1
|
Bustamante M, Quiroga C, Mancilla G, Gomez W, Tapia A, Figueroa R, Mondaca-Ruff D, Oyarzún I, Verdejo HE, Lavandero S, Castro P. Autophagy fine-tuning by angiotensin-(1-9) in cultured rat cardiomyocytes. Front Cardiovasc Med 2025; 12:1408325. [PMID: 40144934 PMCID: PMC11937029 DOI: 10.3389/fcvm.2025.1408325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 02/26/2025] [Indexed: 03/28/2025] Open
Abstract
Background The renin-angiotensin system (RAS) plays a pivotal role in regulating blood volume, systemic vascular resistance, and electrolyte balance, serving as a key component of cardiovascular health. Recent findings highlight the role of angiotensin II (Ang II) in inducing autophagy through angiotensin II receptor type 1 (AT1R). Autophagy, a process of self-degradation and turnover of cellular components, is a homeostatic response that eliminates superfluous materials. Abnormal autophagy promotes cardiomyocyte loss and is critical in hypertrophy and heart failure progression. The RAS's non-canonical axis, which includes the angiotensin 1-9 peptide [Ang-(1-9)], has an anti-hypertrophic effect in cardiomyocytes via an unknown mechanism. In the present study, we aimed to elucidate the effect of Ang-(1-9) on cardiomyocyte autophagy. Methods We isolated and cultured neonatal ventricular cardiomyocytes and then co-treated them with Ang-(1-9) in the presence of chloroquine (CQ), Ang-II, and chemical inhibitors of different signaling pathways. After treatment, total RNA and protein extracts were obtained to analyze the abundance of different autophagy markers. Likewise, cells were fixed, and autophagy was analyzed through epifluorescence microscopy. Results Our findings show that CQ leads to a reduction in autophagy markers, such as microtubule-associated protein 1 light chain 3-II (LC3-II) and total LC3, suggesting Ang-(1-9)'s regulatory role in basal autophagy levels. Furthermore, Ang-(1-9) opposes Ang-II-induced autophagy and induces the phosphorylation of the S234 residue of Beclin-1 (BCN1) via an angiotensin II receptor type 2 (AT2R)/Akt-dependent pathway. Conclusions This reduction of Ang-II-induced autophagy by Ang-(1-9) unveils a novel aspect of its action, potentially contributing to its cardioprotective effects.
Collapse
Affiliation(s)
- Mario Bustamante
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Clara Quiroga
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Georthan Mancilla
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Physiology and Biophysics Program, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Wileidy Gomez
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Anita Tapia
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Reinaldo Figueroa
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - David Mondaca-Ruff
- Department of Biochemistry and Molecular Biology & Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, United States
| | - Ingrid Oyarzún
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Hugo E. Verdejo
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Transducción de Señales Moleculares, Facultad de Ciencias Químicas y Farmacéuticas & Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Department of Internal Medicine/Cardiology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Pablo Castro
- Advanced Center for Chronic Diseases (ACCDiS), University of Chile & Pontifical Catholic University of Chile, Santiago, Chile
- Laboratorio de Señalización Cardiovascular, División de Enfermedades Cardiovasculares, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
2
|
Alvarez-Gallego F, González-Blázquez R, Gil-Ortega M, Somoza B, Calderón-Dominguez M, Moratinos J, Garcia-Garcia V, Fernández P, González-Moreno D, Viana M, Alcalá M. Angiotensin II type 2 receptor as a novel activator of brown adipose tissue in obesity. Biofactors 2023; 49:1106-1120. [PMID: 37286331 DOI: 10.1002/biof.1981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/20/2023] [Indexed: 06/09/2023]
Abstract
The angiotensin II type 2 receptor (AT2R) exerts vasorelaxant, anti-inflammatory, and antioxidant properties. In obesity, its activation counterbalances the adverse cardiovascular effects of angiotensin II mediated by the AT1R. Preliminary results indicate that it also promotes brown adipocyte differentiation in vitro. Our hypothesis is that AT2R activation could increase BAT mass and activity in obesity. Five-week-old male C57BL/6J mice were fed a standard or a high-fat (HF) diet for 6 weeks. Half of the animals were treated with compound 21 (C21), a selective AT2R agonist, (1 mg/kg/day) in the drinking water. Electron transport chain (ETC), oxidative phosphorylation, and UCP1 proteins were measured in the interscapular BAT (iBAT) and thoracic perivascular adipose tissue (tPVAT) as well as inflammatory and oxidative parameters. Differentiation and oxygen consumption rate (OCR) in the presence of C21 was tested in brown preadipocytes. In vitro, C21-differentiated brown adipocytes showed an AT2R-dependent increase of differentiation markers (Ucp1, Cidea, Pparg) and increased basal and H+ leak-linked OCR. In vivo, HF-C21 mice showed increased iBAT mass compared to HF animals. Both their iBAT and tPVAT showed higher protein levels of the ETC protein complexes and UCP1, together with a reduction of inflammatory and oxidative markers. The activation of the AT2R increases BAT mass, mitochondrial activity, and reduces markers of tissue inflammation and oxidative stress in obesity. Therefore, insulin reduction and better vascular responses are achieved. Thus, the activation of the protective arm of the renin-angiotensin system arises as a promising tool in the treatment of obesity.
Collapse
Affiliation(s)
- Fabiola Alvarez-Gallego
- Departamento de Química y Bioquímica, Facultad de Farmacia., Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Raquel González-Blázquez
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - María Calderón-Dominguez
- Biomedical Research and Innovation Institute of Cadiz (INiBICA) Research Unit, Puerta del Mar University Hospital, Cádiz, Spain
- Biomedicine, Biotechnology and Public Health Department, University of Cadiz, Cádiz, Spain
| | - Javier Moratinos
- Instituto de Medicina Molecular Aplicada Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Virginia Garcia-Garcia
- Instituto de Medicina Molecular Aplicada Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Paloma Fernández
- Instituto de Medicina Molecular Aplicada Nemesio Díez, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Daniel González-Moreno
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Marta Viana
- Departamento de Química y Bioquímica, Facultad de Farmacia., Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| | - Martín Alcalá
- Departamento de Química y Bioquímica, Facultad de Farmacia., Universidad San Pablo-CEU, CEU Universities, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
3
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
4
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
5
|
Fan CL, Liang S, Ye MN, Cai WJ, Chen M, Hou YL, Guo J, Dai Y. Periplocymarin alleviates pathological cardiac hypertrophy via inhibiting the JAK2/STAT3 signalling pathway. J Cell Mol Med 2022; 26:2607-2619. [PMID: 35365949 PMCID: PMC9077305 DOI: 10.1111/jcmm.17267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/17/2022] [Accepted: 03/08/2022] [Indexed: 11/29/2022] Open
Abstract
Pathological cardiac hypertrophy is the most important risk factor for developing chronic heart failure. Therefore, the discovery of novel agents for treating pathological cardiac hypertrophy remains urgent. In the present study, we examined the therapeutic effect and mechanism of periplocymarin (PM)‐mediated protection against pathological cardiac hypertrophy using angiotensinII (AngII)‐stimulated cardiac hypertrophy in H9c2 cells and transverse aortic constriction (TAC)‐induced cardiac hypertrophy in mice. In vitro, PM treatment significantly reduced the surface area of H9c2 cells and expressions of hypertrophy‐related proteins. Meanwhile, PM markedly down‐regulated AngII‐induced translocation of p‐STAT3 into the nuclei and enhanced the phosphorylation levels of JAK2 and STAT3 proteins. The STAT3 specific inhibitor S3I‐201 or siRNA‐mediated depleted expression could alleviate AngII‐induced cardiac hypertrophy in H9c2 cells following PM treatment; however, PM failed to reduce the expressions of hypertrophy‐related proteins and phosphorylated STAT3 in STAT3‐overexpressing cells, indicating that PM protected against AngII‐induced cardiac hypertrophy by modulating STAT3 signalling. In vivo, PM reversed TAC‐induced cardiac hypertrophy, as determined by down‐regulating ratios of heart weight to body weight (HW/BW), heart weight to tibial length (HW/TL) and expressions of hypertrophy‐related proteins accompanied by the inhibition of the JAK2/STAT3 pathway. These results revealed that PM could effectively protect the cardiac structure and function in experimental models of pathological cardiac hypertrophy by inhibiting the JAK2/STAT3 signalling pathway. PM is expected to be a potential lead compound of the novel agents for treating pathological cardiac hypertrophy.
Collapse
Affiliation(s)
- Cai-Lian Fan
- Department of Cardiology, Jinan University First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Sui Liang
- Department of Cardiology, Jinan University First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Meng-Nan Ye
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Wan-Jun Cai
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Miao Chen
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yun-Long Hou
- National Key Laboratory of Collateral Disease Research and Innovative Chinese Medicine, Shijiazhuang, China
| | - Jun Guo
- Department of Cardiology, Jinan University First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Yi Dai
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
6
|
Lee HS, Cho KW, Kim HY, Ahn YM. Chamber-specific regulation of atrial natriuretic peptide secretion in cardiac hypertrophy: atrial wall dynamics in the ANP secretion. Pflugers Arch 2020; 472:639-651. [DOI: 10.1007/s00424-020-02377-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/21/2022]
|
7
|
Assersen KB, Sumners C, Steckelings UM. The Renin-Angiotensin System in Hypertension, a Constantly Renewing Classic: Focus on the Angiotensin AT 2-Receptor. Can J Cardiol 2020; 36:683-693. [PMID: 32389341 DOI: 10.1016/j.cjca.2020.02.095] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 02/07/2023] Open
Abstract
It is common knowledge that the renin-angiotensin system (RAS), in particular angiotensin II acting through the angiotensin AT1-receptor (AT1R), is pivotal for the regulation of blood pressure (BP) and extracellular volume. More recent findings have revealed that the RAS is far more complex than initially thought and that it harbours additional mediators and receptors, which are able to counteract and thereby fine-tune AT1R-mediated actions. This review will focus on the angiotensin AT2-receptor (AT2R), which is one of the "counter-regulatory" receptors within the RAS. It will review and discuss data related to the role of the AT2R in regulation of BP and focus on the following 3 questions: Do peripheral AT2R have an impact on BP regulation, and, if so, does this effect become apparent only under certain conditions? Are central nervous system AT2R involved in regulation of BP, and, if so, which brain areas are involved and what are the mechanisms? Does dysfunction of AT2R contribute to the pathogenesis of hypertension in preeclampsia?
Collapse
Affiliation(s)
- Kasper B Assersen
- Institute for Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Colin Sumners
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida, USA
| | - U Muscha Steckelings
- Institute for Molecular Medicine, Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
8
|
Abstract
The renin-angiotensin system is an important component of the cardiovascular system. Mounting evidence suggests that the metabolic products of angiotensin I and II - initially thought to be biologically inactive - have key roles in cardiovascular physiology and pathophysiology. This non-canonical axis of the renin-angiotensin system consists of angiotensin 1-7, angiotensin 1-9, angiotensin-converting enzyme 2, the type 2 angiotensin II receptor (AT2R), the proto-oncogene Mas receptor and the Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the classical renin-angiotensin system. This counter-regulatory renin-angiotensin system has a central role in the pathogenesis and development of various cardiovascular diseases and, therefore, represents a potential therapeutic target. In this Review, we provide the latest insights into the complexity and interplay of the components of the non-canonical renin-angiotensin system, and discuss the function and therapeutic potential of targeting this system to treat cardiovascular disease.
Collapse
|
9
|
Castoldi G, di Gioia CRT, Roma F, Carletti R, Manzoni G, Stella A, Zerbini G, Perseghin G. Activation of angiotensin type 2 (AT2) receptors prevents myocardial hypertrophy in Zucker diabetic fatty rats. Acta Diabetol 2019; 56:97-104. [PMID: 30187136 DOI: 10.1007/s00592-018-1220-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 08/26/2018] [Indexed: 12/14/2022]
Abstract
AIMS Compound 21 (C21), selective AT2 receptor agonist, has cardioprotective effects in experimental models of hypertension and myocardial infarction. The aims of the study was to evaluate the effect of C21, losartan, or both in Zucker diabetic fatty (ZDF) rats (type 2 diabetes) on (1) the prevention of myocardial hypertrophy; (2) myocardial expression of phosphatase and tensin homolog (PTEN), a target gene of miR-30a-3p, involved in myocardial remodelling. METHODS Experiments were performed in ZDF (n = 33) and in control Lean (8) rats. From the 6th to the 20th week of age, we administered C21 (0.3 mg/kg/day) to 8 ZDF rats. 8 ZDF rats were treated with losartan (10 mg/kg/day), 8 rats underwent combination treatment, C21+ losartan, and 9 ZDF rats were left untreated. Blood glucose and blood pressure were measured every 4 weeks. At the end of the study the hearts were removed, the apex was cut for the quantification of PTEN mRNA and miR-30a-3p expression (realtime-PCR). Myocardial hypertrophy was evaluated by histomorphometric analysis, and nitrotyrosine expression (as marker of oxidative stress) by immunohistochemistry. RESULTS ZDF rats had higher blood glucose (p < 0.0001) with respect to control Lean rats, while blood pressure did not change. Both parameters were not modified by C21 treatment, while losartan and losartan + C21 reduced blood pressure in ZDF rats (p < 0.05). miR-30a-3p expression was increased in ZDF rats (p < 0.01) and PTEN mRNA expression was decreased (p < 0.05). ZDF rats developed myocardial hypertrophy (p < 0.01) and increased oxidative stress (p < 0.01), both were prevented by C21 or losartan, or combination treatment. C21 or losartan normalized the expression of miR-30a-3p and PTEN. CONCLUSIONS Activation of AT2 receptors or AT1 receptor blockade prevents the development of myocardial hypertrophy in ZDF rats. This occurs through the modulation of the miR-30a-3p/PTEN interaction.
Collapse
MESH Headings
- Animals
- Blood Glucose/drug effects
- Blood Glucose/metabolism
- Cardiomegaly/etiology
- Cardiomegaly/pathology
- Cardiomegaly/prevention & control
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/pathology
- Diabetic Cardiomyopathies/pathology
- Diabetic Cardiomyopathies/prevention & control
- Losartan/pharmacology
- Male
- Obesity/complications
- Obesity/drug therapy
- Obesity/pathology
- Oxidative Stress/drug effects
- Rats
- Rats, Zucker
- Receptor, Angiotensin, Type 2/agonists
- Sulfonamides/therapeutic use
- Thiophenes/therapeutic use
Collapse
Affiliation(s)
- Giovanna Castoldi
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore, 48, 20900, Monza, MB, Italy.
| | - Cira R T di Gioia
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomopatologiche, Istituto di Anatomia Patologica, Sapienza Universita' di Roma, Rome, Italy
| | - Francesca Roma
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore, 48, 20900, Monza, MB, Italy
| | - Raffaella Carletti
- Dipartimento di Scienze Radiologiche, Oncologiche e Anatomopatologiche, Istituto di Anatomia Patologica, Sapienza Universita' di Roma, Rome, Italy
| | - Giuseppina Manzoni
- Dipartimento di Medicina Interna e Riabilitazione, Policlinico di Monza, Monza, Italy
| | - Andrea Stella
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore, 48, 20900, Monza, MB, Italy
| | - Gianpaolo Zerbini
- Unità Complicanze del Diabete, Diabetes Research Institute, Istituto Scientifico San Raffaele, Milan, Italy
| | - Gianluca Perseghin
- Dipartimento di Medicina e Chirurgia, Università degli Studi di Milano-Bicocca, Via Cadore, 48, 20900, Monza, MB, Italy
- Dipartimento di Medicina Interna e Riabilitazione, Policlinico di Monza, Monza, Italy
| |
Collapse
|
10
|
Tan R, Ahn YM, Kim HY, Lee YJ, Cho KW, Kang DG, Lee HS. Atrial secretion of ANP is suppressed in renovascular hypertension: shifting of ANP secretion from atria to the left ventricle. Am J Physiol Heart Circ Physiol 2018; 315:H590-H601. [PMID: 29979625 DOI: 10.1152/ajpheart.00612.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the present study, the change in secretion of atrial natriuretic peptide (ANP) from the atria was defined in hypertension accompanied by ventricular hypertrophy and increased synthesis of ANP. To identify the change of the secretion and mechanisms involved, experiments were performed in isolated perfused beating atria from sham-operated normotensive and renovascular hypertensive rats. Expression of ANP, natriuretic peptide receptor (NPR)-C, components of the renin-angiotensin system, and muscarinic signaling pathway was measured in cardiac tissues. Basal levels of ANP secretion and acetylcholine (ACh)- and stretch-induced activation of ANP secretion were suppressed in the atria from hypertensive compared with normotensive rats. ACh increased ANP secretion via M2 muscarinic ACh receptor-ACh-sensitive K+ channel signaling. In hypertensive rats, ANP concentration increased in the left ventricle but decreased in the right ventricle. The atrial concentration of ANP was not changed in hypertensive compared with normotensive rats. ANP mRNA expression was accentuated in the left ventricle but suppressed in the other cardiac chambers in the hearts of hypertensive rats. NPR-C expression was inversely related to ANP mRNA levels. Angiotensin II type 1 receptor (AT1R) expression was accentuated in the cardiac chambers from hypertensive rats compared with normotensive rats, whereas angiotensin II type 2 receptor, M2 muscarinic receptor, and Kir3.4 channels were suppressed. AT1R blockade with losartan reversed the change observed in hypertensive rats. The present findings indicate that renovascular hypertension shifts the major site of ANP secretion and synthesis from the atria to the left ventricle through modulation of the expression of ANP, NPR-C, AT1R, and the M2 muscarinic signaling pathway. NEW & NOTEWORTHY Renovascular hypertension suppresses the atrial secretion of ANP and shifts the major site of the regulation of ANP secretion and synthesis from atria to the hypertrophied left ventricle possibly via modulation of the expression of ANP, natriuretic peptide receptor-C, angiotensin II subtype 1 receptor, and M2 muscarinic signaling pathway.
Collapse
Affiliation(s)
- Rui Tan
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - You Mee Ahn
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Hye Yoom Kim
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Yun Jung Lee
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Kyung Woo Cho
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Dae Gill Kang
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| | - Ho Sub Lee
- Hanbang Cardio-Renal Syndrome Research Center, Department of Herbal Resources, Professional Graduate School of Oriental Medicine Wonkwang University, Iksan, Korea
| |
Collapse
|
11
|
Mendoza-Torres E, Riquelme JA, Vielma A, Sagredo AR, Gabrielli L, Bravo-Sagua R, Jalil JE, Rothermel BA, Sanchez G, Ocaranza MP, Lavandero S. Protection of the myocardium against ischemia/reperfusion injury by angiotensin-(1–9) through an AT2R and Akt-dependent mechanism. Pharmacol Res 2018; 135:112-121. [DOI: 10.1016/j.phrs.2018.07.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/29/2018] [Accepted: 07/22/2018] [Indexed: 01/01/2023]
|
12
|
Patel SN, Ali Q, Samuel P, Steckelings UM, Hussain T. Angiotensin II Type 2 Receptor and Receptor Mas Are Colocalized and Functionally Interdependent in Obese Zucker Rat Kidney. Hypertension 2017; 70:831-838. [PMID: 28827476 DOI: 10.1161/hypertensionaha.117.09679] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 05/18/2017] [Accepted: 08/03/2017] [Indexed: 12/29/2022]
Abstract
The actions of angiotensin II type 2 receptor (AT2R) and the receptor Mas (MasR) are complex but show similar pronatriuretic function; particularly, AT2R expression and natriuretic function are enhanced in obese/diabetic rat kidney. In light of some reports suggesting a potential positive interaction between these receptors, we tested hypothesis that renal AT2R and MasR physically interact and are interdependent to stimulate cell signaling and promote natriuresis in obese rats. We found that infusion of AT2R agonist C21 in obese Zucker rats (OZR) increased urine flow and urinary Na excretion which were attenuated by simultaneous infusion of the AT2R antagonist PD123319 or the MasR antagonist A-779. Similarly, infusion of MasR agonist Ang-(1-7) in OZR increased urine flow and urinary Na excretion, which were attenuated by simultaneous infusion of A-779 or PD123319. Experiment in isolated renal proximal tubules of OZR revealed that both the agonists C21 and Ang-(1-7) stimulated NO which was blocked by either of the receptor antagonists. Dual labeling of AT2R and MasR in OZR kidney sections and human proximal tubule epithelial cells showed that AT2R and MasR are colocalized. The AT2R also coimmunoprecipitated with MasR in cortical homogenate of OZR. Immunoblotting of cortical homogenate cross-linked with zero-length oxidative (sulfhydryl groups) cross-linker cupric-phenanthroline revealed a shift of AT2R and MasR bands upward with overlapping migration for their complexes which were sensitive to the reducing β-mercaptoethanol, suggesting involvement of -SH groups in cross-linking. Collectively, the study reveals that AT2R and MasR are colocalized and functionally interdependent in terms of stimulating NO and promoting diuretic/natriuretic response.
Collapse
Affiliation(s)
- Sanket N Patel
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.)
| | - Quaisar Ali
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.)
| | - Preethi Samuel
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.)
| | - Ulrike Muscha Steckelings
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.)
| | - Tahir Hussain
- From the Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, TX (S.N.P., Q.A., P.S., T.H.); and Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense (U.M.S.).
| |
Collapse
|
13
|
Thanigaimani S, McLennan E, Linz D, Mahajan R, Agbaedeng TA, Lee G, Kalman JM, Sanders P, Lau DH. Progression and reversibility of stretch induced atrial remodeling: Characterization and clinical implications. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2017; 130:376-386. [PMID: 28734850 DOI: 10.1016/j.pbiomolbio.2017.07.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 07/17/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and across the developed nations, it contributes to increasing hospitalizations and healthcare burden. Several comorbidities and risk factors including hypertension, heart failure, obstructive sleep apnoea and obesity are known to play an important role in the initiation and perpetuation of AF and atrial stretch or dilatation may play a central mechanistic role. The impact of atrial stretch in the development of AF can vary dependent on the underlying disease. This review focuses on understanding the substrate for AF in conditions of acute and chronic stretch and in the presence of common co-morbidities or risk factors through the review of findings in both animal and human studies. Additionally, the reversibility of atrial remodeling following stretch release will also be discussed. Identification of clinical conditions associated with increased atrial stretch as well as the treatment or prevention of these conditions may help to prevent AF progression and improve sinus rhythm maintenance.
Collapse
Affiliation(s)
- Shivshankar Thanigaimani
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Emma McLennan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dominik Linz
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Rajiv Mahajan
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Thomas A Agbaedeng
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Geoffrey Lee
- Department of Cardiology, Royal Melbourne Hospital and Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jonathan M Kalman
- Department of Cardiology, Royal Melbourne Hospital and Department of Medicine, The University of Melbourne, Melbourne, Victoria, Australia
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, South Australian Health and Medical Research Institute, University of Adelaide and Royal Adelaide Hospital, Adelaide, South Australia, Australia.
| |
Collapse
|
14
|
Ahn YM, Choi YH, Yoon JJ, Lee YJ, Cho KW, Kang DG, Lee HS. Oleanolic acid modulates the renin-angiotensin system and cardiac natriuretic hormone concomitantly with volume and pressure balance in rats. Eur J Pharmacol 2017; 809:231-241. [PMID: 28514645 DOI: 10.1016/j.ejphar.2017.05.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 05/12/2017] [Accepted: 05/12/2017] [Indexed: 01/13/2023]
Abstract
Oleanolic acid is known to possess beneficial effects on the regulation of the cardiovascular homeostasis. However, the exact nature of the role of oleanolic acid on the regulation of body fluid balance and blood pressure homeostasis and its mechanisms involved are not well defined. Experiments were performed to identify the effects of oleanolic acid on the renin-angiotensin system and cardiac natriuretic hormone (ANP) system, and also renal function and blood pressure in normotensive and renovascular hypertensive rats. The change in the plasma levels of hormones and the expressions of renin, angiotensin II receptors, ANP, natriuretic peptide receptor-C, M2 muscarinic receptor and GIRK4 were determined in the kidney, heart and aorta. Oleanolic acid was administered orally for 1 or 3 weeks. Here, we found that oleanolic acid suppressed plasma levels of renin activity and aldosterone and intrarenal levels of renin and angiotensin II type 1 receptor expression and increased angiotensin II type 2 receptor in normotensive and hypertensive rats. Also, oleanolic acid increased plasma levels of ANP. Further, oleanolic acid suppressed angiotensin II type 1 receptor and natriuretic peptide receptor-C expression and increased angiotensin II type 2 receptor and ANP expression in the heart and aorta. Along with these changes, oleanolic acid accentuated urinary volume, electrolyte excretion and glomerular filtration rate in normotensive rats and suppressed arterial blood pressure in hypertensive rats. These findings suggest that beneficial effects of oleanolic acid on the cardiorenal system are closely associated with its roles on the renin-angiotensin system and cardiac natriuretic hormone system.
Collapse
Affiliation(s)
- You Mee Ahn
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Yoon Hee Choi
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Jung Joo Yoon
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Yun Jung Lee
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Kyung Woo Cho
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea
| | - Dae Gill Kang
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea.
| | - Ho Sub Lee
- Department of Herbal Resources, Hanbang Body Fluid Research Center, Professional Graduate School of Oriental Medicine, Wonkwang University, Republic of Korea.
| |
Collapse
|
15
|
Park BM, Gao S, Cha SA, Kim SH. Attenuation of renovascular hypertension by cyclooxygenase-2 inhibitor partly through ANP release. Peptides 2015; 69:1-8. [PMID: 25846103 DOI: 10.1016/j.peptides.2015.03.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 01/11/2023]
Abstract
Angiotensin II (Ang II) is an important inflammatory mediator. Ang II induces cyclooxygenase-2 (COX-2) expression and prostaglandin F2α release followed by cardiac hypertrophy. Inhibition of COX-2 may modulate high blood pressure but controversy still exists. The aim of this study was to determine the role of COX-2 in the regulation of blood pressure and to define the mechanisms in two kidney one-clip hypertensive (2K1C) rats. Chronic treatment with nimesulide or NS-398 (5 mg/kg/day) for 3 weeks lowered high blood pressure and cardiac hypertrophy with decreased expression levels of cardiac hypertrophy markers [atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP)], Ang type 1 receptor, urotensin II, and urotensin II receptor in 2K1C rats. Plasma level of ANP was markedly increased and plasma levels of Ang II and aldosterone were decreased by treatment with nimesulide or NS-398. In both in vitro and in vivo experiments, nimesulide or NS-398 augmented ANP release in 2K1C rats. The inhibitory effect of NS-398 on blood pressure was attenuated by the pretreatment with natriuretic peptide receptor-A (NPR-A) antagonist (A71915, 30 μg/kg/day). These results suggest that chronic treatment with nimesulide or NS-398 attenuated hypertension and cardiac hypertrophy partly through ANP release in 2K1C rats.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Shan Gao
- Department of Pharmacology, Taishan Medical University, Shandong, China
| | - Seung Ah Cha
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
16
|
Bladder Oxidative Stress in Sleep Apnea Contributes to Detrusor Instability and Nocturia. J Urol 2015; 193:1692-9. [DOI: 10.1016/j.juro.2014.11.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2014] [Indexed: 11/21/2022]
|
17
|
Park BM, Cha SA, Han BR, Kim SH. Angiotensin IV stimulates high atrial stretch-induced ANP secretion via insulin regulated aminopeptidase. Peptides 2015; 63:30-7. [PMID: 25451332 DOI: 10.1016/j.peptides.2014.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 01/11/2023]
Abstract
Angiotensin IV (Ang IV) is formed by aminopeptidase N (APN) from angiotensin III (Ang III) by removing the first N-terminal amino acid. Previously, we reported that angiotensin II (Ang II) inhibits atrial natriuretic peptide (ANP) secretion via angiotensin II type 1 receptor (AT1R). In contrast, angiotensin-(1-7) [Ang-(1-7)] and Ang III stimulate ANP secretion via Mas receptor (Mas R) and angiotensin II type 2 receptor (AT2R), respectively. However, it is not known whether there is any relationship between Ang IV and ANP secretion. Therefore, the aim of the present study was to determine the effect of Ang IV on ANP secretion and to find its downstream signaling pathway using in isolated perfused beating atria. Ang IV (0.1, 1 and 10μM) stimulated high atrial stretch-induced ANP secretion and ANP concentration in a dose-dependent manner. The augmented effect of Ang IV (1μM) on high atrial stretch-induced ANP secretion and concentration was attenuated by pretreatment with insulin-regulated aminopeptidase (IRAP) antagonist but not by AT1R or AT2R antagonist. Pretreatment with inhibitors of downstream signaling pathway including phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt) and mammalian target of rapamycin (mTOR) blocked Ang IV-induced ANP secretion and concentration. Therefore, these results suggest that Ang IV stimulates ANP secretion and concentration via IRAP and PI3K-Akt-mTOR pathway.
Collapse
Affiliation(s)
- Byung Mun Park
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Bo Ram Han
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
18
|
Gao S, Park BM, Cha SA, Kim SZ, Kim SH. Comparision of secretagogue effects of rosiglitazone and telmisartan on ANP secretion in rats. Peptides 2014; 56:52-8. [PMID: 24703963 DOI: 10.1016/j.peptides.2014.03.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 03/18/2014] [Accepted: 03/21/2014] [Indexed: 01/23/2023]
Abstract
Peroxisome proliferator-activated receptor-gamma (PPAR-γ), a nuclear transcription factor, is a key regulator of insulin signaling, and glucose and fat metabolism. In this study, we evaluated the direct effect of PPAR-γ ligand on the secretion of atrial natriuretic peptide (ANP). The isolated perfused beating atria were used and rosiglitazone (0.01, 0.3 and 1 μM) or telmisartan was perfused into atria with and without inhibitors. High frequency stimulation caused a decreased atrial contractility by 40% and an increased ANP secretion by 80%. Rosiglitazone augmented high frequency-induced ANP secretion and concentration in a dose-dependent manner. Rosiglitazone-induced ANP secretion was attenuated by the pretreatment with PPAR-γ antagonist (GW 9662), or inhibitor for phosphoinositol 3-kinase (PI3-kinase, wortmannin), Akt (API-2) or nitric oxide synthase (l-NAME). Telmisartan, a partial agonist of PPAR-γ with angiotensin II type 1 receptor (AT1R) blocker, also stimulated ANP secretion, which was more potent than rosiglitazone or losartan. Infusion of rosiglitazone or telmisartan in anesthetized rats tended to decrease mean arterial pressure and to increase pulse pressure without difference. A plasma ANP level was increased by telmisartan more than by rosiglitazone. In diabetic rats, an increased plasma ANP level was more prominent than sham rats. Therefore, we suggest that rosiglitazone stimulates high frequency-induced ANP secretion through the PPAR-γ receptor-PI3-kinase-Akt-eNOS pathway and telmisartan shows synergistic effect on ANP secretion.
Collapse
Affiliation(s)
- Shan Gao
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea; Department of Pharmacology, Taishan Medical University, Shandong, China
| | - Byung Mun Park
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Seung Ah Cha
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Sung Zoo Kim
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Suhn Hee Kim
- Department of Physiology, Diabetic Research Center, Chonbuk National University Medical School, Jeonju, Republic of Korea.
| |
Collapse
|
19
|
Cha SA, Park BM, Gao S, Kim SH. Stimulation of ANP by angiotensin-(1-9) via the angiotensin type 2 receptor. Life Sci 2013; 93:934-40. [PMID: 24177599 DOI: 10.1016/j.lfs.2013.10.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 01/09/2023]
Abstract
AIMS Angiotensin-(1-9) [Ang-(1-9)] and Ang-(1-7) are cleaved by Ang converting enzyme 2 forming Ang I and Ang II, respectively, and the truncated Angs play a role in regulating atrial natriuretic peptide (ANP) secretion. Previously, we found that Ang-(1-7) stimulates ANP secretion via the Mas receptor. However, the effect of Ang-(1-9) on ANP secretion is still unknown. The aim of the present study is to determine whether Ang-(1-9) stimulates ANP secretion and to characterize the signaling pathway involved in stimulating secretion. MAIN METHODS We examined the effects of Ang-(1-9) on ANP secretion and atrial contractility with and without inhibitors in isolated perfused atria. KEY FINDINGS Ang-(1-9) stimulated ANP secretion and concentration without change in atrial contractility. Ang-(1-9)-induced-ANP secretion was increased from 5% to 60% by 3 μM Ang-(1-9) during the low-stretch state of the atrium. This stimulatory effect of Ang-(1-9) on ANP secretion was attenuated by pretreatment with an Ang II type 2 receptor (AT2R) antagonist but not by AT1R or Mas receptor antagonist. In addition, pretreatment with inhibitors of phosphatidylinositol 3-kinase (PI3K), protein kinase B (Akt), nitric oxide synthase (NOS) and soluble guanylyl cyclase (sGC) blocked Ang-(1-9)-induced ANP secretion. In the high-stretch atrial state, Ang-(1-9)-induced ANP secretion was increased more than in the low-stretch state following addition of 1 μM Ang-(1-9) (from 108% to 170%). In an in vivo experiment, acute infusion of Ang-(1-9) increased plasma ANP level without altering arterial blood pressure. This effect was attenuated by pretreatment with AT2R antagonist but not by Mas receptor antagonist. SIGNIFICANCE These results suggest that Ang-(1-9) stimulates ANP secretion via the AT2R-PI3K-Akt-NO-cGMP pathway.
Collapse
Affiliation(s)
- Seung Ah Cha
- Department of Physiology, Research Institute for Endocrine Sciences, Chonbuk National University Medical School, Jeonju, Republic of Korea
| | | | | | | |
Collapse
|