1
|
Almalki RS. The Protective Effect of Roflumilast Against Acute Hepatotoxicity Caused by Methotrexate in Wistar Rats: In vivo Evaluation. Drug Des Devel Ther 2024; 18:453-462. [PMID: 38374827 PMCID: PMC10875972 DOI: 10.2147/dddt.s438703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Introduction Methotrexate (MTX) is one of the most widely used drugs in cancer chemotherapy and treating rheumatoid arthritis. The hepatotoxicity of MTX is one of its major side effects. Roflumilast (ROF) has been recognized to have antioxidant and anti-inflammatory activity in in-vivo and in-vitro models. The present study aimed to explore the potential protective effects of roflumilast against MTX-induced liver toxicity in male Wistar rats. Methods High dose of 5 mg/kg for 4 consecutive days subcutaneous (S.C) injection of methotrexate for induction of acute liver injury. A total of 24 Wistar rats, rats were used in four different groups. The NS injections were given S.C to the control group once a day for 4 consecutive days. SC injections of MTX (5 mg/kg) were given to the MTX group daily for four days. At 5 mg/kg once daily for four days, the roflumilast group was given daily oral roflumilast. An injection of MTX and oral roflumilast were given to the MTX + roflumilast group once daily for four consecutive days. Results Administration of high dose MTX (5 mg/kg) today 4 produced a significant decrease in hepatic glutathione (GSH) levels and a significant increase in ALT and AST liver enzymes, hepatic malondialdehyde (MDA), tumor suppressor protein (p53), interleukin 6, interleukin 1 levels compared to the control group. Treatment with roflumilast for 4 days significantly attenuated unfavorable changes in these parameters. According to histopathological findings, Roflumilast significantly reduced MTX-induced inflammation and degeneration in the liver. In conclusion, the findings indicate that roflumilast may have a potential therapeutic benefit in treating rats with MTX-induced liver toxicity by mitigating its effects. Purpose The aim of this study is to investigate the potential protective effects of roflumilast against MTX-induced liver toxicity in Wistar rats.
Collapse
Affiliation(s)
- Riyadh S Almalki
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Umm AL-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
2
|
Le Joncour A, Régnier P, Maciejewski-Duval A, Charles E, Barete S, Fouret P, Rosenzwajg M, Klatzmann D, Cacoub P, Saadoun D. Reduction of Neutrophil Activation by Phosphodiesterase 4 Blockade in Behçet's Disease. Arthritis Rheumatol 2023; 75:1628-1637. [PMID: 36862398 DOI: 10.1002/art.42486] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/17/2023] [Accepted: 02/15/2023] [Indexed: 03/03/2023]
Abstract
OBJECTIVE Behçet's disease (BD) is a systemic vasculitis with inflammatory lesions mediated by cytotoxic T cells and neutrophils. Apremilast, an orally available small-molecule drug that selectively inhibits phosphodiesterase 4 (PDE4), has been recently approved for the treatment of BD. We aimed to investigate the effect of PDE4 inhibition on neutrophil activation in BD. METHODS We studied surface markers and reactive oxygen species (ROS) production by flow cytometry, and neutrophil extracellular traps (NETs) production and molecular signature of neutrophils by transcriptome analysis before and after PDE4 inhibition. RESULTS Activation surface markers (CD64, CD66b, CD11b, and CD11c), ROS production, and NETosis were up-regulated in BD patient neutrophils compared to healthy donor neutrophils. Transcriptome analysis revealed 1,021 significantly dysregulated neutrophil genes between BD patients and healthy donors. Among dysregulated genes, we found a substantial enrichment for pathways linked to innate immunity, intracellular signaling, and chemotaxis in BD. Skin lesions of BD patients showed increased infiltration of neutrophils that colocalized with PDE4. Inhibition of PDE4 by apremilast strongly inhibited neutrophil surface activation markers as well as ROS production, NETosis, and genes and pathways related to innate immunity, intracellular signaling, and chemotaxis. CONCLUSION We highlight key biologic effects of apremilast on neutrophils in BD.
Collapse
Affiliation(s)
- Alexandre Le Joncour
- Sorbonne Université, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), Laboratoire d'excellence TRANSIMMUNOM, Paris, and Biotherapy (CIC-BTi), Hôpital Pitié-Salpêtrière, Paris, and AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France
| | - Paul Régnier
- Sorbonne Université, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, and Laboratoire d'excellence TRANSIMMUNOM, Paris, and Biotherapy (CIC-BTi), Hôpital Pitié-Salpêtrière, Paris, France
| | - Anna Maciejewski-Duval
- Sorbonne Université, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, and Laboratoire d'excellence TRANSIMMUNOM, Paris, and Biotherapy (CIC-BTi), Hôpital Pitié-Salpêtrière, Paris, France
| | - Erwan Charles
- Sorbonne Université, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, and Laboratoire d'excellence TRANSIMMUNOM, Paris, and Biotherapy (CIC-BTi), Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Barete
- Sorbonne Université, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, and Laboratoire d'excellence TRANSIMMUNOM, Paris, and AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, and AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Unit of Dermatology, Paris, France
| | - Pierre Fouret
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Anatomopathology, Paris, France
| | - Michelle Rosenzwajg
- Sorbonne Université, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, and Laboratoire d'excellence TRANSIMMUNOM, Paris, and Biotherapy (CIC-BTi), Hôpital Pitié-Salpêtrière, Paris, France
| | - David Klatzmann
- Sorbonne Université, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), Paris, and Laboratoire d'excellence TRANSIMMUNOM, Paris, and Biotherapy (CIC-BTi), Hôpital Pitié-Salpêtrière, Paris, France
| | - Patrice Cacoub
- Sorbonne Université, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), Laboratoire d'excellence TRANSIMMUNOM, Paris, and Biotherapy (CIC-BTi), Hôpital Pitié-Salpêtrière, Paris, and AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France
| | - David Saadoun
- Sorbonne Université, INSERM, UMR S 959, Immunology-Immunopathology-Immunotherapy (I3), Laboratoire d'excellence TRANSIMMUNOM, Paris, and Biotherapy (CIC-BTi), Hôpital Pitié-Salpêtrière, Paris, and AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Department of Internal Medicine and Clinical Immunology, Paris, France
| |
Collapse
|
3
|
Wu J, Zhao X, Xiao C, Xiong G, Ye X, Li L, Fang Y, Chen H, Yang W, Du X. The role of lung macrophages in chronic obstructive pulmonary disease. Respir Med 2022; 205:107035. [PMID: 36343504 DOI: 10.1016/j.rmed.2022.107035] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/17/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) as a common, preventable and treatable chronic respiratory disease in clinic, gets continuous deterioration and we can't take effective intervention at present. Lung macrophages (LMs) are closely related to the occurrence and development of COPD, but the specific mechanism is not completely clear. In this review we will focus on the role of LMs and potential avenues for therapeutic targeting for LMs in COPD.
Collapse
Affiliation(s)
- Jianli Wu
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xia Zhao
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Chuang Xiao
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China
| | - Guosheng Xiong
- Thoracic Surgery, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiulin Ye
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Lin Li
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yan Fang
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Hong Chen
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Weimin Yang
- School of Pharmaceutical Science and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, 650500, China.
| | - Xiaohua Du
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, 650032, China.
| |
Collapse
|
4
|
Facchinetti F, Civelli M, Singh D, Papi A, Emirova A, Govoni M. Tanimilast, A Novel Inhaled Pde4 Inhibitor for the Treatment of Asthma and Chronic Obstructive Pulmonary Disease. Front Pharmacol 2021; 12:740803. [PMID: 34887752 PMCID: PMC8650159 DOI: 10.3389/fphar.2021.740803] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/01/2021] [Indexed: 12/12/2022] Open
Abstract
Chronic respiratory diseases are the third leading cause of death, behind cardiovascular diseases and cancer, affecting approximately 550 million of people all over the world. Most of the chronic respiratory diseases are attributable to asthma and chronic obstructive pulmonary disease (COPD) with this latter being the major cause of deaths. Despite differences in etiology and symptoms, a common feature of asthma and COPD is an underlying degree of airways inflammation. The nature and severity of this inflammation might differ between and within different respiratory conditions and pharmacological anti-inflammatory treatments are unlikely to be effective in all patients. A precision medicine approach is needed to selectively target patients to increase the chance of therapeutic success. Inhibitors of the phosphodiesterase 4 (PDE4) enzyme like the oral PDE4 inhibitor roflumilast have shown a potential to reduce inflammatory-mediated processes and the frequency of exacerbations in certain groups of COPD patients with a chronic bronchitis phenotype. However, roflumilast use is dampened by class related side effects as nausea, diarrhea, weight loss and abdominal pain, resulting in both substantial treatment discontinuation in clinical practice and withdrawal from clinical trials. This has prompted the search for PDE4 inhibitors to be given by inhalation to reduce the systemic exposure (and thus optimize the systemic safety) and maximize the therapeutic effect in the lung. Tanimilast (international non-proprietary name of CHF6001) is a novel highly potent and selective inhaled PDE4 inhibitor with proven anti-inflammatory properties in various inflammatory cells, including leukocytes derived from asthma and COPD patients, as well as in experimental rodent models of pulmonary inflammation. Inhaled tanimilast has reached phase III clinical development by showing promising pharmacodynamic results associated with a good tolerability and safety profile, with no evidence of PDE4 inhibitors class-related side effects. In this review we will discuss the main outcomes of preclinical and clinical studies conducted during tanimilast development, with particular emphasis on the characterization of the pharmacodynamic profile that led to the identification of target populations with increased therapeutic potential in inflammatory respiratory diseases.
Collapse
Affiliation(s)
| | | | - Dave Singh
- Medicines Evaluation Unit, Manchester University NHS Foundation Hospital Trust, Manchester, United Kingdom
| | - Alberto Papi
- Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Aida Emirova
- Global Clinical Development, Chiesi, Parma, Italy
| | - Mirco Govoni
- Global Clinical Development, Chiesi, Parma, Italy
| |
Collapse
|
5
|
Totani L, Amore C, Piccoli A, Dell'Elba G, Di Santo A, Plebani R, Pecce R, Martelli N, Rossi A, Ranucci S, De Fino I, Moretti P, Bragonzi A, Romano M, Evangelista V. Type-4 Phosphodiesterase (PDE4) Blockade Reduces NETosis in Cystic Fibrosis. Front Pharmacol 2021; 12:702677. [PMID: 34566635 PMCID: PMC8456009 DOI: 10.3389/fphar.2021.702677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/26/2021] [Indexed: 12/21/2022] Open
Abstract
Neutrophilic inflammation is a key determinant of cystic fibrosis (CF) lung disease. Neutrophil-derived free DNA, released in the form of extracellular traps (NETs), significantly correlates with impaired lung function in patients with CF, underlying their pathogenetic role in CF lung disease. Thus, specific approaches to control NETosis of neutrophils migrated into the lungs may be clinically relevant in CF. We investigated the efficacy of phosphodiesterase (PDE) type-4 inhibitors, in vitro, on NET release by neutrophils from healthy volunteers and individuals with CF, and in vivo, on NET accumulation and lung inflammation in mice infected with Pseudomonas aeruginosa. PDE4 blockade curbed endotoxin-induced NET production and preserved cellular integrity and apoptosis in neutrophils, from healthy subjects and patients with CF, challenged with endotoxin, in vitro. The pharmacological effects of PDE4 inhibitors were significantly more evident on CF neutrophils. In a mouse model of Pseudomonas aeruginosa chronic infection, aerosol treatment with roflumilast, a selective PDE4 inhibitor, gave a significant reduction in free DNA in the BALF. This was accompanied by reduced citrullination of histone H3 in neutrophils migrated into the airways. Roflumilast-treated mice showed a significant improvement in weight recovery. Our study provides the first evidence that PDE4 blockade controls NETosis in vitro and in vivo, in CF-relevant models. Since selective PDE4 inhibitors have been recently approved for the treatment of COPD and psoriasis, our present results encourage clinical trials to test the efficacy of this class of drugs in CF.
Collapse
Affiliation(s)
- Licia Totani
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Concetta Amore
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Antonio Piccoli
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Giuseppe Dell'Elba
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Angelo Di Santo
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Roberto Plebani
- Laboratory of Molecular Medicine, Centre for Advanced Studies and Technology (CAST), Department of Medical Oral and Biotechnological Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Romina Pecce
- Laboratory of Molecular Medicine, Centre for Advanced Studies and Technology (CAST), Department of Medical Oral and Biotechnological Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Nicola Martelli
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| | - Alice Rossi
- Infection and Cystic Fibrosis Unit, Division of Immunology Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serena Ranucci
- Infection and Cystic Fibrosis Unit, Division of Immunology Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ida De Fino
- Infection and Cystic Fibrosis Unit, Division of Immunology Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Moretti
- Cystic Fibrosis Centre, S. Liberatore Hospital, Atri, Italy
| | - Alessandra Bragonzi
- Infection and Cystic Fibrosis Unit, Division of Immunology Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Romano
- Laboratory of Molecular Medicine, Centre for Advanced Studies and Technology (CAST), Department of Medical Oral and Biotechnological Sciences, G. D'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Virgilio Evangelista
- Laboratory of Vascular Biology and Pharmacology, Fondazione Mario Negri Sud, Santa Maria Imbaro (CH), Mozzagrogna, Italy
| |
Collapse
|
6
|
Campione E, Cosio T, Di Prete M, Lanna C, Dattola A, Bianchi L. Experimental Pharmacological Management of Psoriasis. J Exp Pharmacol 2021; 13:725-737. [PMID: 34345187 PMCID: PMC8323855 DOI: 10.2147/jep.s265632] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/30/2021] [Indexed: 01/26/2023] Open
Abstract
Psoriasis is a chronic, relapsing, immune-mediated systemic disease. Its pathogenesis is complex and not fully understood yet. Genetic and epigenetic factors interact with molecular pathways involving TNF-α, IL-23/IL-17 axis, and peculiar cytokines, as IL-36 or phosphodiesterase 4. This review discusses the mechanisms involved in the development of the disease, as well as the therapeutic options proposed following the investigation of the inflammatory psoriatic pathways. We performed a comprehensive search using the words “psoriasis” and the newest molecules currently under investigation and approval. From these data, a new scenario in psoriasis is occurring to personalize the therapies - especially systemic ones and those using small molecules – and avoid topical and injectable drugs. We reported the newest therapeutic opportunities, including the inhibitors of Janus kinase/tyrosine kinase 2, phosphodiesterase-4 and IL-36 receptor. Today, more than 20 molecules are under investigation for the treatment of cutaneous psoriasis. Most of them are constituted by small molecules or biologic therapies. This underlines how psoriasis needs systemic therapies, due to its complex pathogenesis and multisystemic involvement.
Collapse
Affiliation(s)
- Elena Campione
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Terenzio Cosio
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Monia Di Prete
- Anatomic Pathology, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Caterina Lanna
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Annunziata Dattola
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| | - Luca Bianchi
- Dermatologic Unit, Department of Systems Medicine, University of Rome Tor Vergata, Rome, 00133, Italy
| |
Collapse
|
7
|
Hesari M, Mohammadi P, Khademi F, Shackebaei D, Momtaz S, Moasefi N, Farzaei MH, Abdollahi M. Current Advances in the Use of Nanophytomedicine Therapies for Human Cardiovascular Diseases. Int J Nanomedicine 2021; 16:3293-3315. [PMID: 34007178 PMCID: PMC8123960 DOI: 10.2147/ijn.s295508] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 04/16/2021] [Indexed: 12/15/2022] Open
Abstract
Considering the high prevalence of cardiovascular diseases (CVDs), the primary cause of death during the last several decades, it is necessary to develop proper strategies for the prevention and treatment of CVDs. Given the excessive side effects of current therapies, alternative therapeutic approaches like medicinal plants and natural products are preferred. Lower toxicity, chemical diversity, cost-effectiveness, and proven therapeutic potentials make natural products superior compared to other products. Nanoformulation methods improve the solubility, bioavailability, circulation time, surface area-to-volume ratio, systemic adverse side effects, and drug delivery efficiency of these medications. This study intended to review the functionality of the most recent nanoformulated medicinal plants and/or natural products against various cardiovascular conditions such as hypertension, atherosclerosis, thrombosis, and myocardial infarction. Literature review revealed that curcumin, quercetin, and resveratrol were the most applied natural products, respectively. Combination therapy, conjugation, or fabrication of nanoparticles and nanocarriers improved the applications and therapeutic efficacy of herbal- or natural-based nanoformulations. In the context of CVDs prevention and/or treatment, available data suggest that natural-based nanoformulations are considerably efficient, alone or in blend with other herbal/synthetic medicines. However, clinical trials are mandatory to elucidate the safety, cardioprotective effect, and mechanism of actions of nanophytomedicines.
Collapse
Affiliation(s)
- Mahvash Hesari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Khademi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Dareuosh Shackebaei
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Tehran, Iran.,Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Narges Moasefi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Abdollahi
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran.,Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
Allart-Simon I, Moniot A, Bisi N, Ponce-Vargas M, Audonnet S, Laronze-Cochard M, Sapi J, Hénon E, Velard F, Gérard S. Pyridazinone derivatives as potential anti-inflammatory agents: synthesis and biological evaluation as PDE4 inhibitors. RSC Med Chem 2021; 12:584-592. [PMID: 34046629 PMCID: PMC8127987 DOI: 10.1039/d0md00423e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/10/2021] [Indexed: 11/21/2022] Open
Abstract
Cyclic nucleotide phosphodiesterase type 4 (PDE4), which controls the intracellular level of cyclic adenosine monophosphate (cAMP), has aroused scientific attention as a suitable target for anti-inflammatory therapy of respiratory diseases. This work describes the development and characterization of pyridazinone derivatives bearing an indole moiety as potential PDE4 inhibitors and their evaluation as anti-inflammatory agents. Among these derivatives, 4-(5-methoxy-1H-indol-3-yl)-6-methylpyridazin-3(2H)-one possesses promising activity, and selectivity towards PDE4B isoenzymes and is able to regulate potent pro-inflammatory cytokine and chemokine production by human primary macrophages.
Collapse
Affiliation(s)
- Ingrid Allart-Simon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Aurélie Moniot
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en site OSseux (BIOS), UFR Pharmacie and UFR Odontologie 51 rue Cognacq-Jay F-51096 Reims France
| | - Nicolo Bisi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Miguel Ponce-Vargas
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Sandra Audonnet
- Université de Reims-Champagne-Ardenne, URCACyt, UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Marie Laronze-Cochard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Janos Sapi
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Eric Hénon
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| | - Frédéric Velard
- Université de Reims-Champagne-Ardenne, EA 4691 Biomatériaux & Inflammation en site OSseux (BIOS), UFR Pharmacie and UFR Odontologie 51 rue Cognacq-Jay F-51096 Reims France
| | - Stéphane Gérard
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, UFR Sciences, Moulin de la housse and UFR Pharmacie 51 rue Cognacq-Jay F-51096 Reims France
| |
Collapse
|
9
|
Mandru R, Zhou CY, Pauley R, Burkes RM. Considerations for and Mechanisms of Adjunct Therapy in COPD. J Clin Med 2021; 10:jcm10061225. [PMID: 33809583 PMCID: PMC7999347 DOI: 10.3390/jcm10061225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 12/26/2022] Open
Abstract
Inhaled bronchodilators and corticosteroids, when indicated, form the backbone of COPD therapy. However, over the last decade there has been an emergence of adjunct therapies in oral or inhaled form that are now part of the therapeutic approach to COPD. While these therapies have shown to be beneficial when used in the appropriate instances, there are particular considerations that need to be minded when using these therapies. This review article discussed the mechanism of roflumilast, macrolide antibiotics, other chronic antibiotic regimens, vitamin D supplementation, oral corticosteroids, n-acetylcysteine, and nebulized hypertonic saline, the clinical data behind each of these therapies, adverse events associated with therapy, and the expert recommendations for their utilization. Our goal is to provide a brief but informative and clinically useful review of commonly encountered therapies used in advanced COPD.
Collapse
Affiliation(s)
- Rachana Mandru
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
| | - Christine Y. Zhou
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (C.Y.Z.); (R.P.)
| | - Rachel Pauley
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45221, USA; (C.Y.Z.); (R.P.)
| | - Robert M. Burkes
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Cincinnati, Cincinnati, OH 45221, USA;
- Correspondence:
| |
Collapse
|
10
|
Rashid HU, Martines MAU, Duarte AP, Jorge J, Rasool S, Muhammad R, Ahmad N, Umar MN. Research developments in the syntheses, anti-inflammatory activities and structure-activity relationships of pyrimidines. RSC Adv 2021; 11:6060-6098. [PMID: 35423143 PMCID: PMC8694831 DOI: 10.1039/d0ra10657g] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
Pyrimidines are aromatic heterocyclic compounds that contain two nitrogen atoms at positions 1 and 3 of the six-membered ring. Numerous natural and synthetic pyrimidines are known to exist. They display a range of pharmacological effects including antioxidants, antibacterial, antiviral, antifungal, antituberculosis, and anti-inflammatory. This review sums up recent developments in the synthesis, anti-inflammatory effects, and structure-activity relationships (SARs) of pyrimidine derivatives. Numerous methods for the synthesis of pyrimidines are described. Anti-inflammatory effects of pyrimidines are attributed to their inhibitory response versus the expression and activities of certain vital inflammatory mediators namely prostaglandin E2, inducible nitric oxide synthase, tumor necrosis factor-α, nuclear factor κB, leukotrienes, and some interleukins. Literature studies reveal that a large number of pyrimidines exhibit potent anti-inflammatory effects. SARs of numerous pyrimidines have been discussed in detail. Several possible research guidelines and suggestions for the development of new pyrimidines as anti-inflammatory agents are also given. Detailed SAR analysis and prospects together provide clues for the synthesis of novel pyrimidine analogs possessing enhanced anti-inflammatory activities with minimum toxicity.
Collapse
Affiliation(s)
- Haroon Ur Rashid
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | | | | | - Juliana Jorge
- Institute of Chemistry, Federal University of Mato Grosso do Sul Campo Grande MS Brazil
| | - Shagufta Rasool
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Riaz Muhammad
- Department of Chemistry, Sarhad University of Science and Information Technology Peshawar Khyber Pakhtunkhwa Pakistan
| | - Nasir Ahmad
- Department of Chemistry, Islamia College University Peshawar Khyber Pakhtunkhwa Pakistan
| | - Muhammad Naveed Umar
- Department of Chemistry, University of Malakand Chakdara, Dir (L) Khyber Pakhtunkhwa Pakistan
| |
Collapse
|
11
|
S SLJ, V R. Scope of adjuvant therapy using roflumilast, a PDE-4 inhibitor against COVID-19. Pulm Pharmacol Ther 2021; 66:101978. [PMID: 33259924 PMCID: PMC7833560 DOI: 10.1016/j.pupt.2020.101978] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 10/18/2020] [Accepted: 11/24/2020] [Indexed: 01/19/2023]
Abstract
The recent pandemic of COVID-19 caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) presents an extraordinary challenge to identify effective drugs for prevention and treatment. The pathogenesis implicate acute respiratory disorder (ARD) which is attributed to significantly triggered "cytokine storm" and compromised immune system. This article summarizes the likely benefits of roflumilast, a Phosphodiesterase-4 (PDE-4) inhibitor as a comprehensive support COVID-19 pathogenesis. Roflumilast, a well-known anti-inflammatory and immunomodulatory drug, is protective against respiratory models of chemical and smoke induced lung damage. There is significant data which demonstrate the protective effect of PDE-4 inhibitor in respiratory viral models and is likely to be beneficial in combating COVID-19 pathogenesis. Roflumilast is effective in patients with severe COPD by reducing the rate of exacerbations with the improvement of the lung function, which might further be beneficial for better clinical outcomes in COVID-19 patients. However, further clinical trials are warranted to examine this conjecture.
Collapse
Affiliation(s)
- Sugin Lal Jabaris S
- Department of Pharmacology, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Anna Hospital Campus, Arumbakkam, Chennai-106, India.
| | - Ranju V
- Department of Genetic Toxicology, Microbiology and In Vitro Toxicology, Eurofins Advinus, Phase 21 & 22, Bangalore-560 058, India
| |
Collapse
|
12
|
Nadur NF, de Azevedo LL, Caruso L, Graebin CS, Lacerda RB, Kümmerle AE. The long and winding road of designing phosphodiesterase inhibitors for the treatment of heart failure. Eur J Med Chem 2020; 212:113123. [PMID: 33412421 DOI: 10.1016/j.ejmech.2020.113123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/18/2020] [Accepted: 12/19/2020] [Indexed: 12/14/2022]
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are a superfamily of enzymes known to play a critical role in the indirect regulation of several intracellular metabolism pathways through the selective hydrolysis of the phosphodiester bonds of specific second messenger substrates such as cAMP (3',5'-cyclic adenosine monophosphate) and cGMP (3',5'-cyclic guanosine monophosphate), influencing the hypertrophy, contractility, apoptosis and fibroses in the cardiovascular system. The expression and/or activity of multiple PDEs is altered during heart failure (HF), which leads to changes in levels of cyclic nucleotides and function of cardiac muscle. Within the cardiovascular system, PDEs 1-5, 8 and 9 are expressed and are interesting targets for the HF treatment. In this comprehensive review we will present a briefly description of the biochemical importance of each cardiovascular related PDE to the HF, and cover almost all the "long and winding road" of designing and discovering ligands, hits, lead compounds, clinical candidates and drugs as PDE inhibitors in the last decade.
Collapse
Affiliation(s)
- Nathalia Fonseca Nadur
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Luciana Luiz de Azevedo
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Lucas Caruso
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Cedric Stephan Graebin
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Renata Barbosa Lacerda
- Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil
| | - Arthur Eugen Kümmerle
- Laboratório de Diversidade Molecular e Química Medicinal (LaDMol-QM, Molecular Diversity and Medicinal Chemistry Laboratory), Chemistry Institute, Rural Federal University of Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil; Programa de Pós-Gradução em Química (PPGQ), Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, 23897-000, Brazil.
| |
Collapse
|
13
|
Schreiber R, Hollands R, Blokland A. A Mechanistic Rationale for PDE-4 Inhibitors to Treat Residual Cognitive Deficits in Acquired Brain Injury. Curr Neuropharmacol 2020; 18:188-201. [PMID: 31660837 PMCID: PMC7327948 DOI: 10.2174/1570159x17666191010103044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/06/2019] [Accepted: 10/03/2019] [Indexed: 02/06/2023] Open
Abstract
Patients with acquired brain injury (ABI) suffer from cognitive deficits that interfere significantly with their daily lives. These deficits are long-lasting and no treatment options are available. A better understanding of the mechanistic basis for these cognitive deficits is needed to develop novel treatments. Intracellular cyclic adenosine monophosphate (cAMP) levels are decreased in ABI. Herein, we focus on augmentation of cAMP by PDE4 inhibitors and the potentially synergistic mechanisms in traumatic brain injury. A major acute pathophysiological event in ABI is the breakdown of the blood-brain-barrier (BBB). Intracellular cAMP pathways are involved in the subsequent emergence of edema, inflammation and hyperexcitability. We propose that PDE4 inhibitors such as roflumilast can improve cognition by modulation of the activity in the cAMP-Phosphokinase A-Ras-related C3 botulinum toxin substrate (RAC1) inflammation pathway. In addition, PDE4 inhibitors can also directly enhance network plasticity and attenuate degenerative processes and cognitive dysfunction by increasing activity of the canonical cAMP/phosphokinase-A/cAMP Responsive Element Binding protein (cAMP/PKA/CREB) plasticity pathway. Doublecourtin and microtubule-associated protein 2 are generated following activation of the cAMP/PKA/CREB pathway and are decreased or even absent after injury. Both proteins are involved in neuronal plasticity and may consist of viable markers to track these processes. It is concluded that PDE4 inhibitors may consist of a novel class of drugs for the treatment of residual symptoms in ABI attenuating the pathophysiological consequences of a BBB breakdown by their anti-inflammatory actions via the cAMP/PKA/RAC1 pathway and by increasing synaptic plasticity via the cAMP/PKA/CREB pathway. Roflumilast improves cognition in young and elderly humans and would be an excellent candidate for a proof of concept study in ABI patients.
Collapse
Affiliation(s)
- Rudy Schreiber
- Faculty of Psychology and Neuroscience, Section Neuropsychology and Psychopharmacology, Maastricht University, PO BOX 616, 6200 MD Maastricht, Netherlands
| | - Romain Hollands
- Faculty of Psychology and Neuroscience, Section Neuropsychology and Psychopharmacology, Maastricht University, PO BOX 616, 6200 MD Maastricht, Netherlands
| | - Arjan Blokland
- Faculty of Psychology and Neuroscience, Section Neuropsychology and Psychopharmacology, Maastricht University, PO BOX 616, 6200 MD Maastricht, Netherlands
| |
Collapse
|
14
|
Nio Y, Ookawara M, Yamasaki M, Hanauer G, Tohyama K, Shibata S, Sano T, Shimizu F, Anayama H, Hazama M, Matsuo T. Ameliorative effect of phosphodiesterase 4 and 5 inhibitors in deoxycorticosterone acetate-salt hypertensive uni-nephrectomized KKA y mice. FASEB J 2020; 34:14997-15014. [PMID: 32939821 DOI: 10.1096/fj.202001084r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/04/2020] [Accepted: 08/31/2020] [Indexed: 11/11/2022]
Abstract
Diabetic nephropathy (DN) is a leading cause of end-stage renal disease (ESRD). Hypertension increases kidney stress, which deteriorates function, and leads to peripheral renal vascular resistance. Long-term hypoperfusion promotes interstitial fibrosis and glomerular sclerosis, resulting in nephrosclerosis. Although hypertension and DN are frequent ESRD complications, relevant animal models remain unavailable. We generated a deoxycorticosterone acetate (DOCA)-salt hypertensive uni-nephrectomized (UNx) KKAy mouse model demonstrating hypertension, hyperglycemia, cardiac hypertrophy, kidney failure, increased urinary albumin creatinine ratio (UACR), and increased renal PDE4D and cardiac PDE5A mRNA levels. We hypothesized that the novel PDE4 selective inhibitor, compound A, and PDE5 inhibitor, sildenafil, exhibit nephroprotective, and cardioprotective effects in this new model. Compound A, sildenafil, and the angiotensin II receptor blocker, irbesartan, significantly reduced ventricular hypertrophy and pleural effusion volume. Meanwhile, compound A and sildenafil significantly suppressed the UACR, urinary kidney injury molecule-1, and monocyte chemoattractant protein-1 levels, as well as that of renal pro-fibrotic marker mRNAs, including collagen 1A1, fibronectin, and transforming growth factor-beta (TGF-β). Moreover, compound A significantly suppressed TGF-β-induced pro-fibrotic mRNA expression in vitro in all major kidney lesions, including within the glomerular mesangial region, podocytes, and epithelial region. Hence, PDE4 and PDE5 inhibitors may be promising treatments, in combination with irbesartan, for DN with hypertension as they demonstrate complementary mechanisms.
Collapse
Affiliation(s)
- Yasunori Nio
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Mitsugi Ookawara
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Midori Yamasaki
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Guido Hanauer
- Takeda Pharmaceuticals International AG, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Kimio Tohyama
- Drug Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Sachio Shibata
- Drug Metabolism & Pharmacokinetics Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Tomoya Sano
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Fumi Shimizu
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Hisashi Anayama
- Drug Safety Research Laboratories, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Masatoshi Hazama
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| | - Takanori Matsuo
- Extra-Value Generation and General Medicine DDU, Takeda Pharmaceutical Company Limited, Fujisawa, Japan
| |
Collapse
|
15
|
Moradi K, Golbakhsh M, Haghighi F, Afshari K, Nikbakhsh R, Khavandi MM, Faghani S, Badripour A, Etemadi A, Ashraf-Ganjouei A, Bagheri S, Dehpour AR. Inhibition of phosphodiesterase IV enzyme improves locomotor and sensory complications of spinal cord injury via altering microglial activity: Introduction of Roflumilast as an alternative therapy. Int Immunopharmacol 2020; 86:106743. [PMID: 32619958 DOI: 10.1016/j.intimp.2020.106743] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/06/2020] [Accepted: 06/23/2020] [Indexed: 02/02/2023]
Abstract
Despite the great search for an effective approach to minimize secondary injury in spinal cord injury (SCI) setting, there have been limited advances. Roflumilast is a selective inhibitor of phosphodiesterase 4 with potent anti-inflammatory properties. Here, we sought to explore Roflumilast efficacy in the improvement of locomotor and sensory deficits of SCI. In an animal setting, 50 male rats were randomly assigned to five groups: an SCI group receiving Placebo, three SCI groups receiving Roflumilast at the doses of 0.25, 0.5, and 1 mg/kg prior to T9 vertebra laminectomy, and a sham-operated group. Locomotor, mechanical, and thermal activities were evaluated for 28 days. At the end of the study, spinal cord samples were taken to assess the relative ratio of microglial subtypes, including M1 and M2, histopathological changes, levels of pro-inflammatory (TNF-α and IL-1β) and anti-inflammatory (IL-10) biomarkers, and cAMP level. Repeated measure analysis revealed significant effect for time-treatment interaction on locomotion [F (24, 270) = 280.7, p < 0.001], thermal sensitivity [F (16, 180) = 4.35, p < 0.001], and mechanical sensitivity [F (16, 180) = 7.96, p < 0.001]. As expected, Roflumilast significantly increased the expression of spinal cAMP. H&E staining exhibited lesser histopathological disruptions in Roflumilast-treated rodents. We also observed a significant reduction in the M1/M2 ratio (p values < 0.001) as well as in pro-inflammatory biomarkers following the administration of Roflumilast to the injured rats. Furthermore, IL-10 level was increased in rodents receiving 1 mg/kg of the reagent. In conclusion, the increased spinal cAMP following Roflumilast therapy might attenuate neuroinflammation via altering microglial activity; therefore, it could be considered as an alternative therapeutic agent for SCI complications.
Collapse
Affiliation(s)
- Kamyar Moradi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Golbakhsh
- Department of Orthopedic Surgery, Sina Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Farinaz Haghighi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khashayar Afshari
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Rajan Nikbakhsh
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdi Khavandi
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Shahriar Faghani
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Badripour
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Etemadi
- Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Ashraf-Ganjouei
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayna Bagheri
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Brain and Spinal Cord Injury Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Lu MY, Wu JR, Liang RB, Wang YP, Zhu YC, Ma ZT, Zhang H, Zan J, Tan W. Upregulation of miR-219a-5p Decreases Cerebral Ischemia/Reperfusion Injury In Vitro by Targeting Pde4d. J Stroke Cerebrovasc Dis 2020; 29:104801. [PMID: 32249206 DOI: 10.1016/j.jstrokecerebrovasdis.2020.104801] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Ischemic stroke is the leading cause of disability and death globally. Micro-RNAs (miRNAs) have been reported to play important roles in the development and pathogenesis of the nervous system. However, the exact function and mechanism of miRNAs have not been fully elucidated about brain damage caused by cerebral ischemia/reperfusion (I/R). METHODS In this study, we explored the neuroprotective effects of miR-219a-5p on brain using an in vitro ischemia model (mouse neuroblastoma N2a cells treated with oxyglucose deprivation and reperfusion), and in vivo cerebral I/R model in mice. Western blot assay and Reverse Transcription-Polymerase Chain Reaction were used to check the expression of molecules involved. Flow cytometry and cholecystokinin were used to examine cell apoptosis, respectively. RESULTS Our research shows that miR-219a-5p gradually decreases in cerebral I/R models in vivo and in vitro. In vitro I/R, we find that miR-219a-5p mimics provided evidently protection for cerebral I/R damage, as shown by increased cell viability and decreased the release of LDH and cell apoptosis. Mechanically, our findings indicate that miR-219a-5p binds to cAMP specific 3', 5'-cyclic phosphodiesterase 4D (PDE4D) mRNA in the 3'-UTR region, which subsequently leads to a decrease in Pde4d expression in I/R N2a cells. CONCLUSIONS Our results provide new ideas for the study of the mechanism of cerebral ischemia/reperfusion injury, and lay the foundation for further research on the treatment of brain I/R injury. Upregulation of miR-219a-5p decreases cerebral ischemia/reperfusion injury by targeting Pde4d in vitro.
Collapse
Affiliation(s)
- Min-Yi Lu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jin-Rong Wu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Rui-Bing Liang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Yu-Peng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - You-Cai Zhu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Zi-Ting Ma
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Hao Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| | - Wen Tan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China.
| |
Collapse
|
17
|
Xiao J, Yao R, Xu B, Wen H, Zhong J, Li D, Zhou Z, Xu J, Wang H. Inhibition of PDE4 Attenuates TNF-α-Triggered Cell Death Through Suppressing NF-κB and JNK Activation in HT-22 Neuronal Cells. Cell Mol Neurobiol 2020; 40:421-435. [PMID: 31659561 PMCID: PMC11448866 DOI: 10.1007/s10571-019-00745-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/11/2019] [Indexed: 02/07/2023]
Abstract
Tumor necrosis factor-α (TNF-α) is a critical pro-inflammatory cytokine regulating neuroinflammation. At high concentrations, it is toxic to neurons, and such damage is positively correlated with acute and chronic neurological diseases. Our previous studies showed that inhibition of phosphodiesterase 4 (PDE4) attenuated the production of TNF-α induced by lipopolysaccharides in microglial cells. However, whether PDE4 inhibition can block the neurotoxic effects of TNF-α in neuronal cells is unknown. In this study, we investigated the protective effects of FCPR16, a novel PDE4 inhibitor, against TNF-α-induced cellular apoptosis in HT-22 hippocampal neuronal cells. We demonstrated that FCPR16 dose-dependently increased the viability of HT-22 cells exposed to TNF-α insult. Propidium iodide/calcein staining and flow cytometry analysis showed that FCPR16 decreased cell apoptosis triggered by TNF-α. Western blot analysis showed that FCPR16 decreased the level of cleaved caspase 3 and caspase 8, but had no effect on caspase 9. Mechanistically, FCPR16 blocked the TNF-α-induced phosphorylation of c-Jun N-terminal kinase (JNK) in HT-22 cells, and inhibition of JNK showed a similar protective effect as FCPR16. Furthermore, FCPR16 decreased the translocation of nuclear factor-κB (NF-κB) p65 from the cytosol into the nucleus. In addition, FCPR16 decreased the expression of inducible nitric oxide synthase and the production of reactive oxygen species in HT-22 cells exposed to TNF-α. Moreover, knockdown of PDE4B by specific small interfering RNA reduced the apoptosis of HT-22 cells treated with TNF-α. Taken together, our findings suggest that FCPR16 promotes the survival of neuronal cells exposed to TNF-α by suppressing the activation of JNK and NF-κB.
Collapse
Affiliation(s)
- Jiao Xiao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Rumeng Yao
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingtian Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Huizhen Wen
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China
| | - Jiahong Zhong
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Dan Li
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhongzhen Zhou
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jiangping Xu
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Central Laboratory, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
| | - Haitao Wang
- Department of Neuropharmacology and Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
- Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou, 510515, China.
- Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
18
|
Lung Macrophage Functional Properties in Chronic Obstructive Pulmonary Disease. Int J Mol Sci 2020; 21:ijms21030853. [PMID: 32013028 PMCID: PMC7037150 DOI: 10.3390/ijms21030853] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by the chronic exposure of the lungs to toxic particles and gases. These exposures initiate a persistent innate and adaptive immune inflammatory response in the airways and lung tissues. Lung macrophages (LMs) are key innate immune effector cells that identify, engulf, and destroy pathogens and process inhaled particles, including cigarette smoke and particulate matter (PM), the main environmental triggers for COPD. The number of LMs in lung tissues and airspaces is increased in COPD, suggesting a potential key role for LMs in initiating and perpetuating the chronic inflammatory response that underpins the progressive nature of COPD. The purpose of this brief review is to discuss the origins of LMs, their functional properties (chemotaxis, recruitment, mediator production, phagocytosis and apoptosis) and changes in these properties due to exposure to cigarette smoke, ambient particulate and pathogens, as well as their persistent altered functional properties in subjects with established COPD. We also explore the potential to therapeutically modulate and restore LMs functional properties, to improve impaired immune system, prevent the progression of lung tissue destruction, and improve both morbidity and mortality related to COPD.
Collapse
|
19
|
Botros SS, El-Lakkany NM, Seif el-Din SH, William S, Sabra AN, Hammam OA, de Koning HP. The phosphodiesterase-4 inhibitor roflumilast impacts Schistosoma mansoni ovipositing in vitro but displays only modest antischistosomal activity in vivo. Exp Parasitol 2020; 208:107793. [DOI: 10.1016/j.exppara.2019.107793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/30/2022]
|
20
|
Tsai YF, Chen CY, Chang WY, Syu YT, Hwang TL. Resveratrol suppresses neutrophil activation via inhibition of Src family kinases to attenuate lung injury. Free Radic Biol Med 2019; 145:67-77. [PMID: 31550527 DOI: 10.1016/j.freeradbiomed.2019.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 09/18/2019] [Accepted: 09/20/2019] [Indexed: 01/10/2023]
Abstract
The natural stilbenoid, Resveratrol (RSV; 3,5,4'-trihydroxystilbene) has been shown to have beneficial effects on inflammatory diseases as well as cancer, neurodegenerative diseases, and cardiovascular disorders. The underlying mechanism by which RSV affects neutrophil activation has yet to be fully elucidated. In this study, we tested the hypothesis that RSV modulates the inflammatory activities of formyl-Met-Leu-Phe-stimulated human neutrophils. We employed a well-established isolated-neutrophil model to investigate the effects of RSV on neutrophil functions and the underlying mechanism of signaling transduction. The lipopolysaccharide-induced ALI murine model was employed to evaluate the therapeutic effects of RSV. Experiment results demonstrate that RSV reduces respiratory burst, degranulation, integrin expression, and cell adhesion in activated neutrophils in dose-dependent manners. RSV inhibited phosphorylation of Src family kinases (SFKs) and reduced their enzymatic activities. Moreover, RSV and a selective inhibitor of SFKs (PP2) reduced the phosphorylation of Bruton's tyrosine kinase and Vav. There results indicated that the inhibitory effects of RSV are mediated through the inhibition of the SFKs-Btk-Vav pathway. This study also revealed that RSV attenuates endotoxin-induced lung injury. We surmise that the therapeutic effects of RSV on ALI may derive from its anti-neutrophilic inflammation function and free radical-scavenging effects.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Ting Syu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, 333, Taiwan; Research Center for Chinese Herbal Medicine, Research Center for Food and Cosmetic Safety, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, 333, Taiwan; Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 243, Taiwan.
| |
Collapse
|
21
|
Sharma H, Lather V, Grewal AS, Pandita D. Synthesis, Anti-inflammatory Activity and Docking Studies of Some Newer 1,3-Thiazolidine-2,4-dione Derivatives as Dual Inhibitors of PDE4 and PDE7. Curr Comput Aided Drug Des 2019; 15:225-234. [PMID: 30280674 DOI: 10.2174/1573409914666181003151528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/17/2018] [Accepted: 09/28/2018] [Indexed: 12/15/2022]
Abstract
BACKGROUND Phosphodiesterase 4 (PDE4) and phosphodiesterase 7 (PDE7), PDE superfamily members, increase inflammatory processes in immunomodulatory as well as pro-inflammatory cells via breakdown of cyclic adenosine monophosphate. Dual inhibitors of PDE4 and PDE7 are a novel class of drug candidates which can regulate pro-inflammatory as well as T-cell function and can be particularly advantageous in the treatment of a wide-ranging disorders associated with the immune system as well as inflammatory diseases with fewer unwanted adverse effects. OBJECTIVE The current research work was planned to design and synthesize some newer substituted 1,3- thiazolidine-2,4-dione derivatives as dual inhibitors of PDE4 and PDE7 followed by evaluation of their anti-inflammatory activity and in silico docking studies. METHODS A new series of substituted 1,3-thiazolidine-2,4-dione derivatives was synthesized followed by evaluation of their anti-inflammatory activity in animal models. In silico docking studies were performed for the evaluation of the binding pattern of synthesized derivatives in the binding site of both PDE4 and PDE7 proteins. RESULTS Amongst the newly synthesized derivatives, compounds 5 and 12 showed higher antiinflammatory activity in the animal model. The results of in vivo animal studies were found to be in concordance with the results of molecular docking studies. CONCLUSION These newly synthesized derivatives can act as the lead molecules for the design of safe and therapeutically effective agents for various inflammatory diseases acting via inhibition of both PDE4 and PDE7.
Collapse
Affiliation(s)
- Himanshu Sharma
- Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa 125055, Haryana, India
| | - Viney Lather
- Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa 125055, Haryana, India.,Amity Institute of Pharmacy, Amity University, Noida 201303, Uttar Pradesh, India
| | - Ajmer Singh Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Patiala 140401, Punjab, India
| | - Deepti Pandita
- Jan Nayak Ch. Devi Lal Memorial College of Pharmacy, Sirsa 125055, Haryana, India.,Amity Institute of Molecular Medicine & Stem Cell Research, Amity University, Noida 201303, Uttar Pradesh, India
| |
Collapse
|
22
|
van Eeden SF, Hogg JC. Immune-Modulation in Chronic Obstructive Pulmonary Disease: Current Concepts and Future Strategies. Respiration 2019; 99:550-565. [PMID: 31480060 DOI: 10.1159/000502261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is caused by the chronic inhalation of toxic particles and gases that are primarily but not exclusively derived from cigarette smoke that may be either actively or passively inhaled, which initiates a persistent innate and adaptive immune response in the lung. This immune response is associated with an aberrant tissue repair and remodeling process that results in varying degrees of chronic inflammation with excess production of mucus in the central airways and permanent destruction of the smaller conducting airways and gas exchanging surface in the peripheral lung. Currently, the primary aims of treatment in COPD are bronchodilation (inhaled short- and long-acting β-agonist and antimuscarinic therapies), to control symptoms and nonspecific broad-acting anti-inflammatory agents (inhaled and oral corticosteroids, phosphor-di-esterase inhibitors, and macrolides). That provide symptomatic relief but have little or no impact on either disease progression or mortality. As our understanding of the immune pathogenesis of the COPD improves, available immune modulation therapies have the potential to alter or interfere with damaging immune pathways, thereby slowing relentless progression of lung tissue destruction. The purpose of this brief review is to discuss our current understanding of the immune pathogenesis of both the airways and parenchymal injury as well as the dysfunctional tissue repair process to propose immune modulating interventions in an attempt to stabilize or return these pathological changes to their normal state. The ultimate goal of the immune modulation therapy is to improve both morbidity and mortality associated with COPD.
Collapse
Affiliation(s)
- Stephan F van Eeden
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada, .,Pacific Lung Health Centre, St. Paul's Hospital, Vancouver, British Columbia, Canada,
| | - James C Hogg
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
23
|
Kerget B, Araz Ö, Kerget F, Erol HS, Özmen S, Halıcı Z, Akgün M. Evaluation of the Roflumilast Effect Supplemented with Linezolid in Pleural Empyema in Rats Caused by Intrapleural Staphylococcus aureus Inoculation. Jpn J Infect Dis 2019; 73:1-7. [PMID: 31474702 DOI: 10.7883/yoken.jjid.2019.164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In addition to tube drains, pleural empyema is treated with antibiotics and anti-inflammatory drugs. We aimed to evaluate the anti-inflammatory activity of roflumilast combined with linezolid in a rat model of pleural empyema induced by Staphylococcus aureus. A total of 40 rats were divided into 7 groups: sham (n = 4), S. aureus inoculation (n = 6), S. aureus + 10 mg/kg linezolid (n = 6), S. aureus + 5 mg/kg roflumilast (n = 6), S. aureus + 10 mg/kg linezolid + 5 mg/kg roflumilast (n = 6), S. aureus + 10 mg/kg roflumilast (n = 6), and S. aureus + 10 mg/kg linezolid + 10 mg/kg roflumilast (n = 6). Animals were administered linezolid 1 h before and 12 h after inoculation with S. aureus. Roflumilast was administered orally as a single dose 30 min before inoculation with S. aureus. Compared to linezolid treatment alone, linezolid combined with 5 mg/kg roflumilast significantly improved TNF-α, IL-1β, vasodilation/congestion, and tissue/pleural polynuclear leukocyte (PNL) infiltration (p < 0.05). Linezolid combined with 10 mg/kg roflumilast also provided a significant improvement in TNF-α, IL-1β, IL-6, endothelin-1, vasodilation/congestion, mesothelial cell damage, lung tissue PNL, and pleural PNL compared to linezolid alone (p < 0.05). Due to its anti-inflammatory effects and significant impact on recovery, roflumilast can be used in conjunction with antibiotherapy for the treatment of pleural empyema.
Collapse
Affiliation(s)
- Buğra Kerget
- Department of Pulmonary Diseases, Health Sciences University Erzurum Regional Education and Research Hospital
| | - Ömer Araz
- Department of Pulmonary Diseases, Ataturk University School of Medicine
| | - Ferhan Kerget
- Department of Infection Diseases and Clinical Microbiology, Health Sciences University Erzurum Regional Education and Research Hospital
| | | | - Sevilay Özmen
- Department of Pathology, Ataturk University School of Medicine
| | - Zekai Halıcı
- Department of Pharmacology, Ataturk University School of Medicine
| | - Metin Akgün
- Department of Pulmonary Diseases, Ataturk University School of Medicine
| |
Collapse
|
24
|
Criner GJ, Jacobs MR, Zhao H, Marchetti N. Effects of Roflumilast on Rehospitalization and Mortality in Patients. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2018; 6:74-85. [PMID: 30775426 PMCID: PMC6373589 DOI: 10.15326/jcopdf.6.1.2018.0139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2018] [Indexed: 11/21/2022]
Abstract
Introduction: Hospitalization for chronic obstructive pulmonary disease (COPD) exacerbation portends the greatest risk of rehospitalization and mortality. Treatments that prevent hospitalizations could significantly lessen COPD morbidity and mortality. Methods: We performed a prospective, randomized, double-blind, placebo-controlled study of roflumilast 500 ug daily versus placebo in patients hospitalized for acute COPD exacerbation. Primary outcome was time to all-cause mortality or non-elective rehospitalization at 180 days post-randomization. Secondary outcomes were death or hospitalization from a respiratory cause, quality of life, change in health status, forced expiratory volume in 1 second (FEV1) and roflumilast tolerance. Results: A total of 64 patients with moderate to severe COPD (FEV1, 37.6 ± 16.4% predicted; 61% female, 61.6 ± 7.9 years old) were assigned to roflumilast or placebo. No deaths occurred in the follow-up period. There was no difference in the time to first readmission between the roflumilast and placebo groups (46.1 days versus 47.3 days respectively, p=0.93). There were 29 and 30 readmissions in the roflumilast and placebo groups, respectively (p=0.47). The St George's Respiratory Questionnaire (SGRQ) decreased 10.8 points and 7.8 points in the roflumilast and placebo groups, respectively and were not different. EuroQuality of Life Five Dimension scale (EQ5D) scores improved, but not significantly in either group. Weight loss and nausea were more common with roflumilast but not different from placebo. Change in glycosylated hemoglobin percentage (HgbA1C%) was not different between groups. Sub-analysis for the impact of chronic bronchitis did not affect outcomes. Conclusion: In this pilot study conducted in patients hospitalized with an exacerbation of COPD, roflumilast did not affect time to all-cause rehospitalization, quality of life, FEV1 or any other measured parameter.
Collapse
Affiliation(s)
- Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Michael R. Jacobs
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine and Temple School of Pharmacy, Temple University, Philadelphia, Pennsylvania
| | - Huaqing Zhao
- Department of Clinical Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
25
|
Abat D, Bayazıt Y, Açıkalın A, Dağlıoğlu K, Yenilmez ED, Altunkol A, Erdoğan Ş, Tuli A. Beneficial effects of rolipram, a phosphodiesterase 4 specific inhibitor, on testicular torsion-detorsion injury in rats. J Pediatr Surg 2018; 53:2261-2265. [PMID: 29773452 DOI: 10.1016/j.jpedsurg.2018.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 04/01/2018] [Accepted: 04/08/2018] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The aim of the study is to investigate the effect of Rolipram, a selective phosphodiesterase 4 inhibitor, on testicular torsion - detorsion injury. METHODS Sixty young male rats were divided into five groups. In each group, the right testes of six rats were removed four hours after detorsion for biochemical analysis, and the right testes of the remaining six rats were removed 24 h after detorsion for pathological analysis. In group 1 (sham-operated) right orchiectomy was performed without torsion, and right testes were sent to the laboratory for biochemical and pathologic analyses. In group 2 (control) torsion was applied to the right testes for 60 min, and detorsion was performed without the administration of Rolipram. In group 3 torsion was applied to the right testes for 60 min. 1 mg/kg Rolipram was administered 30 min before detorsion. In group 4 torsion was applied to the right testes for 60 min, and 1 mg/kg Rolipram was administered during detorsion. In group 5 torsion was applied to the right testes for 60 min. 1 mg/kg Rolipram was administered 30 min after detorsion. The malondialdehyde and nitric oxide levels were determined. The rates of necrosis and apoptosis were evaluated by histopathological examination. RESULTS The level of malondialdehyde was higher in the torsioned groups (Group 2, 3, 4, 5) than that in group 1 (p = 0.004). There was no statistically significant difference between the groups regarding the level of nitric oxide (p = 0.182). Apoptosis was higher in groups 2, 3 and 4 than in group 1; however, apoptosis was similar in group 1 and group 5 (p = 0.122). The level of necrosis in group 1 was similar to that in groups 4 and 5 (p = 0.194 and p = 0.847, respectively). CONCLUSION We suggest that the administration of Rolipram can decrease the rate of necrosis and apoptosis in testicular ischaemia-reperfusion injury.
Collapse
Affiliation(s)
- Deniz Abat
- İskenderun State Hospital, Department of Urology, Hatay, Turkey.
| | - Yıldırım Bayazıt
- Ç ukurova University Faculty of Medicine, Department of Urology, Adana, Turkey.
| | - Arbil Açıkalın
- Çukurova University Faculty of Medicine, Department of Pathology, Adana, Turkey.
| | - Kenan Dağlıoğlu
- Experimental Research Center, Çukurova University School of Medicine, Adana, Turkey.
| | - Ebru Dündar Yenilmez
- Çukurova University Faculty of Medicine, Department of Biochemistry, Adana, Turkey.
| | - Adem Altunkol
- University of Healthy Sciences, Adana City Hospital, Department of Urology, Adana, Turkey.
| | - Şeyda Erdoğan
- Çukurova University Faculty of Medicine, Department of Pathology, Adana, Turkey.
| | - Abdullah Tuli
- Çukurova University Faculty of Medicine, Department of Biochemistry, Adana, Turkey.
| |
Collapse
|
26
|
Cenacchi V, Salvadori M, Riccardi B, Brogin G, Ghiglieri A, Messina M, Imre G, Puccini P. Role of efflux transporters in the absorption, distribution and elimination in rodents of a novel PDE4 inhibitor, CHF6001. Eur J Pharm Sci 2018; 115:100-108. [PMID: 29307855 DOI: 10.1016/j.ejps.2017.12.030] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/18/2017] [Accepted: 12/30/2017] [Indexed: 01/16/2023]
Abstract
CHF6001 is a new and potent PDE4 inhibitor for the treatment of human lung diseases, designed for topical administration by inhalation. In preclinical assessment CHF6001 appeared safe and devoid of emetic effect, which is typical side effect of PDE4 inhibitors in humans. CHF6001 absorption, distribution and excretion were evaluated in rats by PO and IV administration of [14C]CHF6001; additionally the role of transporters was investigated by using transfected cells expressing either human transporters or MDR1 and BCRP KO mice. [14C]CHF6001 intravenously administered as bolus distributed in all the tissues (with very low levels in brain and fetus) and it was mainly eliminated in bile. Following oral administration [14C]CHF6001 about half of the dose was absorbed through the gut. In vitro, CHF6001 was a substrate of human membrane transporters MDR1 and BCRP. In wild and BCRP KO mice CHF6001 was not detectable in brain, whereas it was measurable in Mdr1a/b KO mice. Therefore, in animal species Mdr1a/b plays a significant role in CHF6001 disposition, limiting its distribution into brain and contributing to the safety profile observed in preclinical evaluation. This behavior was confirmed by the results of the first human studies, where CHF6001 was safe and with no emetic effect at all the evaluated doses.
Collapse
Affiliation(s)
- V Cenacchi
- Chiesi Farmaceutici S.p.A., Largo Belloli 11/a, 43122 Parma, Italy.
| | - M Salvadori
- Chiesi Farmaceutici S.p.A., Largo Belloli 11/a, 43122 Parma, Italy
| | - B Riccardi
- Chiesi Farmaceutici S.p.A., Largo Belloli 11/a, 43122 Parma, Italy
| | - G Brogin
- Chiesi Farmaceutici S.p.A., Largo Belloli 11/a, 43122 Parma, Italy
| | - A Ghiglieri
- Drug Disposition Laboratory, Accelera S.r.l., Nerviano, Milano, Italy
| | - M Messina
- Drug Disposition Laboratory, Accelera S.r.l., Nerviano, Milano, Italy
| | - G Imre
- Solvo Biotechnology, Budaörs, Hungary
| | - P Puccini
- Chiesi Farmaceutici S.p.A., Largo Belloli 11/a, 43122 Parma, Italy
| |
Collapse
|
27
|
Chen J, Yu H, Zhong J, Feng H, Wang H, Cheng Y, Zou Z, Huang C, Zhou Z, Zheng W, Xu J. The phosphodiesterase-4 inhibitor, FCPR16, attenuates ischemia-reperfusion injury in rats subjected to middle cerebral artery occlusion and reperfusion. Brain Res Bull 2017; 137:98-106. [PMID: 29155261 DOI: 10.1016/j.brainresbull.2017.11.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 11/11/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022]
Abstract
Current phosphodiesterase-4 (PDE4) inhibitors exert beneficial effects in central nervous system diseases via anti-inflammatory and anti-apoptotic properties, but many of them are plagued by side effects like nausea and emesis. FCPR16, a novel PDE4 inhibitor synthesized in our lab, has potential anti-inflammatory property. In the present study, we aimed to investigate the effects of FCPR16 in a rat model of ischemic stroke and evaluate its emetogenic potential. Our results showed that FCPR16 treatment improved neurological function, reduced cerebral infarct volume, and attenuated brain histological changes in rats subjected to middle cerebral artery occlusion and reperfusion (MCAO/R). Furthermore, levels of proinflammatory cytokines tumor necrosis factor α, interleukin-6 and interleukin-1β were decreased after FCPR16 treatment, as well as the ionized calcium-binding adapter molecule 1 and glial fibrillary acidic protein in MCAO/R rats. TUNEL staining and Western blot results showed that FCPR16 reduced apoptosis and regulated apoptotic-related proteins, with increased level of phosphorylated protein kinase B. Moreover, FCPR16 treatment increased cyclic adenosine monophosphate (cAMP) levels and cAMP-response element binding protein (CREB) phosphorylation in ischemic tissue. In addition, oral administration of 3mg/kg FCPR16 did not cause vomiting in beagle dogs. This study indicates that FCPR16 has protective effects against cerebral ischemia-reperfusion injury through inhibiting inflammation and apoptosis via the cAMP/CREB pathway, while it has low emetogenic potential.
Collapse
Affiliation(s)
- Jiajia Chen
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hui Yu
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiahong Zhong
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hongfang Feng
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Haitao Wang
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yufang Cheng
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhengqiang Zou
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Chang Huang
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhongzhen Zhou
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wenhua Zheng
- Faculty of Health Sciences, University of Macau, Macau
| | - Jiangping Xu
- Neuropharmacology Group, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
28
|
The phosphodiesterase-4 inhibitor roflumilast decreases ethanol consumption in C57BL/6J mice. Psychopharmacology (Berl) 2017; 234:2409-2419. [PMID: 28477089 DOI: 10.1007/s00213-017-4631-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 04/11/2017] [Indexed: 12/20/2022]
Abstract
RATIONALE Alcohol use disorders have become one of the most damaging psychiatric disorders in the world; however, there are no ideal treatments in clinic. Phosphodiesterase-4 (PDE4), an enzyme that specifically hydrolyzes intracellular cyclic AMP (cAMP), has been involved in alcohol use disorders. Roflumilast is the first PDE4 inhibitor approved for treatment of chronic obstructive pulmonary diseases in clinic. It was of particular interest to researchers to determine whether roflumilast altered ethanol consumption. OBJECTIVES The present study tried to determine the effects of roflumilast on ethanol intake and preference. METHODS We used the two-bottle choice paradigm to assess ethanol intake and preference in C57BL/6J mice treated with roflumilast (1, 3, or 10 mg/kg) or rolipram (0.5 mg/kg; positive control). The effect of roflumilast was verified using the ethanol drinking-in-dark (DID) test. Locomotor activity was examined using the open-field test. Intake of sucrose or quinine was also tested to determine whether natural reward preference and aversive stimuli were involved in the effect of PDE4 inhibitors. RESULTS Similar to rolipram, roflumilast decreased ethanol intake and preference in two-bottle choice and DID tests in a dose-dependent manner, with significant changes at the dose of 10 mg/kg; in contrast, roflumilast did not affect sucrose or quinine drinking, although it decreased locomotor activity at the high dose within 3 h of treatment. CONCLUSIONS These data provide novel demonstration for the effect of roflumilast on ethanol consumption and suggest that roflumilast may be beneficial for treatment of alcoholism.
Collapse
|
29
|
Forkuo GS, Kim H, Thanawala VJ, Al-Sawalha N, Valdez D, Joshi R, Parra S, Pera T, Gonnella PA, Knoll BJ, Walker JKL, Penn RB, Bond RA. Phosphodiesterase 4 Inhibitors Attenuate the Asthma Phenotype Produced by β2-Adrenoceptor Agonists in Phenylethanolamine N-Methyltransferase-Knockout Mice. Am J Respir Cell Mol Biol 2017; 55:234-42. [PMID: 26909542 DOI: 10.1165/rcmb.2015-0373oc] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Mice lacking the endogenous β2-adrenoceptor (β2AR) agonist epinephrine (phenylethanolamine N-methyltransferase [PNMT]-knockout mice) are resistant to developing an "asthma-like" phenotype in an ovalbumin sensitization and challenge (Ova S/C) model, and chronic administration of β2AR agonists to PNMT-KO mice restores the phenotype. Based on these and other studies showing differential effects of various β2AR ligands on the asthma phenotype, we have speculated that the permissive effect of endogenous epinephrine and exogenous β2AR agonists on allergic lung inflammation can be explained by qualitative β2AR signaling. The β2AR can signal through at least two pathways: the canonical Gαs-cAMP pathway and a β-arrestin-dependent pathway. Previous studies suggest that β-arrestin-2 is required for allergic lung inflammation. On the other hand, cell-based assays suggest antiinflammatory effects of Gαs-cAMP signaling. This study was designed to test whether the in vitro antiinflammatory effects of phosphodiesterase 4 inhibitors, known to increase intracellular cAMP in multiple airway cell types, attenuate the asthma-like phenotype produced by the β2AR agonists formoterol and salmeterol in vivo in PNMT-KO mice, based on the hypothesis that skewing β2AR signaling toward Gαs-cAMP pathway is beneficial. Airway inflammatory cells, epithelial mucus production, and airway hyperresponsiveness were quantified. In Ova S/C PNMT-KO mice, formoterol and salmeterol restored the asthma-like phenotype comparable to Ova S/C wild-type mice. However, coadministration of either roflumilast or rolipram attenuated this formoterol- or salmeterol-driven phenotype in Ova S/C PNMT-KO. These findings suggest that amplification of β2AR-mediated cAMP by phosphodiesterase 4 inhibitors attenuates the asthma-like phenotype promoted by β-agonists.
Collapse
Affiliation(s)
- Gloria S Forkuo
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Hosu Kim
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Vaidehi J Thanawala
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Nour Al-Sawalha
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | - Daniel Valdez
- 2 Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Radhika Joshi
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas
| | | | - Tonio Pera
- 4 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Patricia A Gonnella
- 4 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Brian J Knoll
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas.,2 Department of Biology and Biochemistry, University of Houston, Houston, Texas
| | - Julia K L Walker
- 5 Duke University School of Nursing, Duke University Medical Center, Durham, North Carolina
| | - Raymond B Penn
- 4 Center for Translational Medicine and Jane and Leonard Korman Lung Center, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania; and
| | - Richard A Bond
- 1 Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, Texas.,2 Department of Biology and Biochemistry, University of Houston, Houston, Texas
| |
Collapse
|
30
|
Tsai YF, Chu TC, Chang WY, Wu YC, Chang FR, Yang SC, Wu TY, Hsu YM, Chen CY, Chang SH, Hwang TL. 6-Hydroxy-5,7-dimethoxy-flavone suppresses the neutrophil respiratory burst via selective PDE4 inhibition to ameliorate acute lung injury. Free Radic Biol Med 2017; 106:379-392. [PMID: 28263828 DOI: 10.1016/j.freeradbiomed.2017.03.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 01/26/2017] [Accepted: 03/01/2017] [Indexed: 01/11/2023]
Abstract
Over-activated neutrophils produce enormous oxidative stress and play a key role in the development of acute and chronic inflammatory diseases. 6-Hydroxy-5,7-dimethoxy-flavone (UFM24), a flavone isolated from the Annonaceae Uvaria flexuosa, showed inhibitory effects on human neutrophil activation and salutary effects on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. UFM24 potently inhibited superoxide anion (O2•-) generation, reactive oxidants, and CD11b expression, but not elastase release, in N-formyl-l-methionyl-l-leucyl-l-phenylalanine (fMLF)-activated human neutrophils. However, UFM24 failed to scavenge O2•- and inhibit the activity of subcellular NADPH oxidase. fMLF-induced phosphorylation of protein kinase B (Akt) was inhibited by UFM24. Noticeably, UFM24 increased cyclic adenosine monophosphate (cAMP) concentration and protein kinase (PK) A activity in activated human neutrophils. PKA inhibitors significantly reversed the inhibitory effects of UFM24, suggesting that the effects of UFM24 were through cAMP/PKA-dependent inhibition of Akt activation. Additionally, activity of cAMP-related phosphodiesterase (PDE)4, but not PDE3 or PDE7, was significantly reduced by UFM24. Furthermore, UFM24 attenuated neutrophil infiltration, myeloperoxidase activity, and pulmonary edema in LPS-induced ALI in mice. In conclusion, our data demonstrated that UFM24 inhibits oxidative burst in human neutrophils through inhibition of PDE4 activity. UFM24 also exhibited significant protection against endotoxin-induced ALI in mice. UFM24 has potential as an anti-inflammatory agent for treating neutrophilic lung damage.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tzu-Chi Chu
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - Wen-Yi Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yang-Chang Wu
- School of Pharmacy, College of Pharmacy, China Medical University, Taichung 404, Taiwan; Chinese Medicine Research and Development Center and Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Fang-Rong Chang
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, 807 Taiwan
| | - Shun-Chin Yang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Taipei Veterans General Hospital and National Yang-Ming University, Taipei 112, Taiwan
| | - Tung-Ying Wu
- Chinese Medicine Research and Development Center and Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Ming Hsu
- Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shih-Hsin Chang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
31
|
Martín-Álvarez R, Paúl-Fernández N, Palomo V, Gil C, Martínez A, Mengod G. A preliminary investigation of phoshodiesterase 7 inhibitor VP3.15 as therapeutic agent for the treatment of experimental autoimmune encephalomyelitis mice. J Chem Neuroanat 2017; 80:27-36. [DOI: 10.1016/j.jchemneu.2016.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/10/2016] [Accepted: 12/09/2016] [Indexed: 01/08/2023]
|
32
|
Chang HS, Lee TH, Jun JA, Baek AR, Park JS, Koo SM, Kim YK, Lee HS, Park CS. Neutrophilic inflammation in asthma: mechanisms and therapeutic considerations. Expert Rev Respir Med 2016; 11:29-40. [PMID: 27918221 DOI: 10.1080/17476348.2017.1268919] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Neutrophilic airway inflammation represents a pathologically distinct form of asthma and frequently appears in symptomatic adulthood asthmatics. However, clinical impacts and mechanisms of the neutrophilic inflammation have not been thoroughly evaluated up to date. Areas covered: Currently, distinct clinical manifestations, triggers, and molecular mechanisms of the neutrophilic inflammation (namely Toll-like receptor, Th1, Th17, inflammasome) are under investigation in asthma. Furthermore, possible role of the neutrophilic inflammation is being investigated in respect to the airway remodeling. We searched the related literatures published during the past 10 years on the website of Pub Med under the title of asthma and neutrophilic inflammation in human. Expert commentary: Epidemiologic and experimental studies have revealed that the neutrophilic airway inflammation is induced by a wide variety of stimuli including ozone, particulate matters, cigarette smoke, occupational irritants, endotoxins, microbial infection and colonization, and aeroallergens. These triggers provoke diverse immune and inflammatory responses leading to progressive and sometimes irreversible airway obstruction. Clinically, neutrophilic airway inflammation is frequently associated with severe asthma and poor response to glucocorticoid therapy, indicating the need for other treatment strategies. Accordingly, therapeutics will be targeted against the main mediators behind the underlying molecular mechanisms of the neutrophilic inflammation.
Collapse
Affiliation(s)
- Hun Soo Chang
- a Department of Interdisciplinary Program in Biomedical Science Major , Soonchunhyang Graduate School , Bucheon , Gyeonggi-do , Republic of Korea
| | - Tae-Hyeong Lee
- a Department of Interdisciplinary Program in Biomedical Science Major , Soonchunhyang Graduate School , Bucheon , Gyeonggi-do , Republic of Korea
| | - Ji Ae Jun
- a Department of Interdisciplinary Program in Biomedical Science Major , Soonchunhyang Graduate School , Bucheon , Gyeonggi-do , Republic of Korea
| | - Ae Rin Baek
- b Division of Allergy and Respiratory Disease , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do , Republic of Korea
| | - Jong-Sook Park
- b Division of Allergy and Respiratory Disease , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do , Republic of Korea
| | - So-My Koo
- c Division of Allergy and Respiratory Medicine , Soonchunhyang University Seoul Hospital , Seoul , Republic of Korea
| | - Yang-Ki Kim
- c Division of Allergy and Respiratory Medicine , Soonchunhyang University Seoul Hospital , Seoul , Republic of Korea
| | - Ho Sung Lee
- d Division of Respiratory Medicine , Soonchunhyang University CheonAn Hospital , Cheonan , Chungcheongnam-do , Republic of Korea
| | - Choon-Sik Park
- b Division of Allergy and Respiratory Disease , Soonchunhyang University Bucheon Hospital , Bucheon , Gyeonggi-do , Republic of Korea
| |
Collapse
|
33
|
Mogilski S, Kubacka M, Łażewska D, Więcek M, Głuch-Lutwin M, Tyszka-Czochara M, Bukowska-Strakova K, Filipek B, Kieć-Kononowicz K. Aryl-1,3,5-triazine ligands of histamine H 4 receptor attenuate inflammatory and nociceptive response to carrageen, zymosan and lipopolysaccharide. Inflamm Res 2016; 66:79-95. [PMID: 27766379 PMCID: PMC5209447 DOI: 10.1007/s00011-016-0997-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/30/2022] Open
Abstract
Objective and design Histamine H4 receptor (H4R) offers a great potential for new therapeutic strategies for the treatment of inflammation-based diseases. The aim of this study is to present the pharmacological profile of two recently synthesized ligands of H4R with particular reference to their anti-inflammatory and analgesic activity. Materials and subjects We used mice and rats in the in vivo tests. We also used murine RAW 264.7 cells and isolated guinea-pig ileum in in vitro test. Treatments In the in vivo tests, animals were pre-treated with the increasing doses of investigated compounds (12.5, 25 and 50 mg/kg) and reference compounds: JNJ7777120 (25 mg/kg), indomethacin (10 mg/kg). Macrophages were pre-treated with two concentrations of tested compounds 100 and 10 µM. Methods We examined anti-inflammatory and analgesic effects of the new H4R antagonists in the in vivo models of inflammation induced by carrageenan or zymosan. We assessed the level of cAMP and release of cytokines, ROS and NO in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Moreover, we assessed the affinity of the investigated compounds for histamine H1 receptor in functional studies. Results Both investigated compounds reduced paw edema, mechanical and thermal hyperalgesia in the carrageenan-induced acute inflammation. Moreover, administration of the investigated compounds resulted in decreased granulocyte influx and attenuated nociceptive reaction in the zymosan-induced peritonitis model. In the same model of inflammation, the investigated compounds reduced vascular permeability; however, this effect was observed only after the highest applied dose. Furthermore, the test compounds had no impact on cell viability in the experiments on RAW 264.7 macrophages. In these cells, stimulated with LPS, the test compounds decreased reactive oxygen species (ROS) production. They increased the cellular concentration of cAMP and attenuated the production of inflammatory cytokines such as TNFα and IL-1β. All results were comparable to those obtained for the reference compound JNJ7777120 with the exception of the impact on NO production. Nevertheless, this effect was similar to that obtained for the other reference compound rolipram, which is a phosphodiesterase 4 (PDE 4) inhibitor. Further experiments revealed that both of the investigated compounds possessed relatively low affinity for histamine H1 receptor and do not inhibit the activity of the PDE 4B1 enzyme. In addition, all the effects of the investigated compounds in in vivo experiments were observed at doses that did not cause neurologic deficits in rotarod test and did not reduce spontaneous locomotor activity. Conclusions Our results demonstrate the anti-inflammatory and analgesic activity of the new aryl-1,3,5-triazine derivatives, which are primarily H4R–dependent.
Collapse
Affiliation(s)
- Szczepan Mogilski
- Departament of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland.
| | - Monika Kubacka
- Departament of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Dorota Łażewska
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Małgorzata Więcek
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Krakow, Poland
| | - Małgorzata Tyszka-Czochara
- Department of Radioligands, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Karolina Bukowska-Strakova
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.,Department of Clinical Immunology and Transplantology, Polish-American Institute of Pediatrics, Medical College, Jagiellonian University, Krakow, Poland
| | - Barbara Filipek
- Departament of Pharmacodynamics, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| | - Katarzyna Kieć-Kononowicz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688, Kraków, Poland
| |
Collapse
|
34
|
Luo P, Li S, Chen Y, Luo Y, Li Y, Wang K, Huang Y, Chen X. Efficiency and safety of roflumilast combined with long-acting bronchodilators on moderate-to-severe stable chronic obstructive pulmonary disease patients: a meta-analysis. J Thorac Dis 2016; 8:2638-2645. [PMID: 27747018 DOI: 10.21037/jtd.2016.09.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Roflumilast, a phosphodiesterase-4 inhibitor recommended by clinical guideline, is always being used in combination with at least one long-acting bronchodilator in patients with stable chronic obstructive pulmonary disease (COPD). However, there are few evidences about whether the combination of roflumilast and long-acting bronchodilators is safer and more effective in patients with moderate-to-very severe stable COPD. In our study, we investigate the effect and safety of roflumilast combined with long-acting bronchodilators on moderate-to-severe stable COPD patients. METHODS Several databases were adopted in February 5th 2016, so as to identify relevant randomized controlled trial (RCT). Studies indicated that the patients in the experimental group had to receive roflumilast and concomitant treatment with long-acting bronchodilators, and the patients in the control group had to receive placebo and concomitant treatment with long-acting bronchodilators. The primary outcome was COPD exacerbations and the secondary outcome was adverse events. The relative risks (RRs) and 95% confidence intervals (CIs) were calculated. RESULTS Total 5,746 patients were involved in all six trials. Roflumilast combined with long-acting bronchodilators could lead to significant reduction in exacerbations of COPD (RR, 0.77; 95% CI, 0.69 to 0.86; P<0.00001; I2=0%), and cause some adverse events such as: back pains, headache, diarrhea, nausea, weight loss, insomnia and decreased appetite. According to the subgroup analysis, the test for finding subgroup difference between roflumilast combined with long-acting bronchodilators and roflumilast combined with ICS and long-acting bronchodilators showed no significance in reducing exacerbations. CONCLUSIONS Roflumilast combined with long-acting bronchodilators is a better option for moderate-to-severe COPD patients than exclusive use of long-acting bronchodilators in reducing exacerbations. However, it can cause some side effects. Further study needs consider well enough of the benefits and adverse events caused by roflumilast combined with long-acting bronchodilators.
Collapse
Affiliation(s)
- Peng Luo
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shuo Li
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yitai Chen
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuwen Luo
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yun Li
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Kai Wang
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuxia Huang
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xin Chen
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|
35
|
Cheng H, Wu Z, He X, Liu Q, Jia H, Di Y, Ji Q. siRNA-mediated silencing of phosphodiesterase 4B expression affects the production of cytokines in endotoxin-stimulated primary cultured microglia. Exp Ther Med 2016; 12:2257-2264. [PMID: 27698721 DOI: 10.3892/etm.2016.3575] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 05/19/2016] [Indexed: 11/06/2022] Open
Abstract
Phosphodiesterase 4 (PDE4) has four subtypes: PDE4A, PDE4B, PDE4C and PDE4D. The expression of PDE4 subtypes in microglial cells and the specific contribution of each subtype to inflammation remain unclear. In this study, the expression of PDE4 subtypes in primary microglial cells was assayed. Primary microglial cells were then transfected with specific small interfering RNA (siRNA) against each PDE4 subtype. PDE4 subtype A-D knockdown was confirmed by quantitative polymerase chain reaction. Secreted cytokines in the supernatant and intracellular cyclic adenosine monophosphate (cAMP) levels of transfected cells were measured. The effect of PDE4B siRNA on the activation of extracellular regulated protein kinase (ERK) induced by lipopolysaccharide (LPS) in microglia was further tested by western blotting. Results showed that the primary microglial cells expressed all four types of PDE4s at the protein level. Transfection with the four siRNAs inhibited PDE4 subtype A-D mRNA expression, respectively. In primary microglial cells, treatment with PDE4B siRNA significantly inhibited the expression of tumor necrosis factor-α and interleukin (IL)-1β, and enhanced the expression of cAMP, while siRNAs to other subtypes had no significant effects. However, none of the four siRNAs had any significant effect on the expression of IL-10. Furthermore, in the PDE4B group, the level of phosphorylated ERK was reduced. Among the four PDE4 subtypes, PDE4B plays an important role in regulating inflammatory responses in microglia, potentially through initially regulating the intracellular cAMP concentration.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Zhifang Wu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Xiaoyun He
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qingzhen Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Hongbin Jia
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Yan Di
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| | - Qing Ji
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu 210002, P.R. China
| |
Collapse
|
36
|
Wedzicha JA, Calverley PM, Rabe KF. Roflumilast: a review of its use in the treatment of COPD. Int J Chron Obstruct Pulmon Dis 2016; 11:81-90. [PMID: 26792988 PMCID: PMC4708192 DOI: 10.2147/copd.s89849] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
COPD is a progressive condition involving chronic inflammation and parenchymal destruction with resulting airflow limitation. COPD is associated with worsening airflow limitation over time and increased frequency of COPD exacerbations, leading to increased mortality and morbidity. The effects of COPD extend beyond the lungs, as multiple comorbidities may occur with COPD, including cardiovascular disease, diabetes mellitus, osteoporosis, depression, and pneumonia. COPD exacerbations are associated with a rapid worsening of baseline symptoms that requires prompt management and may necessitate hospitalization in the case of a severe episode. Patients with COPD exacerbations require urgent management of symptoms to prevent further worsening, and preventative steps may be taken to help reduce the number and frequency of future exacerbations. Roflumilast is a potent and selective inhibitor of the enzyme phosphodiesterase-4 that targets the systemic inflammation associated with COPD. Roflumilast has a variety of anti-inflammatory effects including decreasing inflammatory mediators and the expression of cell surface markers and inhibition of apoptosis. Several clinical trials evaluating roflumilast in the treatment of COPD have demonstrated significant improvements from baseline versus placebo in lung function, including increases in mean pre- and postbronchodilator forced expiratory volume in 1 second and forced vital capacity. Data suggest that roflumilast reduces moderate to severe exacerbations with the benefit most well established in patients with severe disease. Given this evidence, roflumilast, as part of a combination regimen with long-acting bronchodilators, appears to be a reasonable treatment option for patients with severe to very severe COPD associated with chronic bronchitis and a history of exacerbations.
Collapse
Affiliation(s)
- Jadwiga A Wedzicha
- Airways Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Peter Ma Calverley
- Institute of Ageing and Chronic Disease, University of Liverpool, Liverpool, UK
| | - Klaus F Rabe
- Department of Internal Medicine, Christian-Albrechts University, Kiel, Germany; Department of Pulmonary Medicine and Medical Director, LungenClinic Grosshansdorf, Airway Research Centre North, German Centre for Lung Research, Grosshansdorf, Germany
| |
Collapse
|
37
|
Tsai YF, Yu HP, Chung PJ, Leu YL, Kuo LM, Chen CY, Hwang TL. Osthol attenuates neutrophilic oxidative stress and hemorrhagic shock-induced lung injury via inhibition of phosphodiesterase 4. Free Radic Biol Med 2015; 89:387-400. [PMID: 26432981 DOI: 10.1016/j.freeradbiomed.2015.08.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/07/2015] [Accepted: 08/10/2015] [Indexed: 10/23/2022]
Abstract
Oxidative stress caused by neutrophils is an important pathogenic factor in trauma/hemorrhagic (T/H)-induced acute lung injury (ALI). Osthol, a natural coumarin found in traditional medicinal plants, has therapeutic potential in various diseases. However, the pharmacological effects of osthol in human neutrophils and its molecular mechanism of action remain elusive. In this study, our data showed that osthol potently inhibited the production of superoxide anion (O2(•-)) and reactive oxidants derived therefrom as well as expression of CD11b in N-formylmethionylleucylphenylalanine (FMLP)-activated human neutrophils. However, osthol inhibited neutrophil degranulation only slightly and it failed to inhibit the activity of subcellular NADPH oxidase. FMLP-induced phosphorylation of extracellular signal-regulated kinase (ERK) and protein kinase B (Akt) was inhibited by osthol. Notably, osthol increased the cAMP concentration and protein kinase A (PKA) activity in activated neutrophils. PKA inhibitors reversed the inhibitory effects of osthol, suggesting that these are mediated through cAMP/PKA-dependent inhibition of ERK and Akt activation. Furthermore, the activity of cAMP-specific phosphodiesterase (PDE) 4, but not PDE3 or PDE7, was significantly reduced by osthol. In addition, osthol reduced myeloperoxidase activity and pulmonary edema in rats subjected to T/H shock. In conclusion, our data suggest that osthol has effective anti-inflammatory activity in human neutrophils through the suppression of PDE4 and protects significantly against T/H shock-induced ALI in rats. Osthol may have potential for future clinical application as a novel adjunct therapy to treat lung inflammation caused by adverse circulatory conditions.
Collapse
Affiliation(s)
- Yung-Fong Tsai
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Huang-Ping Yu
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Pei-Jen Chung
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Yann-Lii Leu
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan
| | - Liang-Mou Kuo
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of General Surgery, Chang Gung Memorial Hospital, Chiayi 613, Taiwan
| | - Chun-Yu Chen
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan 333, Taiwan; Department of Cosmetic Science and Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan.
| |
Collapse
|
38
|
Russo LM, Abdeltawab NF, O’Brien AD, Kotb M, Melton-Celsa AR. Mapping of genetic loci that modulate differential colonization by Escherichia coli O157:H7 TUV86-2 in advanced recombinant inbred BXD mice. BMC Genomics 2015; 16:947. [PMID: 26573818 PMCID: PMC4647490 DOI: 10.1186/s12864-015-2127-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/22/2015] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Shiga toxin (Stx)-producing E. coli (STEC) are responsible for foodborne outbreaks that can result in severe human disease. During an outbreak, differential disease outcomes are observed after infection with the same STEC strain. One question of particular interest is why some infected people resolve infection after hemorrhagic colitis whereas others progress to the hemolytic uremic syndrome (HUS). Host age and infection dose have been implicated; however, these parameters do not appear to fully account for all of the observed variation in disease severity. Therefore, we hypothesized that additional host genetic factors may play a role in progression to HUS. METHODS AND RESULTS To mimic the genetic diversity in the human response to infection by STEC, we measured the capacity of an O157:H7 outbreak isolate to colonize mouse strains from the advanced recombinant inbred (ARI) BXD panel. We first infected the BXD parental strains C57BL/6 J (B6) and DBA/2 J (D2) with either 86-24 (Stx2a+) or TUV86-2, an Stx2a-negative isogenic mutant. Colonization levels were determined in an intact commensal flora (ICF) infection model. We found a significant difference in colonization levels between the parental B6 and D2 strains after infection with TUV86-2 but not with 86-24. This observation suggested that a host factor that may be masked by Stx2a affects O157:H7 colonization in some genetic backgrounds. We then determined the TUV86-2 colonization levels of 24 BXD strains in the ICF model. We identified several quantitative trait loci (QTL) associated with variation in colonization by correlation analyses. We found a highly significant QTL on proximal chromosome 9 (12.5-26.7 Mb) that strongly predicts variation in colonization levels and accounts for 15-20 % of variance. Linkage, polymorphism and co-citation analyses of the mapped region revealed 36 candidate genes within the QTL, and we identified five genes that are most likely responsible for the differential colonization. CONCLUSIONS The identification of the QTL on chromosome 9 supports our hypothesis that individual genetic makeup affects the level of colonization after infection with STEC O157:H7.
Collapse
Affiliation(s)
- Lisa M. Russo
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Nourtan F. Abdeltawab
- University of Cincinnati College of Medicine & Cincinnati VA Medical Center, Cincinnati, OH USA ,Department Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Alison D. O’Brien
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| | - Malak Kotb
- University of Cincinnati College of Medicine & Cincinnati VA Medical Center, Cincinnati, OH USA ,Department of Basic Biomedical Sciences, University of North Dakota, Grand Forks, ND USA
| | - Angela R. Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD USA
| |
Collapse
|
39
|
Tan KW, Griffiths CEM. Novel systemic therapies for the treatment of psoriasis. Expert Opin Pharmacother 2015; 17:79-92. [DOI: 10.1517/14656566.2016.1109636] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
40
|
Wang Y, Tang J, Zhu H, Jiang X, Liu J, Xu W, Ma H, Feng Q, Wu J, Zhao M, Peng S. Aqueous extract of Rabdosia rubescens leaves: forming nanoparticles, targeting P-selectin, and inhibiting thrombosis. Int J Nanomedicine 2015; 10:6905-18. [PMID: 26604756 PMCID: PMC4639563 DOI: 10.2147/ijn.s91316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The hot water extract of Rabdosia rubescens was traditionally used as an antithrombotic medicine. To explore its antithrombotic utility and mechanism, we carried out a series of in vitro and in vivo assays in this study. In vitro platelet aggregation assay showed that the half maximal inhibitory concentration values of aqueous extract of R. rubescens leaves (AERL) inhibiting platelet aggregation induced by thrombin, arachidonic acid, adenosine diphosphate, and platelet-activating factor ranged from 0.12 mg/mL to 1.43 mg/mL. The minimal effective oral dose of AERL inhibiting the rats from forming thrombus was 25 mg/kg. Both in vitro and in vivo actions were correlated with AERL concentration-dependently inhibiting sP-selectin release. In water, AERL formed nanoparticles, and their size depended on the concentration. Docking the five nucleotides, 21 phenolic acids, and four diterpenoids identified by high-performance liquid chromatography-photodiode array detector/(-)electrospray ionization-tandem mass spectrometry analysis into the active site of P-selectin, rosmarinic acid was predicted to be the antithrombotic ingredient of AERL. In flow cytometry analysis, 1 μM of rosmarinic acid effectively inhibited sP-selectin release in arachidonic acid-activated platelets. In a rat model, 5 mg/kg of oral rosmarinic acid effectively inhibited thrombosis.
Collapse
Affiliation(s)
- Yuji Wang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Jingcheng Tang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Haimei Zhu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Xueyun Jiang
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Jiawang Liu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Wenyun Xu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Haiping Ma
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Qiqi Feng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Jianhui Wu
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| | - Ming Zhao
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
- Faculty of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shiqi Peng
- Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, College of Pharmaceutical Sciences, Capital Medical University, Beijing, People’s Republic of China
| |
Collapse
|
41
|
Milara J, Morcillo E, Monleon D, Tenor H, Cortijo J. Roflumilast Prevents the Metabolic Effects of Bleomycin-Induced Fibrosis in a Murine Model. PLoS One 2015; 10:e0133453. [PMID: 26192616 PMCID: PMC4507994 DOI: 10.1371/journal.pone.0133453] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/25/2015] [Indexed: 12/12/2022] Open
Abstract
Fibrotic remodeling is a process common to chronic lung diseases such as chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, acute respiratory distress syndrome and asthma. Based on preclinical studies phosphodiesterase 4 (PDE4) inhibitors may exhibit beneficial anti-inflammatory and anti-remodeling properties for the treatment of these respiratory disorders. Effects of PDE4 inhibitors on changes in the lung metabolome in models of pulmonary fibrotic remodeling have not yet been explored. This work studies the effects of the PDE4 inhibitor roflumilast on changes in the lung metabolome in the common murine model of bleomycin-induced lung fibrosis by nuclear magnetic resonance (NMR) metabolic profiling of intact lung tissue. Metabolic profiling reveals strong differences between fibrotic and non-fibrotic tissue. These differences include increases in proline, glycine, lactate, taurine, phosphocholine and total glutathione and decreases in global fatty acids. In parallel, there was a loss in plasma BH4. This profile suggests that bleomycin produces alterations in the oxidative equilibrium, a strong inflammatory response and activation of the collagen synthesis among others. Roflumilast prevented most of these metabolic effects associated to pulmonary fibrosis suggesting a favorable anti-fibrotic profile.
Collapse
Affiliation(s)
- Javier Milara
- Clinical Research Unit, University General Hospital Consortium, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain; Research Foundation of General Hospital of Valencia, Av. tres cruces s/n., E-46014, Valencia, Spain
| | - Esteban Morcillo
- CIBERES, Health Institute Carlos III, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Daniel Monleon
- Fundacion Investigacion Hospital Clinico Universitario/INCLIVA, Valencia, Spain
| | - Herman Tenor
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Julio Cortijo
- Clinical Research Unit, University General Hospital Consortium, Valencia, Spain; CIBERES, Health Institute Carlos III, Valencia, Spain; Research Foundation of General Hospital of Valencia, Av. tres cruces s/n., E-46014, Valencia, Spain; Department of Pharmacology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
42
|
Porpodis K, Domvri K, Zarogoulidis P, Petridis D, Tsirgogianni K, Papaioannou A, Hatzizisi O, Kioumis I, Liaka A, Kikidaki V, Lampaki S, Organtzis J, Zarogoulidis K. Roflumilast, a phosphodiesterase-4 inhibitor, induces phagocytic activity in Greek COPD patients. Int J Chron Obstruct Pulmon Dis 2015; 10:1123-8. [PMID: 26109853 PMCID: PMC4474389 DOI: 10.2147/copd.s83205] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background A new approach to the treatment of COPD includes controlling inflammation because of its important role in exacerbation of the disease. Recently, roflumilast has been added as a therapeutic option for COPD. Roflumilast is an oral phosphodiesterase-4 inhibitor that targets inflammatory cells involved in triggering exacerbations of COPD. The objective of the current study was to evaluate roflumilast for its contribution to phagocytic activity in COPD patients. Methods Twenty-one patients diagnosed with COPD received roflumilast once daily for 6 months in combination with fluticasone (an inhaled corticosteroid), salmeterol (a long-acting β2-agonist), and tiotropium (a long-acting muscarinic antagonist) or combinations of these agents. The main inclusion criterion was stable disease for at least the previous 30 days. Neutrophils and spirometric changes, ie, forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC), were measured in the COPD patients at indicated time points. The first sample was taken before receiving roflumilast, the second 3 months later, and the third after 6 months. Examination of defective phagocytosis was done by flow cytometry using a FagoFlowEx® kit. The statistical analysis was performed using Statistica software. Results Our results indicate that phagocytic activity was increased after 3 and 6 months of treatment when compared with baseline (P<0.001). Similarly, FVC and FEV1 were also increased during the 6-month period, but only FVC differed significantly from baseline (P<0.001). Conclusion Although the number of patients in this study was limited, our results indicate that roflumilast induces phagocytic activity, which improves lung function.
Collapse
Affiliation(s)
- Konstantinos Porpodis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Domvri
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Paul Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimitrios Petridis
- Department of Food Technology, School of Food Technology and Nutrition, Alexander Technological Educational Institute, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Katerina Tsirgogianni
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Antonis Papaioannou
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Olga Hatzizisi
- Pulmonary Department, Immunology and Histocompatibility Laboratory, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Kioumis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Alexandra Liaka
- Pulmonary Department, Immunology and Histocompatibility Laboratory, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Violeta Kikidaki
- Pulmonary Department, Immunology and Histocompatibility Laboratory, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Sofia Lampaki
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - John Organtzis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Zarogoulidis
- Pulmonary Department-Oncology Unit, G Papanikolaou General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
43
|
Seimetz M, Parajuli N, Pichl A, Bednorz M, Ghofrani HA, Schermuly RT, Seeger W, Grimminger F, Weissmann N. Cigarette Smoke-Induced Emphysema and Pulmonary Hypertension Can Be Prevented by Phosphodiesterase 4 and 5 Inhibition in Mice. PLoS One 2015; 10:e0129327. [PMID: 26058042 PMCID: PMC4461257 DOI: 10.1371/journal.pone.0129327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 05/08/2015] [Indexed: 01/08/2023] Open
Abstract
Rationale Chronic obstructive pulmonary disease (COPD) is a widespread disease, with no curative therapies available. Recent findings suggest a key role of NO and sGC-cGMP signaling for the pathogenesis of the disease. Previous data suggest a downregulation/inactivation of the cGMP producing soluble guanylate cyclase, and sGC stimulation prevented cigarette smoke-induced emphysema and pulmonary hypertension (PH) in mice. We thus aimed to investigate if the inhibition of the cGMP degrading phosphodiesterase (PDE)5 has similar effects. Results were compared to the effects of a PDE 4 inhibitor (cAMP elevating) and a combination of both. Methods C57BL6/J mice were chronically exposed to cigarette smoke and in parallel either treated with Tadalafil (PDE5 inhibitor), Piclamilast (PDE4 inhibitor) or both. Functional measurements (lung compliance, hemodynamics) and structural investigations (alveolar and vascular morphometry) as well as the heart ratio were determined after 6 months of tobacco smoke exposure. In addition, the number of alveolar macrophages in the respective lungs was counted. Results Preventive treatment with Tadalafil, Piclamilast or a combination of both almost completely prevented the development of emphysema, the increase in lung compliance, tidal volume, structural remodeling of the lung vasculature, right ventricular systolic pressure, and right ventricular hypertrophy induced by cigarette smoke exposure. Single, but not combination treatment prevented or reduced smoke-induced increase in alveolar macrophages. Conclusion Cigarette smoke-induced emphysema and PH could be prevented by inhibition of the phosphodiesterases 4 and 5 in mice.
Collapse
Affiliation(s)
- Michael Seimetz
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Nirmal Parajuli
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Alexandra Pichl
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Mariola Bednorz
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Hossein Ardeschir Ghofrani
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Ralph Theo Schermuly
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Werner Seeger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Friedrich Grimminger
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Norbert Weissmann
- Universities of Giessen and Marburg Lung Center (UGMLC), Excellence Cluster Cardio-Pulmonary System (ECCPS), Member of the German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
44
|
Mogilski S, Kubacka M, Redzicka A, Kazek G, Dudek M, Malinka W, Filipek B. Antinociceptive, anti-inflammatory and smooth muscle relaxant activities of the pyrrolo[3,4-d]pyridazinone derivatives: Possible mechanisms of action. Pharmacol Biochem Behav 2015; 133:99-110. [PMID: 25847619 DOI: 10.1016/j.pbb.2015.03.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/21/2015] [Accepted: 03/31/2015] [Indexed: 12/18/2022]
Abstract
The aim of this study was to evaluate the analgesic as well as anti-inflammatory activities of the new pyrrolo[3,4-d]pyridazinone derivatives. Moreover, the present study attempted to assess some of the mechanisms involved in the pharmacological activity of these compounds. In the previous studies it was shown that these compounds were highly active in the phenylbenzoquinone-induced 'writhing syndrome' test and had much lower activity in the hot plate, which indicates that mainly peripheral mechanisms of analgesia are involved in their effects. In these extended studies the analgesic activity of two tested compounds (4c, 4f) was confirmed in some animal models of pain. The studied compounds showed a significant and dose-related antinociceptive effect in the models of pain induced by formalin, capsaicin and glutamic acid. Both compounds decreased the edema formation and one of them (4c) attenuated mechanical hyperalgesia in carrageenan-induced paw inflammation in rats. Furthermore, both compounds inhibited cell migration, plasma exudation and nociceptive reaction in zymosan A-induced mouse peritonitis. In the subsequent studies, including experiments on isolated organs (ileum, trachea, aorta), radioligand assays and biochemical tests, it was demonstrated that analgesic and anti-inflammatory effects of the investigated structures are largely due to their competitive antagonism for histamine H1 receptor. The influence on the level of cAMP in inflammatory cells (shown in RAW 264.7 macrophages) and subsequent inhibition of cytokine (TNFα, IL-1β) release can also be one of the important mechanisms of their action. Moreover some additional mechanisms may also be involved in the eventual analgesic effect of tested pyrrolo[3,4-d]pyridazinone derivatives.
Collapse
Affiliation(s)
- Szczepan Mogilski
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland.
| | - Monika Kubacka
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Aleksandra Redzicka
- Department of Chemistry of Drugs, Wrocław Medical University, 211 Borowska Str., 50-556 Wrocław, Poland
| | - Grzegorz Kazek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Magdalena Dudek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| | - Wiesław Malinka
- Department of Chemistry of Drugs, Wrocław Medical University, 211 Borowska Str., 50-556 Wrocław, Poland
| | - Barbara Filipek
- Department of Pharmacodynamics, Faculty of Pharmacy, Medical College, Jagiellonian University, 9 Medyczna Str., 30-688 Kraków, Poland
| |
Collapse
|
45
|
Cilostazol attenuates cholestatic liver injury and its complications in common bile duct ligated rats. Eur J Pharmacol 2015; 752:8-17. [DOI: 10.1016/j.ejphar.2015.01.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Revised: 01/28/2015] [Accepted: 01/28/2015] [Indexed: 11/18/2022]
|
46
|
Banerjee T, Kar D, Krishna PR, Prabhakar S, Nomula R, Mallula VS, Ravindranath H, Sridhar G, Adepu R, Srikanth G, Mabalirajan U, Ghosh B, Jaisankar P, Johri R, Chakraborty D, Mishra V, Chhabra JK, Shukla M, Paul BN, Bandyopadhyay S, Roy S, Sharma GVM, Bandyopadhyay A. A novel triazine-aryl-bis-indole derivative inhibits both phosphodiesterase IV and expression of cell adhesion molecules. RSC Adv 2015. [DOI: 10.1039/c5ra11495k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Triazine-aryl-bis-indole derivative inhibits phosphodiesterase activity.
Collapse
Affiliation(s)
- Tanima Banerjee
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | - Dipak Kar
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | | | | | - Rajesh Nomula
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | | | | | - Gattu Sridhar
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | - Ramesh Adepu
- CSIR-Indian Institute of Chemical Technology
- Hyderabad
- India
| | | | | | - Balaram Ghosh
- CSIR-Institute of Genomics and Integrative Biology
- New Delhi
- India
| | | | - Rakesh Johri
- CSIR-Indian Institute of Integrative Medicine
- Jammu
- India
| | | | - Vani Mishra
- CSIR-Indian Institute of Toxicology Research
- Lucknow
- India
| | | | - Mamta Shukla
- CSIR-Indian Institute of Toxicology Research
- Lucknow
- India
| | | | | | - Siddhartha Roy
- CSIR-Indian Institute of Chemical Biology
- Kolkata-700032
- India
| | | | | |
Collapse
|
47
|
Leaker BR, Singh D, Ali FY, Barnes PJ, O'Connor B. The effect of the novel phosphodiesterase-4 inhibitor MEM 1414 on the allergen induced responses in mild asthma. BMC Pulm Med 2014; 14:166. [PMID: 25351474 PMCID: PMC4228152 DOI: 10.1186/1471-2466-14-166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/22/2014] [Indexed: 12/16/2022] Open
Abstract
Background Inhaled allergen challenge is a standard method to study airway responses to inflammatory provocation and evaluate the therapeutic potential of novel anti-inflammatory compounds in asthma. MEM 1414 is a novel oral PDE4 inhibitor with high affinity and selectivity creating the potential for an improved side effect profile vs non-selective PDE inhibitors. We evaluated the tolerability and effect of MEM 1414 on airway responses in mild asthmatics. Methods A randomised double blind placebo controlled cross over study in two centres, in which sixteen steroid naïve atopic asthmatics were challenged with inhaled allergen. Subjects were dosed with MEM 1414 (600 mg) or placebo, twice daily orally for 7 days. Allergen challenge was performed on day 6 (2 hours post-dose), and methacholine responsiveness was measured 24 hours post allergen (day 7). Biomarkers of drug effects using ex vivo LPS stimulation of whole blood production of interleukin (IL)-6 and leukotriene (LT)-B4 and fractional exhaled nitric oxide (FeNO) were measured on day 6 (0, 2 and 8 hours post-dose). Plasma pharmacokinetics were measured on days 1, 6 and 7. The primary endpoint was the effect on late asthmatic response to allergen. Results Treatment with MEM 1414 abrogated the late phase response with a mean difference in FEV1 (LAR 3–10 hours) of 104 ml (25%) vs placebo (p < 0.005), with no effect on the early response. Biomarker responses were also attenuated with MEM 1414 treatment with reductions in LPS-stimulated whole blood assays for TNFα at 8 hours (p < 0.03) and LTB4 at 24 hours (p = 0.0808) with no change in the IL-6 response. The MEM 1414 treatment phase was associated with higher incidence of nausea (6/16 MEM 1414 vs 2/16 placebo) and vomiting (3/16 vs 0/16 placebo). Conclusions Oral MEM 1414, a novel PDE4 inhibitor, significantly reduces the late response following inhaled allergen challenge. MEM 1414 also inhibited whole blood assays of cytokine production from inflammatory cells. MEM 1414 was associated with a typical adverse event profile of PDE4 inhibitors, namely nausea and vomiting although these were mild side effects. Trial registration number Current controlled trials ISRCTN48047493.
Collapse
Affiliation(s)
- Brian R Leaker
- Respiratory Clinical Trials Ltd, 20 Queen Anne Street, London W1G 8HU, UK.
| | | | | | | | | |
Collapse
|
48
|
Cortijo Gimeno J. [Phosphodiesterase 4 inhibitors: a new pharmacologic group in the treatment of chronic inflammation of the airways]. Arch Bronconeumol 2014; 46 Suppl 9:3-7. [PMID: 21320810 DOI: 10.1016/s0300-2896(10)70046-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Julio Cortijo Gimeno
- Unidad de Docencia e Investigación. Consorcio Hospital General Universitario de Valencia; Departamento de Farmacología. Facultad de Medicina y Odontología. Universitat de Valencia. Valencia. España
| |
Collapse
|
49
|
Azam MA, Tripuraneni NS. Selective Phosphodiesterase 4B Inhibitors: A Review. Sci Pharm 2014; 82:453-81. [PMID: 25853062 PMCID: PMC4318138 DOI: 10.3797/scipharm.1404-08] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Accepted: 06/10/2014] [Indexed: 12/28/2022] Open
Abstract
Phosphodiesterase 4B (PDE4B) is a member of the phosphodiesterase family of proteins that plays a critical role in regulating intracellular levels of cyclic adenosine monophosphate (cAMP) by controlling its rate of degradation. It has been demonstrated that this isoform is involved in the orchestra of events which includes inflammation, schizophrenia, cancers, chronic obstructive pulmonary disease, contractility of the myocardium, and psoriatic arthritis. Phosphodiesterase 4B has constituted an interesting target for drug development. In recent years, a number of PDE4B inhibitors have been developed for their use as therapeutic agents. In this review, an up-to-date status of the inhibitors investigated for the inhibition of PDE4B has been given so that this rich source of structural information of presently known PDE4B inhibitors could be helpful in generating a selective and potent inhibitor of PDE4B.
Collapse
Affiliation(s)
- Mohammed Afzal Azam
- Department of Pharmaceutical Chemistry, J. S. S. College of Pharmacy, Ootacamund-643001, Tamil Nadu, India
| | - Naga Srinivas Tripuraneni
- Department of Pharmaceutical Chemistry, J. S. S. College of Pharmacy, Ootacamund-643001, Tamil Nadu, India
| |
Collapse
|
50
|
Identification of 2,3-disubstituted pyridines as potent, non-emetic PDE4 inhibitors. Bioorg Med Chem Lett 2014; 24:2689-92. [PMID: 24794103 DOI: 10.1016/j.bmcl.2014.04.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/10/2014] [Accepted: 04/12/2014] [Indexed: 01/17/2023]
Abstract
A series of 2,3-disubstituted pyridines were synthesized as potential non-emetic PDE4 inhibitors. To decrease brain exposure and minimize emesis, we modified the lipophilic moiety of a series of emetic PDE4 inhibitors and found that introduction of a hydroxy group into the pyridine moiety of the side chain led to non-emetic compounds with preserved PDE4 inhibitory activity. Following optimization at the phenoxy group, we identified compound 1 as a potent non-emetic PDE4 inhibitor. Compound 1 showed significant efficacy in an animal model of asthma without inducing emesis.
Collapse
|