1
|
Xia Z, Xie L, Li B, Lv X, Zhang H, Cao Z. Antimicrobial Potential of Scorpion-Venom-Derived Peptides. Molecules 2024; 29:5080. [PMID: 39519721 PMCID: PMC11547508 DOI: 10.3390/molecules29215080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/25/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
The frequent and irrational use of antibiotics by humans has led to the escalating rise of antimicrobial resistance (AMR) with a high rate of morbidity-mortality worldwide, which poses a challenge to the development of effective treatments. A large number of host defense peptides from different organisms have gained interest due to their broad antibacterial spectrum, rapid action, and low target resistance, implying that these natural sources might be a new alternative to antimicrobial drugs. As important effectors of prey capture, defense against other animal attacks, and competitor deterrence, scorpion venoms have been developed as important candidate sources for modern drug development. With the rapid progress of bioanalytical and high throughput sequencing techniques, more and more scorpion-venom-derived peptides, including disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs), have been recently identified as having massive pharmacological activities in channelopathies, pathogen infections, and cancer treatments. In this review, we summarize the molecular diversity and corresponding structural classification of scorpion venom peptides with antibacterial, antifungal, and/or antiparasitic activity. We also aim to improve the understanding of the underlying mechanisms by which scorpion-venom-derived peptides exert these antimicrobial functions, and finally highlight their key aspects and prospects for antimicrobial therapeutic or pharmaceutical application.
Collapse
Affiliation(s)
- Zhiqiang Xia
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China; (Z.X.); (L.X.)
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian 463000, China; (B.L.); (X.L.)
- Henan Topfond Pharmaceutical Company Limited, Zhumadian 463000, China;
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
| | - Lixia Xie
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China; (Z.X.); (L.X.)
| | - Bing Li
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian 463000, China; (B.L.); (X.L.)
| | - Xiangyun Lv
- Zhumadian Huazhong Chia Tai Co., Ltd., Zhumadian 463000, China; (B.L.); (X.L.)
| | - Hongzhou Zhang
- Henan Topfond Pharmaceutical Company Limited, Zhumadian 463000, China;
| | - Zhijian Cao
- Center for Evolution and Conservation Biology, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Shenzhen Research Institute, Wuhan University, Shenzhen 518057, China
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
2
|
Samat R, Sen S, Jash M, Ghosh S, Garg S, Sarkar J, Ghosh S. Venom: A Promising Avenue for Antimicrobial Therapeutics. ACS Infect Dis 2024; 10:3098-3125. [PMID: 39137302 DOI: 10.1021/acsinfecdis.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Venom in medicine is well documented in the chronicles of ancient Greece and the Roman Empire and persisted into the Renaissance and even into the modern era. Venoms were not always associated with detrimental consequences. Since ancient times, the curative capacity of venom has been recognized, portraying venom as a metaphor for pharmacy and medicine. Venom proteins and peptides' antimicrobial potential has not undergone systematic exploration despite the huge literature on natural antimicrobials. In light of the escalating challenge of antimicrobial resistance and the diminishing effectiveness of antibiotics, there is a pressing need for innovative antimicrobials capable of effectively addressing illnesses caused by multidrug-resistant microorganisms. This review adds to our understanding of the effectiveness of different venom components against a host of pathogenic microorganisms. The aim is to illuminate the various antimicrobials present in venom and venom peptides, thereby emphasizing the unexplored medicinal potential for antimicrobial properties. We have presented a concise summary of the molecular examination of the venom peptides' functioning processes, as well as the current clinical and preclinical progress of venom antimicrobial peptides.
Collapse
Affiliation(s)
- Ramkamal Samat
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Shubham Garg
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
3
|
Antimicrobial Activity Developed by Scorpion Venoms and Its Peptide Component. Toxins (Basel) 2022; 14:toxins14110740. [PMID: 36355990 PMCID: PMC9693228 DOI: 10.3390/toxins14110740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/28/2022] [Accepted: 10/23/2022] [Indexed: 01/26/2023] Open
Abstract
Microbial infections represent a problem of great importance at the public health level, with a high rate of morbidity-mortality worldwide. However, treating the different diseases generated by microorganisms requires a gradual increase in acquired resistance when applying or using them against various antibiotic therapies. Resistance is caused by various molecular mechanisms of microorganisms, thus reducing their effectiveness. Consequently, there is a need to search for new opportunities through natural sources with antimicrobial activity. One alternative is using peptides present in different scorpion venoms, specifically from the Buthidae family. Different peptides with biological activity in microorganisms have been characterized as preventing their growth or inhibiting their replication. Therefore, they represent an alternative to be used in the design and development of new-generation antimicrobial drugs in different types of microorganisms, such as bacteria, fungi, viruses, and parasites. Essential aspects for its disclosure, as shown in this review, are the studies carried out on different types of peptides in scorpion venoms with activity against pathogenic microorganisms, highlighting their high therapeutic potential.
Collapse
|
4
|
Valdivieso-Rivera F, Almeida JR, Proaño-Bolaños C. An experimental protocol for molecular biology lab at an Amazonian University. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 50:326-333. [PMID: 35263036 DOI: 10.1002/bmb.21612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Laboratory-based practical classes are an essential component in teaching molecular biology for undergraduate students. Universidad Regional Amazonica Ikiam is a higher education institution located in the Ecuadorian Amazon rainforest, a high biodiversity place, including amphibians. Based on this, we have established a practical molecular biology program with eight sessions that contextualize the biodiverse surroundings of the University. This program stimulates synchronization of information between theory and practice and improves research skills. During these sessions, students are motivated to identify and characterize antimicrobial peptides from Ecuadorian frog skin secretions, using molecular biology techniques and biochemistry and microbiology knowledge. This practical course was held twice with a total of 56 students from the fifth semester of the biotechnology engineering. The evaluation of the practical program was carried out through a questionnaire applied to students using the Likert scale. Overall, this form of teaching had high receptivity and presented benefits for student learning. Interestingly, 80% of respondents strongly agreed that this course provided tools and knowledge for the development of their undergraduate dissertation. Therefore, practical courses tailored to the student's context can stimulate student learning and interest. Additionally, this experimental methodology is interdisciplinary and can be applied to other research fields and subjects.
Collapse
Affiliation(s)
| | - José Rafael Almeida
- Biomolecules Discovery Group, Universidad Regional Amazónica Ikiam, Tena, Ecuador
| | | |
Collapse
|
5
|
Recombinant Expression and Antibacterial Properties of BmTXKS2 Venom Peptide in Fusion with GST. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10374-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
de Melo MMA, Oliveira VDS, de Queiroz Neto MF, Paiva WDS, Torres-Rêgo M, Silva SRB, Pontes DDL, Rocha HAO, de Souza MÂF, da Silva-Júnior AA, Fernandes-Pedrosa MDF. TanP: A Multifunctional Anionic Peptide From Tityus stigmurus Scorpion Venom. Front Mol Biosci 2022; 8:785316. [PMID: 35111812 PMCID: PMC8802776 DOI: 10.3389/fmolb.2021.785316] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/13/2021] [Indexed: 12/30/2022] Open
Abstract
Anionic peptides of scorpions are molecules rich in aspartic and/or glutamic acid residues and correspond to a class of peptides without disulfide bonds that are still little explored. TanP is a linear anionic peptide (50 amino acid residues and net charge -20) present in the venom gland of the scorpion, Tityus stigmurus, with chelating properties for Cu2+ ion and immunomodulatory properties. The therapeutic application of chelating molecules is related to cases of acute or chronic intoxication by metals, neurodegenerative diseases, hematological diseases, healing of skin wounds, cardiovascular diseases, and cancer. In this approach, the chelating activity of TanP was evaluated in relation to new metal ions (Fe2+ and Zn2+) of biological importance, as well as its antioxidant, hemostatic, immunomodulatory, and healing potential, aiming to expand the biological and biotechnological potential of this peptide. TanP (25 µM) was able to form stable complexes with Fe2+ in a ratio of 1:5 (TanP: Fe2+). Theoretical results suggest that TanP can work as a sensor to identify and quantify Fe2+ ions. The fluorescence intensity of TanP (1.12 µM) decreased significantly after the addition of Fe2+, obtaining the highest ratio 1: 7.4 (TanP: Fe2+) that led to the lowest fluorescence intensity. For Zn2+, no relevant spectral change was noted. TanP (50 µM) showed a maximum of 3% of hemolytic activity, demonstrating biocompatibility, as well as exhibiting a 1,1-diphenyl-2-picrylhydrazyl radical-scavenging activity of above 70% at all the concentrations tested (1-25 μM), and 89.7% iron-chelating activity at 25 μM and 96% hydroxyl radical-scavenging activity at 73.6 μM. In addition, TanP (12.5 and 25 µM) revealed an anticoagulant effect, prolonging the clotting time in prothrombin time and activated partial thromboplastin time assays, with no fibrinogenolytic activity. TanP (12.5 and 25 µM) induced the release of TNF-α by murine macrophages, in the absence of lipopolysaccharides, with a concentration-dependent increase and also stimulated the migration of 3T3 cells in the in vitro healing assay. Thus, TanP revealed a multifunctional potential, being useful as a prototype for the development of new therapeutic and biotechnological agents.
Collapse
Affiliation(s)
- Menilla Maria Alves de Melo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Verônica da Silva Oliveira
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Moacir Fernandes de Queiroz Neto
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Weslley de Souza Paiva
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Manoela Torres-Rêgo
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
- Laboratory of Synthesis and Isolation of Organic Compounds, Chemistry Institute, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Daniel de Lima Pontes
- Laboratory of Coordination Chemistry and Polymers, Institute of Chemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Hugo Alexandre Oliveira Rocha
- Laboratory of Natural Polymer Biotechnology, Department of Biochemistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Arnóbio Antônio da Silva-Júnior
- Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte, Natal, Brazil
| | | |
Collapse
|
7
|
Pérez-Delgado O, Rincon-Cortés CA, Vega-Castro NA, Reyes-Montaño EA, Gómez-Garzón M. Purificación parcial de péptidos del veneno de escorpión Hadruroides charcasus (Karsch, 1879) con actividad antimicrobiana. BIONATURA 2021. [DOI: 10.21931/rb/2021.06.03.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Los venenos de muchas especies de escorpiones son fuentes ricas en componentes biológicamente activos, como los péptidos antimicrobianos, biomoléculas que aún no han sido estudiados del veneno de Hadruroides charcasus. El objetivo de este artículo es evaluar la actividad antimicrobiana de los péptidos parcialmente purificados del veneno del escorpión Hadruroides. asus. A partir de 15,46 mg de proteína total del veneno del escorpión H. charcasus se purificaron parcialmente sus péptidos por medio de cromatografía de filtración en gel empleando sephadex G-75, consecutivo a una cromatografía de intercambio iónico en CM-Sephadex C-25. El peso molecular estimado de los péptidos se determinó mediante electroforesis PAGE-SDS-Tris-Tricina al 15% y la evaluación de la actividad antibacteriana y antifúngica se empleó el método de microdilución y Kirby-Bauer con cepas de Escherichia coli ATCC 25922, Staphylococcus aureus ATCC 29213, Pseudomonas aeruginosa ATCC 27853 y Candida albicans ATCC 10231. En la cromatografía de filtración en gel se obtuvieron 5 fracciones, de lo cual, la fracción IV presentó una concentración mínima inhibitoria de 3,6 mg/mL en S. aureus ATCC 29213 y en C. albicans ATCC 10231. De la cromatografía de intercambio se obtuvieron 7 fracciones, destacando la fracción OPDIV-5 con péptidos de 4 kDa; 5 kDa; 5,5 kDa y 6,4 kDa que presentó actividad antimicrobiana frente S. aureus ATCC 29213, E. coli ATCC 25922, P. aeruginosa ATCC 27853, C. albicans ATCC 10231.El veneno del escorpión H. charcasus presenta péptidos de naturaleza catiónica con actividad antibacteriana y antifúngica, según su actividad en las cepas evaluadas.
Collapse
|
8
|
Luo X, Ding L, Ye X, Zhu W, Zhang K, Li F, Jiang H, Zhao Z, Chen Z. An Smp43-Derived Short-Chain α-Helical Peptide Displays a Unique Sequence and Possesses Antimicrobial Activity against Both Gram-Positive and Gram-Negative Bacteria. Toxins (Basel) 2021; 13:toxins13050343. [PMID: 34064808 PMCID: PMC8150835 DOI: 10.3390/toxins13050343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 01/15/2023] Open
Abstract
Scorpion venoms are rich resources of antimicrobial peptides (AMPs). While the short-chain noncysteine-containing AMPs have attracted much attention as templates for drug development, the antimicrobial potential of long-chain noncysteine-containing AMPs has been largely overlooked. Here, by using the online HeliQuest server, we designed and analyzed a series of 14-residue fragments of Smp43, a 43-residue long-chain noncysteine-containing AMP identified from the venom of Scorpio maurus palmatus. We found that Smp43(1-14) shows high antimicrobial activity against both Gram-positive and Gram-negative bacteria and is nontoxic to mammalian cells at the antimicrobial dosage. Sequence alignments showed that the designed Smp43(1-14) displays a unique primary structure that is different from other natural short-chain noncysteine-containing AMPs from scorpions, such as Uy17, Uy192 and IsCT. Moreover, the peptide Smp43(1-14) caused concentration-dependent fluorescence increases in the bacteria for all of the tested dyes, propidium iodide, SYTOXTM Green and DiSC3-5, suggesting that the peptide may kill the bacteria through the formation of pore structures in the plasma membrane. Taken together, our work sheds light on a new avenue for the design of novel short-chain noncysteine-containing AMPs and provides a good peptide template with a unique sequence for the development of novel drugs for use against bacterial infectious diseases.
Collapse
Affiliation(s)
- Xudong Luo
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Li Ding
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Department of Clinical Laboratory, Dongfeng Hospital, Hubei University of Medicine, Shiyan 442000, China
| | - Xiangdong Ye
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Wen Zhu
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Kaiyue Zhang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Fangyan Li
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Huiwen Jiang
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Zhiwen Zhao
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
| | - Zongyun Chen
- Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China; (X.L.); (L.D.); (X.Y.); (W.Z.); (K.Z.); (F.L.); (H.J.); (Z.Z.)
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
- Correspondence: ; Tel.: +86-(0)-719-8469073
| |
Collapse
|
9
|
Ebou A, Koua D, Addablah A, Kakou-Ngazoa S, Dutertre S. Combined Proteotranscriptomic-Based Strategy to Discover Novel Antimicrobial Peptides from Cone Snails. Biomedicines 2021; 9:344. [PMID: 33805497 PMCID: PMC8066717 DOI: 10.3390/biomedicines9040344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/21/2022] Open
Abstract
Despite their impressive diversity and already broad therapeutic applications, cone snail venoms have received less attention as a natural source in the investigation of antimicrobial peptides than other venomous animals such as scorpions, spiders, or snakes. Cone snails are among the largest genera (Conus sp.) of marine invertebrates, with more than seven hundred species described to date. These predatory mollusks use their sophisticated venom apparatus to capture prey or defend themselves. In-depth studies of these venoms have unraveled many biologically active peptides with pharmacological properties of interest in the field of pain management, the treatment of epilepsy, neurodegenerative diseases, and cardiac ischemia. Considering sequencing efficiency and affordability, cone snail venom gland transcriptome analyses could allow the discovery of new, promising antimicrobial peptides. We first present here the need for novel compounds like antimicrobial peptides as a viable alternative to conventional antibiotics. Secondly, we review the current knowledge on cone snails as a source of antimicrobial peptides. Then, we present the current state of the art in analytical methods applied to crude or milked venom followed by how antibacterial activity assay can be implemented for fostering cone snail antimicrobial peptides studies. We also propose a new innovative profile Hidden Markov model-based approach to annotate full venom gland transcriptomes and speed up the discovery of potentially active peptides from cone snails.
Collapse
Affiliation(s)
- Anicet Ebou
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Dominique Koua
- Bioinformatic Team, Département Agriculture et Ressource Animales, UMRI 28, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro BP 1093, Ivory Coast;
| | - Audrey Addablah
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Solange Kakou-Ngazoa
- Plateforme de Biologie Moléculaire, Institut Pasteur de Côte d’Ivoire, Abidjan BP 490, Ivory Coast; (A.A.); (S.K.-N.)
| | - Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université de Montpellier, CNRS, ENSCM, 34095 Montpellier, France
| |
Collapse
|
10
|
Tao J, Yin S, Song Y, Zeng L, Li S, Liu N, Sun H, Fu Z, Wang Y, Li Y, Liu Y, Sun J, Wang Y, Yang X. Novel scorpion venom peptide HsTx2 ameliorates cerebral ischemic brain injury in rats via the MAPK signaling pathway. Biochem Biophys Res Commun 2020; 534:442-449. [PMID: 33248693 DOI: 10.1016/j.bbrc.2020.11.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 12/18/2022]
Abstract
Ischemic stroke is a severe threat to human health due to its high recurrence, mortality, and disability rates. As such, how to prevent and treat ischemic stroke effectively has become a research hotspot in recent years. Here, we identified a novel peptide, named HsTx2 (AGKKERAGSRRTKIVMLKCIREHGH, 2 861.855 Da), derived from the scorpion Heterometrus spinifer, which showed obvious anti-apoplectic effects in rats with ischemic stroke. Results further demonstrated that HsTx2 significantly reduced formation of infarct area and improved behavioral abnormalities in ischemic stroke rats. These protective effects were likely exerted via activation of the mitogen-activated protein kinase (MAPK) signaling pathway, i.e., up-regulation of phosphorylated ERK1/2 in both rat cerebral cortex and activated microglia (AM); up-regulation of phosphorylated p38 (p-p38) in the cerebral cortex; and inhibition of phosphorylated JNK and p-p38 levels in the AM. In conclusion, this study highlights HsTx2 as a potential neuroprotective agent for stroke.
Collapse
Affiliation(s)
- Jian Tao
- Department of Pharmacology, Medical School, Kunming University, Kunming, 650214, Yunnan, China
| | - Saige Yin
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yongli Song
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Lin Zeng
- Public Technical Service Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Shanshan Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Huiling Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Zhe Fu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yinglei Wang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yilin Li
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China
| | - Jun Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic Affairs Commission & Ministry of Education, School of Ethnomedicine and Ethnopharmacy, Yunnan Minzu University, Kunming, Yunnan, 650504, China.
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, 650500, Yunnan, China.
| |
Collapse
|
11
|
|
12
|
Al-Malki ES, Abdelsater N. In vitro Scolicidal effects of Androctonus crassicauda (Olivier, 1807) venom against the protoscolices of Echinococcus granulosus. Saudi J Biol Sci 2020; 27:1760-1765. [PMID: 32565693 PMCID: PMC7296479 DOI: 10.1016/j.sjbs.2020.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/30/2020] [Accepted: 05/02/2020] [Indexed: 11/25/2022] Open
|
13
|
Musa Z, Ma J, Egamberdieva D, Abdelshafy Mohamad OA, Abaydulla G, Liu Y, Li WJ, Li L. Diversity and Antimicrobial Potential of Cultivable Endophytic Actinobacteria Associated With the Medicinal Plant Thymus roseus. Front Microbiol 2020; 11:191. [PMID: 32226412 PMCID: PMC7080825 DOI: 10.3389/fmicb.2020.00191] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 01/27/2020] [Indexed: 11/30/2022] Open
Abstract
We report for the first time the isolation of endophytic actinobacteria associated with wild populations of the Chinese medicinal herb Thymus roseus Schipcz obtained from the arid land in Ili and Tacheng of the Xinjiang Province, China. Strains were isolated by special pretreatment of plant tissues and identified based on their 16S rRNA gene sequences, and their antimicrobial activities in vitro were evaluated. A total of 126 endophytic actinobacteria belonging to two classes, eight orders, 14 families, and 24 genera were isolated from different organs at the Ili and Tacheng sites. In addition, the diversity of culturable endophytic actinobacteria genera was higher at Tacheng site (n = 71, 56.35%) than the Ili site (n = 55, 43.65%). A neighbor-joining tree of 126 isolated actinobacteria showing the phylogenetic relationships based on 16S rRNA gene sequences and the genus Streptomyces was the most dominant isolate. The number of endophytic actinobacteria genera obtained from root tissues (n = 54, 42.86%) was higher compared to stem (n = 35, 27.78%) and leaf tissue (n = 37, 29.36%). Among 126 endophytic actinobacteria, 54 strains were antagonistic against at least one or more indicator organisms in vitro. Notably, most strains of Streptomyces proved antagonistic activities. For example, strain T4SB028, namely Streptomyces polyantibioticus, showed the highest inhibition ratio reached 67.06, 64.20, and 70.55% against Alternaria solani, Valsa malicola, and Valsa mali, respectively. The results demonstrate that about 30.95%, 23.01% of the tested endophytic actinobacteria were capable of producing siderophores and chitinase, respectively. Additionally, the results of the amplification of biosynthetic genes polyketide synthetase (PKS-I) and non-ribosomal peptide synthetase (NRPS) indicated that at least one antibiotic biosynthetic gene was detected in 27 (50%) of the tested strains. Our result emphasizes that the endophytic actinobacteria communities are different based on the plant tissues and the geographical environment of the sampled area. Thus, we conclude that T. roseus Schipcz. provided a rich source of endophytic actinobacteria that exhibited a broad-spectrum antimicrobial agent.
Collapse
Affiliation(s)
- Zulpiya Musa
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China.,Department of Medicine, College of Kashgar Vocational Technology, Kashgar, China
| | - Jinbiao Ma
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China
| | - Dilfuza Egamberdieva
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China.,Faculty of Biology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Osama Abdalla Abdelshafy Mohamad
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China.,Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Arish, Egypt
| | - Gulsumay Abaydulla
- Xinjiang Laboratory of Resources Microbiology, College of Life Sciences and Technology, Xinjiang University, Ürümqi, China
| | - Yonghong Liu
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China
| | - Wen-Jun Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Li Li
- CAS Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Ürümqi, China
| |
Collapse
|
14
|
Cid-Uribe JI, Veytia-Bucheli JI, Romero-Gutierrez T, Ortiz E, Possani LD. Scorpion venomics: a 2019 overview. Expert Rev Proteomics 2019; 17:67-83. [DOI: 10.1080/14789450.2020.1705158] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jimena I. Cid-Uribe
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - José Ignacio Veytia-Bucheli
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Teresa Romero-Gutierrez
- Departamento de Ciencias Computacionales, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Mexico
| | - Ernesto Ortiz
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Lourival D. Possani
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
15
|
Cesa-Luna C, Muñoz-Rojas J, Saab-Rincon G, Baez A, Morales-García YE, Juárez-González VR, Quintero-Hernández V. Structural characterization of scorpion peptides and their bactericidal activity against clinical isolates of multidrug-resistant bacteria. PLoS One 2019; 14:e0222438. [PMID: 31710627 PMCID: PMC6844485 DOI: 10.1371/journal.pone.0222438] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/29/2019] [Indexed: 11/21/2022] Open
Abstract
Scorpion venom peptides represent a novel source of antimicrobial peptides (AMPs) with broad-spectrum activity. In this study, we determined the minimum bactericidal concentration (MBC) of three scorpion AMPs, Uy234, Uy17, and Uy192, which are found in the venomous glands of the Urodacus yaschenkoi scorpion, against the clinical isolates of multidrug-resistant (MDR) bacteria. In addition, we tested the activity of a consensus AMP designed in our laboratory based on some previously reported IsCT-type (cytotoxic linear peptide) AMPs with the aim of obtaining higher antimicrobial activity. All peptides tested showed high antimicrobial activity against MDR clinical isolates, with the highest activity against β-hemolytic Streptococcus strains. The hemolytic activity was determined against human red blood cells and was significantly lower than that of previously reported AMPs. The α-helical structure of the four AMPs was confirmed by circular dichroism (CD). These results suggest that the four peptides can be valuable tools for the design and development of AMPs for use in the inhibition of MDR pathogenic bacteria. A clear index of synergism and additivity was found for the combination of QnCs-BUAP + Uy234, which makes these peptides the most promising candidates against pathogenic bacteria.
Collapse
Affiliation(s)
- Catherine Cesa-Luna
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | - Jesús Muñoz-Rojas
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | - Gloria Saab-Rincon
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Antonino Baez
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
| | - Yolanda Elizabeth Morales-García
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
- Licenciatura en Biotecnología, Facultad de Ciencias Biológicas, BUAP, Puebla, Puebla, México
| | - Víctor Rivelino Juárez-González
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mor., México
| | - Verónica Quintero-Hernández
- Ecology and Survival of Microorganisms Group (ESMG), Laboratorio de Ecología Molecular Microbiana (LEMM), Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, Puebla, México
- CONACYT-ESMG, LEMM, CICM, IC, BUAP, Puebla, Puebla, México
| |
Collapse
|
16
|
Sabiá Júnior EF, Menezes LFS, de Araújo IFS, Schwartz EF. Natural Occurrence in Venomous Arthropods of Antimicrobial Peptides Active against Protozoan Parasites. Toxins (Basel) 2019; 11:E563. [PMID: 31557900 PMCID: PMC6832604 DOI: 10.3390/toxins11100563] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/31/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
Arthropoda is a phylum of invertebrates that has undergone remarkable evolutionary radiation, with a wide range of venomous animals. Arthropod venom is a complex mixture of molecules and a source of new compounds, including antimicrobial peptides (AMPs). Most AMPs affect membrane integrity and produce lethal pores in microorganisms, including protozoan pathogens, whereas others act on internal targets or by modulation of the host immune system. Protozoan parasites cause some serious life-threatening diseases among millions of people worldwide, mostly affecting the poorest in developing tropical regions. Humans can be infected with protozoan parasites belonging to the genera Trypanosoma, Leishmania, Plasmodium, and Toxoplasma, responsible for Chagas disease, human African trypanosomiasis, leishmaniasis, malaria, and toxoplasmosis. There is not yet any cure or vaccine for these illnesses, and the current antiprotozoal chemotherapeutic compounds are inefficient and toxic and have been in clinical use for decades, which increases drug resistance. In this review, we will present an overview of AMPs, the diverse modes of action of AMPs on protozoan targets, and the prospection of novel AMPs isolated from venomous arthropods with the potential to become novel clinical agents to treat protozoan-borne diseases.
Collapse
Affiliation(s)
- Elias Ferreira Sabiá Júnior
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Luis Felipe Santos Menezes
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Israel Flor Silva de Araújo
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| | - Elisabeth Ferroni Schwartz
- Departamento de Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF 70910-900, Brazil.
| |
Collapse
|
17
|
Rivera-Coronado ND, Pérez-Delgado O. Actividad antifúngica in vitro del extracto crudo diluido del veneno de escorpión Hadruroides charcasus (Karsch 1879) frente a Candida albicans. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2019. [DOI: 10.36610/j.jsars.2019.100200096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
18
|
Shi W, He P, Zeng XC, Wu W, Chen X. Inhibitory Effect of an Acidic Peptide on the Activity of an Antimicrobial Peptide from the Scorpion Mesobuthus martensii Karsch. Molecules 2018; 23:molecules23123314. [PMID: 30558111 PMCID: PMC6321396 DOI: 10.3390/molecules23123314] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022] Open
Abstract
Highly acidic peptides with no disulfide bridges are widely present in the scorpion venoms; however, none of them has been functionally characterized so far. Here, we cloned the full-length cDNA of a short-chain highly acidic peptide (referred to as HAP-1) from a cDNA library made from the venom glands of the Chinese scorpion Mesobuthus martensii Karsch. HAP-1 contains 19 amino acid residues with a predicted IP value of 4.25. Acidic amino residues account for 33.3% of the total residues in the molecule of HAP-1. HAP-1 shows 76⁻98% identities to some scorpion venom peptides that have not yet been functionally characterized. Secondary structure prediction showed that HAP-1 contains a beta-sheet region (residues 9⁻17), and two coiled coil regions (residues 1⁻8 and 18⁻19) located at the N-terminal and C-terminal regions of the peptide, respectively. Antimicrobial assay showed that HAP-1 does not have any effect on the growth of the bacterium Staphylococcus aureus AB94004. However, it potently inhibits the antimicrobial activity of a 13-mer peptide from M. martensii Karsch against Staphylococcus aureus AB94004. This finding is the first characterization of the function of such highly acidic peptides from scorpions.
Collapse
Affiliation(s)
- Wanxia Shi
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Pengchen He
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Weiwei Wu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, China.
| |
Collapse
|
19
|
Mosaheb MUWFZ, Khan NA, Siddiqui R. Cockroaches, locusts, and envenomating arthropods: a promising source of antimicrobials. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2018; 21:873-877. [PMID: 30524685 PMCID: PMC6272074 DOI: 10.22038/ijbms.2018.30442.7339] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/18/2018] [Indexed: 12/23/2022]
Abstract
OBJECTIVES To present a brief overview of various natural sources of antimicrobials with the aim of highlighting invertebrates living in polluted environments as additional sources of antimicrobials. MATERIALS AND METHODS A PubMed search using antibacterials, antimicrobials, invertebrates, and natural products as keywords was carried out. In addition, we consulted conference proceedings, original unpublished research undertaken in our laboratories, and discussions in specific forums. RESULTS Representative of a stupefying 95% of the fauna, invertebrates are fascinating organisms which have evolved strategies to survive germ-infested environments, yet they have largely been ignored. Since invertebrates such as cockroaches inhabit hazardous environments which are rampant with pathogens, they must have developed defense mechanisms to circumvent infections. This is corroborated by the presence of antimicrobial molecules in the nervous systems and hemolymph of cockroaches. Antimicrobial compounds have also been unraveled from the nervous, adipose, and salivary glandular tissues of locusts. Interestingly, the venoms of arthropods including ants, scorpions, and spiders harbor toxins, but also possess multiple antimicrobials. CONCLUSION These findings have rekindled the hopes for newer and enhanced therapeutic agents derived from a plentiful and diverse resource to combat fatal infectious diseases. Such antimicrobials from unusual sources can potentially be translated into clinical practice, however intensive research is needed over the next several years to realize these expectations.
Collapse
Affiliation(s)
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, Malaysia
| |
Collapse
|
20
|
Liu G, Yang F, Li F, Li Z, Lang Y, Shen B, Wu Y, Li W, Harrison PL, Strong PN, Xie Y, Miller K, Cao Z. Therapeutic Potential of a Scorpion Venom-Derived Antimicrobial Peptide and Its Homologs Against Antibiotic-Resistant Gram-Positive Bacteria. Front Microbiol 2018; 9:1159. [PMID: 29896190 PMCID: PMC5987058 DOI: 10.3389/fmicb.2018.01159] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/14/2018] [Indexed: 01/08/2023] Open
Abstract
The alarming rise in the prevalence of antibiotic resistance among pathogenic bacteria poses a unique challenge for the development of effective therapeutic agents. Antimicrobial peptides (AMPs) have attracted a great deal of attention as a possible solution to the increasing problem of antibiotic-resistant bacteria. Marcin-18 was identified from the scorpion Mesobuthus martensii at both DNA and protein levels. The genomic sequence revealed that the marcin-18 coding gene contains a phase-I intron with a GT-AG splice junction located in the DNA region encoding the N-terminal part of signal peptide. The peptide marcin-18 was also isolated from scorpion venom. A protein sequence homology search revealed that marcin-18 shares extremely high sequence identity to the AMPs meucin-18 and megicin-18. In vitro, chemically synthetic marcin-18 and its homologs (meucin-18 and megicin-18) showed highly potent inhibitory activity against Gram-positive bacteria, including some clinical antibiotic-resistant strains. Importantly, in a mouse acute peritonitis model, these peptides significantly decreased the bacterial load in ascites and rescued nearly all mice heavily infected with clinical methicillin-resistant Staphylococcus aureus from lethal bacteremia. Peptides exerted antimicrobial activity via a bactericidal mechanism and killed bacteria through membrane disruption. Taken together, marcin-18 and its homologs have potential for development as therapeutic agents for treating antibiotic-resistant, Gram-positive bacterial infections.
Collapse
Affiliation(s)
- Gaomin Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Yang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fangfang Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhongjie Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yange Lang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bingzheng Shen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yingliang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxin Li
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Patrick L Harrison
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, United Kingdom
| | - Peter N Strong
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, United Kingdom
| | - Yingqiu Xie
- Department of Biology, School of Science and Technology, Nazarbayev University, Astana, Kazakhstan
| | - Keith Miller
- Biomolecular Sciences Research Centre, Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, United Kingdom
| | - Zhijian Cao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China.,Bio-drug Research Center, Wuhan University, Wuhan, China.,Hubei Province Engineering and Technology Research Center for Fluorinated Pharmaceuticals, Wuhan University, Wuhan, China
| |
Collapse
|
21
|
Mohamad OAA, Li L, Ma JB, Hatab S, Xu L, Guo JW, Rasulov BA, Liu YH, Hedlund BP, Li WJ. Evaluation of the Antimicrobial Activity of Endophytic Bacterial Populations From Chinese Traditional Medicinal Plant Licorice and Characterization of the Bioactive Secondary Metabolites Produced by Bacillus atrophaeus Against Verticillium dahliae. Front Microbiol 2018; 9:924. [PMID: 29867835 PMCID: PMC5954123 DOI: 10.3389/fmicb.2018.00924] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
Endophytic bacteria associated with medicinal plants possess unique strategies that enhance growth and suvival of host plants, many of which are mediated by distinctive secondary metabolites. These bacteria and their secondary metabolites are important subjects for both basic and applied research aimed at sustainable agriculture. In the present study, 114 endophytic strains isolated from the wild ethnomedicinal plant Glycyrrhiza uralensis (licorice) were screened for their in vitro antimicrobial activities against common fungal pathogens of tomato (Fusarium oxysporum f. sp., Fulvia fulva, Alternaria solani), cotton (Fusarium oxysporum f. sp. Vesinfectum, Verticillium dahliae), pomegranite (Ceratocystis fimbriata), Cymbidinium (Colletotrichum gloeosporioides), and Tsao-ko (Pestalotiopsis microspora and Fusarium graminearum) and the common bacteria Staphylococcus aureus, Bacillus cereus, Salmonella enteritidis, and Escherichia coli. Several Bacillus strains, particularly Bacillus atrophaeus and Bacillus mojavensis, had a broad spectrum of antifungal and antibacterial activity. A total of 16 strains, selected based on broad antimicrobial activity, were shown to contain at least one putative secondary metabolite-encoding gene (i.e., polyketide synthase or non-ribosomal peptide synthetase) and/or one lytic enzyme (i.e., protease, cellulase, lipase, chitinase), which may be important mediators of antagonistic activity against pathogens. Five strains, representing Bacillus atrophaeus and Bacillus mojavensis, were selected for plant growth chamber experiments based on strong in vitro antifungal activities. All five strains significantly reduced disease severity in Arabidopsis thaliana plants challenged with V. dahlia infection. Gas-chromatography/mass-spectrometry analysis of cell-free extracts of Bacillus atrophaeus strain XEGI50 showed that at least 13 compounds were produced only during co-cultivation with V. dahlia, including putative compounds known to have antimicrobial activity, such as 1,2-benzenedicarboxylic acid, bis (2-methylpropyl) ester; 9,12-octadecadienoic acid (Z,Z)-, methyl ester; 9-octadecenoic acid, methyl ester, (E)-; and decanedioic acid, bis(2-ethylhexyl) ester. To our knowledge, this study is the first to report that bacteria isolated from G. uralensis have biocontrol abilities. Our findings provide new insights into the antimicrobial activities of natural endophytes, particularly B. atrophaeus, and suggest this species may a promising candidate as a biocontrol agent to confer resistance to Verticillium wilt disease and other phytopathogens in cotton and other crops.
Collapse
Affiliation(s)
- Osama A. A. Mohamad
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Environmental Science Department, Institute of Environmental Studies, Arish University, El-Arish, Egypt
| | - Li Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Jin-Biao Ma
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Shaimaa Hatab
- Department of Food Science and Technology, College of Environmental Agricultural Sciences, Arish University, El-Arish, Egypt
| | - Lin Xu
- Key Laboratory of Hexi Corridor Resources Utilization, Hexi University, Zhangye, China
| | - Jian-Wei Guo
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Key Laboratory of Crops with High Quality and Efficient Cultivation and Security Control, Yunnan Higher Education Institutions, Honghe University, Mengzi, China
| | - Bakhtiyor A. Rasulov
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Institute of Genetics and Plant Experimental Biology, Uzbekistan Academy of Sciences, Tashkent, Uzbekistan
| | - Yong-Hong Liu
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Brian P. Hedlund
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV, United States
| | - Wen-Jun Li
- Key Laboratory of Biogeography and Bioresource in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Deng Y, Gu J, Yan Z, Wang M, Ma C, Zhang J, Jiang G, Ge M, Xu S, Xu Z, Xiao L. De novo transcriptomic analysis of the venomous glands from the scorpion Heterometrus spinifer revealed unique and extremely high diversity of the venom peptides. Toxicon 2018; 143:1-19. [DOI: 10.1016/j.toxicon.2017.12.051] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 12/22/2017] [Accepted: 12/25/2017] [Indexed: 02/07/2023]
|
23
|
Affiliation(s)
- Hassan M. Akef
- National Organization for Research and Control of Biologicals (NORCB), Giza, Egypt
| |
Collapse
|
24
|
Jafari M, Mehrnejad F, Doustdar F. Insight into the interactions, residue snorkeling, and membrane disordering potency of a single antimicrobial peptide into different lipid bilayers. PLoS One 2017; 12:e0187216. [PMID: 29125878 PMCID: PMC5695277 DOI: 10.1371/journal.pone.0187216] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/16/2017] [Indexed: 12/30/2022] Open
Abstract
Pardaxin, with a bend-helix-bend-helix structure, is a membrane-active antimicrobial peptide that its membrane activity depends on the lipid bilayer composition. Herein, all-atom molecular dynamics (MD) simulations were performed to provide further molecular insight into the interactions, structural dynamics, orientation behavior, and cationic residues snorkeling of pardaxin in the DMPC, DPPC, POPC, POPG, POPG/POPE (3:1), and POPG/POPE (1:3) lipid bilayers. The results showed that the C-terminal helix of the peptide was maintained in all six types of the model-bilayers and pardaxin was tilted into the DMPC, DPPC, and POPG/POPE mixed bilayers more than the POPC and POPG bilayers. As well as, the structure of zwitterionic membranes was more affected by the peptide than the anionic bilayers. Taken together, the study demonstrated that the cationic residues of pardaxin snorkeled toward the interface of lipid bilayers and all phenylalanine residues of the peptide played important roles in the peptide-membrane interactions. We hope that this work will provide a better understanding of the interactions of antimicrobial peptides with the membranes.
Collapse
Affiliation(s)
- Majid Jafari
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Faramarz Mehrnejad
- Department of Life Sciences Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran
| | - Farahnoosh Doustdar
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Biochemical Characterization of HL-7 and HL-10 Peptides Identified from Scorpion Venom of Hemiscorpius lepturus. Int J Pept Res Ther 2017. [DOI: 10.1007/s10989-017-9625-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Wang X, Wang G. Insights into Antimicrobial Peptides from Spiders and Scorpions. Protein Pept Lett 2017; 23:707-21. [PMID: 27165405 DOI: 10.2174/0929866523666160511151320] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/03/2016] [Accepted: 05/08/2016] [Indexed: 12/19/2022]
Abstract
The venoms of spiders and scorpions contain a variety of chemical compounds. Antimicrobial peptides (AMPs) from these organisms were first discovered in the 1990s. As of May 2015, there were 42 spider's and 63 scorpion's AMPs in the Antimicrobial Peptide Database (http://aps.unmc.edu/AP). These peptides have demonstrated broad or narrow-spectrum activities against bacteria, fungi, viruses, and parasites. In addition, they can be toxic to cancer cells, insects and erythrocytes. To provide insight into such an activity spectrum, this article discusses the discovery, classification, structure and activity relationships, bioinformatics analysis, and potential applications of spider and scorpion AMPs. Our analysis reveals that, in the case of linear peptides, spiders use both glycine-rich and helical peptide models for defense, whereas scorpions use two distinct helical peptide models with different amino acid compositions to exert the observed antimicrobial activities and hemolytic toxicity. Our structural bioinformatics study improves the knowledge in the field and can be used to design more selective peptides to combat tumors, parasites, and viruses.
Collapse
Affiliation(s)
| | - Guangshun Wang
- Department of Pathology and Microbiology, University of Nebraska Medical Center, 986495 Nebraska Medical Center, Omaha, NE 68198-6495, USA.
| |
Collapse
|
27
|
Zhong J, Zeng XC, Zeng X, Nie Y, Zhang L, Wu S, Bao A. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides. J Proteomics 2016; 150:40-62. [PMID: 27519694 DOI: 10.1016/j.jprot.2016.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/25/2016] [Accepted: 08/06/2016] [Indexed: 12/14/2022]
Abstract
Hadogenes is a genus of large African scorpions with 18 described species. However, little is known about the venom peptide composition of any species from Hadogenes so far. Here, we fully explored the composition of venom gland peptides from Hadogenes troglodytes using transcriptomic approach. We discovered 121 novel peptides from the scorpion, including 20 new-type peptides cross-linked with one, two, three, four or seven disulfide bridges, respectively, 11 novel K+-channel toxin-like peptides, 2 novel ryanodine receptors-specific toxin-like peptides, a unique peptide containing the cysteine knots of spider toxins, 15 novel La1-like toxins, 3 novel TIL domain-containing peptides, 5 novel peptides with atypical cysteine patterns, 19 novel antimicrobial peptides, 6 novel cysteine-free peptides and 39 new-type cysteine-free peptides. Among them, the new-type peptides are largely dominant; this highlights the unique diversity of the venom gland peptides from H. troglodytes. Some of the new peptides would serve as new molecular probes for the investigations of cellular ion channels and other receptors, or offer new templates for the development of therapeutic drugs for the treatment of ion channel-associated diseases, and infections caused by antibiotics-resistant pathogens. BIOLOGICAL SIGNIFICANCE In this study, we fully explored the composition of venom gland peptides from the scorpion Hadogenes troglodytes using transcriptomic approach. We discovered a total of 121 novel peptides from the venom glands of the scorpion, of which new-type peptides are largely dominant. These data highlight the unique diversity of the venom gland peptides from the scorpion H. troglodytes, gain insights into new mechanisms for the scorpion to subdue its prey and predators, and enlarge the protein database of scorpion venom glands. The discovery of a lot of novel peptides provides new templates for the development of therapeutic drugs, and offers new molecular materials for the basic researches of various cellular receptors, and for the evolutionary investigations of scorpion toxins.
Collapse
Affiliation(s)
- Jie Zhong
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Xian-Chun Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Xin Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Yao Nie
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Lei Zhang
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Shifen Wu
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Aorigele Bao
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| |
Collapse
|
28
|
Elevated Concentration of Defensins in Hepatitis C Virus-Infected Patients. J Immunol Res 2016; 2016:8373819. [PMID: 27413763 PMCID: PMC4931052 DOI: 10.1155/2016/8373819] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/17/2016] [Accepted: 04/27/2016] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) is the major etiological agent of human non-A and non-B hepatitis, affecting around 180 million people worldwide. Defensins, small cysteine-rich cationic peptides, are shown to have potent antibacterial, antiviral, and antifungal properties. Defensins can be found in both normal and microbial infected patients, at variable concentrations. Notably, viral infections are often associated with elevated concentrations of defensins. The current study aimed to estimate the concentrations of total, α-, and β-defensins in serum taken from normal and HCV-infected patients. 12 healthy (noninfected) and 34 HCV-infected patients were enrolled. Standardized immunoassay kits were used to obtain serum concentrations of defensins. The obtained results were calibrated against kit standard reagents. Total defensin concentrations in HCV-infected patients were significantly higher (2- to 105-fold) compared to healthy individuals. The concentrations of α-defensins were also significantly elevated in the HCV-infected patients (31–1398 ng/50 μL). However, concentrations of β-defensins ranged from 44.5 ng/50 μL to 1056 ng/50 μL. The results did not reveal differences in serum defensin concentration between male and female HCV-infected patients. A-defensin concentration of ≥250 ng/50 μL was found to contain more β-defensins than total defensins and α-defensins. This study concludes, for the first time, that serum defensin levels are elevated in HCV-infected patients.
Collapse
|
29
|
A novel antimicrobial peptide, scolopendin, from Scolopendra subspinipes mutilans and its microbicidal mechanism. Biochimie 2015; 118:176-84. [DOI: 10.1016/j.biochi.2015.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
|
30
|
Jiang L, Wang B, Li B, Wang C, Luo Y. Preparation and identification of peptides and their zinc complexes with antimicrobial activities from silver carp ( Hypophthalmichthys molitrix ) protein hydrolysates. Food Res Int 2014; 64:91-98. [DOI: 10.1016/j.foodres.2014.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/30/2014] [Accepted: 06/04/2014] [Indexed: 10/25/2022]
|
31
|
Harrison PL, Abdel-Rahman MA, Miller K, Strong PN. Antimicrobial peptides from scorpion venoms. Toxicon 2014; 88:115-37. [PMID: 24951876 PMCID: PMC7111748 DOI: 10.1016/j.toxicon.2014.06.006] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 05/28/2014] [Accepted: 06/10/2014] [Indexed: 12/01/2022]
Abstract
The need for new antimicrobial agents is becoming one of the most urgent requirements in modern medicine. The venoms of many different species are rich sources of biologically active components and various therapeutic agents have been characterized including antimicrobial peptides (AMPs). Due to their potent activity, low resistance rates and unique mode of action, AMPs have recently received much attention. This review focuses on AMPs from the venoms of scorpions and examines all classes of AMPs found to date. It gives details of their biological activities with reference to peptide structure. The review examines the mechanism of action of AMPs and with this information, suggests possible mechanisms of action of less well characterised peptides. Finally, the review examines current and future trends of scorpion AMP research, by discussing recent successes obtained through proteomic and transcriptomic approaches. In-depth analysis of AMPs from scorpion venom. Focus on biological activity and structure – function relationships. Discussion of possible mechanisms of action. Future strategies for further mining of bioactive compounds from venoms.
Collapse
Affiliation(s)
- Patrick L Harrison
- Biomedical Research Centre, Biosciences Division, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Mohamed A Abdel-Rahman
- Biomedical Research Centre, Biosciences Division, Sheffield Hallam University, Sheffield S1 1WB, UK; Zoology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Keith Miller
- Biomedical Research Centre, Biosciences Division, Sheffield Hallam University, Sheffield S1 1WB, UK
| | - Peter N Strong
- Biomedical Research Centre, Biosciences Division, Sheffield Hallam University, Sheffield S1 1WB, UK.
| |
Collapse
|
32
|
Schaffrath S, Predel R. A simple protocol for venom peptide barcoding in scorpions. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2014.02.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Zeng XC, Liu Y, Shi W, Zhang L, Luo X, Nie Y, Yang Y. Genome-wide search and comparative genomic analysis of the trypsin inhibitor-like cysteine-rich domain-containing peptides. Peptides 2014; 53:106-14. [PMID: 23973966 DOI: 10.1016/j.peptides.2013.08.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/13/2013] [Accepted: 08/13/2013] [Indexed: 11/24/2022]
Abstract
It was shown that peptides containing trypsin inhibitor-like cysteine-rich (TIL) domain are able to inhibit proteinase activities, and thus play important roles in various biological processes, such as immune response and anticoagulation. However, only a limited number of the TIL peptides have been identified and characterized so far; and little has been known about the evolutionary relationships of the genes encoding the TIL peptides. BmKAPi is a TIL domain-containing peptide that was identified from Mesobuthus martensii Karsch. Here, we conducted genome-wide searches for new peptides that are homologous to BmKAPi or possess a cysteine pattern similar to that of BmKAPi. As a result, we identified a total of 80 different TIL peptides from 34 species of arthropods. We found that these peptides can be classified into seven evolutionarily distinct groups. Furthermore, we cloned the genomic sequence of BmKAPi; the genomic sequences of the majority of other TIL peptides were also identified from the GenBank database using bioinformatical approaches. Through phylogenetic and comparative genomic analysis, we found 26 cases of intron gain events occurred in the genes of the TIL peptides; however, no instances of intron loss were observed. Moreover, we found that alternative splicing contributes to the diversification of the TIL peptides. It is interesting to see that four genes of the TIL domain-containing peptides overlap in a DNA region located on the chromosome LG B15 of Bombus terretris. These data suggest that the evolution of the TIL peptide genes are dynamic, which was dominated by intron gain.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China.
| | - Yichen Liu
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Wanxia Shi
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Xuesong Luo
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Yao Nie
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Ye Yang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
34
|
Wu S, Nie Y, Zeng XC, Cao H, Zhang L, Zhou L, Yang Y, Luo X, Liu Y. Genomic and functional characterization of three new venom peptides from the scorpion Heterometrus spinifer. Peptides 2014; 53:30-41. [PMID: 24389272 DOI: 10.1016/j.peptides.2013.12.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/20/2013] [Accepted: 12/20/2013] [Indexed: 12/14/2022]
Abstract
Three new cysteine-free venom peptides, which are referred to as Heterin-1, Heterin-2 and Spiniferin, respectively, were identified from the scorpion Heterometrus spinifer. Heterin-1, Heterin-2 and Spiniferin contain 43, 24 and 13 amino acid residues, respectively. Genomic analysis showed that the genomic organizations of the three peptides are consistent with those of the known Na(+), K(+) or Cl(-)-channel specific toxins from scorpions; this suggests that the genes of the cysteine-free and cysteine-rich peptides from scorpions were derived from a common ancestor. Antimicrobial assay demonstrated that Heterin-1 possesses potent activities against both Gram-positive and Gram-negative bacteria. Among the tested bacterial species, Heterin-1 is the most active against Bacillus megaterium and Micrococcus luteus with MICs of 4.0 μM and 4.0 μM, respectively. Heterin-2 is able to potently inhibit the growth of Gram-positive bacteria with MICs from 5.6 μM to 30.0 μM; however, it has weaker activities against the tested Gram-negative bacteria. It is interesting to see that deletion of the C-terminal random coiled tail (KKD) in Heterin-2 markedly changed the antimicrobial specificity and activity of the peptide. Spiniferin has very weak antimicrobial activities against both Gram-positive and Gram-negative bacteria. We found that introducing three net charges into the polar face of Spiniferin significantly increased its antimicrobial activity against the majority of the tested bacteria; however, in some instances, net charge on the polar face is not important for the antimicrobial activity of the peptide. These studies have expanded our understanding of the diversity, evolution and structure/function relationships of the cysteine-free peptides from scorpions.
Collapse
Affiliation(s)
- Shifen Wu
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Yao Nie
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China.
| | - Hanjun Cao
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Lei Zhang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Lingli Zhou
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Ye Yang
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Xuesong Luo
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| | - Yichen Liu
- State Key Laboratory of Biogeology and Environmental Geology & Department of Biological Science and Technology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China
| |
Collapse
|
35
|
Gao J, Yin W, Gao T, Deng R, Li X. Two bioactive compounds from the Chinese scorpionButhusmartensiiKarsch. Nat Prod Res 2014; 28:698-703. [DOI: 10.1080/14786419.2013.873433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
36
|
Almaaytah A, Albalas Q. Scorpion venom peptides with no disulfide bridges: a review. Peptides 2014; 51:35-45. [PMID: 24184590 DOI: 10.1016/j.peptides.2013.10.021] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 10/15/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Scorpion venoms are rich sources of biologically active peptides that are classified into disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs). DBPs are the main scorpion venom components responsible for the neurotoxic effects observed during scorpion envenomation as they usually target membrane bound ion channels of excitable and non-excitable cells. Several hundred DBPs have been identified and functionally characterized in the past two decades. The NDBPs represent a novel group of molecules that have gained great interest only recently due to their high diversity both in their primary structures and bioactivities. This review provides an overview of scorpion NDBPs focusing on their therapeutic applications, modes of discovery, mechanisms of NDBPs genetic diversity and structural properties. It also provides a simple classification for NDBPs that could be adopted and applied to other NDBPs identified in future studies.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Qosay Albalas
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
37
|
Zeng XC, Zhou L, Shi W, Luo X, Zhang L, Nie Y, Wang J, Wu S, Cao B, Cao H. Three new antimicrobial peptides from the scorpion Pandinus imperator. Peptides 2013; 45:28-34. [PMID: 23624072 DOI: 10.1016/j.peptides.2013.03.026] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/18/2013] [Accepted: 03/18/2013] [Indexed: 11/26/2022]
Abstract
Three novel cysteine-free venom peptides, which were referred to as Pantinin-1, Pantinin-2 and Pantinin-3, respectively, have been identified from the scorpion Pandinus imperator by cDNA cloning strategy. The precursor of each peptide consists of a signal peptide, a mature peptide with no disulfide bridges, and an acidic propeptide with a typical processing signal. Each of the three peptides is an α-helical, cationic and amphipathic molecule with 13 or 14 amino acid residues. Their amino acid sequences are homologous to those of some 13-mer antimicrobial peptides isolated from scorpions. Antimicrobial assay showed that all the three peptides possess relatively strong activities against Gram-positive bacteria and a fungus, but have very weak antimicrobial activities against Gram-negative bacteria. Toxicity assay showed that the three peptides exhibit very low or mild hemolytic activities against human red blood cells. It is interesting to see that Pantinin-3 is able to potently inhibit the growth of vancomycin-resistant Enterococcus (VRE) S13, a pathogen that can cause a number of human infections; this suggests that Pantinin-3 has great potential to be applied in the treatment of VRE infections. Our findings gain new insights into the structure/function relationships of the small linear cationic antimicrobial peptides from scorpions, and provide new templates for designing of antimicrobial agents targeting antibiotic-resistant pathogenic bacteria.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- Department of Biological Science and Technology, School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan 430074, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hmed B, Serria HT, Mounir ZK. Scorpion peptides: potential use for new drug development. J Toxicol 2013; 2013:958797. [PMID: 23843786 PMCID: PMC3697785 DOI: 10.1155/2013/958797] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 05/19/2013] [Accepted: 05/20/2013] [Indexed: 12/13/2022] Open
Abstract
Several peptides contained in scorpion fluids showed diverse array of biological activities with high specificities to their targeted sites. Many investigations outlined their potent effects against microbes and showed their potential to modulate various biological mechanisms that are involved in immune, nervous, cardiovascular, and neoplastic diseases. Because of their important structural and functional diversity, it is projected that scorpion-derived peptides could be used to develop new specific drugs. This review summarizes relevant findings improving their use as valuable tools for new drugs development.
Collapse
Affiliation(s)
- BenNasr Hmed
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Hammami Turky Serria
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| | - Zeghal Khaled Mounir
- Laboratory of Pharmacology, Medicine Faculty of Sfax, Street of Majida Boulila, 3029 Sfax, Tunisia
| |
Collapse
|