.201700090] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 05/08/2017] [Indexed: 11/09/2022]
Abstract
A preliminary study is reported for a polycation antimicrobial peptide (AMP) mimic against Propionibacterium acnes, which is associated with acne vulgaris, a common skin condition. Antibiotics are commonly used against P. acnes but buildup of resistance is well-known. Worse, antibiotic regimens build up resistance for more sensitive bacteria such as Staphylococcus epidermidis. The polycation AMP mimic C12-50, 1, is chosen for the present study as it has been previously shown to have high antimicrobial effectiveness. This study reports that C12-50 is active against P. acnes (strain ATCC 6919) with a minimum inhibitory concentration (MIC) of 6.3 µg mL-1 . To monitor resistance build-up ten passages are conducted with C12-50 against P. acnes. The MIC remains constant with no resistance buildup. Parallel studies with erythromycin confirm previously reported resistance buildup. The results point to a promising pathway to applications for polycation AMP mimics against P. acnes.
Collapse
Affiliation(s)
- Sithara S Nair
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Olga Y Zolotarskaya
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Matthew J Beckwith
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| | - Dennis E Ohman
- Department of Microbiology and Immunology, VCU School of Medicine, 1101 East Marshall Street, Richmond, VA, 23298, USA.,McGuire Veterans Affairs Medical Center, Richmond, VA, 23249, USA
| | - Kenneth J Wynne
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23219, USA
| |
Collapse
|
35
|
Gusmão KAG, Dos Santos DM, Santos VM, Cortés ME, Reis PVM, Santos VL, Piló-Veloso D, Verly RM, de Lima ME, Resende JM. Ocellatin peptides from the skin secretion of the South American frog Leptodactylus labyrinthicus (Leptodactylidae): characterization, antimicrobial activities and membrane interactions. J Venom Anim Toxins Incl Trop Dis 2017; 23:4. [PMID: 28115922 PMCID: PMC5244724 DOI: 10.1186/s40409-017-0094-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 01/06/2017] [Indexed: 12/04/2022] Open
Abstract
Background The availability of antimicrobial peptides from several different natural sources has opened an avenue for the discovery of new biologically active molecules. To the best of our knowledge, only two peptides isolated from the frog Leptodactylus labyrinthicus, namely pentadactylin and ocellatin-F1, have shown antimicrobial activities. Therefore, in order to explore the antimicrobial potential of this species, we have investigated the biological activities and membrane interactions of three peptides isolated from the anuran skin secretion. Methods Three peptide primary structures were determined by automated Edman degradation. These sequences were prepared by solid-phase synthesis and submitted to activity assays against gram-positive and gram-negative bacteria and against two fungal strains. The hemolytic properties of the peptides were also investigated in assays with rabbit blood erythrocytes. The conformational preferences of the peptides and their membrane interactions have been investigated by circular dichroism spectroscopy and liposome dye release assays. Results The amino acid compositions of three ocellatins were determined and the sequences exhibit 100% homology for the first 22 residues (ocellatin-LB1 sequence). Ocellatin-LB2 carries an extra Asn residue and ocellatin-F1 extra Asn-Lys-Leu residues at C-terminus. Ocellatin-F1 presents a stronger antibiotic potential and a broader spectrum of activities compared to the other peptides. The membrane interactions and pore formation capacities of the peptides correlate directly with their antimicrobial activities, i.e., ocellatin-F1 > ocellatin-LB1 > ocellatin-LB2. All peptides acquire high helical contents in membrane environments. However, ocellatin-F1 shows in average stronger helical propensities. Conclusions The obtained results indicate that the three extra amino acid residues at the ocellatin-F1 C-terminus play an important role in promoting stronger peptide-membrane interactions and antimicrobial properties. The extra Asn-23 residue present in ocellatin-LB2 sequence seems to decrease its antimicrobial potential and the strength of the peptide-membrane interactions. Electronic supplementary material The online version of this article (doi:10.1186/s40409-017-0094-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Karla A G Gusmão
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil.,Instituto de Engenharia, Ciência e Tecnologia, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Janaúba, MG Brazil
| | - Daniel M Dos Santos
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Virgílio M Santos
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - María Esperanza Cortés
- Departamento de Odontologia Restauradora, Faculdade de Odontologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG Brazil
| | - Pablo V M Reis
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Vera L Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Dorila Piló-Veloso
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Rodrigo M Verly
- Departamento de Química, Universidade Federal dos Vales do Jequitinhonha e Mucuri (UFVJM), Diamantina, MG Brazil
| | - Maria Elena de Lima
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| | - Jarbas M Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG Brazil
| |
Collapse
|
36
|
Davis LR, Klonoski K, Rutschow HL, Van Wijk KJ, Sun Q, Haribal MM, Saporito RA, Vega A, Rosenblum EB, Zamudio KR, Robertson JM. Host Defense Skin Peptides Vary with Color Pattern in the Highly Polymorphic Red-Eyed Treefrog. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
37
|
Akashi S, Downard KM. Effect of charge on the conformation of highly basic peptides including the tail regions of histone proteins by ion mobility mass spectrometry. Anal Bioanal Chem 2016; 408:6637-48. [DOI: 10.1007/s00216-016-9777-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/28/2016] [Accepted: 07/06/2016] [Indexed: 10/21/2022]
|
38
|
Abstract
The structure-function relationship for a family of antimicrobial peptides (AMPs) from the skin of Australian tree frogs is discussed and compared with that of peptide toxins from bee and Australian scorpion venoms. Although these membrane-active peptides induce a similar cellular fate by disrupting the lipid bilayer integrity, their lytic activity is achieved via different modes of action, which are investigated in relation to amino acid sequence, secondary structure, and membrane lipid composition. In order to better understand what structural features govern the interaction between peptides and lipid membranes, cell-penetrating peptides (CPPs), which translocate through the membrane without compromising its integrity, are also discussed. AMPs possess membrane lytic activities that are naturally designed to target the cellular membrane of pathogens or competitors. They are extremely diverse in amino acid composition and often show specificity against a particular strain of microbe. Since our antibiotic arsenal is declining precariously in the face of the rise in multiantibiotic resistance, AMPs increasingly are seen as a promising alternative. In an effort to understand their molecular mechanism, biophysical studies of a myriad of AMPs have been reported, yet no unifying mechanism has emerged, rendering difficult the rational design of drug leads. Similarly, a wide variety of cytotoxic peptides are found in venoms, the best known being melittin, yet again, predicting their activity based on a particular amino acid composition or secondary structure remains elusive. A common feature of these membrane-active peptides is their preference for the lipid environment. Indeed, they are mainly unstructured in solution and, in the presence of lipid membranes, quickly adsorb onto the surface, change their secondary structure, eventually insert into the hydrophobic core of the membrane bilayer, and finally disrupt the bilayer integrity. These steps define the molecular mechanism by which these membrane-active peptides lyse membranes. The last class of membrane-active peptides discussed are the CPPs, which translocate across the lipid bilayer without inducing severe disruption and have potential as drug vehicles. CPPs are typically highly charged and can show antimicrobial activity by targeting an intracellular target rather than via a direct membrane lytic mechanism. A critical aspect in the structure-function relationship of membrane-active peptides is their specific activity relative to the lipid membrane composition of the cell target. Cell membranes have a wide diversity of lipids, and those of eukaryotic and prokaryotic species differ greatly in composition and structure. The activity of AMPs from Australian tree frogs, toxins, and CPPs has been investigated within various lipid systems to assess whether a relationship between peptide and membrane composition could be identified. NMR spectroscopy techniques are being used to gain atomistic details of how these membrane-active peptides interact with model membranes and cells, and in particular, competitive assays demonstrate the difference between affinity and activity for a specific lipid environment. Overall, the interactions between these relatively small sized peptides and various lipid bilayers give insight into how these peptides function at the membrane interface.
Collapse
Affiliation(s)
- Marc-Antoine Sani
- School of Chemistry, Bio21
Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Frances Separovic
- School of Chemistry, Bio21
Institute, University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
39
|
Gabernet G, Müller AT, Hiss JA, Schneider G. Membranolytic anticancer peptides. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00376a] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Understanding the structure–activity relationships and mechanisms of action of membranolytic anticancer peptides could help them advance to therapeutic success.
Collapse
Affiliation(s)
- G. Gabernet
- Department of Chemistry and Applied Biosciences
- Swiss Federal Institute of Technology (ETH)
- CH-8093 Zurich
- Switzerland
| | - A. T. Müller
- Department of Chemistry and Applied Biosciences
- Swiss Federal Institute of Technology (ETH)
- CH-8093 Zurich
- Switzerland
| | - J. A. Hiss
- Department of Chemistry and Applied Biosciences
- Swiss Federal Institute of Technology (ETH)
- CH-8093 Zurich
- Switzerland
| | - G. Schneider
- Department of Chemistry and Applied Biosciences
- Swiss Federal Institute of Technology (ETH)
- CH-8093 Zurich
- Switzerland
| |
Collapse
|
40
|
Wang K, Jia F, Dang W, Zhao Y, Zhu R, Sun M, Qiu S, An X, Ma Z, Zhu Y, Yan J, Kong Z, Yan W, Wang R. Antifungal effect and action mechanism of antimicrobial peptide polybia-CP. J Pept Sci 2015; 22:28-35. [PMID: 26680221 DOI: 10.1002/psc.2835] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/10/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022]
Abstract
The incidence of life-threatening invasive fungal infections increased significantly in recent years. However, the antifungal therapeutic options are very limited. Antimicrobial peptides are a class of potential lead chemical for the development of novel antifungal agents. Antimicrobial peptide polybia-CP was purified from the venom of the social wasp Polybia paulista. In this study, we synthesized polybia-CP and determined its antifungal effects against a series of Candidian species. Our results showed that polybia-CP has potent antifungal activity and fungicidal activity against the tested fungal cells with a proposed membrane-active action mode. In addition, polybia-CP could induce the increase of cellular reactive oxygen species production, which would attribute to its antifungal activity. In conclusion, the present study suggests that polybia-CP has potential as an antifungal agent or may offer a new strategy for antifungal therapeutic option.
Collapse
Affiliation(s)
- Kairong Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Fengjing Jia
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Wen Dang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Yanyan Zhao
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Ranran Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Mengyang Sun
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Shuai Qiu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Xiaoping An
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Zelin Ma
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Yuanyuan Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Jiexi Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Ziqing Kong
- Institute of Food Safety, State Key Laboratory Base of Food Quality and Safety, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Wenjin Yan
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, Lanzhou, 730000, China
| |
Collapse
|
41
|
Calabrese AN, Liu Y, Wang T, Musgrave IF, Pukala TL, Tabor RF, Martin LL, Carver JA, Bowie JH. The Amyloid Fibril-Forming Properties of the Amphibian Antimicrobial Peptide Uperin 3.5. Chembiochem 2015; 17:239-46. [PMID: 26676975 DOI: 10.1002/cbic.201500518] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Indexed: 12/13/2022]
Abstract
The amphibian skin is a vast resource for bioactive peptides, which form the basis of the animals' innate immune system. Key components of the secretions of the cutaneous glands are antimicrobial peptides (AMPs), which exert their cytotoxic effects often as a result of membrane disruption. It is becoming increasingly evident that there is a link between the mechanism of action of AMPs and amyloidogenic peptides and proteins. In this work, we demonstrate that the broad-spectrum amphibian AMP uperin 3.5, which has a random-coil structure in solution but adopts an α-helical structure in membrane-like environments, forms amyloid fibrils rapidly in solution at neutral pH. These fibrils are cytotoxic to model neuronal cells in a similar fashion to those formed by the proteins implicated in neurodegenerative diseases. The addition of small quantities of 2,2,2-trifluoroethanol accelerates fibril formation by uperin 3.5, and is correlated with a structural stabilisation induced by this co-solvent. Uperin 3.5 fibril formation and the associated cellular toxicity are inhibited by the polyphenol (-)-epigallocatechin-3-gallate (EGCG). Furthermore, EGCG rapidly dissociates fully formed uperin 3.5 fibrils. Ion mobility-mass spectrometry reveals that uperin 3.5 adopts various oligomeric states in solution. Combined, these observations imply that the mechanism of membrane permeability by uperin 3.5 is related to its fibril-forming properties.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Physical Sciences or School of Medical Sciences, The University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Yanqin Liu
- School of Physical Sciences or School of Medical Sciences, The University of Adelaide, Adelaide, 5005, South Australia, Australia.,School of Technology, Hebei Agricultural University, Cangzhou, Hebei, 061100, China
| | - Tianfang Wang
- Faculty of Science, Health, Education and Engineering, University of the Sunshine Coast, Sippy Downs, 4556, Queensland, Australia
| | - Ian F Musgrave
- School of Physical Sciences or School of Medical Sciences, The University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Tara L Pukala
- School of Physical Sciences or School of Medical Sciences, The University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton, 3800, Victoria, Australia.
| | - John A Carver
- Research School of Chemistry, The Australian National University, Acton, 2601, Australian Capital Territory, Australia.
| | - John H Bowie
- School of Physical Sciences or School of Medical Sciences, The University of Adelaide, Adelaide, 5005, South Australia, Australia
| |
Collapse
|
42
|
Liu Y, Wang T, Calabrese AN, Carver JA, Cummins SF, Bowie JH. The membrane-active amphibian peptide caerin 1.8 inhibits fibril formation of amyloid β1-42. Peptides 2015; 73:1-6. [PMID: 26275335 DOI: 10.1016/j.peptides.2015.08.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 08/04/2015] [Accepted: 08/04/2015] [Indexed: 12/21/2022]
Abstract
The amphibian host-defense peptide caerin 1.8 [(1)GLFKVLGSV(10)AKHLLPHVVP(20)VIAEKL(NH2)] inhibits fibril formation of amyloid β 1-42 [(1)DAEFRHDSG(10)YEVHHQKLVF(20)FAEDVGSNKG(30)AIIGLMVGGV(40)VIA] [Aβ42] (the major precursor of the extracellular fibrillar deposits of Alzheimer's disease). Some truncated forms of caerin 1.8 also inhibit fibril formation of Aβ42. For example, caerin 1.8 (1-13) [(1)GLFKVLGSV(10)AKHL(NH2) and caerin 1.8 (22-25) [KVLGSV(10)AKHLLPHVVP(20)VIAEKL(NH2)] show 85% and 75% respectively of the inhibition activity of the parent caerin 1.8. The synthetic peptide KLVFFKKKKKK is a known inhibitor of Aβ42 fibril formation, and was used as a standard in this study. Caerin 1.8 is the more effective fibril inhibitor. IC50 values (± 15%) are caerin 1.8 (75 μM) and KLVFFKKKKKK (370 μM). MALDI mass spectrometry shows the presence of a small peak corresponding to a protonated 1:1 adduct [caerin 1.8/Aβ42]H(+). Molecular dynamics simulation suggests that both hydrogen bonding and hydrophobic interactions between Aβ42 and caerin 1.8 facilitate the formation of a 1:1 complex in water. Fibril formation from Aβ42 has been proposed to be based around the (16)KLVF(20)F region of Aβ42; this region in the 1:1 complex is partially blocked from attachment of a further molecule of Aβ42.
Collapse
Affiliation(s)
- Yanqin Liu
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Antonio N Calabrese
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia
| | - John A Carver
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Chemistry, 2601, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - John H Bowie
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
43
|
Ojo OO, Srinivasan DK, Owolabi BO, Vasu S, Conlon JM, Flatt PR, Abdel-Wahab YHA. Esculentin-2CHa-Related Peptides Modulate Islet Cell Function and Improve Glucose Tolerance in Mice with Diet-Induced Obesity and Insulin Resistance. PLoS One 2015; 10:e0141549. [PMID: 26512980 PMCID: PMC4626215 DOI: 10.1371/journal.pone.0141549] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/10/2015] [Indexed: 01/08/2023] Open
Abstract
The frog skin host-defense peptide esculentin-2CHa (GFSSIFRGVA10KFASKGLGK D20LAKLGVDLVA30CKISKQC) displays antimicrobial, antitumor, and immunomodulatory properties. This study investigated the antidiabetic actions of the peptide and selected analogues. Esculentin-2CHa stimulated insulin secretion from rat BRIN-BD11 clonal pancreatic β-cells at concentrations greater than 0.3 nM without cytotoxicity by a mechanism involving membrane depolarization and increase of intracellular Ca2+. Insulinotropic activity was attenuated by activation of KATP channels, inhibition of voltage-dependent Ca2+ channels and chelation of extracellular Ca2+. The [L21K], [L24K], [D20K, D27K] and [C31S,C37S] analogues were more potent but less effective than esculentin-2CHa whereas the [L28K] and [C31K] analogues were both more potent and produced a significantly (P < 0.001) greater maximum response. Acute administration of [L28K]esculentin-2CHa (75 nmol/kg body weight) to high fat fed mice with obesity and insulin resistance enhanced glucose tolerance and insulin secretion. Twice-daily administration of this dose of [L28K]esculentin-2CHa for 28 days had no significant effect on body weight, food intake, indirect calorimetry or body composition. However, mice exhibited decreased non-fasting plasma glucose (P < 0.05), increased non-fasting plasma insulin (P < 0.05) as well as improved glucose tolerance and insulin secretion (P < 0.01) following both oral and intraperitoneal glucose loads. Impaired responses of isolated islets from high fat fed mice to established insulin secretagogues were restored by [L28K]esculentin-2CHa treatment. Peptide treatment was accompanied by significantly lower plasma and pancreatic glucagon levels and normalization of α-cell mass. Circulating triglyceride concentrations were decreased but plasma cholesterol and LDL concentrations were not significantly affected. The data encourage further investigation of the potential of esculentin-2CHa related peptides for treatment of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Opeolu O. Ojo
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
- School of Sport, Health and Bioscience, University of East London, Stratford, E15 4LZ, United Kingdom
| | - Dinesh K. Srinivasan
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - Bosede O. Owolabi
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - Srividya Vasu
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - J. Michael Conlon
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - Peter R. Flatt
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
| | - Yasser H. A. Abdel-Wahab
- SAAD Centre for Pharmacy & Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine, BT52 1SA, United Kingdom
- * E-mail:
| |
Collapse
|
44
|
Kozić M, Vukičević D, Simunić J, Rončević T, Antcheva N, Tossi A, Juretić D. Predicting the Minimal Inhibitory Concentration for Antimicrobial Peptides with Rana-Box Domain. J Chem Inf Model 2015; 55:2275-87. [PMID: 26332863 DOI: 10.1021/acs.jcim.5b00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The global spreading of multidrug resistance has motivated the search for new antibiotic classes including different types of antimicrobial peptides (AMPs). Computational methods for predicting activity in terms of the minimal inhibitory concentration (MIC) of AMPs can facilitate "in silico" design and reduce the cost of synthesis and testing. We have used an original method for separating training and test data sets, both of which contain the sequences and measured MIC values of non-homologous anuran peptides having the Rana-box disulfide motif at their C-terminus. Using a more flexible profiling methodology (sideways asymmetry moment, SAM) than the standard hydrophobic moment, we have developed a two-descriptor model to predict the bacteriostatic activity of Rana-box peptides against Gram-negative bacteria--the first multilinear quantitative structure-activity relationship model capable of predicting MIC values for AMPs of widely different lengths and low identity using such a small number of descriptors. Maximal values for SAMs, as defined and calculated in our method, furthermore offer new structural insight into how different segments of a peptide contribute to its bacteriostatic activity, and this work lays the foundations for the design of active artificial AMPs with this type of disulfide bridge.
Collapse
Affiliation(s)
- Mara Kozić
- Institute of Integrative Biology, University of Liverpool , Liverpool L69 7ZB, U.K
| | - Damir Vukičević
- Faculty of Science, University of Split , 21000 Split, Croatia
| | - Juraj Simunić
- Mediterranean Institute for Life Sciences , 21000 Split, Croatia
| | | | - Nikolinka Antcheva
- Department of Life Sciences, University of Trieste , 34127 Trieste, Italy
| | - Alessandro Tossi
- Department of Life Sciences, University of Trieste , 34127 Trieste, Italy
| | - Davor Juretić
- Faculty of Science, University of Split , 21000 Split, Croatia
| |
Collapse
|
45
|
VanCompernolle S, Smith PB, Bowie JH, Tyler MJ, Unutmaz D, Rollins-Smith LA. Inhibition of HIV infection by caerin 1 antimicrobial peptides. Peptides 2015; 71:296-303. [PMID: 26026377 DOI: 10.1016/j.peptides.2015.05.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2015] [Revised: 05/14/2015] [Accepted: 05/16/2015] [Indexed: 10/23/2022]
Abstract
The major mode of transmission of the human immunodeficiency virus (HIV) is by sexual intercourse. In the effort to halt the spread of HIV, one measure that holds great promise is the development of effective microbicides that can prevent transmission. Previously we showed that several amphibian antimicrobial peptides (AMPs) completely inhibit HIV infection of T cells while maintaining good viability of the T cell targets. These peptides also inhibited the transfer of HIV by dendritic cells (DCs) to T cells when added up to 8h after virus exposure. Here we report on the anti-HIV activity of 18 additional structurally related caerin 1 family peptides in comparison with our previous best candidate caerin 1.9. Nine peptides were equally effective or more effective in the inhibition of T cell infection and disruption of the HIV envelope as caerin 1.9. Of those nine peptides, three peptides (caerin 1.2, caerin 1.10, and caerin 1.20) exhibited excellent inhibition of HIV infectivity at low concentrations (12-25μM) and limited toxicity against target T cells and endocervical epithelial cells. There was a direct correlation between the effectiveness of the peptides in disruption of the viral envelope and their capacity to inhibit infection. Thus, several additional caerin 1 family peptides inhibit HIV infection have limited toxicity for vaginal epithelial cells, and would be good candidates for inclusion in microbicide formulations.
Collapse
Affiliation(s)
- Scott VanCompernolle
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - Patricia B Smith
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, United States
| | - John H Bowie
- Department of Chemistry, The University of Adelaide, Australia
| | - Michael J Tyler
- Department of Environmental Biology, The University of Adelaide, Australia
| | - Derya Unutmaz
- Department of Microbiology, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032, United States
| | - Louise A Rollins-Smith
- Departments of Pathology, Microbiology and Immunology, and of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN 37232, United States; Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, United States.
| |
Collapse
|
46
|
Marani MM, Dourado FS, Quelemes PV, de Araujo AR, Perfeito MLG, Barbosa EA, Véras LMC, Coelho ALR, Andrade EB, Eaton P, Longo JPF, Azevedo RB, Delerue-Matos C, Leite JRSA. Characterization and Biological Activities of Ocellatin Peptides from the Skin Secretion of the Frog Leptodactylus pustulatus. JOURNAL OF NATURAL PRODUCTS 2015; 78:1495-1504. [PMID: 26107622 DOI: 10.1021/np500907t] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Eight new peptides were isolated from the skin secretion of the frog Leptodactylus pustulatus and their amino acid sequences determined by de novo sequencing and by cDNA cloning. Structural similarities between them and other antimicrobial peptides from the skin secretion of Leptodactylus genus frogs were found. Ocellatins-PT1 to -PT5 (25 amino acid residues) are amidated at the C-terminus, while ocellatins-PT6 to -PT8 (32 amino acid residues) have free carboxylates. Antimicrobial activity, hemolytic tests, and cytotoxicity against a murine fibroblast cell line were investigated. All peptides, except for ocellatin-PT2, have antimicrobial activity against at least one Gram-negative strain. Ocellatin-PT8 inhibited the growth of Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Salmonella choleraesuis strains with MICs in the 60-240 μM range. No significant effect was observed in human erythrocytes and in a murine fibroblast cell line after exposure to the peptides at MICs. A comparison between sequences obtained by both direct HPLC-MS de novo sequencing and cDNA cloning demonstrates the secretion of mature peptides derived from a pre-pro-peptide structure.
Collapse
Affiliation(s)
- Mariela Mirta Marani
- †CENPAT-CONICET, Centro Nacional Patagónico, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut, Argentina
| | - Flávio Santos Dourado
- ‡Secretaria de Vigilância em Saúde, Ministério da Saúde, SVS/MS, Brasília, DF, Brazil
| | - Patrick Veras Quelemes
- §Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaiba, PI, Brazil
| | - Alyne Rodrigues de Araujo
- §Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaiba, PI, Brazil
| | - Márcia Luana Gomes Perfeito
- §Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaiba, PI, Brazil
| | - Eder Alves Barbosa
- ⊥Programa de Pós-Graduação em Biologia Molecular, Departamento de Biologia Molecular, Universidade de Brasília, Brasília, DF, Brazil
| | - Leiz Maria Costa Véras
- §Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaiba, PI, Brazil
| | - Andreia Luísa Rodrigues Coelho
- §Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaiba, PI, Brazil
- ∥REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal
| | - Etielle Barroso Andrade
- §Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaiba, PI, Brazil
- ∇Programa de Pós-Graduação em Biodiversidade e Biotecnologia, BIONORTE, Universidade Federal do Maranhão, UFMA, São Luís, MA, Brazil
| | - Peter Eaton
- ○UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - João Paulo Figueiró Longo
- #Department of Genetics and Morphology, Institute of Biological Sciences, Universidade de Brasília, Brasilia, Brazil
| | - Ricardo Bentes Azevedo
- #Department of Genetics and Morphology, Institute of Biological Sciences, Universidade de Brasília, Brasilia, Brazil
| | - Cristina Delerue-Matos
- ∥REQUIMTE/LAQV, Instituto Superior de Engenharia do Instituto Politécnico do Porto, Porto, Portugal
| | - José Roberto S A Leite
- §Núcleo de Pesquisa em Biodiversidade e Biotecnologia, Biotec, Campus Ministro Reis Velloso, Universidade Federal do Piauí, UFPI, Parnaiba, PI, Brazil
| |
Collapse
|
47
|
Conlon JM. Host-defense peptides of the skin with therapeutic potential: From hagfish to human. Peptides 2015; 67:29-38. [PMID: 25794853 DOI: 10.1016/j.peptides.2015.03.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/08/2015] [Accepted: 03/09/2015] [Indexed: 12/21/2022]
Abstract
It is now well established that peptides that were first identified on the basis of their ability to inhibit growth of bacteria and fungi are multifunctional and so are more informatively described as host-defense peptides. In some cases, their role in protecting the organism against pathogenic microorganisms, although of importance, may be secondary. A previous article in the journal (Peptides 2014; 57:67-77) assessed the potential of peptides present in the skin secretions of frogs for development into anticancer, antiviral, immunomodulatory and antidiabetic drugs. This review aims to extend the scope of this earlier article by focusing upon therapeutic applications of host-defense peptides present in skin secretions and/or skin extracts of species belonging to other vertebrate classes (Agnatha, Elasmobranchii, Teleostei, Reptilia, and Mammalia as represented by the human) that supplement their potential role as anti-infectives for use against multidrug-resistant microorganisms.
Collapse
Affiliation(s)
- J Michael Conlon
- SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, Coleraine BT52 1SA, UK.
| |
Collapse
|
48
|
Ahmad Z, Tayou J, Laughlin TF. Asp residues of βDELSEED-motif are required for peptide binding in the Escherichia coli ATP synthase. Int J Biol Macromol 2015; 75:37-43. [PMID: 25603139 DOI: 10.1016/j.ijbiomac.2014.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 01/01/2023]
Abstract
This study demonstrates the requirement of Asp-380 and Asp-386 in the βDELSEED-motif of Escherichia coli ATP synthase for peptide binding and inhibition. We studied the inhibition profiles of wild-type and mutant E. coli ATP synthase in presence of c-terminal amide bound melittin and melittin related peptide. Melittin and melittin related peptide inhibited wild-type ATPase almost completely while only partial inhibition was observed in single mutations with replacement of Asp to Ala, Gln, or Arg. Additionally, very little or no inhibition occurred among double mutants βD380A/βD386A, βD380Q/βD386Q, or βD380R/βD386R signifying that removal of one Asp residue allows limited peptide binding. Partial or substantial loss of oxidative phosphorylation among double mutants demonstrates the functional requirement of βD380 and βD386 Asp residues. Moreover, abrogation of wild-type E. coli cell growth and normal growth of mutant cells in presence of peptides provides strong evidence for the requirement of βDELSEED-motif Asp residues for peptide binding. It is concluded that while presence of one Asp residue may allow partial peptide binding, both Asp residues, βD380 and βD386, are essential for proper peptide binding and inhibition of ATP synthase.
Collapse
Affiliation(s)
- Zulfiqar Ahmad
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, MO 63501, United States.
| | - Junior Tayou
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, MO 63501, United States
| | - Thomas F Laughlin
- Department of Biochemistry, Kirksville College of Osteopathic Medicine, A. T. Still University of Health Sciences, Kirksville, MO 63501, United States
| |
Collapse
|
49
|
König E, Bininda-Emonds ORP, Shaw C. The diversity and evolution of anuran skin peptides. Peptides 2015; 63:96-117. [PMID: 25464160 DOI: 10.1016/j.peptides.2014.11.003] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 11/13/2014] [Accepted: 11/14/2014] [Indexed: 02/06/2023]
Abstract
Amphibians exhibit various, characteristic adaptations related to their "incomplete" shift from the aquatic to the terrestrial habitat. In particular, the integument was subject to a number of specialized modifications during the evolution of these animals. In this review, we place special emphasis on endogenous host-defence skin peptides from the cuteanous granular glands anuran amphibians (frogs and toads). The overview on the two broad groups of neuroactive and antimicrobial peptides (AMPs) goes beyond a simple itemization in that we provide a new perspective into the evolution and function of anuran AMPs. Briefly, these cationic, amphipathic and α-helical peptides are traditionally viewed as being part of the innate immune system, protecting the moist skin against invading microorganisms through their cytolytic action. However, the complete record of anuran species investigated to date suggests that AMPs are distributed sporadically (i.e., non-universally) across Anura. Together with the intriguing observation that virtually all anurans known to produce neuropeptides in their granular glands also co-secrete cytolytic peptides, we call the traditional role for AMPs as being purely antimicrobial into question and present an alternative scenario. We hypothesize AMPs to assist neuroactive peptides in their antipredator role through their cytolytic action increasing the delivery of the latter to the endocrine and nervous system of the predator. Thus, AMPs are more accurately viewed as cytolysins and their contribution to the immune system is better regarded as an accessory benefit.
Collapse
Affiliation(s)
- Enrico König
- AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany.
| | - Olaf R P Bininda-Emonds
- AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany
| | - Chris Shaw
- School of Pharmacy, Medical Biology Center, Queen's University, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK
| |
Collapse
|
50
|
Calabrese AN, Bowie JH, Pukala TL. Structural analysis of calmodulin binding by nNOS inhibitory amphibian peptides. Biochemistry 2014; 54:567-76. [PMID: 25436860 DOI: 10.1021/bi5004124] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Calmodulin (CaM) is a ubiquitous protein in nature and plays a regulatory role in numerous biological processes, including the upregulation of nitric oxide (NO) synthesis in vivo. Several peptides that prevent NO production by interacting with CaM have been isolated in the cutaneous secretions of Australian amphibians, and are thought to serve as a defense mechanism against predators. In this work, we probe the mechanism by which three of these peptides, namely, caerin 1.8, dahlein 5.6, and a synthetic modification of citropin 1.1, interact with CaM to inhibit NO signaling. Isothermal titration calorimetry was used to determine thermodynamic parameters of the binding interactions and revealed that all the peptides bind to CaM in a similar fashion, with the peptide encapsulated between the two lobes of CaM. Ion mobility-mass spectrometry was used to investigate the changes in collision cross section that occur as a result of complexation, providing additional evidence for this binding mode. Finally, nuclear magnetic resonance spectroscopy was used to track chemical shift changes upon binding. The results obtained confirm that these complexes adopt canonical collapsed structures and demonstrate the strength of the interaction between the peptides and CaM. An understanding of these molecular recognition events provides insights into the underlying mechanism of the amphibian host-defense system.
Collapse
Affiliation(s)
- Antonio N Calabrese
- School of Chemistry and Physics, The University of Adelaide , Adelaide, SA Australia 5005
| | | | | |
Collapse
|