1
|
Marsh B, Chauvette S, Huang M, Timofeev I, Bazhenov M. Network effects of traumatic brain injury: from infra slow to high frequency oscillations and seizures. J Comput Neurosci 2025:10.1007/s10827-025-00895-5. [PMID: 40019646 DOI: 10.1007/s10827-025-00895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 03/01/2025]
Abstract
Traumatic brain injury (TBI) can have a multitude of effects on neural functioning. In extreme cases, TBI can lead to seizures both immediately following the injury as well as persistent epilepsy over years to a lifetime. However, mechanisms of neural dysfunctioning after TBI remain poorly understood. To address these questions, we analyzed human and animal data and we developed a biophysical network model implementing effects of ion concentration dynamics and homeostatic synaptic plasticity to test effects of TBI on the brain network dynamics. We focus on three primary phenomena that have been reported in vivo after TBI: an increase in infra slow oscillations (<0.1 Hz), increase in Delta power (1 - 4 Hz), and the emergence of broadband Gamma bursts (30 - 100 Hz). Using computational network model, we show that the infra slow oscillations can be directly attributed to extracellular potassium dynamics, while the increase in Delta power and occurrence of Gamma bursts are related to the increase in strength of synaptic weights from homeostatic synaptic scaling triggered by trauma. We also show that the buildup of Gamma bursts in the injured region can lead to seizure-like events that propagate across the entire network; seizures can then be initiated in previously healthy regions. This study brings greater understanding of the network effects of TBI and how they can lead to epileptic activity. This lays the foundation to begin investigating how injured networks can be healed and seizures prevented.
Collapse
Affiliation(s)
- Brianna Marsh
- Neuroscience Graduate Program, The University of California San Diego, 9500 Gilman Dr, La Jolla, San Diego, CA, 92093, USA.
| | - Sylvain Chauvette
- Department of Psychiatry and Neuroscience, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Mingxiong Huang
- Department of Radiology, The University of California San Diego, 9500 Gilman Dr, La Jolla, San Diego, CA, 92093, USA
| | - Igor Timofeev
- Department of Psychiatry and Neuroscience, Université Laval, 2325 Rue de l'Université, Québec, QC G1V 0A6, Canada
| | - Maxim Bazhenov
- Department of Medicine, The University of California San Diego, 9500 Gilman Dr, La Jolla, San Diego, CA, 92093, USA.
| |
Collapse
|
2
|
Xia D, Zhang L, Mei R, Wu C, Liu Y, Chen H, Chen L. Increased Expression of MST1 in Patients With Epilepsy and in a Rat Model of Epilepsy. Synapse 2025; 79:e70002. [PMID: 39729046 DOI: 10.1002/syn.70002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/07/2024] [Accepted: 11/12/2024] [Indexed: 12/28/2024]
Abstract
Mammalian sterile20-like kinase 1 (MST1), a serine/threonine kinase frequently expressed, has emerged as pivotal modulator of multiple physiological and pathological conditions such as cellular growth, programmed cell death, oxidative stress, neurodegeneration, inflammation, and synaptic plasticity in the central nervous system. Various neurological diseases are associated with the activation of MST1. Epilepsy is a severe neurological disorder characterized by abrupt abnormal electrical activity in the brain and recurring spontaneous seizures. The most common pathological discoveries in patients and animal models with epilepsy are neuronal death, inflammation, neurodegeneration, neurogenesis, and axonal regrowth. The purpose of this study was to assess the levels of MST1 in serum and cerebrospinal fluid (CSF) specimens obtained from individuals diagnosed with epilepsy. In addition, it aimed to explore the expression pattern of MST1 in brain tissues of epileptic rats. We used enzyme-linked immunosorbent assay to measure the levels of CSF and serum MST1 in 10 epilepsy patients and 9 control patients. After creation of epilepsy models with healthy male Sprague-Dawley rats using lithium and pilocarpine, the expression of MST1 in the temporal cortex and hippocampus was evaluated at different time points (6 h, 24 h, 3 days, 7 days, 14 days, and 30 days after seizures) using immunofluorescence, immunohistochemistry, and Western blotting. In patients with epilepsy, the levels of CSF-MST1 were elevated (593.90 ± 16.28 vs. 560.40 ± 19.42 pg/mL, p < 0.05) compared to the control group. Accordingly, the serum-MST1 levels were 583.40 ± 19.70 pg/mL in the epilepsy group and 555.70 ± 20.14 pg/mL in the control group, demonstrating a statistically significant distinction (p < 0.05). Levels of MST1 in CSF and serum could be of diagnostic help. Neuronal apoptosis in temporal cortex and hippocampus of epileptic rats was detected using terminal deoxynucleotidyl transferase dUTP nick end labeling staining. MST1 was expressed in the neuronal membrane and cytoplasm of the temporal cortex and hippocampus. The expression of MST1 increased after seizures, showing a relatively high level within 30 days and reaching its highest point on the seventh day after status epilepticus. The findings of this study indicate that the increased expression of MST1 protein in patients with epilepsy and epileptic rats might play a role in the development of epilepsy.
Collapse
Affiliation(s)
- Di Xia
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Linming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| | - Rong Mei
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Chunhua Wu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| | - Yan Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hongyu Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ling Chen
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
- Department of Neurology, Yunnan Provincial Clinical Research Center for Neurological, Disease, Kunming, Yunnan, China
| |
Collapse
|
3
|
Kyllo T, Allocco D, Hei LV, Wulff H, Erickson JD. Riluzole attenuates acute neural injury and reactive gliosis, hippocampal-dependent cognitive impairments and spontaneous recurrent generalized seizures in a rat model of temporal lobe epilepsy. Front Pharmacol 2024; 15:1466953. [PMID: 39539628 PMCID: PMC11558044 DOI: 10.3389/fphar.2024.1466953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/02/2024] [Indexed: 11/16/2024] Open
Abstract
Background Riluzole exhibits neuroprotective and therapeutic effects in several neurological disease models associated with excessive synaptic glutamate (Glu) release. We recently showed riluzole prevents acute excitotoxic hippocampal neural injury at 3 days in the kainic acid (KA) model of temporal lobe epilepsy (TLE). Currently, it is unknown if preventing acute neural injury and the neuroinflammatory response is sufficient to suppress epileptogenesis. Methods The KA rat model of TLE was used to determine if riluzole attenuates acute hippocampal neural injury and reactive gliosis. KA was administered to adult male Sprague-Dawley (250 g) rats at 5 mg/kg/hr until status epilepticus (SE) was observed, and riluzole was administered at 10 mg/kg 1 h and 4 h after SE and once per day for the next 2 days. Immunostaining was used to assess neural injury (FJC and NeuN), microglial activation (Iba1 and ED-1/CD68) and astrogliosis (GFAP and vimentin) at day 7 and day 14 after KA-induced SE. Learning and memory tests (Y-maze, Novel object recognition test, Barnes maze), behavioral hyperexcitability tests, and spontaneous generalized recurrent seizure (SRS) activity (24-hour video monitoring) were assessed at 11-15 weeks. Results Here we show that KA-induced hippocampal neural injury precedes the neuroimmune response and that riluzole attenuates acute neural injury, microglial activation, and astrogliosis at 7 and 14 days. We find that reducing acute hippocampal injury and the associated neuroimmune response following KA-induced SE by riluzole attenuates hippocampal-dependent cognitive impairment, behavioral hyperexcitability, and tonic/clonic generalized SRS activity after 3 months. We also show that riluzole attenuates SE-associated body weight loss during the first week after KA-induced SE. Discussion Riluzole acts on multiple targets that are involved to prevent excessive synaptic Glu transmission and excitotoxic neuronal injury. Attenuating KA-induced neural injury and subsequent microglia/astrocyte activation in the hippocampus and extralimbic regions with riluzole reduces TLE-associated cognitive deficits and generalized SRS and suggests that riluzole could be a potential antiepileptogenic drug.
Collapse
Affiliation(s)
- Thomas Kyllo
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Dominic Allocco
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Laine Vande Hei
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| | - Heike Wulff
- Department of Pharmacology, School of Medicine, University of California-Davis, Davis, CA, United States
| | - Jeffrey D. Erickson
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health-New Orleans, New Orleans, LA, United States
| |
Collapse
|
4
|
Santos AB, Carona A, Ettcheto M, Camins A, Falcão A, Fortuna A, Bicker J. Krüppel-like factors: potential roles in blood-brain barrier dysfunction and epileptogenesis. Acta Pharmacol Sin 2024; 45:1765-1776. [PMID: 38684799 PMCID: PMC11335766 DOI: 10.1038/s41401-024-01285-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
Epilepsy is a chronic and debilitating neurological disorder, known for the occurrence of spontaneous and recurrent seizures. Despite the availability of antiseizure drugs, 30% of people with epilepsy experience uncontrolled seizures and drug resistance, evidencing that new therapeutic options are required. The process of epileptogenesis involves the development and expansion of tissue capable of generating spontaneous recurrent seizures, during which numerous events take place, namely blood-brain barrier (BBB) dysfunction, and neuroinflammation. The consequent cerebrovascular dysfunction results in a lower seizure threshold, seizure recurrence, and chronic epilepsy. This suggests that improving cerebrovascular health may interrupt the pathological cycle responsible for disease development and progression. Krüppel-like factors (KLFs) are a family of zinc-finger transcription factors, encountered in brain endothelial cells, glial cells, and neurons. KLFs are known to regulate vascular function and changes in their expression are associated with neuroinflammation and human diseases, including epilepsy. Hence, KLFs have demonstrated various roles in cerebrovascular dysfunction and epileptogenesis. This review critically discusses the purpose of KLFs in epileptogenic mechanisms and BBB dysfunction, as well as the potential of their pharmacological modulation as therapeutic approach for epilepsy treatment.
Collapse
Affiliation(s)
| | - Andreia Carona
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Miren Ettcheto
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Antoni Camins
- Biomedical Research Networking Center in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Pharmacology, Toxicology and Therapeutic Chemistry, Faculty of Pharmacy and Food Science, Universitat de Barcelona, Barcelona, Spain
- Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
- Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Amílcar Falcão
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Ana Fortuna
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal
| | - Joana Bicker
- University of Coimbra, Faculty of Pharmacy, Coimbra, Portugal.
- University of Coimbra, Coimbra Institute for Biomedical Imaging and Translational Research, Coimbra, Portugal.
| |
Collapse
|
5
|
Cheng G, Wang X, Wang C, Zhang Q, Zhang Y. Understanding the molecular mechanisms of Acori Tatarinowii Rhizoma: Nardostahyos Radix et Rhizoma in epilepsy treatment using network pharmacology and molecular docking. Medicine (Baltimore) 2024; 103:e37224. [PMID: 38335401 PMCID: PMC10860933 DOI: 10.1097/md.0000000000037224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/23/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
Acori Tatarinowii Rhizoma (ATR) and Nardostahyos Radix et Rhizoma (NRR) are well-known traditional Chinese medicines that have been extensively used for the treatment of epilepsy (EP). However, the precise molecular mechanism of ATR-NRR action remains unclear because of their intricate ingredients. This study aimed to investigate the underlying mechanism of ATR-NRR in EP treatment using network pharmacology and molecular docking techniques. Herbal medicine and disease gene databases were searched to determine active constituents and shared targets of ATR-NRR and EP. A protein-protein interaction network was constructed using the STRING database, while the Gene Ontology and the Kyoto Encyclopedia of Genes and Genome pathway enrichment were performed using R programming. An ingredient-target-pathway network map was constructed using the Cytoscape software, incorporating network topology calculations to predict active ingredients and hub targets. The binding abilities of active ingredients and hub targets were examined using molecular docking. Nine qualified compounds and 53 common targets were obtained. The prominent active compounds were kaempferol, acacetin, cryptotanshinone, 8-isopentenyl-kaempferol, naringenin, and eudesmin, while the primary targets were RELA, AKT1, CASP3, MAPK8, JUN, TNF, and TP53. Molecular docking analysis revealed that they have substantial binding abilities. These 53 targets were found to influence EP by manipulating PI3K-Akt, IL-17, TNF, and apoptosis signaling pathways. The findings of this study indicate that ATR-NRR functions against EP by acting upon multiple pathways and targets, offering a basis for future study.
Collapse
Affiliation(s)
- Guangyu Cheng
- The First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xuan Wang
- The First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin, China
| | - Chaojie Wang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qi Zhang
- The First Affiliated Hospital Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yiwen Zhang
- Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
6
|
Huang L, Xiao W, Wang Y, Li J, Gong J, Tu E, Long L, Xiao B, Yan X, Wan L. Metabotropic glutamate receptors (mGluRs) in epileptogenesis: an update on abnormal mGluRs signaling and its therapeutic implications. Neural Regen Res 2024; 19:360-368. [PMID: 37488891 PMCID: PMC10503602 DOI: 10.4103/1673-5374.379018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/07/2023] [Accepted: 05/22/2023] [Indexed: 07/26/2023] Open
Abstract
Epilepsy is a neurological disorder characterized by high morbidity, high recurrence, and drug resistance. Enhanced signaling through the excitatory neurotransmitter glutamate is intricately associated with epilepsy. Metabotropic glutamate receptors (mGluRs) are G protein-coupled receptors activated by glutamate and are key regulators of neuronal and synaptic plasticity. Dysregulated mGluR signaling has been associated with various neurological disorders, and numerous studies have shown a close relationship between mGluRs expression/activity and the development of epilepsy. In this review, we first introduce the three groups of mGluRs and their associated signaling pathways. Then, we detail how these receptors influence epilepsy by describing the signaling cascades triggered by their activation and their neuroprotective or detrimental roles in epileptogenesis. In addition, strategies for pharmacological manipulation of these receptors during the treatment of epilepsy in experimental studies is also summarized. We hope that this review will provide a foundation for future studies on the development of mGluR-targeted antiepileptic drugs.
Collapse
Affiliation(s)
- Leyi Huang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Yan Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Juan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children’s Hospital, Changsha, Hunan Province, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| |
Collapse
|
7
|
Rai G, Sharma S, Bhasin J, Aggarwal K, Ahuja A, Dang S. Nanotechnological advances in the treatment of epilepsy: a comprehensive review. NANOTECHNOLOGY 2024; 35:152002. [PMID: 38194705 DOI: 10.1088/1361-6528/ad1c95] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Epilepsy is one of the most prevalent chronic neurological disorders characterized by frequent unprovoked epileptic seizures. Epileptic seizures can develop from a broad range of underlying abnormalities such as tumours, strokes, infections, traumatic brain injury, developmental abnormalities, autoimmune diseases, and genetic predispositions. Sometimes epilepsy is not easily diagnosed and treated due to the large diversity of symptoms. Undiagnosed and untreated seizures deteriorate over time, impair cognition, lead to injuries, and can sometimes result in death. This review gives details about epilepsy, its classification on the basis of International League Against Epilepsy, current therapeutics which are presently offered for the treatment of epilepsy. Despite of the fact that more than 30 different anti-epileptic medication and antiseizure drugs are available, large number of epileptic patients fail to attain prolonged seizure independence. Poor onsite bioavailability of drugs due to blood brain barrier poses a major challenge in drug delivery to brain. The present review covers the limitations with the state-of-the-art strategies for managing seizures and emphasizes the role of nanotechnology in overcoming these issues. Various nano-carriers like polymeric nanoparticles, dendrimers, lipidic nanoparticles such as solid lipid nanoparticles, nano-lipid carriers, have been explored for the delivery of anti-epileptic drugs to brain using oral and intranasal routes. Nano-carries protect the encapsulated drugs from degradation and provide a platform to deliver controlled release over prolonged periods, improved permeability and bioavailability at the site of action. The review also emphasises in details about the role of neuropeptides for the treatment of epilepsy.
Collapse
Affiliation(s)
- Garima Rai
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Surbhi Sharma
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Jasveen Bhasin
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Kanica Aggarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| | - Alka Ahuja
- College of Pharmacy, National University of Science and Technology, Muscat, Oman
| | - Shweta Dang
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, UP, India
| |
Collapse
|
8
|
Michetti C, Ferrante D, Parisi B, Ciano L, Prestigio C, Casagrande S, Martinoia S, Terranova F, Millo E, Valente P, Giovedi' S, Benfenati F, Baldelli P. Low glycemic index diet restrains epileptogenesis in a gender-specific fashion. Cell Mol Life Sci 2023; 80:356. [PMID: 37947886 PMCID: PMC10638170 DOI: 10.1007/s00018-023-04988-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 11/12/2023]
Abstract
Dietary restriction, such as low glycemic index diet (LGID), have been successfully used to treat drug-resistant epilepsy. However, if such diet could also counteract antiepileptogenesis is still unclear. Here, we investigated whether the administration of LGID during the latent pre-epileptic period, prevents or delays the appearance of the overt epileptic phenotype. To this aim, we used the Synapsin II knockout (SynIIKO) mouse, a model of temporal lobe epilepsy in which seizures manifest 2-3 months after birth, offering a temporal window in which LGID may affect epileptogenesis. Pregnant SynIIKO mice were fed with either LGID or standard diet during gestation and lactation. Both diets were maintained in weaned mice up to 5 months of age. LGID delayed the seizure onset and induced a reduction of seizures severity only in female SynIIKO mice. In parallel with the epileptic phenotype, high-density multielectrode array recordings revealed a reduction of frequency, amplitude, duration, velocity of propagation and spread of interictal events by LGID in the hippocampus of SynIIKO females, but not mutant males, confirming the gender-specific effect. ELISA-based analysis revealed that LGID increased cortico-hippocampal allopregnanolone (ALLO) levels only in females, while it was unable to affect ALLO plasma concentrations in either sex. The results indicate that the gender-specific interference of LGID with the epileptogenic process can be ascribed to a gender-specific increase in cortical ALLO, a neurosteroid known to strengthen GABAergic transmission. The study highlights the possibility of developing a personalized gender-based therapy for temporal lobe epilepsy.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy.
| | - Daniele Ferrante
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Barbara Parisi
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Lorenzo Ciano
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Cosimo Prestigio
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Silvia Casagrande
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Sergio Martinoia
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Fabio Terranova
- Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genova, Genoa, Italy
| | - Enrico Millo
- Department of Experimental Medicine, University of Genova, Genoa, Italy
| | - Pierluigi Valente
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Silvia Giovedi'
- Department of Experimental Medicine, University of Genova, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Baldelli
- Department of Experimental Medicine, University of Genova, Genoa, Italy.
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
9
|
Wu J, Zhang H, Yang L, Chen Y, Li J, Yang M, Zhang X, He C, Wang X, Xu X. Syntaxin 7 modulates seizure activity in epilepsy. Neurobiol Dis 2023; 181:106118. [PMID: 37031804 DOI: 10.1016/j.nbd.2023.106118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/18/2023] [Accepted: 04/05/2023] [Indexed: 04/11/2023] Open
Abstract
The exact pathogenesis of epilepsy, one of the most common and devastating diseases of the nervous system, is not fully understood. Syntaxin7 (STX7) is a member of the SNARE superfamily, which mediates membrane fusion events in all cells. However, the role STX7 plays in epilepsy remains unclear. Therefore, this study investigates the role of STX7 in epilepsy. Our study found that the expression of STX7 was reduced in the epileptic brain and that overexpression of STX7 decreased the susceptibility to epileptic seizures and alleviated epileptic activity in a kainic acid-induced model and pentylenetetrazole-induced kindling model of epilepsy, whereas the downregulation of STX7 showed opposite effects. Whole-cell patch-clamp recordings showed that STX7 does not affect the intrinsic excitability of neurons, but rather the excitation/inhibition ratio mediated by affecting the release of presynaptic γ-aminobutyric acid neurotransmitters. Transmission electron microscopy results showed that STX7 did not affect the density of inhibitory synapses but could affect the density of inhibitory vesicles. Taken together, these results reveal a previously unknown function of STX7 in epilepsy and suggest that STX7 may serve as a novel target for epilepsy therapy.
Collapse
Affiliation(s)
- Junhong Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Hui Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China; Department of Neurology, The First Hospital of Shanxi Medical University, No.85 Jiefang South Road, Taiyuan, Shanxi Province, China
| | - Liu Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China; Department of Neurology, The First Hospital of Shanxi Medical University, No.85 Jiefang South Road, Taiyuan, Shanxi Province, China
| | - Yuanyuan Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Jiyuan Li
- Department of Neurology, The First Hospital of Shanxi Medical University, No.85 Jiefang South Road, Taiyuan, Shanxi Province, China
| | - Min Yang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China
| | - Xiaogang Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China; Department of Neurology, Chongqing General Hospital, Chongqing Key Laboratory of Neurodegenerative Diseases, No.118, Xingguang Avenue, Liangjiang New Area, Chongqing 401147, China
| | - Changlong He
- Department of Laboratory Medicine, People's Hospital of Jiulongpo District, Chongqing 40016, China; Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| | - Xuefeng Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| | - Xin Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, 1 Youyi Road, Chongqing 400016, China.
| |
Collapse
|
10
|
Jiang X, Wang Y, Liu J. Comprehensive characterization of amino acids and water-soluble vitamins in a pentylenetetrazole-induced seizures rat model. J Sep Sci 2023; 46:e2201004. [PMID: 36841992 DOI: 10.1002/jssc.202201004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
Epilepsy is a complex neurological disease characterized by spontaneous recurrent seizures that affect around 1% of the global population. Despite the significant progress in the mechanisms of epileptogenesis, there is still about 60% of cases in which the cause is unknown. Thus, revealing the molecular mechanisms of epileptogenesis will greatly improve the development of epilepsy treatment. Since the comprehensive characterization of amino acids and water-soluble vitamins is important in understanding the underlying mechanisms of epilepsy or seizures, we developed two liquid chromatography-tandem mass spectrometry methods to quantify 17 water-soluble vitamins and 46 amino acids and applied them to our pentylenetetrazole-induced kindling rat model. All water-soluble vitamins were detected with a linearity of r > 0.992 and limits of quantitation between 0.1 and 5 ng/ml except for nicotinic acid. For amino acids, the linearities obtained were good with correlation coefficients higher than 0.99, and matrix effects were between 85.3% and 110%. To handle the multidimensional data more effectively, multivariate statistical analysis approaches used in non-targeted metabolomics were creatively exploited in the visualization, interpretation, and exploration of the results.
Collapse
Affiliation(s)
- Xiaomei Jiang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Yan Wang
- Department of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin, P. R. China
| | - Jia Liu
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, P. R. China
| |
Collapse
|
11
|
Yang X, Lv W, Yang Y, Yang J, Zhang H, Xu Z. Progesterone receptor membrane component 2 regulates the neuronal activity and participates in epileptic seizures in experimental mice. IBRAIN 2023; 10:356-365. [PMID: 39346797 PMCID: PMC11427800 DOI: 10.1002/ibra.12088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 10/01/2024]
Abstract
It was found the expression of progesterone receptor membrane component 2 (PGRMC2) in the histone of epileptic mice was lower than that of normal mice. In this study, we found by the immunofluorescence technique, PGRMC2 was expressed in both astrocytes and neurons of the mouse hippocampus. In addition, the seizure latency and seizure grade of mice in each group were observed after stereotactic injection of the PGRMC2 knockdown virus, PGRMC2 overexpression lentivirus, and related null virus into the hippocampus of mice. It was found that the seizure latency of mice in the PTZ + siPGRMC2 group was prolonged compared with the null virus group. The seizure latency was shortened in the PTZ + PGRMC2 group. The number of grade IV and above seizures in the PTZ + siPGRMC2 group was significantly reduced, while the number of grade IV and above seizures in the PTZ + PGRMC2 group was significantly increased. It was found that the nerve cells in the PTZ + siPGRMC2 group were still intact. In the PTZ + PGRMC2 group, the neural cells were damaged, the intercellular space was widened, and the number of cells was reduced. These findings support that PGRMC2 may be involved in epileptic seizures.
Collapse
Affiliation(s)
- Xiaoyan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Wenbo Lv
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Yong Yang
- Division of Clinical Neuroscience Chiba University Center for Forensic Mental Health Chiba Japan
| | - Juan Yang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Haiqing Zhang
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
| | - Zucai Xu
- Department of Neurology Affiliated Hospital of Zunyi Medical University Zunyi China
- Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University Zunyi Guizhou China
| |
Collapse
|
12
|
Shishmanova-Doseva M, Atanasova D, Ioanidu L, Uzunova Y, Atanasova M, Peychev L, Tchekalarova J. The anticonvulsant effect of chronic treatment with topiramate after pilocarpine-induced status epilepticus is accompanied by a suppression of comorbid behavioral impairments and robust neuroprotection in limbic regions in rats. Epilepsy Behav 2022; 134:108802. [PMID: 35792414 DOI: 10.1016/j.yebeh.2022.108802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/04/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022]
Abstract
Epilepsy is a widespread neurological disorder frequently associated with a lot of comorbidities. The present study aimed to evaluate the effects of the antiseizure medication topiramate (TPM) on spontaneous motor seizures, the pathogenesis of comorbid mood and cognitive impairments, hippocampal neuronal loss, and oxidative stress and inflammation in a rat model of temporal lobe epilepsy (TLE). Vehicle/TPM treatment (80 mg/kg, p.o.) was administered 3 h after the pilocarpine (pilo)-induced status epilepticus (SE) and continued for up to 12 weeks in Wistar rats. The chronic TPM treatment caused side effects in naïve rats, including memory disturbance, anxiety, and depressive-like responses. However, the anticonvulsant effect of this drug, administered during epileptogenesis, was accompanied by beneficial activity against comorbid behavioral impairments. The drug treatment suppressed the SE-induced neuronal damage in limbic structures, including the dorsal (CA1 and CA2 subfield), the ventral (CA1, CA2 and CA3) hippocampus, the basolateral amygdala, and the piriform cortex, while was ineffective against the surge in the oxidative stress and inflammation. Our results suggest that neuroprotection is an essential mechanism of TPM against spontaneous generalized seizures and concomitant emotional and cognitive impairments.
Collapse
Affiliation(s)
- Michaela Shishmanova-Doseva
- Department of Pharmacology, Toxicology and Pharmacotherapy, Medical University of Plovdiv, Plovdiv 4002, Bulgaria.
| | - Dimitrinka Atanasova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia 1113, Bulgaria; Department of Anatomy, Faculty of Medicine, Trakia University, Stara Zagora 6003, Bulgaria
| | - Lyubka Ioanidu
- Department of Bioorganic Chemistry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Yordanka Uzunova
- Department of Bioorganic Chemistry, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Milena Atanasova
- Department of Biology, Medical University of Pleven, Pleven 5800, Bulgaria
| | - Lyudmil Peychev
- Department of Pharmacology, Toxicology and Pharmacotherapy, Medical University of Plovdiv, Plovdiv 4002, Bulgaria
| | - Jana Tchekalarova
- Institute of Neurobiology, Bulgarian Academy of Sciences (BAS), Sofia 1113, Bulgaria.
| |
Collapse
|
13
|
Pharmacological perspectives and mechanisms involved in epileptogenesis. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00278-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Epileptogenesis can be defined as the process by which a previously healthy brain develops a tendency toward recurrent electrical activity, occurring in three phases: first as an initial trigger (such as stroke, infections, and traumatic brain injury); followed by the latency period and the onset of spontaneous and recurrent seizures which characterizes epilepsy.
Main body
The mechanisms that may be involved in epileptogenesis are inflammation, neurogenesis, migration of neurons to different regions of the brain, neural reorganization, and neuroplasticity.In recent years, experimental studies have enabled the discovery of several mechanisms involved in the process of epileptogenesis, mainly neuroinflammation, that involves the activation of glial cells and an increase in specific inflammatory mediators. The lack of an experimental animal model protocol for epileptogenic compounds contributes to the difficulty in understanding disease development and the creation of new drugs.
Conclusion
To solve these difficulties, a new approach is needed in the development of new AEDs that focus on the process of epileptogenesis and the consolidation of animal models for studies of antiepileptogenic compounds, aiming to reach the clinical phases of the study. Some examples of these compounds are rapamycin, which inhibits mTOR signaling, and losartan, that potentiates the antiepileptogenic effect of some AEDs. Based on this, this review discusses the main mechanisms involved in epileptogenesis, as well as its pharmacological approach.
Collapse
|
14
|
Shen Y, Gong Y, Ruan Y, Chen Z, Xu C. Secondary Epileptogenesis: Common to See, but Possible to Treat? Front Neurol 2021; 12:747372. [PMID: 34938259 PMCID: PMC8686764 DOI: 10.3389/fneur.2021.747372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/15/2021] [Indexed: 02/03/2023] Open
Abstract
Secondary epileptogenesis is a common phenomenon in epilepsy, characterized by epileptiform discharges from the regions outside the primary focus. It is one of the major reasons for pharmacoresistance and surgical failure. Compared with primary epileptogenesis, the mechanism of secondary epileptogenesis is usually more complex and diverse. In this review, we aim to summarize the characteristics of secondary epileptogenesis from both clinical and laboratory studies in a historical view. Mechanisms of secondary epileptogenesis in molecular, cellular, and circuity levels are further presented. Potential treatments targeting the process are discussed as well. At last, we highlight the importance of circuitry studies, which would further illustrate precise treatments of secondary epileptogenesis in the future.
Collapse
Affiliation(s)
- Yujia Shen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yiwei Gong
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Yeping Ruan
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China.,Key Laboratory of Medical Neurobiology of National Health Commission and Chinese Academy of Medical Sciences, Institute of Pharmacology and Toxicology, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| | - Cenglin Xu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
An insight into crosstalk among multiple signaling pathways contributing to epileptogenesis. Eur J Pharmacol 2021; 910:174469. [PMID: 34478688 DOI: 10.1016/j.ejphar.2021.174469] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/16/2021] [Accepted: 08/30/2021] [Indexed: 01/04/2023]
Abstract
Despite the years of research, epilepsy remains uncontrolled in one-third of afflicted individuals and poses a health and economic burden on society. Currently available anti-epileptic drugs mainly target the excitatory-inhibitory imbalance despite targeting the underlying pathophysiology of the disease. Recent research focuses on understanding the pathophysiologic mechanisms that lead to seizure generation and on possible new treatment avenues for preventing epilepsy after a brain injury. Various signaling pathways, including the mechanistic target of rapamycin (mTOR) pathway, mitogen-activated protein kinase (MAP-ERK) pathway, JAK-STAT pathway, wnt/β-catenin signaling, cAMP pathway, and jun kinase pathway, have been suggested to play an essential role in this regard. Recent work suggests that the mTOR pathway intervenes epileptogenesis and proposes that mTOR inhibitors may have antiepileptogenic properties for epilepsy. In the same way, several animal studies have indicated the involvement of the Wnt signaling pathway in neurogenesis and neuronal death induced by seizures in different phases (acute and chronic) of seizure development. Various studies have also documented the activation of JAK-STAT signaling in epilepsy and cAMP involvement in epileptogenesis through CREB (cAMP response element-binding protein). Although studies are there, the mechanism for how components of these pathways mediate epileptogenesis requires further investigation. This review summarises the current role of various signaling pathways involved in epileptogenesis and the crosstalk among them. Furthermore, we will also discuss the mechanical base for the interaction between these pathways and how these interactions could be a new emerging promising target for future epilepsy therapies.
Collapse
|
16
|
Selected Molecular Targets for Antiepileptogenesis. Int J Mol Sci 2021; 22:ijms22189737. [PMID: 34575901 PMCID: PMC8466306 DOI: 10.3390/ijms22189737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/02/2021] [Accepted: 09/02/2021] [Indexed: 02/07/2023] Open
Abstract
The term epileptogenesis defines the usually durable process of converting normal brain into an epileptic one. The resistance of a significant proportion of patients with epilepsy to the available pharmacotherapy prompted the concept of a causative treatment option consisting in stopping or modifying the progress of epileptogenesis. Most antiepileptic drugs possess only a weak or no antiepileptogenic potential at all, but a few of them appear promising in this regard; these include, for example, eslicarbazepine (a sodium and T-type channel blocker), lamotrigine (a sodium channel blocker and glutamate antagonist) or levetiracetam (a ligand of synaptic vehicle protein SV2A). Among the approved non-antiepileptic drugs, antiepileptogenic potential seems to reside in losartan (a blocker of angiotensin II type 1 receptors), biperiden (an antiparkinsonian drug), nonsteroidal anti-inflammatory drugs, antioxidative drugs and minocycline (a second-generation tetracycline with anti-inflammatory and antioxidant properties). Among other possible antiepileptogenic compounds, antisense nucleotides have been considered, among these an antagomir targeting microRNA-134. The drugs and agents mentioned above have been evaluated in post-status epilepticus models of epileptogenesis, so their preventive efficacy must be verified. Limited clinical data indicate that biperiden in patients with brain injuries is well-tolerated and seems to reduce the incidence of post-traumatic epilepsy. Exceptionally, in this regard, our own original data presented here point to c-Fos as an early seizure duration, but not seizure intensity-related, marker of early epileptogenesis. Further research of reliable markers of early epileptogenesis is definitely needed to improve the process of designing adequate antiepileptogenic therapies.
Collapse
|
17
|
Andres-Mach M, Szewczyk A, Zagaja M, Szala-Rycaj J, Lemieszek MK, Maj M, Abram M, Kaminski K. Preclinical Assessment of a New Hybrid Compound C11 Efficacy on Neurogenesis and Cognitive Functions after Pilocarpine Induced Status Epilepticus in Mice. Int J Mol Sci 2021; 22:ijms22063240. [PMID: 33810180 PMCID: PMC8004689 DOI: 10.3390/ijms22063240] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023] Open
Abstract
Status epilepticus (SE) is a frequent medical emergency that can lead to a variety of neurological disorders, including cognitive impairment and abnormal neurogenesis. The aim of the presented study was the in vitro evaluation of potential neuroprotective properties of a new pyrrolidine-2,5-dione derivatives compound C11, as well as the in vivo assessment of the impact on the neurogenesis and cognitive functions of C11 and levetiracetam (LEV) after pilocarpine (PILO)-induced SE in mice. The in vitro results indicated a protective effect of C11 (500, 1000, and 2500 ng/mL) on astrocytes under trophic stress conditions in the MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) test. The results obtained from the in vivo studies, where mice 72 h after PILO SE were treated with C11 (20 mg/kg) and LEV (10 mg/kg), indicated markedly beneficial effects of C11 on the improvement of the neurogenesis compared to the PILO control and PILO LEV mice. Moreover, this beneficial effect was reflected in the Morris Water Maze test evaluating the cognitive functions in mice. The in vitro confirmed protective effect of C11 on astrocytes, as well as the in vivo demonstrated beneficial impact on neurogenesis and cognitive functions, strongly indicate the need for further advanced molecular research on this compound to determine the exact neuroprotective mechanism of action of C11.
Collapse
Affiliation(s)
- Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
- Correspondence: ; Tel.: +48-81-718-4488
| | - Aleksandra Szewczyk
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | - Joanna Szala-Rycaj
- Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, 20-090 Lublin, Poland; (A.S.); (M.Z.); (J.S.-R.)
| | | | - Maciej Maj
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-090 Lublin, Poland;
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.A.); (K.K.)
| | - Krzysztof Kaminski
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Cracow, Poland; (M.A.); (K.K.)
| |
Collapse
|
18
|
Ahras-Sifi N, Laraba-Djebari F. Immunomodulatory and protective effects of interleukin-4 on the neuropathological alterations induced by a potassium channel blocker. J Neuroimmunol 2021; 355:577549. [PMID: 33839521 DOI: 10.1016/j.jneuroim.2021.577549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/14/2021] [Accepted: 03/14/2021] [Indexed: 11/24/2022]
Abstract
The pathophysiology of neurological diseases related to potassium-channel dysfunction such as epilepsy is increasingly linked to immune system modulation. However, there are limited reports of which interleukin-4 (IL-4) can act on the neuroinflammatory response after seizure. Hence, we evaluated the effect of IL-4 in murine model of neuroexcitotoxcity using kaliotoxin (KTx), a potassium-channel blocker. Results showed that IL-4 treatment can significantly reduce the neuronal death induced by KTx. Probably by decreasing mitochondria swelling, reversing oxidative damage and enhancing Bcl-2 expression. Furthermore, IL-4 treatment significantly reduced TNF-α expression and enhanced GFAP and IL-10 expressions in the brain. IL-4 can be neuroprotective in epileptogenesis.
Collapse
Affiliation(s)
- Nesrine Ahras-Sifi
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria
| | - Fatima Laraba-Djebari
- USTHB, Faculty of Biological Sciences, Laboratory of Cellular and Molecular Biology, BP32, El Alia, Bab Ezzouar, 16111 Algiers, Algeria.
| |
Collapse
|
19
|
Góra M, Czopek A, Rapacz A, Giza A, Koczurkiewicz-Adamczyk P, Pękala E, Obniska J, Kamiński K. Design, Synthesis and Biological Activity of New Amides Derived from 3-Benzhydryl and 3-sec-Butyl-2,5-dioxo-pyrrolidin-1-yl-acetic Acid. ChemMedChem 2021; 16:1619-1630. [PMID: 33539029 DOI: 10.1002/cmdc.202001007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/26/2021] [Indexed: 12/25/2022]
Abstract
The aim of this study was to design and synthesize two new series of pyrrolidine-2,5-dione-acetamides with a benzhydryl or sec-butyl group at position 3 as potential anticonvulsants. Their anticonvulsant activity was evaluated in standard animal models of epilepsy: the maximal electroshock (MES), the 6 Hz, and the subcutaneous pentylenetetrazole (scPTZ) tests. The in vivo studies revealed the most potent anticonvulsant activity for 15 (3-(sec-butyl)-1-(2-(4-(3-trifluoromethylphenyl)piperazin-1-yl)-2-oxoethyl)pyrrolidine-2,5-dione), with ED50 values of 80.38 mg/kg (MES) and 108.80 mg/kg (6 Hz). The plausible mechanism of action was assessed in in vitro binding assays, in which 15 interacted effectively with voltage-gated sodium (site 2) and L-type calcium channels at a concentration of 100 μM. Subsequently, the antinociceptive activity of compounds 7 and 15 was observed in the hot plate test of acute pain. Moreover, compounds 7, 11 and 15 demonstrated an analgesic effect in the formalin test of tonic pain. The hepatotoxic properties of the most effective compounds (7, 11 and 15) in HepG2 cells were also investigated.
Collapse
Affiliation(s)
- Małgorzata Góra
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Czopek
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Agnieszka Giza
- Department of Pharmacodynamics, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Paulina Koczurkiewicz-Adamczyk
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Elżbieta Pękala
- Department of Pharmaceutical Biochemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Jolanta Obniska
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Jagiellonian University Medical College, Faculty of Pharmacy, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
20
|
Impact of predictive, preventive and precision medicine strategies in epilepsy. Nat Rev Neurol 2020; 16:674-688. [PMID: 33077944 DOI: 10.1038/s41582-020-0409-4] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Over the last decade, advances in genetics, neuroimaging and EEG have enabled the aetiology of epilepsy to be identified earlier in the disease course than ever before. At the same time, progress in the study of experimental models of epilepsy has provided a better understanding of the mechanisms underlying the condition and has enabled the identification of therapies that target specific aetiologies. We are now witnessing the impact of these advances in our daily clinical practice. Thus, now is the time for a paradigm shift in epilepsy treatment from a reactive attitude, treating patients after the onset of epilepsy and the initiation of seizures, to a proactive attitude that is more broadly integrated into a 'P4 medicine' approach. This P4 approach, which is personalized, predictive, preventive and participatory, puts patients at the centre of their own care and, ultimately, aims to prevent the onset of epilepsy. This aim will be achieved by adapting epilepsy treatments not only to a given syndrome but also to a given patient and moving from the usual anti-seizure treatments to personalized treatments designed to target specific aetiologies. In this Review, we present the current state of this ongoing revolution, emphasizing the impact on clinical practice.
Collapse
|
21
|
Xiaoying G, Guo M, Jie L, Yanmei Z, Ying C, Shengjie S, Haiyan G, Feixiang S, Sihua Q, Jiahang S. CircHivep2 contributes to microglia activation and inflammation via miR-181a-5p/SOCS2 signalling in mice with kainic acid-induced epileptic seizures. J Cell Mol Med 2020; 24:12980-12993. [PMID: 33002329 PMCID: PMC7701587 DOI: 10.1111/jcmm.15894] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023] Open
Abstract
Epilepsy is a chronic brain disease characterized by recurrent seizures. Circular RNA (circRNA) is a novel family of endogenous non‐coding RNAs that have been proposed to regulate gene expression. However, there is a lack of data on the role of circRNA in epilepsy. In this study, the circRNA profiles were evaluated by microarray analysis. In total, 627 circRNAs were up‐regulated, whereas 892 were down‐regulated in the hippocampus in mice with kainic acid (KA)‐induced epileptic seizures compared with control. The expression of circHivep2 was significantly down‐regulated in hippocampus tissues of mice with KA‐induced epileptic seizures and BV‐2 microglia cells upon KA treatment. Bioinformatics analysis predicted that circHivep2 interacts with miR‐181a‐5p to regulate SOCS2 expression, which was validated using a dual‐luciferase reporter assay. Moreover, overexpression of circHivep2 significantly inhibited KA‐induced microglial activation and the expression of inflammatory factors in vitro, which was blocked by miR‐181a‐5p, whereas circHivep2 knockdown further induced microglia cell activation and the release of pro‐inflammatory proteins in BV‐2 microglia cells after KA treatment. The application of circHivep2+ exosomes derived from adipose‐derived stem cells (ADSCs) exerted significant beneficial effects on the behavioural seizure scores of mice with KA‐induced epilepsy compared to control exosomes. The circHivep2+ exosomes also inhibited microglial activation, the expression of inflammatory factors, and the miR‐181a‐5p/SOCS2 axis in vivo. Our results suggest that circHivep2 regulates microglia activation in the progression of epilepsy by interfering with miR‐181a‐5p to promote SOCS2 expression, indicating that circHivep2 may serve as a therapeutic tool to prevent the development of epilepsy.
Collapse
Affiliation(s)
- Gao Xiaoying
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mian Guo
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liu Jie
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhu Yanmei
- Department of Radiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Cui Ying
- Department of Neurology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shu Shengjie
- Department of Imageology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Gou Haiyan
- Department of Radiology, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sun Feixiang
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qi Sihua
- Department of Anesthesiology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Sun Jiahang
- Department of Neurosurgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
22
|
Obniska J, Góra M, Rapacz A, Sałat K, Rybka S, Abram M, Jakubiec M, Kamiński K. Synthesis, anticonvulsant, and antinociceptive activity of new 3-(3-methyl-2,5-dioxo-3-phenylpyrrolidin-1-yl)propanamides and 3-phenyl-butanamides. Arch Pharm (Weinheim) 2020; 354:e2000225. [PMID: 32939789 DOI: 10.1002/ardp.202000225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
A focused library of new 3-(3-methyl-2,5-dioxo-3-phenylpyrrolidin-1-yl)propanamides and their nonimide analogs were synthesized and tested for anticonvulsant activity. These compounds were obtained through the coupling reaction of the starting carboxylic acids with appropriate amines. The initial anticonvulsant screening was performed in mice (intraperitoneal administration) using the maximal electroshock seizure (MES) and the subcutaneous pentylenetetrazole (scPTZ) seizure models. The most promising compound 6 showed more potent protection in the MES and scPTZ tests than valproic acid, which is still recognized as one of the most relevant first-line anticonvulsants. The structure-activity relationship analysis revealed that the presence of the pyrrolidine-2,5-dione ring is important but not indispensable to retain anticonvulsant activity. Additionally, compound 6 showed potent antinociceptive properties in the oxaliplatin-induced neuropathic pain model in mice. The most plausible mechanism of action for compound 6 may result from its influence on the neuronal sodium channel (Site 2) and the high-voltage-activated L-type calcium channel.
Collapse
Affiliation(s)
- Jolanta Obniska
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Małgorzata Góra
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Sabina Rybka
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Michał Abram
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Jakubiec
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| | - Krzysztof Kamiński
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
23
|
Gawel K, Langlois M, Martins T, van der Ent W, Tiraboschi E, Jacmin M, Crawford AD, Esguerra CV. Seizing the moment: Zebrafish epilepsy models. Neurosci Biobehav Rev 2020; 116:1-20. [PMID: 32544542 DOI: 10.1016/j.neubiorev.2020.06.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
Abstract
Zebrafish are now widely accepted as a valuable animal model for a number of different central nervous system (CNS) diseases. They are suitable both for elucidating the origin of these disorders and the sequence of events culminating in their onset, and for use as a high-throughput in vivo drug screening platform. The availability of powerful and effective techniques for genome manipulation allows the rapid modelling of different genetic epilepsies and of conditions with seizures as a core symptom. With this review, we seek to summarize the current knowledge about existing epilepsy/seizures models in zebrafish (both pharmacological and genetic) and compare them with equivalent rodent and human studies. New findings obtained from the zebrafish models are highlighted. We believe that this comprehensive review will highlight the value of zebrafish as a model for investigating different aspects of epilepsy and will help researchers to use these models to their full extent.
Collapse
Affiliation(s)
- Kinga Gawel
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego St. 8b, 20-090, Lublin, Poland
| | | | - Teresa Martins
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Wietske van der Ent
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway
| | - Ettore Tiraboschi
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway; Neurophysics Group, Center for Mind/Brain Sciences, University of Trento, Piazza Manifattura 1, Building 14, 38068, Rovereto, TN, Italy
| | - Maxime Jacmin
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg
| | - Alexander D Crawford
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Belval, Luxembourg; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), Oslo, Norway
| | - Camila V Esguerra
- Chemical Neuroscience Group, Centre for Molecular Medicine Norway (NCMM), University of Oslo, Gaustadalléen 21, Forskningsparken, 0349, Oslo, Norway.
| |
Collapse
|
24
|
Revisiting the Impact of Neurodegenerative Proteins in Epilepsy: Focus on Alpha-Synuclein, Beta-Amyloid, and Tau. BIOLOGY 2020; 9:biology9060122. [PMID: 32545604 PMCID: PMC7344698 DOI: 10.3390/biology9060122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 12/20/2022]
Abstract
Lack of disease-modifying therapy against epileptogenesis reflects the complexity of the disease pathogenesis as well as the high demand to explore novel treatment strategies. In the pursuit of developing new therapeutic strategies against epileptogenesis, neurodegenerative proteins have recently gained increased attention. Owing to the fact that neurodegenerative disease and epileptogenesis possibly share a common underlying mechanism, targeting neurodegenerative proteins against epileptogenesis might represent a promising therapeutic approach. Herein, we review the association of neurodegenerative proteins, such as α-synuclein, amyloid-beta (Aβ), and tau protein, with epilepsy. Providing insight into the α-synuclein, Aβ and tau protein-mediated neurodegeneration mechanisms, and their implication in epileptogenesis will pave the way towards the development of new agents and treatment strategies.
Collapse
|
25
|
Shen HY, Weltha L, Cook JM, Gesese R, Omi W, Baer SB, Rose RM, Reemmer J, Boison D. Sarcosine Suppresses Epileptogenesis in Rats With Effects on Hippocampal DNA Methylation. Front Mol Neurosci 2020; 13:97. [PMID: 32581708 PMCID: PMC7291815 DOI: 10.3389/fnmol.2020.00097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022] Open
Abstract
Epileptogenesis is a common consequence of brain insults, however, the prevention or delay of the epileptogenic process remains an important unmet medical challenge. Overexpression of glycine transporter 1 (GlyT1) is proposed as a pathological hallmark in the hippocampus of patients with temporal lobe epilepsy (TLE), and we previously demonstrated in rodent epilepsy models that augmentation of glycine suppressed chronic seizures and altered acute seizure thresholds. In the present study we evaluated the effect of the GlyT1 inhibitor, sarcosine (aka N-methylglycine), on epileptogenesis and also investigated possible mechanisms. We developed a modified rapid kindling model of epileptogenesis in rats combined with seizure score monitoring to evaluate the antiepileptogenic effect of sarcosine. We used immunohistochemistry and Western blot analysis for the evaluation of GlyT1 expression and epigenetic changes of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) in the epileptogenic hippocampi of rats, and further evaluated expression changes in enzymes involved in the regulation of DNA methylation, ten-eleven translocation methylcytosine dioxygenase 1 (TET1), DNA-methyltransferase 1 (DNMT1), and DNMT3a. Our results demonstrated: (i) experimental evidence that sarcosine (3 g/kg, i.p. daily) suppressed kindling epileptogenesis in rats; (ii) the sarcosine-induced antiepileptogenic effect was accompanied by a suppressed hippocampal GlyT1 expression as well as a reduction of hippocampal 5mC levels and a corresponding increase in 5hmC; and (iii) sarcosine treatment caused differential expression changes of TET1 and DNMTs. Together, these findings suggest that sarcosine has unprecedented disease-modifying properties in a kindling model of epileptogenesis in rats, which was associated with altered hippocampal DNA methylation. Thus, manipulation of the glycine system is a potential therapeutic approach to attenuate the development of epilepsy.
Collapse
Affiliation(s)
- Hai-Ying Shen
- RS Dow Neurobiology Laboratories, Department of Translational Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Landen Weltha
- RS Dow Neurobiology Laboratories, Department of Translational Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - John M Cook
- RS Dow Neurobiology Laboratories, Department of Translational Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Raey Gesese
- RS Dow Neurobiology Laboratories, Department of Translational Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Wakaba Omi
- RS Dow Neurobiology Laboratories, Department of Translational Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Sadie B Baer
- RS Dow Neurobiology Laboratories, Department of Translational Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Rizelle Mae Rose
- RS Dow Neurobiology Laboratories, Department of Translational Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Jesica Reemmer
- RS Dow Neurobiology Laboratories, Department of Translational Neuroscience, Legacy Research Institute, Portland, OR, United States
| | - Detlev Boison
- RS Dow Neurobiology Laboratories, Department of Translational Neuroscience, Legacy Research Institute, Portland, OR, United States
| |
Collapse
|
26
|
Rusek M, Czuczwar SJ. A review of clinically significant drug-drug interactions involving angiotensin II receptor antagonists and antiepileptic drugs. Expert Opin Drug Metab Toxicol 2020; 16:507-515. [PMID: 32397766 DOI: 10.1080/17425255.2020.1763955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Angiotensin II receptor blockers are widely used for the treatment of arterial hypertension and heart failure. However, recent studies on animal models of seizures showed that in the brain, the renin-angiotensin-aldosterone system might be involved in neuroinflammation; therefore, the administration of angiotensin II receptor blockers that cross the blood/brain barrier, reduces not only blood pressure but reduces neuroinflammation-induced neuronal injury. Apart from this neuroprotective effect, these drugs exhibit anticonvulsant activity in animal models of seizures, and losartan is associated with a probable anti-epileptogenic activity. AREAS COVERED In this review, we intended to highlight the role of drug-drug interactions involving angiotensin II receptor antagonists with antiepileptic drugs accompanied by a brief characteristic of the role of RAS in neuroinflammation. EXPERT OPINION Some combinations of antiepileptic drugs (lamotrigine or valproate) with sartans are particularly effective in terms of enhanced seizure control. Considering a possible anti-epileptogenic activity of losartan, its combinations with antiepileptic drugs may prove especially beneficial in epileptogenesis inhibition.
Collapse
Affiliation(s)
- Marta Rusek
- Department of Pathophysiology, Medical University of Lublin , Lublin, Poland.,Department of Dermatology, Venereology and Pediatric Dermatology, Laboratory for Immunology of Skin Diseases, Medical University of Lublin , Lublin, Poland
| | | |
Collapse
|
27
|
Bouquier N, Girard B, Aparicio Arias J, Fagni L, Bertaso F, Perroy J. Gelatinase Biosensor Reports Cellular Remodeling During Epileptogenesis. Front Synaptic Neurosci 2020; 12:15. [PMID: 32372941 PMCID: PMC7186352 DOI: 10.3389/fnsyn.2020.00015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/19/2020] [Indexed: 12/26/2022] Open
Abstract
Epileptogenesis is the gradual process responsible for converting a healthy brain into an epileptic brain. This process can be triggered by a wide range of factors, including brain injury or tumors, infections, and status epilepticus. Epileptogenesis results in aberrant synaptic plasticity, neuroinflammation and seizure-induced cell death. As Matrix Metalloproteinases (MMPs) play a crucial role in cellular plasticity by remodeling the extracellular matrix (ECM), gelatinases (MMP-2 and MMP-9) were recently highlighted as key players in epileptogenesis. In this work, we engineered a biosensor to report in situ gelatinase activity in a model of epileptogenesis. This biosensor encompasses a gelatinase-sensitive activatable cell penetrating peptide (ACPP) coupled to a TAMRA fluorophore, allowing fluorescence uptake in cells displaying endogenous gelatinase activities. In a preclinical mouse model of temporal lobe epilepsy (TLE), the intrahippocampal kainate injection, ACPPs revealed a localized distribution of gelatinase activities, refining temporal cellular changes during epileptogenesis. The activity was found particularly but not only in the ipsilateral hippocampus, starting from the CA1 area and spreading to dentate gyrus from the early stages throughout chronic epilepsy, notably in neurons and microglial cells. Thus, our work shows that ACPPs are suitable molecular imaging probes for detecting the spatiotemporal pattern of gelatinase activity during epileptogenesis, suggesting their possible use as vectors to target cellular reactive changes with treatment for epileptogenesis.
Collapse
Affiliation(s)
| | - Benoit Girard
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | | | - Laurent Fagni
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Federica Bertaso
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Julie Perroy
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
28
|
Miziak B, Konarzewska A, Ułamek-Kozioł M, Dudra-Jastrzębska M, Pluta R, Czuczwar SJ. Anti-Epileptogenic Effects of Antiepileptic Drugs. Int J Mol Sci 2020; 21:ijms21072340. [PMID: 32231010 PMCID: PMC7178140 DOI: 10.3390/ijms21072340] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Generally, the prevalence of epilepsy does not exceed 0.9% of the population and approximately 70% of epilepsy patients may be adequately controlled with antiepileptic drugs (AEDs). Moreover, status epilepticus (SE) or even a single seizure may produce neurodegeneration within the brain and SE has been recognized as one of acute brain insults leading to acquired epilepsy via the process of epileptogenesis. Two questions thus arise: (1) Are AEDs able to inhibit SE-induced neurodegeneration? and (2) if so, can a probable neuroprotective potential of particular AEDs stop epileptogenesis? An affirmative answer to the second question would practically point to the preventive potential of a given neuroprotective AED following acute brain insults. The available experimental data indicate that diazepam (at low and high doses), gabapentin, pregabalin, topiramate and valproate exhibited potent or moderate neuroprotective effects in diverse models of SE in rats. However, only diazepam (at high doses), gabapentin and pregabalin exerted some protective activity against acquired epilepsy (spontaneous seizures). As regards valproate, its effects on spontaneous seizures were equivocal. With isobolography, some supra-additive combinations of AEDs have been delineated against experimental seizures. One of such combinations, levetiracetam + topiramate proved highly synergistic in two models of seizures and this particular combination significantly inhibited epileptogenesis in rats following status SE. Importantly, no neuroprotection was evident. It may be strikingly concluded that there is no correlation between neuroprotection and antiepileptogenesis. Probably, preclinically verified combinations of AEDs may be considered for an anti-epileptogenic therapy.
Collapse
Affiliation(s)
- Barbara Miziak
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Agnieszka Konarzewska
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Marzena Ułamek-Kozioł
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
| | - Monika Dudra-Jastrzębska
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
| | - Ryszard Pluta
- Laboratory of Ischemic and Neurodegenerative Brain Research, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland;
- Correspondence: (R.P.); (S.J.C.); Tel.: +48-22-6086-540 (ext. 6086-469) (R.P.); +48-81-448-65-00 (S.J.C.); Fax: +48-81-448-65-01 (S.J.C.); +48-22-6086-627/668-55-32 (R.P.)
| | - Stanisław J. Czuczwar
- Department of Pathophysiology, Medical University of Lublin, 20-090 Lublin, Poland; (B.M.); (A.K.); (M.D.-J.)
- Correspondence: (R.P.); (S.J.C.); Tel.: +48-22-6086-540 (ext. 6086-469) (R.P.); +48-81-448-65-00 (S.J.C.); Fax: +48-81-448-65-01 (S.J.C.); +48-22-6086-627/668-55-32 (R.P.)
| |
Collapse
|
29
|
Romoli M, Mazzocchetti P, D'Alonzo R, Siliquini S, Rinaldi VE, Verrotti A, Calabresi P, Costa C. Valproic Acid and Epilepsy: From Molecular Mechanisms to Clinical Evidences. Curr Neuropharmacol 2020; 17:926-946. [PMID: 30592252 PMCID: PMC7052829 DOI: 10.2174/1570159x17666181227165722] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 12/11/2022] Open
Abstract
After more than a century from its discovery, valproic acid (VPA) still represents one of the most efficient antiepi-leptic drugs (AEDs). Pre and post-synaptic effects of VPA depend on a very broad spectrum of actions, including the regu-lation of ionic currents and the facilitation of GABAergic over glutamatergic transmission. As a result, VPA indirectly mod-ulates neurotransmitter release and strengthens the threshold for seizure activity. However, even though participating to the anticonvulsant action, such mechanisms seem to have minor impact on epileptogenesis. Nonetheless, VPA has been reported to exert anti-epileptogenic effects. Epigenetic mechanisms, including histone deacetylases (HDACs), BDNF and GDNF modulation are pivotal to orientate neurons toward a neuroprotective status and promote dendritic spines organization. From such broad spectrum of actions comes constantly enlarging indications for VPA. It represents a drug of choice in child and adult with epilepsy, with either general or focal seizures, and is a consistent and safe IV option in generalized convulsive sta-tus epilepticus. Moreover, since VPA modulates DNA transcription through HDACs, recent evidences point to its use as an anti-nociceptive in migraine prophylaxis, and, even more interestingly, as a positive modulator of chemotherapy in cancer treatment. Furthermore, VPA-induced neuroprotection is under investigation for benefit in stroke and traumatic brain injury. Hence, VPA has still got its place in epilepsy, and yet deserves attention for its use far beyond neurological diseases. In this review, we aim to highlight, with a translational intent, the molecular basis and the clinical indications of VPA.
Collapse
Affiliation(s)
- Michele Romoli
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Petra Mazzocchetti
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Renato D'Alonzo
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | | | - Victoria Elisa Rinaldi
- Pediatric Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| | - Alberto Verrotti
- Department of Pediatrics, University of L'Aquila - San Salvatore Hospital, L'Aquila, Italy
| | - Paolo Calabresi
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy.,IRCCS "Santa Lucia", Rome, Italy
| | - Cinzia Costa
- Neurology Clinic, University of Perugia - S. Maria della Misericordia Hospital, Perugia, Italy
| |
Collapse
|
30
|
Dhir A. Natural polyphenols in preclinical models of epilepsy. Phytother Res 2020; 34:1268-1281. [DOI: 10.1002/ptr.6617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/11/2019] [Accepted: 01/07/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ashish Dhir
- Department of Neurology, School of MedicineUniversity of California, Davis Sacramento California
| |
Collapse
|
31
|
Serum endocan and preoperative systemic inflammatory markers in patients with epilepsy. Neurochirurgie 2020; 66:29-35. [DOI: 10.1016/j.neuchi.2019.09.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/02/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
|
32
|
Zhang K, Wang F, Zhao Y, He M, Luo Y, Cheng Y, Luo J, Li Z, Yang J. The regulative effects of levetiracetam on adult hippocampal neurogenesis in mice via Wnt/β-catenin signaling. Neurochem Int 2019; 133:104643. [PMID: 31837353 DOI: 10.1016/j.neuint.2019.104643] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/02/2023]
Abstract
Adult hippocampal neurogenesis plays the pivotal roles in central nervous system diseases. Recently, it has been reported that levetiracetam (LEV), a new antiepileptic drug with novel chemical construction and unique pharmacological properties, suppressed aberrant adult subventricular zone (SGZ) neurogenesis in kainite-induced epileptic mice, while promoted adult SGZ neuroblast differentiation in normal mice. These studies indicate LEV can modulate adult hippocampal neurogenesis, but the exact mechanism remained unknown. Thus, the present study aimed to investigate the effects of subchronic and chronic LEV treatments on neural stem cell by lineage tracing in adult hippocampal dentate gyrus of mice, as well as the potential mechanism related to Wnt/β-catenin signaling pathway. The data showed that both subchronic and chronic LEV treatments had no effects on body weight, locomotor activity and anxiety-like behavior in mice. Notably, subchronic LEV treatment significantly suppressed the proliferation of intermediate progenitor cell and neuroblast, decreased the number of intermediate progenitor cell and neuroblast, but increased the number of quiescent neural stem cell. On the contrary, chronic LEV treatment promoted the proliferation of neural stem cell, intermediate progenitor cell and neuroblast, increased the number of neural stem cell, intermediate progenitor cell and neuroblast, and promoted differentiation of newborn immature neuron and mature neuron. Furthermore, subchronic LEV treatment decreased the level of Wnt 3a and nuclear β-Catenin expression, which led to the inhibition on Wnt/β-catenin signaling pathway. Chronic LEV treatment increased the level of Wnt 3a, cytosolic β-catenin and nuclear β-Catenin, decreased the expression of GSK-3β, p-Tyr216-GSK-3β and Axin2, resulting in the enhancement of Wnt/β-catenin signaling pathway. These results demonstrated that LEV significantly suppressed or promoted adult hippocampal neurogenesis in mice by subchronic or chronic treatment possibly through the regulation of Wnt/β-catenin signaling pathway. Our findings provided the new perspectives of LEV on adult hippocampal neurogenesis underlying its clinical application.
Collapse
Affiliation(s)
- Kuo Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Fan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Yang Zhao
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Meiyao He
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Yuanchao Luo
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Yue Cheng
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China
| | - Jing Luo
- Gene Engineering and Biotechnology, Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, No.19, Xinjiekouwaidajie, Beijing, 100875, China
| | - Zhimei Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, 100050, China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 110016, Shenyang, PR China.
| |
Collapse
|
33
|
Rosal Lustosa Í, Soares JI, Biagini G, Lukoyanov NV. Neuroplasticity in Cholinergic Projections from the Basal Forebrain to the Basolateral Nucleus of the Amygdala in the Kainic Acid Model of Temporal Lobe Epilepsy. Int J Mol Sci 2019; 20:ijms20225688. [PMID: 31766245 PMCID: PMC6887742 DOI: 10.3390/ijms20225688] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 02/06/2023] Open
Abstract
The amygdala is a cerebral region whose function is compromised in temporal lobe epilepsy (TLE). Patients with TLE present cognitive and emotional dysfunctions, of which impairments in recognizing facial expressions have been clearly attributed to amygdala damage. However, damage to the amygdala has been scarcely addressed, with the majority of studies focusing on the hippocampus. The aim of this study was to evaluate epilepsy-related plasticity of cholinergic projections to the basolateral nucleus (BL) of the amygdala. Adult rats received kainic acid (KA) injections and developed status epilepticus. Weeks later, they showed spontaneous recurrent seizures documented by behavioral observations. Changes in cholinergic innervation of the BL were investigated by using an antibody against the vesicular acetylcholine transporter (VAChT). In KA-treated rats, it was found that (i) the BL shrunk to 25% of its original size (p < 0.01 vs. controls, Student’s t-test), (ii) the density of vesicular acetylcholine transporter-immunoreactive (VAChT-IR) varicosities was unchanged, (iii) the volumes of VAChT-IR cell bodies projecting to the BL from the horizontal limb of the diagonal band of Broca, ventral pallidum, and subcommissural part of the substantia innominata were significantly increased (p < 0.05, Bonferroni correction). These results illustrate significant changes in the basal forebrain cholinergic cells projecting to the BL in the presence of spontaneous recurrent seizures.
Collapse
Affiliation(s)
- Ítalo Rosal Lustosa
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Joana I. Soares
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular da Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- Programa Doutoral em Neurociências, Universidade do Porto, 4200-319 Porto, Portugal
| | - Giuseppe Biagini
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Correspondence: (G.B.); (N.V.L.)
| | - Nikolai V. Lukoyanov
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal;
- Instituto de Biologia Molecular e Celular da Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biomedicina, Faculdade de Medicina da Universidade do Porto, 4200-319 Porto, Portugal
- Correspondence: (G.B.); (N.V.L.)
| |
Collapse
|
34
|
González OC, Krishnan GP, Timofeev I, Bazhenov M. Ionic and synaptic mechanisms of seizure generation and epileptogenesis. Neurobiol Dis 2019; 130:104485. [PMID: 31150792 DOI: 10.1016/j.nbd.2019.104485] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/23/2019] [Accepted: 05/27/2019] [Indexed: 01/09/2023] Open
Abstract
The biophysical mechanisms underlying epileptogenesis and the generation of seizures remain to be better understood. Among many factors triggering epileptogenesis are traumatic brain injury breaking normal synaptic homeostasis and genetic mutations disrupting ionic concentration homeostasis. Impairments in these mechanisms, as seen in various brain diseases, may push the brain network to a pathological state characterized by increased susceptibility to unprovoked seizures. Here, we review recent computational studies exploring the roles of ionic concentration dynamics in the generation, maintenance, and termination of seizures. We further discuss how ionic and synaptic homeostatic mechanisms may give rise to conditions which prime brain networks to exhibit recurrent spontaneous seizures and epilepsy.
Collapse
Affiliation(s)
- Oscar C González
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, United States of America; Department of Medicine, University of California, San Diego, CA 92093, United States of America
| | - Giri P Krishnan
- Department of Medicine, University of California, San Diego, CA 92093, United States of America
| | - Igor Timofeev
- Centre de recherche de l'Institut universitaire en santé mentale de Québec (CRIUSMQ), 2601 de la Canardière, Québec, QC, Canada; Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Maxim Bazhenov
- Neurosciences Graduate Program, University of California, San Diego, CA 92093, United States of America; Department of Medicine, University of California, San Diego, CA 92093, United States of America.
| |
Collapse
|
35
|
Tse K, Hammond D, Simpson D, Beynon RJ, Beamer E, Tymianski M, Salter MW, Sills GJ, Thippeswamy T. The impact of postsynaptic density 95 blocking peptide (Tat-NR2B9c) and an iNOS inhibitor (1400W) on proteomic profile of the hippocampus in C57BL/6J mouse model of kainate-induced epileptogenesis. J Neurosci Res 2019; 97:1378-1392. [PMID: 31090233 DOI: 10.1002/jnr.24441] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/22/2022]
Abstract
Antiepileptogenic agents that prevent the development of epilepsy following a brain insult remain the holy grail of epilepsy therapeutics. We have employed a label-free proteomic approach that allows quantification of large numbers of brain-expressed proteins in a single analysis in the mouse (male C57BL/6J) kainate (KA) model of epileptogenesis. In addition, we have incorporated two putative antiepileptogenic drugs, postsynaptic density protein-95 blocking peptide (PSD95BP or Tat-NR2B9c) and a highly selective inducible nitric oxide synthase inhibitor, 1400W, to give an insight into how such agents might ameliorate epileptogenesis. The test drugs were administered after the induction of status epilepticus (SE) and the animals were euthanized at 7 days, their hippocampi removed, and subjected to LC-MS/MS analysis. A total of 2,579 proteins were identified; their normalized abundance was compared between treatment groups using ANOVA, with correction for multiple testing by false discovery rate. Significantly altered proteins were subjected to gene ontology and KEGG pathway enrichment analyses. KA-induced SE was most robustly associated with an alteration in the abundance of proteins involved in neuroinflammation, including heat shock protein beta-1 (HSP27), glial fibrillary acidic protein, and CD44 antigen. Treatment with PSD95BP or 1400W moderated the abundance of several of these proteins plus that of secretogranin and Src substrate cortactin. Pathway analysis identified the glutamatergic synapse as a key target for both drugs. Our observations require validation in a larger-scale investigation, with candidate proteins explored in more detail. Nevertheless, this study has identified several mechanisms by which epilepsy might develop and several targets for novel drug development. OPEN PRACTICES: This article has been awarded Open Data. All materials and data are publicly accessible as supporting information. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Karen Tse
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Dean Hammond
- Department of Molecular and Cellular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Deborah Simpson
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Edward Beamer
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Michael Tymianski
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Michael W Salter
- Department of Physiology and Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Graeme J Sills
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Thimmasettappa Thippeswamy
- Department of Musculoskeletal Biology, Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| |
Collapse
|
36
|
Li T, Huang B, Li D, Zhu Y, Ding L, Shu C. Development and validation of a specific and sensitive LC-MS/MS method for determination of eslicarbazepine in human plasma and its clinical pharmacokinetic study. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1112:61-66. [PMID: 30856604 DOI: 10.1016/j.jchromb.2019.02.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 11/18/2022]
Abstract
In this work, we developed and validated the specific, sensitive and simple LC-MS/MS method for quantification of eslicarbazepine in human plasma. The analyte samples were prepared through a simple one-step protein precipitation method by acetonitrile. The chromatographic separation was operated on an economical Hanbon ODS-2 C18 column (150 mm × 2.1 mm, 10 μm) with isocratic elution using 10 mM ammonium acetate containing 0.01% formic acid and acetonitrile (72:28, v/v) as the mobile phase at the flow rate of 0.5 mL/min. The mass quantification was carried on the multiple reaction monitoring (MRM) of the transitions of m/z 255.1 → 194.1 for eslicarbazepine and m/z 446.1 → 321.1 for glipizide (the internal standard), respectively. The established method was validated with acceptable specificity, linearity, accuracy, precision, extraction recovery, matrix effect and stability in accordance with FDA regulations. At last, the validated method was successfully applied to determination of eslicarbazepine in human plasma obtained from clinical study.
Collapse
Affiliation(s)
- Tengfei Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, PR China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Bin Huang
- The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai 519100, P. R. China
| | - Duo Li
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, PR China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yantong Zhu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, PR China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Li Ding
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, PR China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Chang Shu
- Key Laboratory of Drug Quality Control and Pharmacovigilance (China Pharmaceutical University), Ministry of Education, Nanjing 210009, PR China; Department of Pharmaceutical Analysis, School of Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
37
|
Moavero R, Pisani LR, Pisani F, Curatolo P. Safety and tolerability profile of new antiepileptic drug treatment in children with epilepsy. Expert Opin Drug Saf 2018; 17:1015-1028. [PMID: 30169997 DOI: 10.1080/14740338.2018.1518427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Treatment of pediatric epilepsy requires a careful evaluation of the safety and tolerability profile of antiepileptic drugs (AEDs) to avoid or minimize as much as possible adverse events (AEs) on various organs, hematological parameters, and growth, pubertal, motor, cognitive and behavioral development. AREAS COVERED Treatment-emergent AEs (TEAEs) reported in the literature 2000-2018 regarding second- and third-generation AEDs used in the pediatric age, with exclusion of the neonatal period that exhibits specific peculiarities, have been described on the basis of their frequency, severity/tolerability, and particular association with a given AED. EXPERT OPINION Somnolence/sedation and behavioral changes, like irritability and nervousness, are among the most commonly observed TEAEs associated with almost all AEDs. Lamotrigine, Gabapentin, Oxcarbazepine, and Levetiracetam appear to be the best-tolerated AEDs with a ≤2% withdrawal rate, while Tiagabine and Everolimus are discontinued in up to >20% of the patients because of intolerable TEAEs. For some AEDs, literature data are scanty to draw a high-level evidence on their safety and tolerability profile. The reasons are: insufficient population size, short duration of treatments, or lack of controlled trials. A future goal is that of identifying clearer, easier, and more homogeneous methodological strategies to facilitate AED testing in pediatric populations.
Collapse
Affiliation(s)
- Romina Moavero
- a Child Neurology and Psychiatry Unit, Systems Medicine Department , Tor Vergata University of Rome , Rome , Italy.,b Child Neurology Unit, Neuroscience and Neurorehabilitation Department , "Bambino Gesù", Children's Hospital, IRCCS , Rome , Italy
| | | | - Francesco Pisani
- d Department of Clinical and Experimental Medicine , University of Messina , Messina , Italy
| | - Paolo Curatolo
- a Child Neurology and Psychiatry Unit, Systems Medicine Department , Tor Vergata University of Rome , Rome , Italy
| |
Collapse
|
38
|
Hodges SL, Lugo JN. Wnt/β-catenin signaling as a potential target for novel epilepsy therapies. Epilepsy Res 2018; 146:9-16. [PMID: 30053675 DOI: 10.1016/j.eplepsyres.2018.07.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 06/28/2018] [Accepted: 07/11/2018] [Indexed: 01/01/2023]
Abstract
Epilepsy is one of the most common neurological disorders, and yet many afflicted individuals are resistant to all available therapeutic treatments. Existing pharmaceutical treatments function primarily to reduce hyperexcitability and prevent seizures, but fail to influence the underlying pathophysiology of the disorder. Recently, research efforts have focused on identifying alternative mechanistic targets for anti-epileptogenic therapies that can prevent the development of chronic epilepsy. The Wnt/β-catenin pathway, one possible target, has been demonstrated to be disrupted in both acute and chronic phases of epilepsy. Wnt/β-catenin signaling can regulate many seizure-induced changes in the brain, including neurogenesis and neuronal death, as well as can influence seizure susceptibility and potentially the development of chronic epilepsy. Several genome-wide studies and in vivo knockout animal models have provided evidence for an association between disrupted Wnt/β-catenin signaling and epilepsy. Furthermore, approved pharmaceutical drugs and other small molecule compounds that target components of the β-catenin destruction complex or antagonize endogenous inhibitors of the pathway have shown to be protective following seizures. However, additional studies are needed to determine the optimal time period in which modulation of the pathway may be most beneficial. Overall, disrupted molecular networks such as Wnt/β-catenin signaling, could be a promising anti-epileptogenic target for future epilepsy therapies.
Collapse
Affiliation(s)
- Samantha L Hodges
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA
| | - Joaquin N Lugo
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76798, USA; Department of Psychology and Neuroscience, Baylor University, Waco, TX, 76798, USA; Department of Biology, Baylor University, Waco, TX, 76798, USA.
| |
Collapse
|