1
|
Matamoros JA, Rubio-Casado S, Fernández-Albarral JA, Martínez-López MA, Ramírez AI, Salobrar-García E, Marco EM, Paleo-García V, de Hoz R, López-Cuenca I, Elvira-Hurtado L, Sánchez-Puebla L, Ramírez JM, López-Gallardo M, Salazar JJ. Citicoline and Coenzyme Q10: Therapeutic Agents for Glial Activation Reduction in Ocular Hypertension. Pharmaceuticals (Basel) 2025; 18:694. [PMID: 40430513 PMCID: PMC12114817 DOI: 10.3390/ph18050694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/28/2025] [Accepted: 04/30/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: The loss of retinal ganglion cells (RGCs) is a hallmark of glaucoma, a major cause of blindness. Glial cell activation due to increased intraocular pressure (IOP) significantly contributes to RGC death. Therefore, substances with anti-inflammatory properties could help prevent that process. This study investigated whether combining Citicoline and Coenzyme Q10 (CoQ10) can reduce glial activation in the retina and the rest of the visual pathway, potentially preventing neurodegeneration in a mouse model of unilateral laser-induced ocular hypertension (OHT). Methods: Four groups of mice were used: vehicle (n = 12), CitiQ10 (n = 12), OHT-vehicle (n = 18), and OHT-CitiQ10 (n = 18). The administration of Citicoline and CoQ10 was performed orally once a day, initiated 15 days prior to the laser treatment and maintained post-treatment until sacrifice (3 days for retina or 7 days for the rest of the visual pathway). The retina, dorsolateral geniculate nucleus, superior colliculus, and visual cortex (V1) were immunohistochemically stained and analyzed. Results: In the laser-CitiQ10 group, the Citicoline + CoQ10 compound revealed (1) an IOP decrease at 24 h and 3 days post-laser; and (2) reduced signs of macroglial (decreased GFAP area) and microglial (soma size, arbor area, microglia number, P2RY12 expression) activation in the retina and in the rest of the visual pathway (reduced activated microglial phenotypes and lower GFAP expression). Conclusions: This study shows that oral administration of Citicoline and CoQ10 can reduce glial activation caused by increased IOP in retina and visual pathway in a mouse model of OHT, potentially protecting RGCs from OHT-induced inflammation.
Collapse
Affiliation(s)
- José A. Matamoros
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sara Rubio-Casado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José A. Fernández-Albarral
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Miguel A. Martínez-López
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana I. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Elena Salobrar-García
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Eva M. Marco
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Department of Genetics, Microbiology and Physiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain
| | - Victor Paleo-García
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Rosa de Hoz
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Inés López-Cuenca
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| | - Lorena Elvira-Hurtado
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
| | - Lidia Sánchez-Puebla
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - José M. Ramírez
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Meritxell López-Gallardo
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Department of Physiology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Juan J. Salazar
- Ramon Castroviejo Institute for Ophthalmic Research, Complutense University of Madrid (ROR 02p0gd045), 28040 Madrid, Spain; (J.A.M.); (S.R.-C.); (J.A.F.-A.); (M.A.M.-L.); (A.I.R.); (E.S.-G.); (E.M.M.); (R.d.H.); (I.L.-C.); (L.E.-H.); (L.S.-P.); (J.M.R.)
- Health Research Institute of the Hospital Clínico San Carlos (IdISSC) (ROR 014v12a39), 28040 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Faculty of Optics and Optometry, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
2
|
Keshavarzi M, Naraki K, Razavi BM, Hosseinzadeh H. Ameliorative and protective effects of coenzyme Q10 against natural and chemical toxicity: a narrative review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03992-5. [PMID: 40080152 DOI: 10.1007/s00210-025-03992-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 02/26/2025] [Indexed: 03/15/2025]
Abstract
Coenzyme Q10 (CoQ10) or ubiquinone is the most known dietary and nutritional supplementation, which has various functions in the body such as involvement in adenosine triphosphate production, modulation of gene expression, antioxidant, and anti-inflammatory effects. It has been indicated that it is useful against cardiotoxicity, hepatotoxicity, neurotoxicity, nephrotoxicity, and so on, which are induced by various toxicants. In this review, we selected articles that include the protective effects of CoQ10 against the toxicity of various chemical and natural compounds including pharmaceuticals, metals, pesticides, etc. Scientific databases including PubMed/Medline, Science Direct, Scopus, and Google Scholar were searched to find relevant in vitro and in vivo studies. The underlying protective mechanisms for CoQ10 against natural and chemical compound toxicity included the enhancement of antioxidant enzyme activities such as superoxide dismutase, catalase, glutathione peroxidase, glutathione-S-transferase, and suppression of pro-inflammatory markers such as tumor necrosis factor-alpha, interleukin-1, and IL-6. Furthermore, it has anti-apoptotic potential by regulating the B-cell lymphoma, Bcl-2-associated X protein, and caspase3/9. Overall, these properties make CoQ10 a highly fascinating compound that may contribute to different aspects of health.
Collapse
Affiliation(s)
- Majid Keshavarzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Kaur S, Ahuja P, Kapil L, Sharma D, Singh C, Singh A. Coenzyme Q10 ameliorates chemotherapy-induced cognitive impairment in mice: a preclinical study. Mol Biol Rep 2024; 51:930. [PMID: 39174728 DOI: 10.1007/s11033-024-09872-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/19/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Among the three most used anticancer drugs, cyclophosphamide, Adriamycin, and 5-Fluorouracil (CAF), the most significant outcome is chemobrain, caused by increased oxidative stress, inflammatory insult, and mitochondrial dysfunction. OBJECTIVE In this study, endogenous antioxidant coenzyme Q10 (CoQ10) was evaluated for its neuroprotective effects in CICI. MATERIALS AND METHODS The chemobrain was induced in Swiss albino female mice by administering CAF (40 + 4 + 25 mg/kg) intraperitoneal (i.p.) in three cycles (single injection per week) followed by treatment with CoQ10 (40 mg/kg; p.o.) for up to 3 weeks followed by behavioral, biochemical, molecular and histopathological analysis. RESULTS Treatment with CoQ10 significantly improved cognition by improving exploring time in novel objects recognition test followed by increasing the time spent in the target quadrant in MWM test as compared to CAF-treated animals. Moreover, CoQ10 demonstrated antioxidant properties by reducing the expression of LPO while increasing levels of GSH, SOD, and catalase as compared to CAF-treated animals. While the levels of AChEs were significantly reduced after CoQ10 treatment in CAF-treated animals. In terms of its mechanism, it effectively counteracted the pro-inflammatory substances (TNF-α and IL-1β) triggered by CAF while also enhancing the levels of anti-inflammatory markers (IL-10 and Nrf2). Moreover, CoQ10 showed mitochondrial enhancers and it improved the level of Complex (I, II, and IV). Besides that, mitochondrial morphological analysis was done by TEM, and neuronal morphology along with quantification analysis was performed by H&E staining using Image J software to confirm the neuroprotective effect of CoQ10 over CAF-induced cognitive impairment. CONCLUSION This study suggests CoQ10 can protect the mitochondria by imposing antioxidant, and anti-inflammatory properties, which could be a potential therapy for CICI.
Collapse
Affiliation(s)
- Simranjit Kaur
- Department of Pharmacology, ISF College of Pharmacy Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, 248007, India
| | - Palak Ahuja
- Department of Pharmacology, ISF College of Pharmacy Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, 248007, India
| | - Lakshay Kapil
- Department of Pharmacology, ISF College of Pharmacy Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, 248007, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Moga, Punjab, 142001, India
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, 248007, India
| | - Charan Singh
- Department of Pharmaceutics (School of Pharmacy), H.N.B. Garhwal University, Garhwal, Srinagar, Uttarakhand, 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy Affiliated to I.K Gujral Punjab Technical University, Jalandhar, Moga, Punjab, 142001, India.
- Department of Pharmaceutical Sciences, School of Health Sciences & Technology, UPES, Dehradun, Uttarakhand, 248007, India.
| |
Collapse
|
4
|
Fikry H, Saleh LA, Mahmoud FA, Gawad SA, Abd-Alkhalek HA. CoQ10 targeted hippocampal ferroptosis in a status epilepticus rat model. Cell Tissue Res 2024; 396:371-397. [PMID: 38499882 PMCID: PMC11144258 DOI: 10.1007/s00441-024-03880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
Status epilepticus (SE), the most severe form of epilepsy, leads to brain damage. Uncertainty persists about the mechanisms that lead to the pathophysiology of epilepsy and the death of neurons. Overloading of intracellular iron ions has recently been identified as the cause of a newly recognized form of controlled cell death called ferroptosis. Inhibiting ferroptosis has shown promise as a treatment for epilepsy, according to recent studies. So, the current study aimed to assess the possible antiepileptic impact of CoQ10 either alone or with the standard antiepileptic drug sodium valproate (SVP) and to evaluate the targeted effect of COQ10 on hippocampal oxidative stress and ferroptosis in a SE rat model. Using a lithium-pilocarpine rat model of epilepsy, we evaluated the effect of SVP, CoQ10, or both on seizure severity, histological, and immunohistochemical of the hippocampus. Furthermore, due to the essential role of oxidative stress and lipid peroxidation in inducing ferroptosis, we evaluated malonaldehyde (MDA), reduced glutathione (GSH), glutathione peroxidase 4 (GPX4), and ferritin in tissue homogenate. Our work illustrated that ferroptosis occurs in murine models of lithium-pilocarpine-induced seizures (epileptic group). Nissl staining revealed significant neurodegeneration. A significant increase in the number of astrocytes stained with an astrocyte-specific marker was observed in the hippocampus. Effective seizure relief can be achieved in the seizure model by administering CoQ10 alone compared to SVP. This was accomplished by lowering ferritin levels and increasing GPX4, reducing MDA, and increasing GSH in the hippocampus tissue homogenate. In addition, the benefits of SVP therapy for regulating iron stores, GPX4, and oxidative stress markers were amplified by incorporating CoQ10 as compared to SVP alone. It was concluded that CoQ10 alone has a more beneficial effect than SVP alone in restoring histological structures and has a targeted effect on hippocampal oxidative stress and ferroptosis. In addition, COQ10 could be useful as an adjuvant to SVP in protecting against oxidative damage and ferroptosis-related damage that result from epileptic seizures.
Collapse
Affiliation(s)
- Heba Fikry
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt.
| | - Lobna A Saleh
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Faten A Mahmoud
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Sara Abdel Gawad
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| | - Hadwa Ali Abd-Alkhalek
- Department of Histology and Cell Biology, Faculty of Medicine, Ain Shams University, Khalifa El-Maamon st, Abbasiya sq., Cairo, 11566, Egypt
| |
Collapse
|
5
|
Mahmoud AH, Elhefnawei DM, EL-Desouky MA, Kadry MO. Reciprocal crosslink among MeCP2/BDNF /CREB signaling pinpointed in autism spectrum disorder. Toxicol Rep 2024; 12:91-99. [PMID: 38229920 PMCID: PMC10789594 DOI: 10.1016/j.toxrep.2023.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 01/18/2024] Open
Abstract
Autism spectrum disorder, or individual disability (ID), is a condition characterized by complications in social interaction, restricted repetitive behavior, and difficulties in social communication. Neuquinon (NQ) possess a powerful therapeutic potential in various neurodegenerative disease. Nevertheless, contributing to NQ's low water solubility and bioavailability, its medicinal use has been constrained. Liposomes were supposed to be prospective drug-delivering agents for NQ, crossing the blood-brain barrier (BBB), and reaching the target organs. The current investigation aims to track the signaling pathways that govern NQ and liposomal neuquinon (LNQ) action in autistic models generated by ethyl formic acid. The neurotransmitters gamma amino-butyric acid (GABA), acetylcholine (ACh), and acetylcholinesterase (AChE) in addition to, the gene expressions of brain-derived neurotrophic factor (BDNF), cAMP response element-binding protein (CREB), and methyl-CpG-binding protein 2 (MeCP2) and the DNA damage COMET analysis at different time intervals of the study, were assessed. EFA in a dose of 500 mg/kg BW was used to induce autism in rats, and then NQ and LNQ were administered in 10 mg/kg and 2 mg/kg BW, respectively. The results revealed that NQ and LNQ significantly down-regulated BDNF, GABA, and AChE; on the other hand, they up-regulated MeCP2, CREB gene expressions, and ACh action. NQ and LNQ displayed improvement in DNA damage in almost all brain regions after EFA alterations; even better results were noticed post-LNQ therapy. Therefore, it may be concluded that neuquinon and liposomal-loaded neuquinon have a therapeutic index versus EFA-induced autism in a rat model.
Collapse
Affiliation(s)
- Ahlam H. Mahmoud
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | - Doaa M. Elhefnawei
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| | | | - Mai O. Kadry
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
6
|
Eleiwa NZH, Elsayed ASF, Said EN, Metwally MMM, Abd-Elhakim YM. Di (2-ethylhexyl) phthalate alters neurobehavioral responses and oxidative status, architecture, and GFAP and BDNF signaling in juvenile rat's brain: Protective role of Coenzyme10. Food Chem Toxicol 2024; 184:114372. [PMID: 38113957 DOI: 10.1016/j.fct.2023.114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/21/2023]
Abstract
Di-(2-ethylhexyl) phthalate (DEHP), a phthalate plasticizer, is widely spread in the environment, presenting hazards to human health and food safety. Hence, this study examined the probable preventive role of coenzyme10 (CQ10) (10 mg/kg.b.wt) against DEHP (500 mg/kg.wt) - induced neurotoxic and neurobehavioral impacts in juvenile (34 ± 1.01g and 3 weeks old) male Sprague Dawley rats in 35-days oral dosing trial. The results indicated that CQ10 significantly protected against DEHP-induced memory impairment, anxiety, depression, spatial learning disorders, and repetitive/stereotypic-like behavior. Besides, the DEHP-induced depletion in dopamine and gamma amino butyric acid levels was significantly restored by CQ10. Moreover, CQ10 significantly protected against the exhaustion of CAT, GPx, SOD, GSH, and GSH/GSSG ratio, as well as the increase in malondialdehyde, Caspas-3, interleukin-6, and tumor necrosis factor-alpha brain content accompanying with DEHP exposure. Furthermore, CQ10 significantly protected the brain from the DEHP-induced neurodegenerative alterations. Also, the increased immunoexpression of brain-derived neurotrophic factor, not glial fibrillary acidic protein, in the cerebral, hippocampal, and cerebellar brain tissues due to DEHP exposure was alleviated with CQ10. This study's findings provide conclusive evidence that CQ10 has the potential to be used as an efficient natural protective agent against the neurobehavioral and neurotoxic consequences of DEHP.
Collapse
Affiliation(s)
- Naglaa Z H Eleiwa
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Alaa S F Elsayed
- Department of Pharmacology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Enas N Said
- Department of Behaviour and Management of Animal, Poultry and Aquatic, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Mohamed M M Metwally
- Department of Pathology and Clinical Pathology, Faculty of Veterinary Medicine, King Salman International University, Ras Sudr, Egypt; Department of Pathology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt
| | - Yasmina M Abd-Elhakim
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
7
|
Aleshin VA, Graf AV, Artiukhov AV, Ksenofontov AL, Zavileyskiy LG, Maslova MV, Bunik VI. Pentylenetetrazole-Induced Seizures Are Increased after Kindling, Exhibiting Vitamin-Responsive Correlations to the Post-Seizures Behavior, Amino Acids Metabolism and Key Metabolic Regulators in the Rat Brain. Int J Mol Sci 2023; 24:12405. [PMID: 37569781 PMCID: PMC10418815 DOI: 10.3390/ijms241512405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/30/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Epilepsy is characterized by recurrent seizures due to a perturbed balance between glutamate and GABA neurotransmission. Our goal is to reveal the molecular mechanisms of the changes upon repeated challenges of this balance, suggesting knowledge-based neuroprotection. To address this goal, a set of metabolic indicators in the post-seizure rat brain cortex is compared before and after pharmacological kindling with pentylenetetrazole (PTZ). Vitamins B1 and B6 supporting energy and neurotransmitter metabolism are studied as neuroprotectors. PTZ kindling increases the seizure severity (1.3 fold, p < 0.01), elevating post-seizure rearings (1.5 fold, p = 0.03) and steps out of the walls (2 fold, p = 0.01). In the kindled vs. non-kindled rats, the post-seizure p53 level is increased 1.3 fold (p = 0.03), reciprocating a 1.4-fold (p = 0.02) decrease in the activity of 2-oxoglutarate dehydrogenase complex (OGDHC) controlling the glutamate degradation. Further, decreased expression of deacylases SIRT3 (1.4 fold, p = 0.01) and SIRT5 (1.5 fold, p = 0.01) reciprocates increased acetylation of 15 kDa proteins 1.5 fold (p < 0.01). Finally, the kindling abrogates the stress response to multiple saline injections in the control animals, manifested in the increased activities of the pyruvate dehydrogenase complex, malic enzyme, glutamine synthetase and decreased malate dehydrogenase activity. Post-seizure animals demonstrate correlations of p53 expression to the levels of glutamate (r = 0.79, p = 0.05). The correlations of the seizure severity and duration to the levels of GABA (r = 0.59, p = 0.05) and glutamate dehydrogenase activity (r = 0.58, p = 0.02), respectively, are substituted by the correlation of the seizure latency with the OGDHC activity (r = 0.69, p < 0.01) after the vitamins administration, testifying to the vitamins-dependent impact of the kindling on glutamate/GABA metabolism. The vitamins also abrogate the correlations of behavioral parameters with seizure duration (r 0.53-0.59, p < 0.03). Thus, increased seizures and modified post-seizure behavior in rats after PTZ kindling are associated with multiple changes in the vitamin-dependent brain metabolism of amino acids, linked to key metabolic regulators: p53, OGDHC, SIRT3 and SIRT5.
Collapse
Affiliation(s)
- Vasily A. Aleshin
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, Bld. 2, 119991 Moscow, Russia
| | - Anastasia V. Graf
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
- Faculty of Nano-, Bio-, Informational, Cognitive and Socio-Humanistic Sciences and Technologies at Moscow Institute of Physics and Technology, Maximova Street 4, 123098 Moscow, Russia
| | - Artem V. Artiukhov
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, Bld. 2, 119991 Moscow, Russia
| | - Alexander L. Ksenofontov
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.)
| | - Lev G. Zavileyskiy
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Maria V. Maslova
- Faculty of Biology, Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Victoria I. Bunik
- A.N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia; (V.A.A.)
- Department of Biochemistry, Sechenov University, Trubetskaya, 8, Bld. 2, 119991 Moscow, Russia
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
8
|
Łukawski K, Czuczwar SJ. Oxidative Stress and Neurodegeneration in Animal Models of Seizures and Epilepsy. Antioxidants (Basel) 2023; 12:antiox12051049. [PMID: 37237916 DOI: 10.3390/antiox12051049] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Free radicals are generated in the brain, as well as in other organs, and their production is proportional to the brain activity. Due to its low antioxidant capacity, the brain is particularly sensitive to free radical damage, which may affect lipids, nucleic acids, and proteins. The available evidence clearly points to a role for oxidative stress in neuronal death and pathophysiology of epileptogenesis and epilepsy. The present review is devoted to the generation of free radicals in some animal models of seizures and epilepsy and the consequences of oxidative stress, such as DNA or mitochondrial damage leading to neurodegeneration. Additionally, antioxidant properties of antiepileptic (antiseizure) drugs and a possible use of antioxidant drugs or compounds in patients with epilepsy are reviewed. In numerous seizure models, the brain concentration of free radicals was significantly elevated. Some antiepileptic drugs may inhibit these effects; for example, valproate reduced the increase in brain malondialdehyde (a marker of lipid peroxidation) concentration induced by electroconvulsions. In the pentylenetetrazol model, valproate prevented the reduced glutathione concentration and an increase in brain lipid peroxidation products. The scarce clinical data indicate that some antioxidants (melatonin, selenium, vitamin E) may be recommended as adjuvants for patients with drug-resistant epilepsy.
Collapse
Affiliation(s)
- Krzysztof Łukawski
- Department of Physiopathology, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland
| | - Stanisław J Czuczwar
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8b, 20-090 Lublin, Poland
| |
Collapse
|
9
|
Khatoon S, Samim M, Dahalia M. Fisetin provides neuroprotection in pentylenetetrazole-induced cognition impairment by upregulating CREB/BDNF. Eur J Pharmacol 2023; 944:175583. [PMID: 36764352 DOI: 10.1016/j.ejphar.2023.175583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
OBJECTIVES Fisetin is a flavonoid molecule known to be neuroprotective by its multiple mechanisms. The present study was designed to explore the effect of fisetin in the pentylenetetrazole (PTZ) kindling-induced cognitive dysfunction in mice. METHODS Kindling was established by the intraperitoneal administration of PTZ in a subconvulsive dose (25 mg/kg). Mice were administered fisetin (5, 10, and 20 mg/kg, p.o.) to study its probable cognition-enhancing effect. The kindled mice were evaluated for cognition using behavioral tests-elevated plus maze and passive avoidance response. Then, the oxidative stress markers, gene expressions and neurotransmitters levels were estimated in the hippocampus and cortex of mice. RESULTS Passive avoidance response and elevated plus maze paradigms showed that fisetin administration improved the cognitive function in kindled mice. The increased levels of lipid peroxidation and protein carbonyl were modulated upon fisetin administration through increasing the levels of antioxidants (reduced glutathione, glutathione reductase, glutathione peroxidase, superoxide dismutase, and catalase) in the hippocampus and cortex of kindled mice. Upregulated gene expressions of cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) were observed in the hippocampus and cortex of fisetin-administered mice which play a crucial role in cognitive function. Furthermore, alterations of neurotransmitter levels (dopamine, GABA, and glutamate) and acetylcholinesterase (AchE) were ameliorated by fisetin administration in the hippocampus and cortex of kindled mice. CONCLUSION Our findings suggest a therapeutic potential of fisetin against cognitive dysfunction associated with PTZ-induced kindling.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammed Samim
- Department of Chemistry, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Mansi Dahalia
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
10
|
Sailike B, Omarova Z, Jenis J, Adilbayev A, Akbay B, Askarova S, Jin WL, Tokay T. Neuroprotective and anti-epileptic potentials of genus Artemisia L. Front Pharmacol 2022; 13:1021501. [DOI: 10.3389/fphar.2022.1021501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
The Genus Artemisia L. is one of the largest genera in the Asteraceae family growing wild over in Europe, North America, and Central Asia and has been widely used in folk medicine for the treatment of various ailments. Phytochemical and psychopharmacological studies indicated that the genus Artemisia extracts contain various antioxidant and anti-inflammatory compounds and possess antioxidant, anti-inflammatory, antimicrobial, antimalarial, and antitumor activity. Recently, increasing experimental studies demonstrated that many Artemisia extracts offer a great antiepileptic potential, which was attributed to their bioactive components via various mechanisms of action. However, detailed literature on the antiepileptic properties of the genus Artemisia and its mechanism of action is segregated. In this review, we tried to gather the detailed neuroprotective and antiepileptic properties of the genus Artemisia and its possible underlying mechanisms. In this respect, 63 articles were identified in the PubMed and Google scholars databases, from which 18 studies were examined based on the pharmacological use of the genus Artemisia species in epilepsy. The genus Artemisia extracts have been reported to possess antioxidant, anti-inflammatory, neurotransmitter-modulating, anti-apoptotic, anticonvulsant, and pro-cognitive properties by modulating oxidative stress caused by mitochondrial ROS production and an imbalance of antioxidant enzymes, by protecting mitochondrial membrane potential required for ATP production, by upregulating GABA-A receptor and nACh receptor activities, and by interfering with various anti-inflammatory and anti-apoptotic signaling pathways, such as mitochondrial apoptosis pathway, ERK/CREB/Bcl-2 pathway and Nrf2 pathway. This review provides detailed information about some species of the genus Artemisia as potential antiepileptic agents. Hence, we recommend further investigations on the purification and identification of the most biological effective compounds of Artemisia and the mechanisms of their action to cure epilepsy and other neurological diseases.
Collapse
|
11
|
Hu F, Nie H, Xu R, Cai X, Shao L, Zhang P. Vinpocetine and coenzyme Q10 combination alleviates cognitive impairment caused by ionizing radiation by improving mitophagy. Brain Res 2022; 1792:148032. [PMID: 35907514 DOI: 10.1016/j.brainres.2022.148032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/21/2022] [Accepted: 07/23/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This research was designed to ascertain the effect and mechanism of vinpocetine (VIN) and coenzyme Q10 (CoQ10) combination on cognitive impairment induced by ionizing radiation (IR). METHODS Cognitive impairment in mice was induced by 9-Gy IR, and they were intraperitoneally injected with VIN, CoQ10, or VIN + CoQ10. Then novel object recognition and Morris water maze tests were used to detect cognitive function. The number of hippocampal neurons and BrdU+Dcx+ cells was observed by Nissl and immunofluorescence staining. Mitochondrial respiratory complex I, adenosine triphosphate (ATP), and mitochondrial membrane potential (MMP) were evaluated, as well as oxidative stress injury. Mitophagy in hippocampal neurons was evaluated by observing the ultrastructure of hippocampal neurons and assessing the expression of mitophagy-related proteins. RESULTS IR reduced novel object discrimination index, the time for platform crossing, and the time spent in platform quadrant, in addition to neuron loss, downregulated levels of mitochondrial respiratory complex I, ATP, and MMP, aggravated oxidative stress injury, increased expression of LC3 II/I, Beclin1, PINK1, and parkin, and decreased P62 expression. VIN or CoQ10 treatment mitigated cognitive dysfunction, neurons loss, mitochondrial damage, and oxidative stress injury, and enhanced mitophagy in hippocampal neurons. VIN and CoQ10 combination further protected against IR-induced cognitive dysfunction than VIN or CoQ10 alone. CONCLUSION VIN combined with CoQ10 improved neuron damage, promoted mitophagy, and ameliorated cognitive impairment in IR mice.
Collapse
Affiliation(s)
- Fan Hu
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Hongbing Nie
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Renxu Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Xinyong Cai
- Department of Cardiology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China
| | - Ping Zhang
- Department of Neurology, Jiangxi Provincial People's Hospital, the First Affiliated to Nanchang Medical College, Nanchang 330006, Jiangxi, China.
| |
Collapse
|
12
|
Perfluorooctanoic acid affects mouse brain and liver tissue through oxidative stress. ARHIV ZA HIGIJENU RADA I TOKSIKOLOGIJU 2022; 73:148-157. [PMID: 35792765 PMCID: PMC9287837 DOI: 10.2478/aiht-2022-73-3629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
The aim of this study was to investigate oxidative stress induced by perfluorooctanoic acid (PFOA) in the brain and liver tissues of Balb/c mice as well as protective effects of taurine and coenzyme Q10 (CoQ10) in both organs. For this purpose, animals were treated with PFOA (15 and 30 mg/kg) orally and their lipid peroxidation, total glutathione levels (GSH), and antioxidant enzyme activities measured and both tissues analysed for histopathological changes. Our results showed a dose-dependent decrease in body weight and increase in relative brain and liver weights, PFOA-induced lipid peroxidation and reduced glutathione peroxidase (GPx) activity in the brain tissue, and changes in GSH levels, GPx, superoxide dismutase (Cu-Zn SOD), and catalase (CAT) activities in the liver tissue. Pre-treatment with taurine or CoQ10 provided protection against PFOA-induced Cu-Zn SOD reduction in the liver tissue. Our findings evidence the depleting effect of PFOA on antioxidative systems and confirm that PFOA exerts its (neuro)toxicity through oxidative stress, but further research is needed to identify the exact toxicity mechanisms, especially in the brain.
Collapse
|
13
|
Acetyl-L-carnitine and/or liposomal co-enzyme Q10 prevent propionic acid-induced neurotoxicity by modulating oxidative tissue injury, inflammation, and ALDH1A1-RA-RARα signaling in rats. Biomed Pharmacother 2022; 153:113360. [PMID: 35785703 DOI: 10.1016/j.biopha.2022.113360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/15/2022] [Accepted: 06/28/2022] [Indexed: 11/23/2022] Open
Abstract
Propionic acid (PPA) is a short-chain fatty acid produced endogenously by gut microbiota and found in foodstuffs and pharmaceutical products as an additive. Exposure to PPA has been associated with the development of autism spectrum disorder (ASD). The purpose of this study was to investigate the protective effect of acetyl-L-carnitine (ALCAR) and liposomal Co-enzyme Q10 (CoQ10) against cerebral and cerebellar oxidative injury, inflammation, and cell death, and alterations in ALDH1A1-RA-RARα signaling in an autism-like rat model induced by PPA. The rats were treated with PPA and concurrently received ALCAR and/or CoQ10 for 5 days. The animals were sacrificed, and the cerebral cortex and cerebellum were collected for analysis. PPA caused histopathological alterations along with increased malondialdehyde (MDA), NF-κB p65, TNF-α, and IL-6 in the cerebrum and cerebellum of rats. Reduced glutathione (GSH) and antioxidant enzymes were declined in the brain of rats that received PPA. Concurrent treatment with ALCAR and/or CoQ10 prevented tissue injury, decreased MDA, NF-κB p65, and pro-inflammatory cytokines, and enhanced cellular antioxidants in PPA-administered rats. ALCAR and/or CoQ10 upregulated Bcl-2 and decreased Bax and caspase-3 in the brain of rats. In addition, ALCAR and/or CoQ10 upregulated cerebral and cerebellar ALDH1A1 and RARα in PPA-treated rats. The combination of ALCAR and CoQ10 showed more potent effects when compared with the individual treatments. In conclusion, ALCAR and/or CoQ10 prevented tissue injury, ameliorated oxidative stress, inflammatory response, and apoptosis, and upregulated ALDH1A1-RA-RARα signaling in the brain of autistic rats.
Collapse
|
14
|
Ferreira FS, Dos Santos TM, Ramires Junior OV, Silveira JS, Schmitz F, Wyse ATS. Quinolinic Acid Impairs Redox Homeostasis, Bioenergetic, and Cell Signaling in Rat Striatum Slices: Prevention by Coenzyme Q 10. Neurotox Res 2022; 40:473-484. [PMID: 35239160 DOI: 10.1007/s12640-022-00484-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/19/2022]
Abstract
Quinolinic acid (QUIN) is an important agonist of NMDA receptors that are found at high levels in cases of brain injury and neuroinflammation. Therefore, it is necessary to investigate neuroprotection strategies capable of neutralizing the effects of the QUIN on the brain. Coenzyme Q10 (CoQ10) is a provitamin that has an important antioxidant and anti-inflammatory action. This work aims to evaluate the possible neuroprotective effect of CoQ10 against the toxicity caused by QUIN. Striatal slices from 30-day-old Wistar rats were preincubated with CoQ10 25-100 μM for 15 min; then, QUIN 100 μM was added to the incubation medium for 30 min. A dose-response curve was used to select the CoQ10 concentration to be used in the study. Results showed that QUIN caused changes in the production of ROS, nitrite levels, activities of antioxidant enzymes, glutathione content, and damage to proteins and lipids. CoQ10 was able to prevent the effects caused by QUIN, totally or partially, except for damage to proteins. QUIN also altered the activities of electron transport chain complexes and ATP levels, and CoQ10 prevented totally and partially these effects, respectively. CoQ10 prevented the increase in acetylcholinesterase activity, but not the decrease in the activity of Na+,K+-ATPase caused by QUIN. We also observed that QUIN caused changes in the total ERK and phospho-Akt content, and these effects were partially prevented by CoQ10. These findings suggest that CoQ10 may be a promising therapeutic alternative for neuroprotection against QUIN neurotoxicity.
Collapse
Affiliation(s)
- Fernanda Silva Ferreira
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Tiago Marcon Dos Santos
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Osmar Vieira Ramires Junior
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Josiane Silva Silveira
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Felipe Schmitz
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Angela T S Wyse
- Programa de Pós-Graduação Em Ciências Biológicas: Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Laboratório de Neuroproteção E Doenças Neurometabólicas, Departamento de Bioquímica, ICBS, UFRGS, Rua Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
- Departamento de Bioquímica, ICBS, Universidade Federal Do Rio Grande Do Sul, Rua Ramiro Barcelos, 2600-Anexo, CEP, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
15
|
Reconnoitering the transformative journey of minocycline from an antibiotic to an antiepileptic drug. Life Sci 2022; 293:120346. [PMID: 35065989 DOI: 10.1016/j.lfs.2022.120346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 12/20/2022]
Abstract
Minocycline, a second-generation tetracycline antibiotic is being widely tested in animals as well as clinical settings for the management of multiple neurological disorders. The drug has shown to exert protective action in a multitude of neurological disorders including spinal-cord injury, stroke, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Being highly lipophilic, minocycline easily penetrates the blood brain barrier and is claimed to have excellent oral absorption (~100% bioavailability). Minocycline possesses anti-inflammatory, immunomodulatory, and anti-apoptotic properties, thereby supporting its use in treating neurological disorders. The article henceforth reviews all the recent advances in the transformation of this antibiotic into a potential antiepileptic/antiepileptogenic agent. The article also gives an account of all the clinical trials undertaken till now validating the antiepileptic potential of minocycline. Based on the reported studies, minocycline seems to be an important molecule for treating epilepsy. However, the practical therapeutic implementations of this molecule require extensive mechanism-based in-vitro (cell culture) and in-vivo (animal models) studies followed by its testing in randomized, placebo controlled and double-blind clinical trials in large population as well as in different form of epilepsies.
Collapse
|
16
|
The Effect of Coenzyme Q10 on Liver Injury Induced by Valproic Acid and Its Antiepileptic Activity in Rats. Biomedicines 2022; 10:biomedicines10010168. [PMID: 35052847 PMCID: PMC8773341 DOI: 10.3390/biomedicines10010168] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 12/10/2022] Open
Abstract
Valproic acid (VPA) has toxic metabolites that can elevate oxidative stress markers, and the hepatotoxicity of VPA has been reported. Coenzyme Q10 (CoQ10) is one of the most widely used antioxidants. The effect of CoQ10 on epileptogenesis and VPA hepatotoxicity were examined. Rats were randomly divided into five groups: the control group received 0.5% methylcellulose by oral gavages daily and saline by intraperitoneal injection three times weekly. The PTZ group received 1% methylcellulose by gavages daily and 30 mg/kg PTZ by intraperitoneal injection three times weekly. The valproic acid group received 500 mg/kg valproic acid by gavage and 30 mg/kg PTZ, as above. The CoQ10 group received 200 mg/kg CoQ10 by gavages daily and 30 mg/kg PTZ, as above. The Valproic acid + CoQ10 group received valproic acid and CoQ10, as above. Results: CoQ10 exhibited anticonvulsant activity and potentiated the anticonvulsant effect of VPA. CoQ10 combined with VPA induced a more significant reduction in oxidative stress and improved the histopathological changes in the brain and liver compared to VPA treatment. In addition, CoQ10 reduced the level of toxic VPA metabolites. These findings suggest that the co-administration of CoQ10 with VPA in epilepsy might have therapeutic potential by increasing antiepileptic activity and reducing the hepatotoxicity of VPA.
Collapse
|
17
|
Pradhan N, Singh C, Singh A. Coenzyme Q10 a mitochondrial restorer for various brain disorders. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2197-2222. [PMID: 34596729 DOI: 10.1007/s00210-021-02161-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022]
Abstract
Coenzyme Q10 (ubiquinone or CoQ10) is a lipid molecule that acts as an electron mobile carrier of the electron transport chain and also contains antioxidant properties. Supplementation of CoQ10 has been very useful to treat mitochondrial diseases. CoQ10 along with its synthetic analogue, idebenone, is used largely to treat various neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, Amyotrophic lateral sclerosis, and Friedreich's ataxia and additional brain disease condition like autism, multiple sclerosis, epilepsy, depression, and bipolar disorder, which are related to mitochondrial impairment. In this article, we have reviewed numerous physiological functions of CoQ10 and the rationale for its use in clinical practice in different brain disorders.
Collapse
Affiliation(s)
- Nilima Pradhan
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, 142001, Punjab, India
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
18
|
Singh T, Mishra A, Goel RK. PTZ kindling model for epileptogenesis, refractory epilepsy, and associated comorbidities: relevance and reliability. Metab Brain Dis 2021; 36:1573-1590. [PMID: 34427842 DOI: 10.1007/s11011-021-00823-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/14/2021] [Indexed: 12/13/2022]
Abstract
Pentylenetetrazole (PTZ)-induced seizure is one of the gold standard mouse models for rapid evaluation of novel anticonvulsants. Synchronically, PTZ induced kindling in mice is also a simple and well accepted model of chronic epilepsy. PTZ kindling has been explored for studying epileptogenesis, epilepsy-associated comorbidities, and refractory epilepsy. This review summarizes the potential of PTZ kindling in mice and its modifications for its face, construct, and predictive validity to screen antiepileptogenic drugs, combined or add on novel and safe therapies for treatment of epilepsy-associated depression and cognitive impairment as well as effective interventions for pharmacoresistant epilepsy.
Collapse
Affiliation(s)
- Tanveer Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, Bryan, TX, 77807, USA
| | - Awanish Mishra
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India
- Department of Pharmacology and Toxicology , National Institute of Pharmaceutical Education and Research , Guwahati , Changsari, Kamrup , 781101 , Assam , India
| | - Rajesh Kumar Goel
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, India.
| |
Collapse
|
19
|
Association between the Serum Coenzyme Q10 Level and Seizure Control in Patients with Drug-Resistant Epilepsy. Healthcare (Basel) 2021; 9:healthcare9091118. [PMID: 34574891 PMCID: PMC8471960 DOI: 10.3390/healthcare9091118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 11/26/2022] Open
Abstract
Drug-resistant epilepsy (DRE) is a chronic neurological disorder with somatic impacts and increased risk of metabolic comorbidities. Oxidative stress might play an important role in metabolic effects and as a regulator of seizure control, while coenzyme Q10 (CoQ10) could improve insulin sensitivity through antioxidant effects. We aimed to investigate the association between CoQ10 level and clinical outcome, represented by the seizure frequency and quality of life, in DRE patients. DRE patients (N = 33) had significantly higher serum insulin levels and lower scores on the physical domain of the World Health Organization Quality of Life questionnaire (WHOQoL) than gender-age matched controls. The serum CoQ10 level (2910.4 ± 1163.7 ng/mL) was much higher in DRE patients than the normal range. Moreover, the serum CoQ10 level was significantly correlated with the seizure frequency (r = −0.412, p = 0.037) and insulin level (r = 0.409, p = 0.038). Based on stratification by insulin resistance (HOMA-IR > 2.4), the subgroup analysis showed that patients with a greater HOMA-IR had higher CoQ10 levels and lower seizure frequency, and had a significantly worse quality of life. In summary, CoQ10 could be a mediator involved in the mechanism of epilepsy and serve as a biomarker of the clinical outcome in DER patients.
Collapse
|
20
|
Histopathological and Biochemical Assessment of Neuroprotective Effects of Sodium Valproate and Lutein on the Pilocarpine Albino Rat Model of Epilepsy. Behav Neurol 2021; 2021:5549638. [PMID: 34149964 PMCID: PMC8195670 DOI: 10.1155/2021/5549638] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/13/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Epilepsy is one of the most frequent neurological disorders characterized by an enduring predisposition to generate epileptic seizures. Oxidative stress is believed to directly participate in the pathways of neurodegenerations leading to epilepsy. Approximately, one-third of the epileptic patients who suffer from seizures do not receive effective medical treatment. Sodium valproate (SVP) is a commonly used antiepileptic drug (AED); however, it has toxic effects. Lutein (L), a carotenoid, has potent antioxidant and anti-inflammatory properties. The aim of this study was to determine the neuroprotective effect of sodium valproate (SVP) and lutein (L) in a rat model of pilocarpine- (PLC-) induced epilepsy. To achieve this aim, fifty rats were randomly divided into five groups. Group I: control, group II: received PLC (400 mg/kg intraperitoneally), group III: received PLC + SVP (500 mg/kg orally), group IV: received PLC + SVP + L (100 mg/kg orally), and group V: received (PLC + L). Racine Scale (RC) and latency period to onset seizure were calculated. After eight weeks, the hippocampus rotarod performance and histological investigations were performed. Oxidative stress was investigated in hippocampal homogenates. Results revealed that SVP and L, given alone or in combination, reduced the RC significantly, a significant delay in latency to PLC-kindling onset, and improved rotarod performance of rats compared with the PLC group. Moreover, L was associated with a reduction of oxidative stress in hippocampal homogenate, a significant decrease in serum tumor necrosis factor-alpha (TNF-α) level, and inhibition of cerebral injury and displayed antiepileptic properties in the PLC-induced epileptic rat model. Data obtained from the current research elucidated the prominent neuroprotective, antioxidant, and anti-inflammatory activities of lutein in this model. In conclusion, lutein cotreatment with AEDs is likely to be a promising strategy to improve treatment efficacy in patients suffering from epilepsy.
Collapse
|
21
|
Antioxidants Targeting Mitochondrial Oxidative Stress: Promising Neuroprotectants for Epilepsy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6687185. [PMID: 33299529 PMCID: PMC7710440 DOI: 10.1155/2020/6687185] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/13/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Mitochondria are major sources of reactive oxygen species (ROS) within the cell and are especially vulnerable to oxidative stress. Oxidative damage to mitochondria results in disrupted mitochondrial function and cell death signaling, finally triggering diverse pathologies such as epilepsy, a common neurological disease characterized with aberrant electrical brain activity. Antioxidants are considered as promising neuroprotective strategies for epileptic condition via combating the deleterious effects of excessive ROS production in mitochondria. In this review, we provide a brief discussion of the role of mitochondrial oxidative stress in the pathophysiology of epilepsy and evidences that support neuroprotective roles of antioxidants targeting mitochondrial oxidative stress including mitochondria-targeted antioxidants, polyphenols, vitamins, thiols, and nuclear factor E2-related factor 2 (Nrf2) activators in epilepsy. We point out these antioxidative compounds as effectively protective approaches for improving prognosis. In addition, we specially propose that these antioxidants exert neuroprotection against epileptic impairment possibly by modulating cell death interactions, notably autophagy-apoptosis, and autophagy-ferroptosis crosstalk.
Collapse
|
22
|
Pastor-Maldonado CJ, Suárez-Rivero JM, Povea-Cabello S, Álvarez-Córdoba M, Villalón-García I, Munuera-Cabeza M, Suárez-Carrillo A, Talaverón-Rey M, Sánchez-Alcázar JA. Coenzyme Q 10: Novel Formulations and Medical Trends. Int J Mol Sci 2020; 21:E8432. [PMID: 33182646 PMCID: PMC7697799 DOI: 10.3390/ijms21228432] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 10/31/2020] [Accepted: 11/07/2020] [Indexed: 12/11/2022] Open
Abstract
The aim of this review is to shed light over the most recent advances in Coenzyme Q10 (CoQ10) applications as well as to provide detailed information about the functions of this versatile molecule, which have proven to be of great interest in the medical field. Traditionally, CoQ10 clinical use was based on its antioxidant properties; however, a wide range of highly interesting alternative functions have recently been discovered. In this line, CoQ10 has shown pain-alleviating properties in fibromyalgia patients, a membrane-stabilizing function, immune system enhancing ability, or a fundamental role for insulin sensitivity, apart from potentially beneficial properties for familial hypercholesterolemia patients. In brief, it shows a remarkable amount of functions in addition to those yet to be discovered. Despite its multiple therapeutic applications, CoQ10 is not commonly prescribed as a drug because of its low oral bioavailability, which compromises its efficacy. Hence, several formulations have been developed to face such inconvenience. These were initially designed as lipid nanoparticles for CoQ10 encapsulation and distribution through biological membranes and eventually evolved towards chemical modifications of the molecule to decrease its hydrophobicity. Some of the most promising formulations will also be discussed in this review.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - José A. Sánchez-Alcázar
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-Universidad Pablo de Olavide), and Centro de Investigación Biomédica en Red: Enfermedades Raras, Instituto de Salud Carlos III. Universidad Pablo de Olavide, 41013 Sevilla, Spain; (C.J.P.-M.); (J.M.S.-R.); (S.P.-C.); (M.Á.-C.); (I.V.-G.); (M.M.-C.); (A.S.-C.); (M.T.-R.)
| |
Collapse
|
23
|
Simani L, Rezaei O, Ryan F, Sadeghi M, Hooshmandi E, Ramezani M, Pakdaman H. Coenzyme Q10 Insufficiency Contributes to the Duration and Frequency of Seizures in Epileptic Patients. Basic Clin Neurosci 2020; 11:765-771. [PMID: 33850613 PMCID: PMC8019840 DOI: 10.32598/bcn.11.6.1100.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 11/20/2018] [Accepted: 04/23/2019] [Indexed: 12/03/2022] Open
Abstract
Introduction: Oxidative stress has recently emerged as a possible mechanism in the pathogenesis of epilepsy. Coenzyme Q10 (CoQ10) is a strong endogenous antioxidant that protects cells from lipid oxidation and Reactive Oxygen Species (ROS) production; however, the impact of CoQ10 on seizure characteristics in epileptic patients is unclear. Methods: The current study enrolled patients with Epileptic Seizure (ES) to evaluate their serum concentration of CoQ10 and to investigate whether a relationship exists between CoQ10 levels with the duration, frequency, and type of seizure. Results: A total of 39 patients with epileptic seizures and 35 healthy controls were included in the study. The levels of CoQ10 in ES patients were significantly lower in comparison with healthy controls (11.99±5.93 vs (ng/ml). 16.48±4.20 (ng/ml) P<0.001). We also found that the duration of epilepsy and seizure frequency was negatively correlated with serum CoQ10 levels. Conclusion: These findings indicate that CoQ10 deficiency might substantially contribute to the clinical signs of epileptic patients.
Collapse
Affiliation(s)
- Leila Simani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omidvar Rezaei
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fari Ryan
- Centre for Research in Neuroscience, The Research Institute of the McGill University Health Center, Montreal, Quebec, Canada
| | - Masoumeh Sadeghi
- Department of Epidemiology, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahtab Ramezani
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossin Pakdaman
- Brain Mapping Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Seizure-Induced Oxidative Stress in Status Epilepticus: Is Antioxidant Beneficial? Antioxidants (Basel) 2020; 9:antiox9111029. [PMID: 33105652 PMCID: PMC7690410 DOI: 10.3390/antiox9111029] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a common neurological disorder which affects patients physically and mentally and causes a real burden for the patient, family and society both medically and economically. Currently, more than one-third of epilepsy patients are still under unsatisfied control, even with new anticonvulsants. Other measures may be added to those with drug-resistant epilepsy. Excessive neuronal synchronization is the hallmark of epileptic activity and prolonged epileptic discharges such as in status epilepticus can lead to various cellular events and result in neuronal damage or death. Unbalanced oxidative status is one of the early cellular events and a critical factor to determine the fate of neurons in epilepsy. To counteract excessive oxidative damage through exogenous antioxidant supplements or induction of endogenous antioxidative capability may be a reasonable approach for current anticonvulsant therapy. In this article, we will introduce the critical roles of oxidative stress and further discuss the potential use of antioxidants in this devastating disease.
Collapse
|
25
|
Rajdev K, Mehan S. Neuroprotective Methodologies of Co-Enzyme Q10 Mediated Brain Hemorrhagic Treatment: Clinical and Pre-Clinical Findings. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 18:446-465. [PMID: 31187715 DOI: 10.2174/1871527318666190610101144] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 04/22/2019] [Accepted: 05/07/2019] [Indexed: 12/13/2022]
Abstract
Cerebral brain hemorrhage is associated with the highest mortality and morbidity despite only constituting approximately 10-15% of all strokes classified into intracerebral and intraventricular hemorrhage where most of the patients suffer from impairment in memory, weakness or paralysis in arms or legs, headache, fatigue, gait abnormality and cognitive dysfunctions. Understanding molecular pathology and finding the worsening cause of hemorrhage will lead to explore the therapeutic interventions that could prevent and cure the disease. Mitochondrial ETC-complexes dysfunction has been found to increase neuroinflammatory cytokines, oxidative free radicals, excitotoxicity, neurotransmitter and energy imbalance that are the key neuropathological hallmarks of cerebral hemorrhage. Coenzyme Q10 (CoQ10), as a part of the mitochondrial respiratory chain can effectively restore these neuronal dysfunctions by preventing the opening of mitochondrial membrane transition pore, thereby counteracting cell death events as well as exerts an anti-inflammatory effect by influencing the expression of NF-kB1 dependent genes thus preventing the neuroinflammation and energy restoration. Due to behavior and biochemical heterogeneity in post cerebral brain hemorrhagic pattern different preclinical autologous blood injection models are required to precisely investigate the forthcoming therapeutic strategies. Despite emerging pre-clinical research and resultant large clinical trials for promising symptomatic treatments, there are very less pharmacological interventions demonstrated to improve post operative condition of patients where intensive care is required. Therefore, in current review, we explore the disease pattern, clinical and pre-clinical interventions under investigation and neuroprotective methodologies of CoQ10 precursors to ameliorate post brain hemorrhagic conditions.
Collapse
Affiliation(s)
- Kajal Rajdev
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| | - Sidharth Mehan
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Punjab, India
| |
Collapse
|
26
|
Lazzarotto L, Pflüger P, Regner GG, Santos FM, Aguirre DG, Brito VB, Moura DJ, Dos Santos NM, Picada JN, Parmeggiani B, Frusciante MR, Leipnitz G, Pereira P. Lacosamide improves biochemical, genotoxic, and mitochondrial parameters after PTZ-kindling model in mice. Fundam Clin Pharmacol 2020; 35:351-363. [PMID: 32851690 DOI: 10.1111/fcp.12598] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 07/27/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
This study evaluated the effect of lacosamide (LCM) on biochemical and mitochondrial parameters after PTZ kindling in mice. Male mice were treated on alternative days for a period of 11 days with LCM (20, 30, or 40 mg/kg), saline, or diazepam (2 mg/kg), before PTZ administration (50 mg/kg). The hippocampi were collected to evaluate free radicals, the activities of superoxide dismutase (SOD), catalase (CAT), and the mitochondrial complexes I-III, II, and II-III, as well as Bcl-2 and cyclo-oxygenase-2 (COX-2) expressions. Hippocampi, blood, and bone marrow were collected for genotoxic and mutagenic evaluations. LCM 40 mg/kg increased latency and decreased percentage of seizures, only on the 3rd day of observation. The dose of 30 mg/kg only showed positive effects on the percentage of seizures on the 2nd day of observation. LCM decreased free radicals and SOD activity and the dose of 40 mg/kg were able to increase CAT activity. LCM 30 and 40 mg/kg improved the enzymatic mitochondrial activity of the complex I-III and LCM 30 mg/kg improved the activity of the complex II. In the comet assay, the damage induced by PTZ administration was reduced by LCM 20 and 30 mg/kg. The dose of 20 mg/kg increased COX-2 expression while the highest dose used, 40 mg/kg, was able to reduce this expression when compared to the group treated with LCM 20 mg/kg. Although LCM did not produce the antiepileptogenic effect in vivo, it showed the neuroprotective effect against oxidative stress, bioenergetic dysfunction, and DNA damage induced by the repeated PTZ administration.
Collapse
Affiliation(s)
- Letícia Lazzarotto
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Pricila Pflüger
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Gabriela Gregory Regner
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Fernanda Marcélia Santos
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Débora Gonçalves Aguirre
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| | - Verônica Bidinotto Brito
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, 90050-170, Brazil
| | - Dinara Jaqueline Moura
- Laboratory of Genetic Toxicology, Federal University of Health Sciences of Porto Alegre, Porto Alegre, 90050-170, Brazil
| | | | | | - Belisa Parmeggiani
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Marina Rocha Frusciante
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Guilhian Leipnitz
- Postgraduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90035-003, Brazil
| | - Patrícia Pereira
- Laboratory of Neuropharmacology and Preclinical Toxicology, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre, 90050-170, Brazil
| |
Collapse
|
27
|
Rajdev K, Siddiqui EM, Jadaun KS, Mehan S. Neuroprotective potential of solanesol in a combined model of intracerebral and intraventricular hemorrhage in rats. IBRO Rep 2020; 8:101-114. [PMID: 32368686 PMCID: PMC7184235 DOI: 10.1016/j.ibror.2020.03.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 03/13/2020] [Indexed: 02/06/2023] Open
Abstract
Intracerebral hemorrhage (ICH) may be caused by trauma, aneurysm and arteriovenous malformation, as can any bleeding within the intracranial vault, including brain parenchyma and adjacent meningeal spaces (aneurism and atreovenous malformation). ICH is the cerebral stroke with the least treatable form. Over time, intraventricular hemorrhage (IVH) is associated with ICH, which contributes to hydrocephalus, and the major cause of most hemorrhagic death (Due to the cerebral hemorrhage and post hemorrhagic surgeries). Most patients suffer from memory impairment, grip strength, posture, and cognitive dysfunctions attributable to cerebral hemorrhage or post-brain hemorrhagic surgery. Nevertheless, a combined model of ICH based IVH is not present pre-clinically. Autologous blood (ALB) injection (20 μl/5 min) in the rat brain triggers hemorrhage, such as factors that further interfere with the normal functioning of neuroinflammatory cytokines, oxidative stress, and neurotransmitter dysfunction, such as CoQ10 insufficiency and dysregulation of mitochondrial ETC-complexes. For the prevention of post-brain hemorrhagic behavioral and neurochemical dysfunctions, there is no specific drug treatment available, only available therapy used to provide symptomatic relief. The current study reveals that long-term administration of Solanesol (SNL) 40 and 60 mg/kg alone and in combination with available drug therapy Donepezil (DNP) 3 mg/kg, Memantine (MEM) 20 mg/kg, Celecoxib (CLB) 20 mg/kg, Pregabalin (PGB) 30 mg/kg, may provide the neuroprotective effect by improving behavioral and neurochemical deficits, and gross pathological changes in ALB induced combined experimental model of ICH-IVH in post brain hemorrhagic conditions in rats. Thus, SNL can be a potential therapeutic approach to improve neuronal mitochondrial dysfunction associated with post brain hemorrhagic behavioral and neurochemical alterations.
Collapse
Affiliation(s)
- Kajal Rajdev
- Neuropharmacology Division, ISF College of Pharmacy, Moga, 142001 Punjab, India
| | | | | | - Sidharth Mehan
- Neuropharmacology Division, ISF College of Pharmacy, Moga, 142001 Punjab, India
| |
Collapse
|
28
|
Bukhari SI, Alfawaz H, Al-Dbass A, Bhat RS, Moubayed NMS, Bukhari W, Hassan SA, Merghani N, Elsamaligy S, El-Ansary A. Efficacy of Novavit in ameliorating the neurotoxicity of propionic acid. Transl Neurosci 2020; 11:134-146. [PMID: 33312719 PMCID: PMC7705989 DOI: 10.1515/tnsci-2020-0103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/08/2020] [Accepted: 03/24/2020] [Indexed: 01/01/2023] Open
Abstract
Oxidative stress, abnormal fatty acid metabolism, and impaired gut microbiota play a serious role in the pathology of autism. The use of dietary supplements to improve the core symptoms of autism is a common therapeutic strategy. The present study analyzed the effects of oral supplementation with Novavit, a multi-ingredient supplement, on ameliorating oxidative stress and impaired lipid metabolism in a propionic acid (PPA)-induced rodent model of autism. Male western albino rats were divided into three groups. The first group is the control, the second group was given an oral neurotoxic dose of PPA (250 mg/kg body weight/day) for 3 days and then received buffered saline until the end of the experiment. The third group received Novavit (70 mg/kg body weight/day for 30 days after the 3-day PPA treatment). Markers of oxidative stress and impaired fatty acid metabolism were measured in brain homogenates obtained from each group. Novavit modulation of the gut microbiota was also evaluated. While PPA induced significant increases in lipid peroxides and 5-lipoxygenase, together with significantly decreased glutathione, and cyclooxygenase 2, oral supplementation with Novavit ameliorated PPA-induced oxidative stress and impaired fatty acid metabolism. Our results showed that the presence of multivitamins, coenzyme Q10, minerals, and colostrum, the major components of Novavit, protects against PPA-induced neurotoxicity.
Collapse
Affiliation(s)
- Sarah I. Bukhari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hanan Alfawaz
- Department of Food Science and Nutrition, College of Food Science and Agriculture, King Saud University, Riyadh, Saudi Arabia
| | - Abeer Al-Dbass
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Ramesa Shafi Bhat
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nadine MS Moubayed
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Wadha Bukhari
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P O Box 22452, Riyadh, Saudi Arabia
| | | | - Nada Merghani
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P O Box 22452, Riyadh, Saudi Arabia
| | - Samar Elsamaligy
- Department of Pharamaceutics and Industrial Pharmacy, Helwan University, Ain Helwan, Cairo, Egypt
| | - Afaf El-Ansary
- Central Laboratory, Female Center for Medical Studies and Scientific Section, King Saud University, P O Box 22452, Riyadh, Saudi Arabia
- Therapeutic Department, National Research Centre, Dokki, Egypt
| |
Collapse
|
29
|
Protective effect of minocycline on LPS-induced mitochondrial dysfunction and decreased seizure threshold through nitric oxide pathway. Eur J Pharmacol 2019; 858:172446. [DOI: 10.1016/j.ejphar.2019.172446] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 06/07/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022]
|
30
|
Salehpour F, Farajdokht F, Mahmoudi J, Erfani M, Farhoudi M, Karimi P, Rasta SH, Sadigh-Eteghad S, Hamblin MR, Gjedde A. Photobiomodulation and Coenzyme Q 10 Treatments Attenuate Cognitive Impairment Associated With Model of Transient Global Brain Ischemia in Artificially Aged Mice. Front Cell Neurosci 2019; 13:74. [PMID: 30983970 PMCID: PMC6434313 DOI: 10.3389/fncel.2019.00074] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 02/14/2019] [Indexed: 01/11/2023] Open
Abstract
Disturbances in mitochondrial biogenesis and bioenergetics, combined with neuroinflammation, play cardinal roles in the cognitive impairment during aging that is further exacerbated by transient cerebral ischemia. Both near-infrared (NIR) photobiomodulation (PBM) and Coenzyme Q10 (CoQ10) administration are known to stimulate mitochondrial electron transport that potentially may reverse the effects of cerebral ischemia in aged animals. We tested the hypothesis that the effects of PBM and CoQ10, separately or in combination, improve cognition in a mouse model of transient cerebral ischemia superimposed on a model of aging. We modeled aging by 6-week administration of D-galactose (500 mg/kg subcutaneous) to mice. We subsequently induced transient cerebral ischemia by bilateral occlusion of the common carotid artery (BCCAO). We treated the mice with PBM (810 nm transcranial laser) or CoQ10 (500 mg/kg by gavage), or both, for 2 weeks after surgery. We assessed cognitive function by the Barnes and Lashley III mazes and the What-Where-Which (WWWhich) task. PBM or CoQ10, and both, improved spatial and episodic memory in the mice. Separately and together, the treatments lowered reactive oxygen species and raised ATP and general mitochondrial activity as well as biomarkers of mitochondrial biogenesis, including SIRT1, PGC-1α, NRF1, and TFAM. Neuroinflammatory responsiveness declined, as indicated by decreased iNOS, TNF-α, and IL-1β levels with the PBM and CoQ10 treatments. Collectively, the findings of this preclinical study imply that the procognitive effects of NIR PBM and CoQ10 treatments, separately or in combination, are beneficial in a model of transient global brain ischemia superimposed on a model of aging in mice.
Collapse
Affiliation(s)
- Farzad Salehpour
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
- ProNeuroLIGHT LLC, Phoenix, AZ, United States
| | - Fereshteh Farajdokht
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Mahmoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Marjan Erfani
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Higher Educational Institute of Rab-Rashid, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pouran Karimi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyed Hossein Rasta
- Department of Medical Physics, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Bioengineering, Tabriz University of Medical Sciences, Tabriz, Iran
- School of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
- Department of Dermatology, Harvard Medical School, Boston, MA, United States
- Harvard-MIT Health Sciences and Technology, Cambridge, MA, United States
| | - Albert Gjedde
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Departments of Clinical Research and Nuclear Medicine, Odense University Hospital, University of Southern Denmark, Odense, Denmark
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark
- Department of Neurology & Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
31
|
Arranz-Romera A, Davis B, Bravo-Osuna I, Esteban-Pérez S, Molina-Martínez I, Shamsher E, Ravindran N, Guo L, Cordeiro M, Herrero-Vanrell R. Simultaneous co-delivery of neuroprotective drugs from multi-loaded PLGA microspheres for the treatment of glaucoma. J Control Release 2019; 297:26-38. [DOI: 10.1016/j.jconrel.2019.01.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/20/2018] [Accepted: 01/13/2019] [Indexed: 01/05/2023]
|
32
|
Nagib MM, Tadros MG, Rahmo RM, Sabri NA, Khalifa AE, Masoud SI. Ameliorative Effects of α-Tocopherol and/or Coenzyme Q10 on Phenytoin-Induced Cognitive Impairment in Rats: Role of VEGF and BDNF-TrkB-CREB Pathway. Neurotox Res 2019; 35:451-462. [PMID: 30374909 DOI: 10.1007/s12640-018-9971-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/09/2018] [Accepted: 10/12/2018] [Indexed: 12/16/2022]
Abstract
Phenytoin is one of the most well-known antiepileptic drugs that cause cognitive impairment which is closely related to cAMP response element-binding protein (CREB) brain-derived neurotrophic factor (BDNF) signaling pathway. Moreover, vascular endothelial growth factor (VEGF), an endothelial growth factor, has a documented role in neurogenesis and neuronal survival and cognitive impairment. Therefore, this study aimed to investigate the influence of powerful antioxidants: α-Toc and CoQ10 alone or combined in the preservation of brain tissues and the maintenance of memory formation in phenytoin-induced cognitive impairment in rats. The following behavioral test novel object recognition and elevated plus maze were assessed after 14 days of treatment. Moreover, VEGF, BDNF, TrkB, and CREB gene expression levels in the hippocampus and prefrontal cortex were estimated using RT-PCR. Both α-Toc and CoQ10 alone or combined with phenytoin showed improvement in behavioral tests compared to phenytoin. Mechanistically, α-Toc and/or CoQ10 decreases the VEGF mRNA expression, while increases BDNF-TrKB-CREB mRNA levels in hippocampus and cortex of phenytoin-treated rats. Collectively, α-Toc and/or CoQ10 alleviated the phenytoin-induced cognitive impairment through suppressing oxidative damage. The underlying molecular mechanism of the treating compounds is related to the VEGF and enhancing BDNF-TrkB-CREB signaling pathway. Our study indicated the usefulness α-Toc or CoQ10 as an adjuvant to antiepileptic drugs with an advantage of preventing cognitive impairment and oxidative stress.
Collapse
Affiliation(s)
- Marwa M Nagib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt.
| | - Mariane G Tadros
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Rania M Rahmo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Misr International University, KM 28 Cairo - Ismailia Road Ahmed Orabi District, Cairo, Egypt
| | - Nagwa Ali Sabri
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Amani E Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University seconded to 57357 Children Cancer Hospital, Cairo, Egypt
| | - Somaia I Masoud
- Department of Clinical Pharmacology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
33
|
Abdelraouf ER, Kilany A, Hashish AF, Gebril OH, Helal SI, Hasan HM, Nashaat NH. Investigating the influence of ubiquinone blood level on the abilities of children with specific learning disorder. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2018; 54:39. [PMID: 30546250 PMCID: PMC6267631 DOI: 10.1186/s41983-018-0029-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 10/04/2018] [Indexed: 12/02/2022] Open
Abstract
Background Ubiquinone has antioxidant properties and has been linked to cognitive performance in some neuropsychiatric disorders. Its role in specific learning disorder manifestations has not been previously investigated. Therefore, the aim of this study was to measure the blood levels of ubiquinone in a group of children with specific learning disorder in comparison to typically developing children and to investigate the correlation between ubiquinone levels in children with specific learning disorder and some of their intellectual capabilities, reading, spelling and writing performance. Methods The study included 71 native Arabic speaking children: 31 in the specific learning disorder group and 40 in the typically developing (TD) group. The abilities of the children with specific learning disorder were evaluated by the Stanford-Binet Intelligence Scale-4th edition, the Dyslexia Assessment Test, and the Illinois Test of Psycholinguistic Abilities. The level of ubiquinone was measured in both groups by ELISA. Correlation between some aptitudes of children with specific learning disorder and the ubiquinone level was performed. Results The blood levels of ubiquinone in the children with specific learning disorder group were less than those in the TD group. Correlation analysis revealed a significant positive correlation between ubiquinone and the scores of backward digit span abilities. Conclusions Ubiquinone has a role in the auditory working memory performance of children with specific learning disorder (with impairment in reading). The decreased levels of ubiquinone in this sample of children with specific learning disorder could have participated in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Ehab Ragaa Abdelraouf
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,2Learning Disability Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Ayman Kilany
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,3Pediatric Neurology Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Adel F Hashish
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt
| | - Ola Hosny Gebril
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt
| | - Suzette Ibrahim Helal
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,4Neurology Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| | - Haytham Mohamad Hasan
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,5Neuropsychiatry Department, Faculty of Medicine, Helwan University, Cairo, Egypt
| | - Neveen Hassan Nashaat
- 1Research on Children with Special Needs Department, Medical Research division, National Research Centre, Elbuhouth Street, 12622, Dokki, Cairo, Egypt.,2Learning Disability Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt.,6Phoniatric Research Clinic, Medical Research Centre of Excellence, National Research Centre, Cairo, Egypt
| |
Collapse
|
34
|
Coenzyme Q 10 supplementation reduces oxidative stress and decreases antioxidant enzyme activity in children with autism spectrum disorders. Psychiatry Res 2018; 265:62-69. [PMID: 29684771 DOI: 10.1016/j.psychres.2018.03.061] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 03/02/2018] [Accepted: 03/22/2018] [Indexed: 12/22/2022]
Abstract
Antioxidants and oxidative stress can participate in pathobiochemical mechanisms of autism spectrum disorders (ASDs). The aim was to identify the effects of early CoQ10 supplementation on oxidative stress in children with ASDs. Ninety children with ASDs were included in this study, based on DSM-IV criteria and using Childhood Autism Rating Scale (CARS) scores. Concentrations of CoQ10, MDA, total antioxidant status (TAS) assay, and antioxidant enzymes (superoxide dismutase or SOD and glutathione peroxidase or GPx) activity were determined in serum before and after 100 days of supportive therapy with CoQ10 at daily doses of 30 and 60 mg. Data on children's behavior were collected from parents and babysitters. CoQ10 supportive therapy was determined after three months with daily dose 2 ͯ 30 mg improved oxidative stress in the children with ASDs. A relation was seen between serum MDA (r2 = 0.668) and TAS (r2 = 0.007), and antioxidant enzymes (SOD [r2 = 0.01] and GPx [r2 = 0.001]) activity and CARS score. Based on the results, high doses of CoQ10 can improve gastrointestinal problems (P = 0.004) and sleep disorders (P = 0.005) in children with ASDs with an increase in the CoQ10 of the serum. We concluded that the serum concentration of CoQ10 and oxidative stress could be used as relevant biomarkers in helping the improvement of ASDs.
Collapse
|
35
|
Salgado PRR, da Fonsêca DV, de Melo CGF, Leite FC, Alves AF, Ferreira PB, Piuvezam MR, de Sousa DP, de Almeida RN. Comparison of behavioral, neuroprotective, and proinflammatory cytokine modulating effects exercised by (+)-cis-EC and (-)-cis-EC stereoisomers in a PTZ-induced kindling test in mice. Fundam Clin Pharmacol 2018; 32:507-515. [PMID: 29577374 DOI: 10.1111/fcp.12366] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2017] [Revised: 03/05/2018] [Accepted: 03/20/2018] [Indexed: 01/01/2023]
Abstract
Epoxy-carvone (EC) has chiral centers that allow generation of stereoisomers, including (+)-cis-EC and (-)-cis-EC, whose effects in the kindling tests have never been studied. Accordingly, this study aims to comparatively investigate the effect of stereoisomers (+)-cis-epoxy-carvone and (-)-cis-epoxy-carvone on behavioral changes measured in scores, in the levels of cytokines (IL-1β, IL-6, and TNFα) and neuronal protection in the face of continuous treatment with pentylenetetrazol. Swiss mice were divided into five groups (n = 10), receiving vehicle, (+) - cis-EC, (-) - cis-EC (both at the dose of 30 mg/kg), and diazepam (4 mg/kg). Thirty minutes after the respective treatment was administered to the animals one subconvulsive dose of PTZ (35 mg/kg). Seven subconvulsives treatments were made on alternate days, in which each treatment several parameters were recorded. In the eighth treatment, the animals receiving the highest dose of PTZ (75 mg/kg) and were sacrificed for quantification of cytokines and histopathologic analysis. All drugs were administered by intraperitoneal route. In the kindling test, (+)-cis-EC and (-)-cis-EC reduced the average scores. The stereoisomer (+)-cis-EC decreased levels of proinflammatory cytokines IL-1β, IL-6, and TNFα, whereas comparatively (-)-cis-EC did not reduce IL-1β levels. Histopathological analysis of the mice hippocampi undergoing this methodology showed neural protection for treated with (+)-cis-EC. The results suggest that the anticonvulsant effect of (+)-cis-EC possibly takes place due to reduction of proinflammatory cytokines involved in the epileptogenic process, besides neuronal protection, yet further investigation of the mechanisms involved is required.
Collapse
Affiliation(s)
- Paula Regina Rodrigues Salgado
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Diogo Vilar da Fonsêca
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Cynthia Germoglio Farias de Melo
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Fagner Carvalho Leite
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Adriano Francisco Alves
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Paula Benvindo Ferreira
- Programa de Pós-graduação em Produtos Naturais e Sintéticos Bioativos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Márcia Regina Piuvezam
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil.,Departamento de Fisiologia e Patologia, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Damião Pergentino de Sousa
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil.,Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Programa de Pós-graduação em Desenvolvimento e Inovação Tecnológica em Medicamentos, Instituto de Pesquisa em Fármacos e Medicamentos, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil.,Departamento de Fisiologia e Patologia, Universidade Federal da Paraíba, CP 5009, João Pessoa, CEP 58051-900, Paraíba, Brazil
| |
Collapse
|
36
|
Affiliation(s)
- Ursula Geronzi
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Federica Lotti
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| | - Salvatore Grosso
- Clinical Pediatrics, Department of Molecular Medicine and Development, University of Siena, Siena, Italy
| |
Collapse
|
37
|
Yan WM, Chen T, Wang XC, Qi LS, Zhao GH, Yang GQ, Ma YF, Tao Y, Zhang L, Zhang ZM. The reason for the amelioration of N-methyl-N-nitrosourea-induced retinitis pigmentosa in rats by hydrogen-rich saline. Int J Ophthalmol 2017; 10:1495-1503. [PMID: 29062766 DOI: 10.18240/ijo.2017.10.03] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
AIM To investigate the effects of hydrogen-rich saline (HRS) on microglia activation and Sirtuin type 1 (Sirt1) in rats with N-methyl-N-nitrosourea (MNU)-induced retinitis pigmentosa (RP). METHODS Rats were divided into norm (N) group, model (M) group and HRS (H) group. Rats in M and H groups were given saline and HRS respectively prior to and after administration of MNU. At one day (d1) and d3 afterwards, electroretinogram and histological examination were performed to confirm the effects of HRS on retinal function and structure of MNU-induced RP. Immunofluorescence staining of anti-ionized calcium-binding adapter molecule 1 (Iba1), a maker of microglia cells, was performed, with quantitative real-time polymerase chain reaction (qRT-PCR) for its mRNA quantification. Moreover, Sirt1 mRNA and protein expression in the retinas were detected by Western blot and qRT-PCR. RESULTS HRS preserved the retinal function and mitigated the reduction of photoreceptor degeneration in MNU-treated retinas. The presence of microglia cells was somewhat more obvious in H group than that in M group at d1. HRS suppressed the further activation of microglia cells, with the number of microglia cells less than that of M group at d3. Results of qRT-PCR of Iba1 were consistent with those of immunofluorescence staining, with the mRNA expression of Iba1 in H group more intensive than that of M group at d1 (P<0.05), while less than that of M group at d3 (P<0.05). Furthermore, the Sirt1 mRNA and protein expression decreased after MNU administration, while HRS mitigated the MNU-induced downregulation of Sirt1. CONCLUSION HRS can effectively keep microglia activation induced by MNU to an appropriate extent, while upregulate Sirt1 in MNU-induced RP.
Collapse
Affiliation(s)
- Wei-Ming Yan
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Tao Chen
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China.,Department of Health Service, Faculty of Aerospace, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiao-Cheng Wang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Lin-Song Qi
- Department of Aviation Physical Examination and Ophthalmology, Air Force General Hospital, Beijing 10010, China
| | - Guan-Hua Zhao
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Guo-Qing Yang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Yi-Fei Ma
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Ye Tao
- Department of Ophthalmology, General Hospital of Chinese PLA, Ophthalmology &Visual Science Key Lab of PLA, Beijing 100853, China
| | - Lei Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zuo-Ming Zhang
- Department of Clinical Medicine, Faculty of Aerospace Medicine, Key Laboratory of Aerospace Medicine of the National Education Ministry, the Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
38
|
Davis BM, Tian K, Pahlitzsch M, Brenton J, Ravindran N, Butt G, Malaguarnera G, Normando EM, Guo L, Cordeiro MF. Topical Coenzyme Q10 demonstrates mitochondrial-mediated neuroprotection in a rodent model of ocular hypertension. Mitochondrion 2017; 36:114-123. [PMID: 28549843 PMCID: PMC5645575 DOI: 10.1016/j.mito.2017.05.010] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Revised: 05/16/2017] [Accepted: 05/19/2017] [Indexed: 12/13/2022]
Abstract
Coenzyme Q10 (CoQ10) is a mitochondrial-targeted antioxidant with known neuroprotective activity. Its ocular effects when co-solubilised with α-tocopherol polyethylene glycol succinate (TPGS) were evaluated. In vitro studies confirmed that CoQ10 was significantly protective in different retinal ganglion cell (RGC) models. In vivo studies in Adult Dark Agouti (DA) rats with unilateral surgically-induced ocular hypertension (OHT) treated with either CoQ10/TPGS micelles or TPGS vehicle twice daily for three weeks were performed, following which retinal cell health was assessed in vivo using DARC (Detection of Apoptotic Retinal Cells) and post-mortem with Brn3a histological assessment on whole retinal mounts. CoQ10/TPGS showed a significant neuroprotective effect compared to control with DARC (p<0.05) and Brn3 (p<0.01). Topical CoQ10 appears an effective therapy preventing RGC apoptosis and loss in glaucoma-related models.
Collapse
Affiliation(s)
- Benjamin Michael Davis
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Kailin Tian
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Milena Pahlitzsch
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Jonathan Brenton
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Nivedita Ravindran
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Gibran Butt
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Giulia Malaguarnera
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - Eduardo M Normando
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom; Western Eye Hospital, Imperial College London, United Kingdom
| | - Li Guo
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom
| | - M Francesca Cordeiro
- Department of Visual Neuroscience, UCL Institute of Ophthalmology, London EC1V 9EL, United Kingdom; Western Eye Hospital, Imperial College London, United Kingdom.
| |
Collapse
|