1
|
Wang N, Huang W, Jia Q, Song B, Wang S, Wu L, Sun M, Wang Y, Zhang L, Wang W. Biocontrol potential of borrelidin metabolites derived from Streptomyces rochei A144 as a fungicide. J Appl Microbiol 2025; 136:lxaf073. [PMID: 40121183 DOI: 10.1093/jambio/lxaf073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/11/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
AIMS This study aimed to isolate and identify antifungal metabolites and evaluate potential applications for biocontrol. METHODS AND RESULTS Using a bioactivity-guided fractionation approach, we obtained the macrolide metabolite borrelidin from Streptomyces rochei A144, which exhibited significant inhibitory effects on Valsa mali mycelial growth (EC50 = 22.23 μg ml-1). Scanning and transmission electron microscopy analyses revealed that borrelidin caused damage to V. mali hyphae, such as breakage, increased swelling and branching at the hyphal tips, irregular cell wall thickness, plasmolysis, and degeneration of cellular organelles. After borrelidin treatment, the lesion length on detached twigs and lesion area on leaves were reduced by 49.38% and 89.16%, respectively. The mycelial growth rate method was used to evaluate the antifungal activity of borrelidin against various plant pathogenic fungi. The study findings indicate that borrelidin possesses broad-spectrum antifungal activity, with inhibition rates in the range of 21.32%-100%. CONCLUSIONS The macrolide metabolite borrelidin, derived from S. rochei A144, exhibited significant antifungal activity against V. mali and broad-spectrum inhibition of phytopathogenic fungi.
Collapse
Affiliation(s)
- Ning Wang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Wei Huang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Qiong Jia
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Bo Song
- Research Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Suling Wang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Longyuan Wu
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Meng Sun
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yanzhi Wang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Resources and Environment, Xinjiang Agricultural University, Urumqi 830052, China
| | - Lijuan Zhang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
- College of Grassland Science, Xinjiang Agricultural University, Urumqi 830052, China
| | - Wei Wang
- Institute of Microbiology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| |
Collapse
|
2
|
Louviot F, Abdelrahman O, Abou-Mansour E, L'Haridon F, Allard PM, Falquet L, Weisskopf L. Oligomycin-producing Streptomyces sp. newly isolated from Swiss soils efficiently protect Arabidopsis thaliana against Botrytis cinerea. mSphere 2024; 9:e0066723. [PMID: 38864637 PMCID: PMC11288007 DOI: 10.1128/msphere.00667-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/05/2024] [Indexed: 06/13/2024] Open
Abstract
Botrytis cinerea is a necrotrophic phytopathogen able to attack more than 200 different plant species causing strong yield losses worldwide. Many synthetic fungicides have been developed to control this disease, resulting in the rise of fungicide-resistance B. cinerea strains. The aim of this study was to identify Streptomyces strains showing antagonistic activity against B. cinerea to contribute to plant protection in an environmentally friendly way. We isolated 15 Actinomycete strains from 9 different Swiss soils. The culture filtrates of three isolates showing antifungal activity inhibited spore germination and delayed mycelial growth of B. cinerea. Infection experiments showed that Arabidopsis thaliana plants were more resistant to this pathogen after leaf treatment with the Streptomyces filtrates. Bioassay-guided isolation of the active compounds revealed the presence of germicidins A and B as well as of oligomycins A, B, and E. While germicidins were mostly inactive, oligomycin B reduced the mycelial growth of B. cinerea significantly. Moreover, all three oligomycins inhibited this fungus' spore germination, suggesting that these molecules might contribute to the Streptomyces's ability to protect plants against infection by the broad host-pathogen Botrytis cinerea. IMPORTANCE This study reports the isolation of new Streptomyces strains with strong plant-protective potential mediated by their production of specialized metabolites. Using the broad host range pathogenic fungus Botrytis cinerea, we demonstrate that the cell-free filtrate of selected Streptomyces isolates efficiently inhibits different developmental stages of the fungus, including mycelial growth and the epidemiologically relevant spore germination. Beyond in vitro experiments, the strains and their metabolites also efficiently protected plants against the disease caused by this pathogen. This work further identifies oligomycins as active compounds involved in the observed antifungal activity of the strains. This work shows that we can harness the natural ability of soil-borne microbes and of their metabolites to efficiently fight other microbes responsible for significant crop losses. This opens the way to the development of environmentally friendly health protection measures for crops of agronomical relevance, based on these newly isolated strains or their metabolic extracts containing oligomycins.
Collapse
Affiliation(s)
- Fanny Louviot
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Ola Abdelrahman
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | | | | | | | - Laurent Falquet
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laure Weisskopf
- Department of Biology, University of Fribourg, Fribourg, Switzerland
- Food Research and Innovation Centre, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
3
|
Maimone NM, Apaza-Castillo GA, Quecine MC, de Lira SP. Accessing the specialized metabolome of actinobacteria from the bulk soil of Paullinia cupana Mart. on the Brazilian Amazon: a promising source of bioactive compounds against soybean phytopathogens. Braz J Microbiol 2024; 55:1863-1882. [PMID: 38421597 PMCID: PMC11153476 DOI: 10.1007/s42770-024-01286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 02/10/2024] [Indexed: 03/02/2024] Open
Abstract
The Amazon rainforest, an incredibly biodiverse ecosystem, has been increasingly vulnerable to deforestation. Despite its undeniable importance and potential, the Amazonian microbiome has historically received limited study, particularly in relation to its unique arsenal of specialized metabolites. Therefore, in this study our aim was to assess the metabolic diversity and the antifungal activity of actinobacterial strains isolated from the bulk soil of Paullinia cupana, a native crop, in the Brazilian Amazon Rainforest. Extracts from 24 strains were subjected to UPLC-MS/MS analysis using an integrative approach that relied on the Chemical Structural and Compositional Similarity (CSCS) metric, GNPS molecular networking, and in silico dereplication tools. This procedure allowed the comprehensive understanding of the chemical space encompassed by these actinobacteria, which consists of features belonging to known bioactive metabolite classes and several unannotated molecular families. Among the evaluated strains, five isolates exhibited bioactivity against a panel of soybean fungal phytopathogens (Rhizoctonia solani, Macrophomina phaseolina, and Sclerotinia sclerotiorum). A focused inspection led to the annotation of pepstatins, oligomycins, hydroxamate siderophores and dorrigocins as metabolites produced by these bioactive strains, with potentially unknown compounds also comprising their metabolomes. This study introduces a pragmatic protocol grounded in established and readily available tools for the annotation of metabolites and the prioritization of strains to optimize further isolation of specialized metabolites. Conclusively, we demonstrate the relevance of the Amazonian actinobacteria as sources for bioactive metabolites useful for agriculture. We also emphasize the importance of preserving this biome and conducting more in-depth studies on its microbiota.
Collapse
Affiliation(s)
- Naydja Moralles Maimone
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Gladys Angélica Apaza-Castillo
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Maria Carolina Quecine
- College of Agriculture "Luiz de Queiroz", Department of Genetics, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Simone Possedente de Lira
- College of Agriculture "Luiz de Queiroz", Department of Exact Sciences, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| |
Collapse
|
4
|
Park HS, Kang SH, Choi SS, Kim ES. Isolation of Streptomyces inhibiting multiple-phytopathogenic fungi and characterization of lucensomycin biosynthetic gene cluster. Sci Rep 2024; 14:7757. [PMID: 38565875 PMCID: PMC10987574 DOI: 10.1038/s41598-024-57888-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/22/2024] [Indexed: 04/04/2024] Open
Abstract
Soil microorganisms with diverse bioactive compounds such as Streptomyces are appreciated as valuable resources for the discovery of eco-friendly fungicides. This study isolated a novel Streptomyces from soil samples collected in the organic green tea fields in South Korea. The isolation process involved antifungal activity screening around 2400 culture extracts, revealing a strain designated as S. collinus Inha504 with remarkable antifungal activity against diverse phytopathogenic fungi. S. collinus Inha504 not only inhibited seven phytopathogenic fungi including Fusarium oxysporum and Aspergillus niger in bioassays and but also showed a control effect against F. oxysporum infected red pepper, strawberry, and tomato in the in vivo pot test. Genome mining of S. collinus Inha504 revealed the presence of the biosynthetic gene cluster (BGC) in the chromosome encoding a polyene macrolide which is highly homologous to the lucensomycin (LCM), a compound known for effective in crop disease control. Through genetic confirmation and bioassays, the antifungal activity of S. collinus Inha504 was attributed to the presence of LCM BGC in the chromosome. These results could serve as an effective strategy to select novel Streptomyces strains with valuable biological activity through bioassay-based screening and identify biosynthetic gene clusters responsible for the metabolites using genome mining approach.
Collapse
Affiliation(s)
- Heung-Soon Park
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Seung-Hoon Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
5
|
Wang Z, Yin J, Bai M, Yang J, Jiang C, Yi X, Liu Y, Gao C. New Polyene Macrolide Compounds from Mangrove-Derived Strain Streptomyces hiroshimensis GXIMD 06359: Isolation, Antifungal Activity, and Mechanism against Talaromyces marneffei. Mar Drugs 2024; 22:38. [PMID: 38248663 PMCID: PMC10819995 DOI: 10.3390/md22010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024] Open
Abstract
Mangrove-derived actinomycetes represent a rich source of novel bioactive natural products in drug discovery. In this study, four new polyene macrolide antibiotics antifungalmycin B-E (1-4), along with seven known analogs (5-11), were isolated from the fermentation broth of the mangrove strain Streptomyces hiroshimensis GXIMD 06359. All compounds from this strain were purified using semi-preparative HPLC and Sephadex LH-20 gel filtration while following an antifungal activity-guided fractionation. Their structures were elucidated through spectroscopic techniques including UV, HR-ESI-MS, and NMR. These compounds exhibited broad-spectrum antifungal activity against Talaromyces marneffei with minimum inhibitory concentration (MIC) values being in the range of 2-128 μg/mL except compound 2. This is the first report of polyene derivatives produced by S. hiroshimensis as bioactive compounds against T. marneffei. In vitro studies showed that compound 1 exerted a significantly stronger antifungal activity against T. marneffei than other new compounds, and the antifungal mechanism of compound 1 may be related to the disrupted cell membrane, which causes mitochondrial dysfunction, resulting in leakage of intracellular biological components, and subsequently, cell death. Taken together, this study provides a basis for compound 1 preventing and controlling talaromycosis.
Collapse
Affiliation(s)
- Zhou Wang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Z.W.); (J.Y.); (M.B.); (J.Y.); (C.J.)
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| | - Jianglin Yin
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Z.W.); (J.Y.); (M.B.); (J.Y.); (C.J.)
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
- Guangxi Scientific Research Center of Traditional Chinese Medicine, Nanning 530200, China
| | - Meng Bai
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Z.W.); (J.Y.); (M.B.); (J.Y.); (C.J.)
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| | - Jie Yang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Z.W.); (J.Y.); (M.B.); (J.Y.); (C.J.)
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| | - Cuiping Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Z.W.); (J.Y.); (M.B.); (J.Y.); (C.J.)
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| | - Xiangxi Yi
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| | - Yonghong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Z.W.); (J.Y.); (M.B.); (J.Y.); (C.J.)
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| | - Chenghai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China; (Z.W.); (J.Y.); (M.B.); (J.Y.); (C.J.)
- Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China;
| |
Collapse
|
6
|
Zhong J, Sui WW, Bai XY, Qiu ZL, Li XG, Zhu JZ. Characterization and biocontrol mechanism of Streptomyces olivoreticuli as a potential biocontrol agent against Rhizoctonia solani. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105681. [PMID: 38072538 DOI: 10.1016/j.pestbp.2023.105681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 10/28/2023] [Indexed: 12/18/2023]
Abstract
Rhizoctonia solani is a widespread and devastating plant pathogenic fungus that infects many important crops. This pathogen causes tobacco target spot, a disease that is widespread in many tobacco-growing countries and is destructive to tobacco. To identify antagonistic microorganisms with biocontrol potential against this disease, we isolated Streptomyces strains from forest inter-root soil and screened a promising biocontrol strain, ZZ-21. Based on in vitro antagonism assays, ZZ-21 showed a significant inhibitory effect on R. solani and various other phytopathogens. ZZ-21 was identified as Streptomyces olivoreticuli by its phenotypic, genetic, physiological and biochemical properties. Complete genome sequencing revealed that ZZ-21 harbored numerous antimicrobial biosynthesis gene clusters. ZZ-21 significantly reduced the lesion length in detached inoculated leaf assays and reduced the disease index under greenhouse and field conditions. Based on an in vitro antagonistic assay of ZZ-21 culture, the strain exhibited an antifungal activity against R. solani in a dose-dependent manner. The culture filtrate could impair membrane integrity, possibly through membrane lipid peroxidation. ZZ-21 could secrete multiple extracellular enzymes and siderophores. According to a series of antifungal assays, the extracellular metabolites of ZZ-21 contained antimicrobial bioactive compounds composed of proteins/peptides extracted using ammonium sulfate precipitation, which were stable under stress caused by high temperature and protease K. The EC50 value for ammonium sulfate precipitation was determined to be 21.11 μg/mL in this study. Moreover, the proteins/peptides also exhibited biocontrol ability and were observed to alter the plasma membrane integrity of R. solani which were evaluated by biocontrol efficacy assays on detached tobacco leaves and PI staining. Overall, strain ZZ-21 shows the potential to be developed into a biopesticide against tobacco target spot disease.
Collapse
Affiliation(s)
- Jie Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
| | - Wen Wen Sui
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
| | - Xin Yi Bai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
| | - Ze Lan Qiu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China
| | - Xiao Gang Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| | - Jun Zi Zhu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan Province 410128, PR China.
| |
Collapse
|
7
|
Wang L, Lu H, Jiang Y. Natural Polyketides Act as Promising Antifungal Agents. Biomolecules 2023; 13:1572. [PMID: 38002254 PMCID: PMC10669366 DOI: 10.3390/biom13111572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/16/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Invasive fungal infections present a significant risk to human health. The current arsenal of antifungal drugs is hindered by drug resistance, limited antifungal range, inadequate safety profiles, and low oral bioavailability. Consequently, there is an urgent imperative to develop novel antifungal medications for clinical application. This comprehensive review provides a summary of the antifungal properties and mechanisms exhibited by natural polyketides, encompassing macrolide polyethers, polyether polyketides, xanthone polyketides, linear polyketides, hybrid polyketide non-ribosomal peptides, and pyridine derivatives. Investigating natural polyketide compounds and their derivatives has demonstrated their remarkable efficacy and promising clinical application as antifungal agents.
Collapse
Affiliation(s)
| | - Hui Lu
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| |
Collapse
|
8
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
9
|
Fan J, Guo F, Zhao C, Li H, Qu T, Xiao L, Du F. Secondary Metabolites with Herbicidal and Antifungal Activities from Marine-Derived Fungus Alternaria iridiaustralis. J Fungi (Basel) 2023; 9:716. [PMID: 37504705 PMCID: PMC10381437 DOI: 10.3390/jof9070716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Weed and soil-borne pathogens could synergistically affect vegetable growth and result in serious losses. Investigation of agricultural bioactive metabolites from marine-derived fungus Alternaria iridiaustralis yielded polyketides (1-4), benzopyrones (5-7), meroterpenoid derivatives (8), and alkaloid (9). The structures and absolute configurations of new 1, 3, 5-6, and 8 were elucidated by extensive spectroscopic analyses, as well as comparisons between measured and calculated ECD and 13C NMR data. Compounds 1-4, 6, and 9 showed herbicidal potentials against the radicle growth of Echinochloa crusgalli seedlings. Especially 9 exhibited inhibition rates over 90% at concentrations of 20 and 40 μg/mL, even better than the commonly used chemical herbicide acetochlor. Furthermore, 9 also performed a wide herbicidal spectrum against the malignant weeds Digitaria sanguinalis, Portulaca oleracea, and Descurainia sophia. Compounds 5-8 showed antifungal activities against carbendazim-resistant strains of Botrytis cinerea, with minimum inhibitory concentration (MIC) values ranging from 32 to 128 μg/mL, which were better than those of carbendazim (MIC = 256 μg/mL). Especially 6 exhibited integrated effects against both soil-borne pathogens and weed. Overall, marine-derived fungus A. iridiaustralis, which produces herbicidal and antifungal metabolites 1-9, showed the potential for use as a microbial pesticide to control both weed and soil-borne pathogens.
Collapse
Affiliation(s)
- Jinqing Fan
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangfang Guo
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Chen Zhao
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Hong Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Tianli Qu
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Lin Xiao
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
| | - Fengyu Du
- College of Chemistry and Pharmacy, Qingdao Agricultural University, Qingdao 266109, China
- Shandong Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
10
|
Zhu HX, Hu LF, Hu HY, Zhou F, Wu LL, Wang SW, Rozhkova T, Li CW. Identification of a Novel Streptomyces sp. Strain HU2014 Showing Growth Promotion and Biocontrol Effect Against Rhizoctonia spp. in Wheat. PLANT DISEASE 2023; 107:1139-1150. [PMID: 36190299 DOI: 10.1094/pdis-06-22-1493-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wheat sharp eyespot is a serious disease caused by the phytopathogens Rhizoctonia cerealis and R. solani. Some species in the genus Streptomyces have been identified as potential biocontrol agents against phytopathogens. In this investigation, the physiological, biochemical, phylogenetic, and genomic characteristics of strain HU2014 indicate that it is a novel Streptomyces sp. most closely related to Streptomyces albireticuli. Strain HU2014 exhibited strong antifungal activity against R. cerealis G11 and R. solani YL-3. Ultraperformance liquid chromatography-mass spectrometry on the four extracts from the extracellular filtrate of strain HU2014 identified 10 chemical constituents in the Natural Products Atlas with high match levels (more than 90%). In an antifungal efficiency test on wheat sharp eyespot, two extracts significantly reduced the lesion areas on bean leaves infected by R. solani YL-3. The drenching of wheat in pots with spore suspension of strain HU2014 demonstrated a control efficiency of 65.1% against R. cerealis G11 (compared with 66.9% when treated by a 30% hymexazol aqueous solution). Additionally, in vitro and pot experiments demonstrated that strain HU2014 can produce indoleacetic acid, siderophores, extracellular enzymes, and solubilized phosphate, and it can promote plant growth. We conclude that strain HU2014 could be a valuable microbial resource for growth promotion of wheat and biological control of wheat sharp eyespot.
Collapse
Affiliation(s)
- Hong-Xia Zhu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
- Henan Engineering Research of Crop Genome Editing, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
- Sumy National Agrarian University, Sumy, Ukraine
| | - Lin-Feng Hu
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | - Hai-Yan Hu
- Henan Engineering Research of Crop Genome Editing, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
| | - Feng Zhou
- Henan Engineering Research of Crop Genome Editing, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
| | - Liu-Liu Wu
- Henan Engineering Research of Crop Genome Editing, Xinxiang, China
- Henan International Joint Laboratory of Plant Genetic Improvement and Soil Remediation, Xinxiang, China
- Sumy National Agrarian University, Sumy, Ukraine
| | - Shi-Wen Wang
- College of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang, China
| | | | - Cheng-Wei Li
- Henan University of Technology, Zhengzhou, China
| |
Collapse
|
11
|
Torres-Rodriguez JA, Reyes-Pérez JJ, Quiñones-Aguilar EE, Hernandez-Montiel LG. Actinomycete Potential as Biocontrol Agent of Phytopathogenic Fungi: Mechanisms, Source, and Applications. PLANTS (BASEL, SWITZERLAND) 2022; 11:3201. [PMID: 36501241 PMCID: PMC9736024 DOI: 10.3390/plants11233201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Synthetic fungicides have been the main control of phytopathogenic fungi. However, they cause harm to humans, animals, and the environment, as well as generating resistance in phytopathogenic fungi. In the last few decades, the use of microorganisms as biocontrol agents of phytopathogenic fungi has been an alternative to synthetic fungicide application. Actinomycetes isolated from terrestrial, marine, wetland, saline, and endophyte environments have been used for phytopathogenic fungus biocontrol. At present, there is a need for searching new secondary compounds and metabolites of different isolation sources of actinomycetes; however, little information is available on those isolated from other environments as biocontrol agents in agriculture. Therefore, the objective of this review is to compare the antifungal activity and the main mechanisms of action in actinomycetes isolated from different environments and to describe recent achievements of their application in agriculture. Although actinomycetes have potential as biocontrol agents of phytopathogenic fungi, few studies of actinomycetes are available of those from marine, saline, and wetland environments, which have equal or greater potential as biocontrol agents than isolates of actinomycetes from terrestrial environments.
Collapse
Affiliation(s)
- Juan A. Torres-Rodriguez
- Nanotechnology and Microbial Biocontrol Group, Centro de Investigaciones Biológicas del Noroeste, Av. Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23090, Mexico
| | - Juan J. Reyes-Pérez
- Facultad de Ciencias Pecuarias, Universidad Técnica Estatal de Quevedo, Av. Quito km 1.5 vía a Santo Domingo, Quevedo 120501, Ecuador
| | - Evangelina E. Quiñones-Aguilar
- Centro de Investigaciones y Asistencia en Tecnología y Diseño del Estado de Jalisco, Camino Arenero, El Bajío del Arenal, Guadalajara 45019, Mexico
| | - Luis G. Hernandez-Montiel
- Nanotechnology and Microbial Biocontrol Group, Centro de Investigaciones Biológicas del Noroeste, Av. Politécnico Nacional 195, Col. Playa Palo de Santa Rita Sur, La Paz 23090, Mexico
| |
Collapse
|
12
|
Mundy DC, Elmer P, Wood P, Agnew R. A Review of Cultural Practices for Botrytis Bunch Rot Management in New Zealand Vineyards. PLANTS (BASEL, SWITZERLAND) 2022; 11:3004. [PMID: 36365455 PMCID: PMC9657730 DOI: 10.3390/plants11213004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Botrytis bunch rot of grapes (BBR) causes substantial crop and wine quality issues globally. Past and present foundations for BBR control are based upon synthetic fungicides and varying forms of canopy management. Many authors regard the continued dependence on fungicides as unsustainable and have urged greater deployment of cultural, biological and nutritional strategies. However, in contrast to organic wine production, the uptake of alternative strategies in conventional vineyards has been slow based on cost and perceived reliability issues. This review summarises research from many different wine growing regions in New Zealand with the aim of demonstrating how traditional and newly developed cultural control practices have cost-effectively reduced BBR. In addition to reviewing traditional cultural practices (e.g., leaf removal), mechanical tools are described that remove floral trash and mechanically shake the vines. Multi-omics has improved our knowledge of the underlying changes to grape berries after mechanical shaking. Exogenous applications of calcium may correct calcium deficiencies in the berry skin and reduce BBR but the outcome varies between cultivar and regions. Nitrogen aids in grapevine defence against BBR but remains a complex and difficult nutrient to manage. The sustainable growth of organics and The European Green Deal will stimulate researchers to evaluate new combinations of non-chemical BBR strategies in the next decade.
Collapse
Affiliation(s)
- Dion Charles Mundy
- The New Zealand Institute for Plant and Food Research Limited, P.O. Box 845, Blenheim 7240, New Zealand
- Nelson Marlborough Institute of Technology Limited, Private Bag 19, Nelson 7042, New Zealand
| | - Philip Elmer
- The New Zealand Institute for Plant and Food Research Limited, Private Bag Waikato Mail Centre, Hamilton 3240, New Zealand
| | - Peter Wood
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 1401, Havelock North 4157, New Zealand
| | - Rob Agnew
- The New Zealand Institute for Plant and Food Research Limited, P.O. Box 845, Blenheim 7240, New Zealand
| |
Collapse
|
13
|
Yong D, Li Y, Gong K, Yu Y, Zhao S, Duan Q, Ren C, Li A, Fu J, Ni J, Zhang Y, Li R. Biocontrol of strawberry gray mold caused by Botrytis cinerea with the termite associated Streptomyces sp. sdu1201 and actinomycin D. Front Microbiol 2022; 13:1051730. [PMID: 36406410 PMCID: PMC9674021 DOI: 10.3389/fmicb.2022.1051730] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022] Open
Abstract
Strawberry gray mold caused by Botrytis cinerea is one of the most severe diseases in pre- and post-harvest periods. Although fungicides have been an effective way to control this disease, they can cause serious “3R” problems (Resistance, Resurgence and Residue). In this study, Streptomyces sp. sdu1201 isolated from the hindgut of the fungus-growing termite Odontotermes formosanus revealed significant antifungal activity against B. cinerea. Four compounds (1–4) were isolated from Streptomyces sp. sdu1201 and further identified as actinomycins by the HRMS and 1D NMR data. Among them, actinomycin D had the strongest inhibitory activity against B. cinerea with the EC50 value of 7.65 μg mL−1. The control effect of actinomycin D on strawberry gray mold was also tested on fruits and leaves in vitro, and its control efficiency on leaves was 78.77% at 3 d. Moreover, actinomycin D can also inhibit the polarized growth of germ tubes of B. cinerea. Therefore, Streptomyces sp. sdu1201 and actinomycin D have great potential to gray mold as biocontrol agents.
Collapse
Affiliation(s)
- Daojing Yong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Yue Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Kai Gong
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Yingying Yu
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Shuai Zhao
- Qingdao Zhongda Agritech Co., Ltd., Qingdao, China
| | - Qiong Duan
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Cailing Ren
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Aiying Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jun Fu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Jinfeng Ni
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- *Correspondence: Jinfeng Ni,
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Chinese Academy of Sciences (CAS) Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Youming Zhang,
| | - Ruijuan Li
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
- Ruijuan Li,
| |
Collapse
|