1
|
Moe JS, Bramness JG, Bolstad I, Mørland JG, Gorwood P, Ramoz N. Association Between GABRG2 and Self-Rating of the Effects of Alcohol in a French Young Adult Sample. Risk Manag Healthc Policy 2025; 18:291-304. [PMID: 39882063 PMCID: PMC11775821 DOI: 10.2147/rmhp.s483830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 12/15/2024] [Indexed: 01/31/2025] Open
Abstract
Purpose Alcohol use is a leading risk factor for preventable death, injury, and disease globally. Low sensitivity to the effects of alcohol is influenced by genes and predicts risk for harmful alcohol use and alcohol use disorder (AUD). Alcohol induces effects partly by modulation of gamma-aminobutyric acid receptors type A (GABAARs). This study investigates the relationship between genetic variation in GABAAR subunit genes and individual alcohol sensitivity among French university students. Patients and Methods The study involved 1,409 French university students (34.5% women; mean age 20.3 years). Alcohol sensitivity was measured by the Self-Rating of the Effects of Alcohol Scale (SRE). SRE-scores from initial drinking, regular drinking, and heavy drinking were investigated for correlations with alcohol consumption and for associations with single nucleotide polymorphisms (SNPs) in GABAAR subunit genes (GABRA2, GABRG2, GABRA6). Results We replicated correlations between low alcohol sensitivity and high alcohol consumption. We further found an association between the minor allele in rs211014 (GABRG2) and higher SRE-scores, linked to dizziness and motor incoordination. Genetic variation in GABRG2 has previously been associated with processes involving motor coordination (alcohol withdrawal, febrile- and epileptic seizures). Conclusion The results from our study suggest that genetic variation in GABRG2 may influence alcohol sensitivity, which could inform strategies for assessing risk for harmful alcohol use and AUD.
Collapse
Affiliation(s)
- Jenny Skumsnes Moe
- Research Center for Substance Use Disorders and Mental Illness, Innlandet Hospital Trust, Brumunddal, Norway
- Institute for Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
| | - Jørgen G Bramness
- Research Center for Substance Use Disorders and Mental Illness, Innlandet Hospital Trust, Brumunddal, Norway
- Institute for Clinical Medicine, The Arctic University of Norway, Tromsø, Norway
- Department of Alcohol, Tobacco, and Drugs, Norwegian Institute of Public Health, Oslo, Norway
- Section for Clinical Addiction Research, Oslo University Hospital, Oslo, Norway
| | - Ingeborg Bolstad
- Research Center for Substance Use Disorders and Mental Illness, Innlandet Hospital Trust, Brumunddal, Norway
- Department of Health and Social Science, Inland Norway University of Applied Sciences, Elverum, Norway
| | - Jørg Gustav Mørland
- Department of Alcohol, Tobacco, and Drugs, Norwegian Institute of Public Health, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Philip Gorwood
- Université Paris Cité, Inserm U1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP), Team Vulnerability of Psychiatric and Addictive Disorders, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Hôpital Sainte-Anne, CMME, Paris, France
| | - Nicolas Ramoz
- Université Paris Cité, Inserm U1266, Institut de Psychiatrie et Neurosciences de Paris (IPNP), Team Vulnerability of Psychiatric and Addictive Disorders, Paris, France
- GHU PARIS Psychiatrie & Neurosciences, Hôpital Sainte-Anne, CMME, Paris, France
| |
Collapse
|
2
|
Wang G, Peng S, Reyes Mendez M, Keramidas A, Castellano D, Wu K, Han W, Tian Q, Dong L, Li Y, Lu W. The TMEM132B-GABA A receptor complex controls alcohol actions in the brain. Cell 2024; 187:6649-6668.e35. [PMID: 39357522 DOI: 10.1016/j.cell.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 07/19/2024] [Accepted: 09/04/2024] [Indexed: 10/04/2024]
Abstract
Alcohol is the most consumed and abused psychoactive drug globally, but the molecular mechanisms driving alcohol action and its associated behaviors in the brain remain enigmatic. Here, we have discovered a transmembrane protein TMEM132B that is a GABAA receptor (GABAAR) auxiliary subunit. Functionally, TMEM132B promotes GABAAR expression at the cell surface, slows receptor deactivation, and enhances the allosteric effects of alcohol on the receptor. In TMEM132B knockout (KO) mice or TMEM132B I499A knockin (KI) mice in which the TMEM132B-GABAAR interaction is specifically abolished, GABAergic transmission is decreased and alcohol-induced potentiation of GABAAR-mediated currents is diminished in hippocampal neurons. Behaviorally, the anxiolytic and sedative/hypnotic effects of alcohol are markedly reduced, and compulsive, binge-like alcohol consumption is significantly increased. Taken together, these data reveal a GABAAR auxiliary subunit, identify the TMEM132B-GABAAR complex as a major alcohol target in the brain, and provide mechanistic insights into alcohol-related behaviors.
Collapse
Affiliation(s)
- Guohao Wang
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Shixiao Peng
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miriam Reyes Mendez
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Angelo Keramidas
- Institute for Molecular Bioscience, The University of Queensland, 306 Carmody Road, St Lucia, Brisbane, QLD 4072, Australia
| | - David Castellano
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kunwei Wu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wenyan Han
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qingjun Tian
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lijin Dong
- Genetic Engineering Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Wei Lu
- Synapse and Neural Circuit Research Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Platonov M, Maximyuk O, Rayevsky A, Iegorova O, Hurmach V, Holota Y, Bulgakov E, Cherninskyi A, Karpov P, Ryabukhin S, Krishtal O, Volochnyuk D. Integrated workflow for the identification of new GABA A R positive allosteric modulators based on the in silico screening with further in vitro validation. Case study using Enamine's stock chemical space. Mol Inform 2024; 43:e202300156. [PMID: 37964718 DOI: 10.1002/minf.202300156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 11/10/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Numerous studies reported an association between GABAA R subunit genes and epilepsy, eating disorders, autism spectrum disorders, neurodevelopmental disorders, and bipolar disorders. This study was aimed to find some potential positive allosteric modulators and was performed by combining the in silico approach with further in vitro evaluation of its real activity. We started from the GABAA R-diazepam complexes and assembled a lipid embedded protein ensemble to refine it via molecular dynamics (MD) simulation. Then we focused on the interaction of α1β2γ2 with some Z-drugs (non-benzodiazepine compounds) using an Induced Fit Docking (IFD) into the relaxed binding site to generate a pharmacophore model. The pharmacophore model was validated with a reference set and applied to decrease the pre-filtered Enamine database before the main docking procedure. Finally, we succeeded in identifying a set of compounds, which met all features of the docking model. The aqueous solubility and stability of these compounds in mouse plasma were assessed. Then they were tested for the biological activity using the rat Purkinje neurons and CHO cells with heterologously expressed human α1β2γ2 GABAA receptors. Whole-cell patch clamp recordings were used to reveal the GABA induced currents. Our study represents a convenient and tunable model for the discovery of novel positive allosteric modulators of GABAA receptors. A High-throughput virtual screening of the largest available database of chemical compounds resulted in the selection of 23 compounds. Further electrophysiological tests allowed us to determine a set of 3 the most outstanding active compounds. Considering the structural features of leader compounds, the study can develop into the MedChem project soon.
Collapse
Affiliation(s)
- Maksym Platonov
- Institute of molecular biology and genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Alexey Rayevsky
- Institute of molecular biology and genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
| | - Olena Iegorova
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Vasyl Hurmach
- Institute of molecular biology and genetics, Natl. Academy of Sciences of Ukraine, Zabolotnogo Str., 150, Kyiv, 03143, Ukraine
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
| | - Yuliia Holota
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
| | - Elijah Bulgakov
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
| | - Andrii Cherninskyi
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Pavel Karpov
- Institute of Food Biotechnology and Genomics, Natl. Academy of Sciences of Ukraine, Osypovskoho Str., 2 A, Kyiv, 04123, Ukraine
| | - Sergey Ryabukhin
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv., Glushkova Ave, 03022, Kyiv, Ukraine
- Institute of organic chemistry NAS of Ukraine, 5 Murmanska Str., 02660, Kyiv, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology, Natl. Academy of Sciences of Ukraine, 4 Bogomoletz Str., 01024, Kyiv, Ukraine
| | - Dmitriy Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Str., 02660, Kyiv, Ukraine
- Institute of High Technologies, Taras Shevchenko National University of Kyiv., Glushkova Ave, 03022, Kyiv, Ukraine
- Institute of organic chemistry NAS of Ukraine, 5 Murmanska Str., 02660, Kyiv, Ukraine
| |
Collapse
|
4
|
Engin E. GABA A receptor subtypes and benzodiazepine use, misuse, and abuse. Front Psychiatry 2023; 13:1060949. [PMID: 36713896 PMCID: PMC9879605 DOI: 10.3389/fpsyt.2022.1060949] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/29/2022] [Indexed: 01/14/2023] Open
Abstract
Benzodiazepines have been in use for over half a century. While they remain highly prescribed, their unfavorable side-effect profile and abuse liability motivated a search for alternatives. Most of these efforts focused on the development of benzodiazepine-like drugs that are selective for specific GABAA receptor subtypes. While there is ample evidence that subtype-selective GABAA receptor ligands have great potential for providing symptom relief without typical benzodiazepine side-effects, it is less clear whether subtype-selective targeting strategies can also reduce misuse and abuse potential. This review focuses on the three benzodiazepine properties that are relevant to the DSM-5-TR criteria for Sedative, Hypnotic, or Anxiolytic Use Disorder, namely, reinforcing properties of benzodiazepines, maladaptive behaviors related to benzodiazepine use, and benzodiazepine tolerance and dependence. We review existing evidence regarding the involvement of different GABAA receptor subtypes in each of these areas. The reviewed studies suggest that α1-containing GABAA receptors play an integral role in benzodiazepine-induced plasticity in reward-related brain areas and might be involved in the development of tolerance and dependence to benzodiazepines. However, a systematic comparison of the contributions of all benzodiazepine-sensitive GABAA receptors to these processes, a mechanistic understanding of how the positive modulation of each receptor subtype might contribute to the brain mechanisms underlying each of these processes, and a definitive answer to the question of whether specific chronic modulation of any given subtype would result in some or all of the benzodiazepine effects are currently lacking from the literature. Moreover, how non-selective benzodiazepines might lead to the maladaptive behaviors listed in DSM and how different GABAA receptor subtypes might be involved in the development of these behaviors remains unexplored. Considering the increasing burden of benzodiazepine abuse, the common practice of benzodiazepine misuse that leads to severe dependence, and the current efforts to generate side-effect free benzodiazepine alternatives, there is an urgent need for systematic, mechanistic research that provides a better understanding of the brain mechanisms of benzodiazepine misuse and abuse, including the involvement of specific GABAA receptor subtypes in these processes, to establish an informed foundation for preclinical and clinical efforts.
Collapse
Affiliation(s)
- Elif Engin
- Stress Neurobiology Laboratory, Division of Basic Neuroscience, McLean Hospital, Belmont, MA, United States
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
5
|
Chapman CA, Nuwer JL, Jacob TC. The Yin and Yang of GABAergic and Glutamatergic Synaptic Plasticity: Opposites in Balance by Crosstalking Mechanisms. Front Synaptic Neurosci 2022; 14:911020. [PMID: 35663370 PMCID: PMC9160301 DOI: 10.3389/fnsyn.2022.911020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 04/26/2022] [Indexed: 01/12/2023] Open
Abstract
Synaptic plasticity is a critical process that regulates neuronal activity by allowing neurons to adjust their synaptic strength in response to changes in activity. Despite the high proximity of excitatory glutamatergic and inhibitory GABAergic postsynaptic zones and their functional integration within dendritic regions, concurrent plasticity has historically been underassessed. Growing evidence for pathological disruptions in the excitation and inhibition (E/I) balance in neurological and neurodevelopmental disorders indicates the need for an improved, more "holistic" understanding of synaptic interplay. There continues to be a long-standing focus on the persistent strengthening of excitation (excitatory long-term potentiation; eLTP) and its role in learning and memory, although the importance of inhibitory long-term potentiation (iLTP) and depression (iLTD) has become increasingly apparent. Emerging evidence further points to a dynamic dialogue between excitatory and inhibitory synapses, but much remains to be understood regarding the mechanisms and extent of this exchange. In this mini-review, we explore the role calcium signaling and synaptic crosstalk play in regulating postsynaptic plasticity and neuronal excitability. We examine current knowledge on GABAergic and glutamatergic synapse responses to perturbances in activity, with a focus on postsynaptic plasticity induced by short-term pharmacological treatments which act to either enhance or reduce neuronal excitability via ionotropic receptor regulation in neuronal culture. To delve deeper into potential mechanisms of synaptic crosstalk, we discuss the influence of synaptic activity on key regulatory proteins, including kinases, phosphatases, and synaptic structural/scaffolding proteins. Finally, we briefly suggest avenues for future research to better understand the crosstalk between glutamatergic and GABAergic synapses.
Collapse
Affiliation(s)
| | | | - Tija C. Jacob
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
6
|
Elucidating Pathway and Anesthetic Mechanism of Action of Clove Oil Nanoformulations in Fish. Pharmaceutics 2022; 14:pharmaceutics14050919. [PMID: 35631505 PMCID: PMC9147060 DOI: 10.3390/pharmaceutics14050919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/01/2023] Open
Abstract
Clove oil (CO), an essential oil of Syzygium aromaticum, has been reported as an anesthetic for many fish species. However, its insoluble properties require a suitable delivery system for its application. In the present study, nanoformulations of CO as a nanoemulsion (CO-NE), a self-microemulsifying drug-delivery system (CO-SMEDDS), and a self-nanoemulsifying drug-delivery system (CO-SNEDDS) were prepared for delivering CO. Zebrafish were used as a fish model to investigate oil pathways. The result shows fluorescence spots of fluorescence-labeled CO accumulate on the gills, skin, and brain. All CO nanoformulations significantly increased penetration flux compared to CO ethanolic solution. Investigation of the anesthetic mechanism of action using a rat brain γ-aminobutyric acid subtype A (GABAA) receptor-binding test demonstrates that CO and its major compound, eugenol, modulate [3H]muscimol binding. CO-NE exhibited a concentration-dependent binding activity with an EC50 value of 175 µg/mL, significantly higher than CO solution in dimethyl sulfoxide. In conclusion, CO enters the fish through the skin and gills. The anesthetic mechanism of action of CO is based on modulation of [3H] muscimol binding to GABAA receptors. Among three nanoformulations tested, CO-NE is the most effective at increasing permeability and enhancing the receptor-binding activity of the oil.
Collapse
|
7
|
Buechele F, Baumann CR, Lees A, Deuschl G. Encouraging a Generation of Tremor Researchers: Macdonald Critchley's Paper on Essential Tremor. Mov Disord Clin Pract 2022; 9:38-41. [PMID: 35005063 PMCID: PMC8721832 DOI: 10.1002/mdc3.13333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Fabian Buechele
- Department of Neurology University Hospital Zürich, University of Zürich Zürich
| | - Christian R Baumann
- Department of Neurology University Hospital Zürich, University of Zürich Zürich
| | - Andrew Lees
- University College London; and Reta Lila Weston Institute of Neurological Studies London United Kingdom
| | - Günther Deuschl
- Department of Neurology University Hospital Zürich, University of Zürich Zürich.,Department of Neurology Universitätsklinikum Schleswig-Holstein, Kiel Campus, Christian-Albrechts University Kiel Germany
| |
Collapse
|
8
|
Belelli D, Hales TG, Lambert JJ, Luscher B, Olsen R, Peters JA, Rudolph U, Sieghart W. GABA A receptors in GtoPdb v.2021.3. IUPHAR/BPS GUIDE TO PHARMACOLOGY CITE 2021; 2021. [PMID: 35005623 DOI: 10.2218/gtopdb/f72/2021.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The GABAA receptor is a ligand-gated ion channel of the Cys-loop family that includes the nicotinic acetylcholine, 5-HT3 and strychnine-sensitive glycine receptors. GABAA receptor-mediated inhibition within the CNS occurs by fast synaptic transmission, sustained tonic inhibition and temporally intermediate events that have been termed 'GABAA, slow' [45]. GABAA receptors exist as pentamers of 4TM subunits that form an intrinsic anion selective channel. Sequences of six α, three β, three γ, one δ, three ρ, one ε, one π and one θ GABAA receptor subunits have been reported in mammals [278, 235, 236, 283]. The π-subunit is restricted to reproductive tissue. Alternatively spliced versions of many subunits exist (e.g. α4- and α6- (both not functional) α5-, β2-, β3- and γ2), along with RNA editing of the α3 subunit [71]. The three ρ-subunits, (ρ1-3) function as either homo- or hetero-oligomeric assemblies [359, 50]. Receptors formed from ρ-subunits, because of their distinctive pharmacology that includes insensitivity to bicuculline, benzodiazepines and barbiturates, have sometimes been termed GABAC receptors [359], but they are classified as GABA A receptors by NC-IUPHAR on the basis of structural and functional criteria [16, 235, 236]. Many GABAA receptor subtypes contain α-, β- and γ-subunits with the likely stoichiometry 2α.2β.1γ [168, 235]. It is thought that the majority of GABAA receptors harbour a single type of α- and β - subunit variant. The α1β2γ2 hetero-oligomer constitutes the largest population of GABAA receptors in the CNS, followed by the α2β3γ2 and α3β3γ2 isoforms. Receptors that incorporate the α4- α5-or α 6-subunit, or the β1-, γ1-, γ3-, δ-, ε- and θ-subunits, are less numerous, but they may nonetheless serve important functions. For example, extrasynaptically located receptors that contain α6- and δ-subunits in cerebellar granule cells, or an α4- and δ-subunit in dentate gyrus granule cells and thalamic neurones, mediate a tonic current that is important for neuronal excitability in response to ambient concentrations of GABA [209, 272, 83, 19, 288]. GABA binding occurs at the β+/α- subunit interface and the homologous γ+/α- subunits interface creates the benzodiazepine site. A second site for benzodiazepine binding has recently been postulated to occur at the α+/β- interface ([254]; reviewed by [282]). The particular α-and γ-subunit isoforms exhibit marked effects on recognition and/or efficacy at the benzodiazepine site. Thus, receptors incorporating either α4- or α6-subunits are not recognised by 'classical' benzodiazepines, such as flunitrazepam (but see [356]). The trafficking, cell surface expression, internalisation and function of GABAA receptors and their subunits are discussed in detail in several recent reviews [52, 140, 188, 316] but one point worthy of note is that receptors incorporating the γ2 subunit (except when associated with α5) cluster at the postsynaptic membrane (but may distribute dynamically between synaptic and extrasynaptic locations), whereas as those incorporating the δ subunit appear to be exclusively extrasynaptic. NC-IUPHAR [16, 235, 3, 2] class the GABAA receptors according to their subunit structure, pharmacology and receptor function. Currently, eleven native GABAA receptors are classed as conclusively identified (i.e., α1β2γ2, α1βγ2, α3βγ2, α4βγ2, α4β2δ, α4β3δ, α5βγ2, α6βγ2, α6β2δ, α6β3δ and ρ) with further receptor isoforms occurring with high probability, or only tentatively [235, 236]. It is beyond the scope of this Guide to discuss the pharmacology of individual GABAA receptor isoforms in detail; such information can be gleaned in the reviews [16, 95, 168, 173, 143, 278, 216, 235, 236] and [9, 10]. Agents that discriminate between α-subunit isoforms are noted in the table and additional agents that demonstrate selectivity between receptor isoforms, for example via β-subunit selectivity, are indicated in the text below. The distinctive agonist and antagonist pharmacology of ρ receptors is summarised in the table and additional aspects are reviewed in [359, 50, 145, 223]. Several high-resolution cryo-electron microscopy structures have been described in which the full-length human α1β3γ2L GABAA receptor in lipid nanodiscs is bound to the channel-blocker picrotoxin, the competitive antagonist bicuculline, the agonist GABA (γ-aminobutyric acid), and the classical benzodiazepines alprazolam and diazepam [198].
Collapse
|
9
|
Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABA A receptors in pain management: Promising targets for novel analgesics. Neuropharmacology 2021; 195:108675. [PMID: 34153311 DOI: 10.1016/j.neuropharm.2021.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Communication between nerve cells depends on the balance between excitatory and inhibitory circuits. GABA, the major inhibitory neurotransmitter, regulates this balance and insufficient GABAergic activity is associated with numerous neuropathological disorders including pain. Of the various GABAA receptor subtypes, the δ-containing receptors are particularly interesting drug targets in management of chronic pain. These receptors are pentameric ligand-gated ion channels composed of α, β and δ subunits and can be activated by ambient levels of GABA to generate tonic conductance. However, only a few ligands preferentially targeting δ-containing GABAA receptors have so far been identified, limiting both pharmacological understanding and drug-discovery efforts, and more importantly, understanding of how they affect pain pathways. Here, we systemically review and discuss the known drugs and ligands with analgesic potential targeting δ-containing GABAA receptors and further integrate the biochemical nature of the receptors with clinical perspectives in pain that might generate interest among researchers and clinical physicians to encourage analgesic discovery efforts leading to more efficient therapies.
Collapse
Affiliation(s)
- Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ali Saad Kusay
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tian Jiang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mary Chebib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
10
|
Benkherouf AY, Eerola K, Soini SL, Uusi-Oukari M. Humulone Modulation of GABA A Receptors and Its Role in Hops Sleep-Promoting Activity. Front Neurosci 2020; 14:594708. [PMID: 33177986 PMCID: PMC7591795 DOI: 10.3389/fnins.2020.594708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 09/24/2020] [Indexed: 12/12/2022] Open
Abstract
Humulus lupulus L. (hops) is a major constituent of beer. It exhibits neuroactive properties that make it useful as a sleeping aid. These effects are hypothesized to be mediated by an increase in GABAA receptor function. In the quest to uncover the constituents responsible for the sedative and hypnotic properties of hops, recent evidence revealed that humulone, a prenylated phloroglucinol derivative comprising 35-70% of hops alpha acids, may act as a positive modulator of GABAA receptors at low micromolar concentrations. This raises the question whether humulone plays a key role in hops pharmacological activity and potentially interacts with other modulators such as ethanol, bringing further enhancement in GABAA receptor-mediated effects of beer. Here we assessed electrophysiologically the positive modulatory activity of humulone on recombinant GABAA receptors expressed in HEK293 cells. We then examined humulone interactions with other active hops compounds and ethanol on GABA-induced displacement of [3H]EBOB binding to native GABAA receptors in rat brain membranes. Using BALB/c mice, we assessed humulone's hypnotic behavior with pentobarbital- and ethanol-induced sleep as well as sedation in spontaneous locomotion with open field test. We demonstrated for the first time that humulone potentiates GABA-induced currents in α1β3γ2 receptors. In radioligand binding to native GABAA receptors, the inclusion of ethanol enhanced humulone modulation of GABA-induced displacement of [3H]EBOB binding in rat forebrain and cerebellum as it produced a leftward shift in [3H]EBOB displacement curves. Moreover, the additive modulatory effects between humulone, isoxanthohumol and 6-prenylnaringenin were evident and corresponded to the sum of [3H]EBOB displacement by each compound individually. In behavioral tests, humulone shortened sleep onset and increased the duration of sleep induced by pentobarbital and decreased the spontaneous locomotion in open field at 20 mg/kg (i.p.). Despite the absence of humulone effects on ethanol-induced sleep onset, sleep duration was increased dose-dependently down to 10 mg/kg (i.p.). Our findings confirmed humulone's positive allosteric modulation of GABAA receptor function and displayed its sedative and hypnotic behavior. Humulone modulation can be potentially enhanced by ethanol and hops modulators suggesting a probable enhancement in the intoxicating effects of ethanol in hops-enriched beer.
Collapse
Affiliation(s)
| | | | | | - Mikko Uusi-Oukari
- Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Darnieder LM, Melón LC, Do T, Walton NL, Miczek KA, Maguire JL. Female-specific decreases in alcohol binge-like drinking resulting from GABA A receptor delta-subunit knockdown in the VTA. Sci Rep 2019; 9:8102. [PMID: 31147611 PMCID: PMC6542821 DOI: 10.1038/s41598-019-44286-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 05/08/2019] [Indexed: 02/07/2023] Open
Abstract
Binge drinking is short-term drinking that achieves blood alcohol levels of 0.08 g/dl or above. It exhibits well-established sex differences in GABAergic inhibitory neurotransmission, including extrasynaptic δ subunit-containing GABAA receptors (δ-GABAARs) that mediate tonic inhibition, or synaptic γ2-containing GABAARs which underlie fast, synaptic, phasic inhibition have been implicated in sex differences in binge drinking. Ovarian hormones regulate δ-GABAARs, further implicating these receptors in potential sex differences. Here, we explored the contribution of extrasynaptic δ-GABAARs to male and female binge-like drinking in a critical area of mesolimbic circuitry-the ventral tegmental area (VTA). Quantitative PCR revealed higher Gabrd transcript levels and larger tonic currents in the VTA of females compared to males. In contrast, male and female Gabrg2 transcript levels and measures of phasic inhibition were equivalent. Intra-VTA infusion of AAV-Cre-GFP in floxed Gabrd mice downregulated δ-GABAARs and decreased binge-like drinking in females. There was no significant difference in either male or female mice after GABAAR γ2 subunit reduction in the VTA following AAV-Cre-GFP infusion in floxed Gabrg2 mice. Collectively, these findings suggest sex differences and GABAAR subunit specificity in alcohol intake.
Collapse
Affiliation(s)
- L M Darnieder
- Graduate Program in Neuroscience, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, 02111, USA
| | - L C Melón
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA
| | - T Do
- Northeastern University, Bouvé College of Health Sciences, Boston, MA, 02115, USA
| | - N L Walton
- University of Massachusetts Boston, Honors College of Nursing and Health Sciences, Boston, MA, 02125, USA
| | - K A Miczek
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA
- Tufts University, Psychology Department, Medford, MA, 02155, USA
| | - J L Maguire
- Tufts University School of Medicine, Department of Neuroscience, Boston, MA, 02111, USA.
| |
Collapse
|
12
|
Olsen RW. GABA A receptor: Positive and negative allosteric modulators. Neuropharmacology 2018; 136:10-22. [PMID: 29407219 PMCID: PMC6027637 DOI: 10.1016/j.neuropharm.2018.01.036] [Citation(s) in RCA: 197] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 12/11/2022]
Abstract
gamma-Aminobutyric acid (GABA)-mediated inhibitory neurotransmission and the gene products involved were discovered during the mid-twentieth century. Historically, myriad existing nervous system drugs act as positive and negative allosteric modulators of these proteins, making GABA a major component of modern neuropharmacology, and suggesting that many potential drugs will be found that share these targets. Although some of these drugs act on proteins involved in synthesis, degradation, and membrane transport of GABA, the GABA receptors Type A (GABAAR) and Type B (GABABR) are the targets of the great majority of GABAergic drugs. This discovery is due in no small part to Professor Norman Bowery. Whereas the topic of GABABR is appropriately emphasized in this special issue, Norman Bowery also made many insights into GABAAR pharmacology, the topic of this article. GABAAR are members of the ligand-gated ion channel receptor superfamily, a chloride channel family of a dozen or more heteropentameric subtypes containing 19 possible different subunits. These subtypes show different brain regional and subcellular localization, age-dependent expression, and potential for plastic changes with experience including drug exposure. Not only are GABAAR the targets of agonist depressants and antagonist convulsants, but most GABAAR drugs act at other (allosteric) binding sites on the GABAAR proteins. Some anxiolytic and sedative drugs, like benzodiazepine and related drugs, act on GABAAR subtype-dependent extracellular domain sites. General anesthetics including alcohols and neurosteroids act at GABAAR subunit-interface trans-membrane sites. Ethanol at high anesthetic doses acts on GABAAR subtype-dependent trans-membrane domain sites. Ethanol at low intoxicating doses acts at GABAAR subtype-dependent extracellular domain sites. Thus GABAAR subtypes possess pharmacologically specific receptor binding sites for a large group of different chemical classes of clinically important neuropharmacological agents. This article is part of the "Special Issue Dedicated to Norman G. Bowery".
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| |
Collapse
|
13
|
Koulentaki M, Kouroumalis E. GABA A receptor polymorphisms in alcohol use disorder in the GWAS era. Psychopharmacology (Berl) 2018; 235:1845-1865. [PMID: 29721579 DOI: 10.1007/s00213-018-4918-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing, neuro-psychiatric illness of high prevalence and with a serious public health impact worldwide. It is complex and polygenic, with a heritability of about 50%, and influenced by environmental causal heterogeneity. Risk factors associated with its etiology have a genetic component. GABA (γ-aminobutyric acid) is a major inhibitory neurotransmitter in mammalian brain. GABAA receptors are believed to mediate some of the physiological and behavioral actions of alcohol. In this critical review, relevant genetic terms and type and methodology of the genetic studies are briefly explained. Postulated candidate genes that encode subunits of GABAA receptors, with all the reported SNPs, are presented. Genetic studies and meta-analyses examining polymorphisms of the GABAA receptor and their association with AUD predisposition are presented. The data are critically examined with reference to recent GWAS studies that failed to show relations between GABAA receptors and AUD. Restrictions and perspectives of the different findings are discussed.
Collapse
Affiliation(s)
- Mairi Koulentaki
- Alcohology Research Laboratory, Medical School, University of Crete, 71500, Heraklion, Crete, Greece.,Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece
| | - Elias Kouroumalis
- Department of Gastroenterology, University Hospital Heraklion, 71500, Heraklion, Crete, Greece.
| |
Collapse
|
14
|
Barkley-Levenson AM, Lagarda FA, Palmer AA. Glyoxalase 1 (GLO1) Inhibition or Genetic Overexpression Does Not Alter Ethanol's Locomotor Effects: Implications for GLO1 as a Therapeutic Target in Alcohol Use Disorders. Alcohol Clin Exp Res 2018. [PMID: 29532486 DOI: 10.1111/acer.13623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Glyoxalase 1 (GLO1) is an enzyme that metabolizes methylglyoxal (MG), which is a competitive partial agonist at GABAA receptors. Inhibition of GLO1 increases concentrations of MG in the brain and decreases binge-like ethanol (EtOH) drinking. This study assessed whether inhibition of GLO1, or genetic overexpression of Glo1, would also alter the locomotor effects of EtOH, which might explain reduced EtOH consumption following GLO1 inhibition. We used the prototypical GABAA receptor agonist muscimol as a positive control. METHODS Male C57BL/6J mice were pretreated with either the GLO1 inhibitor S-bromobenzylglutathione cyclopentyl diester (pBBG; 7.5 mg/kg; Experiment 1) or muscimol (0.75 mg/kg; Experiment 2), or their corresponding vehicle. We then determined whether locomotor response to a range of EtOH doses (0, 0.5, 1.0, 1.5, 2.0, and 2.5) was altered by either pBBG or muscimol pretreatment. We also examined the locomotor response to a range of EtOH doses in FVB/NJ wild-type and transgenic Glo1 overexpressing mice (Experiment 3). Anxiety-like behavior (time spent in the center of the open field) was assessed in all 3 experiments. RESULTS The EtOH dose-response curve was not altered by pretreatment with pBBG or by transgenic overexpression of Glo1. In contrast, muscimol blunted locomotor stimulation at low EtOH doses and potentiated locomotor sedation at higher EtOH doses. No drug or genotype differences were seen in anxiety-like behavior after EtOH treatment. CONCLUSIONS The dose of pBBG used in this study is within the effective range shown previously to reduce EtOH drinking. Glo1 overexpression has been previously shown to increase EtOH drinking. However, neither manipulation altered the dose-response curve for EtOH's locomotor effects, whereas muscimol appeared to enhance the locomotor sedative effects of EtOH. The present data demonstrate that reduced EtOH drinking caused by GLO1 inhibition is not due to potentiation of EtOH's stimulant or depressant effects.
Collapse
Affiliation(s)
| | - Frances A Lagarda
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Abraham A Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, California.,Institute for Genomic Medicine, University of California San Diego, La Jolla, California
| |
Collapse
|
15
|
García-Martín E, Ramos MI, Cornejo-García JA, Galván S, Perkins JR, Rodríguez-Santos L, Alonso-Navarro H, Jiménez-Jiménez FJ, Agúndez JAG. Missense Gamma-Aminobutyric Acid Receptor Polymorphisms Are Associated with Reaction Time, Motor Time, and Ethanol Effects in Vivo. Front Cell Neurosci 2018; 12:10. [PMID: 29445327 PMCID: PMC5797743 DOI: 10.3389/fncel.2018.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/08/2018] [Indexed: 01/15/2023] Open
Abstract
Background: The Gamma-aminobutyric acid type A receptor (GABA-A receptor) is affected by ethanol concentrations equivalent to those reached during social drinking. At these concentrations, ethanol usually causes impairment in reaction and motor times in most, but not all, individuals. Objectives: To study the effect of GABA-A receptor variability in motor and reaction times, and the effect of low ethanol doses. Methods: Two hundred and fifty healthy subjects received one single dose of 0.5 g/Kg ethanol per os. Reaction and motor times were determined before ethanol challenge (basal), and when participants reached peak ethanol concentrations. We analyzed all common missense polymorphisms described in the 19 genes coding for the GABA-A receptor subunits by using TaqMan probes. Results: The GABRA6 rs4454083 T/C polymorphisms were related to motor times, with individuals carrying the C/C genotype having faster motor times, both, at basal and at peak ethanol concentrations. The GABRA4 rs2229940 T/T genotype was associated to faster reaction times and with lower ethanol effects, determined as the difference between basal reaction time and reaction time at peak concentrations. All these associations remained significant after correction for multiple comparisons. No significant associations were observed for the common missense SNPs GABRB3 rs12910925, GABRG2 rs211035, GABRE rs1139916, GABRP rs1063310, GABRQ rs3810651, GABRR1 rs12200969 or rs1186902, GABRR2 rs282129, and GABRR3 rs832032. Conclusions: This study provides novel information supporting a role of missense GABA-A receptor polymorphisms in reaction time, motor time and effects of low ethanol doses in vivo.
Collapse
Affiliation(s)
- Elena García-Martín
- Department of Pharmacology, Universidad de Extremadura, Cáceres, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain
| | - María I Ramos
- Department of Psychiatry, Universidad de Extremadura, Badajoz, Spain
| | - José A Cornejo-García
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Research Laboratory, Instituto de Investigación Biomédica de Málaga, Regional University Hospital of Malaga, UMA, Malaga, Spain
| | - Segismundo Galván
- Department of Pharmacology, Universidad de Extremadura, Cáceres, Spain
| | - James R Perkins
- ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain.,Research Laboratory, Instituto de Investigación Biomédica de Málaga, Regional University Hospital of Malaga, UMA, Malaga, Spain
| | | | | | | | - José A G Agúndez
- Department of Pharmacology, Universidad de Extremadura, Cáceres, Spain.,ARADyAL Network, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
16
|
Popoola DO, Cameron NM. Maternal care-related differences in males and females rats' sensitivity to ethanol and the associations between the GABAergic system and steroids in males. Dev Psychobiol 2018; 60:380-394. [PMID: 29442358 DOI: 10.1002/dev.21607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 11/20/2017] [Indexed: 02/06/2023]
Abstract
This study investigated the effect of maternal care on adolescent ethanol consumption, sensitivity to ethanol-induced hypnosis, as well as gonadal hormones and γ-aminobutyric acid type-A (GABAA ) systems. Long Evans rat dams were categorized by maternal licking/grooming (LG) frequency into High- and Low-LG mothers. Both female and male offspring from Low-LG rats demonstrated a greater sensitivity to ethanol-induced hypnosis in the loss-of-righting-reflex test at ethanol doses of 3.0 and 3.5 g/kg during late-adolescence (postnatal Day 50) but not at mid-adolescence (postnatal Day 42). However, we found no effect of maternal care on consumption of a 5% ethanol solution in a two-bottle choice test. We further investigated the association between the observed variations in sensitivity to ethanol-induced hypnosis and baseline hormonal levels in males. In male offspring from Low-LG mothers compared to High-LG mothers, baseline plasma corticosterone and progesterone levels were higher. GABAA α1 and δ subunit expressions were also higher in the cerebral cortex of Low-LG males but lower in the cerebellar synaptosomal fraction. Early environmental influences on adolescent sensitivity to ethanol-induced hypnosis, consumption, and preference may be mediated by gonadal hormones and possibly through GABAergic functions.
Collapse
Affiliation(s)
- Daniel O Popoola
- Department of Psychology, Center for Developmental and Behavioral Neuroscience, Binghamton University, Binghamton, New York.,Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, New York.,Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions, Research Institute on Addictions, University of Buffalo, Buffalo, New York
| | - Nicole M Cameron
- Department of Psychology, Center for Developmental and Behavioral Neuroscience, Binghamton University, Binghamton, New York.,Developmental Exposure Alcohol Research Center, Binghamton University, Binghamton, New York
| |
Collapse
|
17
|
Çökmüş FP, Özmen E, Alkin T, Batir MB, Çam FS. Evaluation of serum MicroRNA expression profiles in patients with panic disorder. PSYCHIAT CLIN PSYCH 2018. [DOI: 10.1080/24750573.2018.1429844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
| | - Erol Özmen
- Department of Psychiatry, Manisa Celal Bayar University Hospital, Manisa, Turkey
| | - Tunç Alkin
- Department of Psychiatry, 9 Eylül University Hospital, İzmir, Turkey
| | - Muhammet Burak Batir
- Department of Medical Genetic, Manisa Celal Bayar University Hospital, Manisa, Turkey
| | - Fethi Sırrı Çam
- Department of Medical Genetic, Manisa Celal Bayar University Hospital, Manisa, Turkey
| |
Collapse
|
18
|
Cuzon Carlson VC. GABA and Glutamate Synaptic Coadaptations to Chronic Ethanol in the Striatum. Handb Exp Pharmacol 2018; 248:79-112. [PMID: 29460153 DOI: 10.1007/164_2018_98] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Alcohol (ethanol) is a widely used and abused drug with approximately 90% of adults over the age of 18 consuming alcohol at some point in their lifetime. Alcohol exerts its actions through multiple neurotransmitter systems within the brain, most notably the GABAergic and glutamatergic systems. Alcohol's actions on GABAergic and glutamatergic neurotransmission have been suggested to underlie the acute behavioral effects of ethanol. The striatum is the primary input nucleus of the basal ganglia that plays a role in motor and reward systems. The effect of ethanol on GABAergic and glutamatergic neurotransmission within striatal circuitry has been thought to underlie ethanol taking, seeking, withdrawal and relapse. This chapter reviews the effects of ethanol on GABAergic and glutamatergic transmission, highlighting the dynamic changes in striatal circuitry from acute to chronic exposure and withdrawal.
Collapse
|
19
|
Chandler CM, Overton JS, Rüedi-Bettschen D, Platt DM. GABA A Receptor Subtype Mechanisms and the Abuse-Related Effects of Ethanol: Genetic and Pharmacological Evidence. Handb Exp Pharmacol 2018; 248:3-27. [PMID: 29204713 DOI: 10.1007/164_2017_80] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ethanol's reinforcing and subjective effects, as well as its ability to induce relapse, are powerful factors contributing to its widespread use and abuse. A significant mediator of these behavioral effects is the GABAA receptor system. GABAA receptors are the target for γ-aminobutyric acid (GABA), the major inhibitory neurotransmitter in the CNS. Structurally, they are pentameric, transmembrane chloride ion channels comprised of subunits from at least eight different families of distinct proteins. The contribution of different GABAA subunits to ethanol's diverse abuse-related effects is not clear and remains an area of research focus. This chapter details the clinical and preclinical findings supporting roles for different α, β, γ, and δ subunit-containing GABAA receptors in ethanol's reinforcing, subjective/discriminative stimulus, and relapse-inducing effects. The reinforcing properties of ethanol have been studied the most systematically, and convergent preclinical evidence suggests a key role for the α5 subunit in those effects. Regarding ethanol's subjective/discriminative stimulus effects, clinical and genetic findings support a primary role for the α2 subunit, whereas preclinical evidence implicates the α5 subunit. At present, too few studies investigating ethanol relapse exist to make any solid conclusions regarding the role of specific GABAA subunits in this abuse-related effect.
Collapse
Affiliation(s)
- Cassie M Chandler
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA
| | - John S Overton
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Daniela Rüedi-Bettschen
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA
| | - Donna M Platt
- Graduate Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, USA.
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
20
|
Amorim RR, Silva PF, Luchiari AC. Effects of Alcohol on Inhibitory Avoidance Learning in Zebrafish (Danio rerio). Zebrafish 2017; 14:430-437. [DOI: 10.1089/zeb.2017.1438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
| | | | - Ana Carolina Luchiari
- Departamento de Fisiologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
21
|
Sharma S, Ceballos N. Predictors of Psychological and Physiological Stress during Inpatient Treatment for Alcohol Use Disorder. ALCOHOLISM TREATMENT QUARTERLY 2016. [DOI: 10.1080/07347324.2016.1217710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Heusser SA, Yoluk Ö, Klement G, Riederer EA, Lindahl E, Howard RJ. Functional characterization of neurotransmitter activation and modulation in a nematode model ligand-gated ion channel. J Neurochem 2016; 138:243-53. [PMID: 27102368 DOI: 10.1111/jnc.13644] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 03/21/2016] [Accepted: 04/07/2016] [Indexed: 11/29/2022]
Abstract
The superfamily of pentameric ligand-gated ion channels includes neurotransmitter receptors that mediate fast synaptic transmission in vertebrates, and are targets for drugs including alcohols, anesthetics, benzodiazepines, and anticonvulsants. However, the mechanisms of ion channel opening, gating, and modulation in these receptors leave many open questions, despite their pharmacological importance. Subtle conformational changes in both the extracellular and transmembrane domains are likely to influence channel opening, but have been difficult to characterize given the limited structural data available for human membrane proteins. Recent crystal structures of a modified Caenorhabditis elegans glutamate-gated chloride channel (GluCl) in multiple states offer an appealing model system for structure-function studies. However, the pharmacology of the crystallographic GluCl construct is not well established. To establish the functional relevance of this system, we used two-electrode voltage-clamp electrophysiology in Xenopus oocytes to characterize activation of crystallographic and native-like GluCl constructs by L-glutamate and ivermectin. We also tested modulation by ethanol and other anesthetic agents, and used site-directed mutagenesis to explore the role of a region of Loop F which was implicated in ligand gating by molecular dynamics simulations. Our findings indicate that the crystallographic construct functionally models concentration-dependent agonism and allosteric modulation of pharmacologically relevant receptors. Specific substitutions at residue Leu174 in loop F altered direct L-glutamate activation, consistent with computational evidence for this region's role in ligand binding. These insights demonstrate conservation of activation and modulation properties in this receptor family, and establish a framework for GluCl as a model system, including new possibilities for drug discovery. In this study, we elucidate the validity of a modified glutamate-gated chloride channel (GluClcryst ) as a structurally accessible model for GABAA receptors. In contrast to native-like controls, GluClcryst exhibits classical activation by its neurotransmitter ligand L-glutamate. The modified channel is also sensitive to allosteric modulators associated with human GABAA receptors, and to site-directed mutations predicted to alter channel opening.
Collapse
Affiliation(s)
- Stephanie A Heusser
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Özge Yoluk
- Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Göran Klement
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden
| | - Erika A Riederer
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, USA
| | - Erik Lindahl
- Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Stockholm, Sweden.,Swedish e-Science Research Center, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY, USA
| |
Collapse
|
23
|
Abstract
This review centers on the discoveries made during more than six decades of neuroscience research on the role of gamma-amino-butyric acid (GABA) as neurotransmitter. In doing so, special emphasis is directed to the significant involvement of Canadian scientists in these advances. Starting with the early studies that established GABA as an inhibitory neurotransmitter at central synapses, we summarize the results pointing at the GABA receptor as a drug target as well as more recent evidence showing that GABAA receptor signaling plays a surprisingly active role in neuronal network synchronization, both during development and in the adult brain. Finally, we briefly address the involvement of GABA in neurological conditions that encompass epileptic disorders and mental retardation.
Collapse
|
24
|
Dixon CL, Zhang Y, Lynch JW. Generation of Functional Inhibitory Synapses Incorporating Defined Combinations of GABA(A) or Glycine Receptor Subunits. Front Mol Neurosci 2015; 8:80. [PMID: 26778954 PMCID: PMC4688394 DOI: 10.3389/fnmol.2015.00080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/07/2015] [Indexed: 11/13/2022] Open
Abstract
Fast inhibitory neurotransmission in the brain is mediated by wide range of GABAA receptor (GABAAR) and glycine receptor (GlyR) isoforms, each with different physiological and pharmacological properties. Because multiple isoforms are expressed simultaneously in most neurons, it is difficult to define the properties of individual isoforms under synaptic stimulation conditions in vivo. Although recombinant expression systems permit the expression of individual isoforms in isolation, they require exogenous agonist application which cannot mimic the dynamic neurotransmitter profile characteristic of native synapses. We describe a neuron-HEK293 cell co-culture technique for generating inhibitory synapses incorporating defined combinations of GABAAR or GlyR subunits. Primary neuronal cultures, prepared from embryonic rat cerebral cortex or spinal cord, are used to provide presynaptic GABAergic and glycinergic terminals, respectively. When the cultures are mature, HEK293 cells expressing the subunits of interest plus neuroligin 2A are plated onto the neurons, which rapidly form synapses onto HEK293 cells. Patch clamp electrophysiology is then used to analyze the physiological and pharmacological properties of the inhibitory postsynaptic currents mediated by the recombinant receptors. The method is suitable for investigating the kinetic properties or the effects of drugs on inhibitory postsynaptic currents mediated by defined GABAAR or GlyR isoforms of interest, the effects of hereditary disease mutations on the formation and function of both types of synapses, and synaptogenesis and synaptic clustering mechanisms. The entire cell preparation procedure takes 2-5 weeks.
Collapse
Affiliation(s)
- Christine L Dixon
- Queensland Brain Institute, University of Queensland Brisbane, QLD, Australia
| | - Yan Zhang
- Queensland Brain Institute, University of Queensland Brisbane, QLD, Australia
| | - Joseph W Lynch
- Queensland Brain Institute, University of QueenslandBrisbane, QLD, Australia; School of Biomedical Sciences, University of QueenslandBrisbane, QLD, Australia
| |
Collapse
|
25
|
Thakkar MM, Sharma R, Sahota P. Alcohol disrupts sleep homeostasis. Alcohol 2015; 49:299-310. [PMID: 25499829 DOI: 10.1016/j.alcohol.2014.07.019] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 01/14/2023]
Abstract
Alcohol is a potent somnogen and one of the most commonly used "over the counter" sleep aids. In healthy non-alcoholics, acute alcohol decreases sleep latency, consolidates and increases the quality (delta power) and quantity of NREM sleep during the first half of the night. However, sleep is disrupted during the second half. Alcoholics, both during drinking periods and during abstinences, suffer from a multitude of sleep disruptions manifested by profound insomnia, excessive daytime sleepiness, and altered sleep architecture. Furthermore, subjective and objective indicators of sleep disturbances are predictors of relapse. Finally, within the USA, it is estimated that societal costs of alcohol-related sleep disorders exceeds $18 billion. Thus, although alcohol-associated sleep problems have significant economic and clinical consequences, very little is known about how and where alcohol acts to affect sleep. In this review, we have described our attempts to unravel the mechanism of alcohol-induced sleep disruptions. We have conducted a series of experiments using two different species, rats and mice, as animal models. We performed microdialysis, immunohistochemical, pharmacological, sleep deprivation and lesion studies which suggest that the sleep-promoting effects of alcohol may be mediated via alcohol's action on the mediators of sleep homeostasis: adenosine (AD) and the wake-promoting cholinergic neurons of the basal forebrain (BF). Alcohol, via its action on AD uptake, increases extracellular AD resulting in the inhibition of BF wake-promoting neurons. Since binge alcohol consumption is a highly prevalent pattern of alcohol consumption and disrupts sleep, we examined the effects of binge drinking on sleep-wakefulness. Our results suggest that disrupted sleep homeostasis may be the primary cause of sleep disruption observed following binge drinking. Finally, we have also shown that sleep disruptions observed during acute withdrawal, are caused due to impaired sleep homeostasis. In conclusion, we suggest that alcohol may disrupt sleep homeostasis to cause sleep disruptions.
Collapse
Affiliation(s)
- Mahesh M Thakkar
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA.
| | - Rishi Sharma
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA
| | - Pradeep Sahota
- Harry S. Truman Memorial Veterans Hospital, Columbia, MO 65201, USA; Department of Neurology, University of Missouri, Columbia, MO 65201, USA
| |
Collapse
|
26
|
Roche DJ, Ray LA. Subjective response as a consideration in the pharmacogenetics of alcoholism treatment. Pharmacogenomics 2015; 16:721-36. [PMID: 25950242 DOI: 10.2217/pgs.14.143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Currently available pharmacological treatments for alcoholism have modest efficacy and high individual variability in treatment outcomes, both of which have been partially attributed to genetic factors. One path to reducing the variability and improving the efficacy associated with these pharmacotherapies may be to identify overlapping genetic contributions to individual differences in both subjective responses to alcohol and alcoholism pharmacotherapy outcomes. As acute subjective response to alcohol is highly predictive of future alcohol related problems, identifying such shared genetic mechanisms may inform the development of personalized treatments that can effectively target converging pathophysiological mechanisms that convey risk for alcoholism. The focus of this review is to revisit the association between subjective response to alcohol and the etiology of alcoholism while also describing genetic contributions to this relationship, discuss potential pharmacogenetic approaches to target subjective response to alcohol in order to improve the treatment of alcoholism and examine conceptual and methodological issues associated with these topics, and outline future approaches to overcome these challenges.
Collapse
Affiliation(s)
- Daniel Jo Roche
- 1Department of Psychology, University of California, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
| | - Lara A Ray
- 1Department of Psychology, University of California, 1285 Franz Hall, Box 951563, Los Angeles, CA 90095-1563, USA
| |
Collapse
|
27
|
Alexander SPH, Benson HE, Faccenda E, Pawson AJ, Sharman JL, Spedding M, Peters JA, Harmar AJ. The Concise Guide to PHARMACOLOGY 2013/14: ligand-gated ion channels. Br J Pharmacol 2014; 170:1582-606. [PMID: 24528238 PMCID: PMC3892288 DOI: 10.1111/bph.12446] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The Concise Guide to PHARMACOLOGY 2013/14 provides concise overviews of the key properties of over 2000 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.12444/full. Ligand-gated ion channels are one of the seven major pharmacological targets into which the Guide is divided, with the others being G protein-coupled receptors, ion channels, catalytic receptors, nuclear hormone receptors, transporters and enzymes. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. A new landscape format has easy to use tables comparing related targets. It is a condensed version of material contemporary to late 2013, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in previous Guides to Receptors and Channels. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and the Guide to Receptors and Channels, providing a permanent, citable, point-in-time record that will survive database updates.
Collapse
Affiliation(s)
- Stephen P H Alexander
- School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Olsen RW. Analysis of γ-aminobutyric acid (GABA) type A receptor subtypes using isosteric and allosteric ligands. Neurochem Res 2014; 39:1924-41. [PMID: 25015397 DOI: 10.1007/s11064-014-1382-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/30/2014] [Accepted: 07/02/2014] [Indexed: 11/30/2022]
Abstract
The GABAA receptors (GABAARs) play an important role in inhibitory transmission in the brain. The GABAARs could be identified using a medicinal chemistry approach to characterize with a series of chemical structural analogues, some identified in nature, some synthesized, to control the structural conformational rigidity/flexibility so as to define the 'receptor-specific' GABA agonist ligand structure. In addition to the isosteric site ligands, these ligand-gated chloride ion channel proteins exhibited modulation by several chemotypes of allosteric ligands, that help define structure and function. The channel blocker picrotoxin identified a noncompetitive channel blocker site in GABAARs. This ligand site is located in the transmembrane channel pore, whereas the GABA agonist site is in the extracellular domain at subunit interfaces, a site useful for low energy coupled conformational changes of the functional channel domain. Also in the trans-membrane domain are allosteric modulatory ligand sites, mostly positive, for diverse chemotypes with general anesthetic efficacy, namely, the volatile and intravenous agents: barbiturates, etomidate, propofol, long-chain alcohols, and neurosteroids. The last are apparent endogenous positive allosteric modulators of GABAARs. These binding sites depend on the GABAAR heteropentameric subunit composition, i.e., subtypes. Two classes of pharmacologically very important allosteric modulatory ligand binding site reside in the extracellular domain at modified agonist sites at other subunit interfaces: the benzodiazepine site, and the low-dose ethanol site. The benzodiazepine site is specific for certain subunit combination subtypes, mainly synaptically localized. In contrast, the low-dose (high affinity) ethanol site(s) is found at a modified benzodiazepine site on different, extrasynaptic, subtypes.
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Room CHS 23-120, 650 Young Drive South, Los Angeles, CA, 90095-1735, USA,
| |
Collapse
|
29
|
Silveri MM. GABAergic contributions to alcohol responsivity during adolescence: insights from preclinical and clinical studies. Pharmacol Ther 2014; 143:197-216. [PMID: 24631274 DOI: 10.1016/j.pharmthera.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 02/28/2014] [Indexed: 01/04/2023]
Abstract
There is a considerable body of literature demonstrating that adolescence is a unique age period, which includes rapid and dramatic maturation of behavioral, cognitive, hormonal and neurobiological systems. Most notably, adolescence is also a period of unique responsiveness to alcohol effects, with both hyposensitivity and hypersensitivity observed to the various effects of alcohol. Multiple neurotransmitter systems are undergoing fine-tuning during this critical period of brain development, including those that contribute to the rewarding effects of drugs of abuse. The role of developmental maturation of the γ-amino-butyric acid (GABA) system, however, has received less attention in contributing to age-specific alcohol sensitivities. This review integrates GABA findings from human magnetic resonance spectroscopy studies as they may translate to understanding adolescent-specific responsiveness to alcohol effects. Better understanding of the vulnerability of the GABA system both during adolescent development, and in psychiatric conditions that include alcohol dependence, could point to a putative mechanism, boosting brain GABA, that may have increased effectiveness for treating alcohol use disorders.
Collapse
Affiliation(s)
- Marisa M Silveri
- Neurodevelopmental Laboratory on Addictions and Mental Health, McLean Hospital, Belmont, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
30
|
Howard RJ, Trudell JR, Harris RA. Seeking structural specificity: direct modulation of pentameric ligand-gated ion channels by alcohols and general anesthetics. Pharmacol Rev 2014; 66:396-412. [PMID: 24515646 PMCID: PMC3973611 DOI: 10.1124/pr.113.007468] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Alcohols and other anesthetic agents dramatically alter neurologic function in a wide range of organisms, yet their molecular sites of action remain poorly characterized. Pentameric ligand-gated ion channels, long implicated in important direct effects of alcohol and anesthetic binding, have recently been illuminated in renewed detail thanks to the determination of atomic-resolution structures of several family members from lower organisms. These structures provide valuable models for understanding and developing anesthetic agents and for allosteric modulation in general. This review surveys progress in this field from function to structure and back again, outlining early evidence for relevant modulation of pentameric ligand-gated ion channels and the development of early structural models for ion channel function and modulation. We highlight insights and challenges provided by recent crystal structures and resulting simulations, as well as opportunities for translation of these newly detailed models back to behavior and therapy.
Collapse
Affiliation(s)
- Rebecca J Howard
- Department of Chemistry, Skidmore College, Saratoga Springs, NY 12866.
| | | | | |
Collapse
|
31
|
Rae CD, Davidson JE, Maher AD, Rowlands BD, Kashem MA, Nasrallah FA, Rallapalli SK, Cook JM, Balcar VJ. Ethanol, not detectably metabolized in brain, significantly reduces brain metabolism, probably via action at specific GABA(A) receptors and has measureable metabolic effects at very low concentrations. J Neurochem 2013; 129:304-14. [PMID: 24313287 DOI: 10.1111/jnc.12634] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 11/28/2022]
Abstract
Ethanol is a known neuromodulatory agent with reported actions at a range of neurotransmitter receptors. Here, we measured the effect of alcohol on metabolism of [3-¹³C]pyruvate in the adult Guinea pig brain cortical tissue slice and compared the outcomes to those from a library of ligands active in the GABAergic system as well as studying the metabolic fate of [1,2-¹³C]ethanol. Analyses of metabolic profile clusters suggest that the significant reductions in metabolism induced by ethanol (10, 30 and 60 mM) are via action at neurotransmitter receptors, particularly α4β3δ receptors, whereas very low concentrations of ethanol may produce metabolic responses owing to release of GABA via GABA transporter 1 (GAT1) and the subsequent interaction of this GABA with local α5- or α1-containing GABA(A)R. There was no measureable metabolism of [1,2-¹³C]ethanol with no significant incorporation of ¹³C from [1,2-¹³C]ethanol into any measured metabolite above natural abundance, although there were measurable effects on total metabolite sizes similar to those seen with unlabelled ethanol.
Collapse
Affiliation(s)
- Caroline D Rae
- Neuroscience Research Australia, and Brain Sciences UNSW, Randwick, NSW, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Olsen RW, Li GD, Wallner M, Trudell JR, Bertaccini EJ, Lindahl E, Miller KW, Alkana RL, Davies DL. Structural models of ligand-gated ion channels: sites of action for anesthetics and ethanol. Alcohol Clin Exp Res 2013; 38:595-603. [PMID: 24164436 DOI: 10.1111/acer.12283] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/13/2013] [Indexed: 11/28/2022]
Abstract
The molecular mechanism(s) of action of anesthetic, and especially, intoxicating doses of alcohol (ethanol [EtOH]) have been of interest even before the advent of the Research Society on Alcoholism. Recent physiological, genetic, and biochemical studies have pin-pointed molecular targets for anesthetics and EtOH in the brain as ligand-gated ion channel (LGIC) membrane proteins, especially the pentameric (5 subunit) Cys-loop superfamily of neurotransmitter receptors including nicotinic acetylcholine (nAChRs), GABAA (GABAA Rs), and glycine receptors (GlyRs). The ability to demonstrate molecular and structural elements of these proteins critical for the behavioral effects of these drugs on animals and humans provides convincing evidence for their role in the drugs' actions. Amino acid residues necessary for pharmacologically relevant allosteric modulation of LGIC function by anesthetics and EtOH have been identified in these channel proteins. Site-directed mutagenesis revealed potential allosteric modulatory sites in both the trans-membrane domain (TMD) and extracellular domain (ECD). Potential sites of action and binding have been deduced from homology modeling of other LGICs with structures known from crystallography and cryo-electron microscopy studies. Direct information about ligand binding in the TMD has been obtained by photoaffinity labeling, especially in GABAA Rs. Recent structural information from crystallized procaryotic (ELIC and GLIC) and eukaryotic (GluCl) LGICs allows refinement of the structural models including evaluation of possible sites of EtOH action.
Collapse
Affiliation(s)
- Richard W Olsen
- Department of Molecular & Medical Pharmacology , David Geffen School of Medicine at UCLA, Los Angeles, California; Department of Anesthesiology , David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Huberfeld G, Le Duigou C, Le Van Quyen M, Navarro V, Baulac M, Miles R. The paradox of the paroxysm: can seizure precipitants help explain human ictogenesis? Neuroscientist 2013; 19:523-40. [PMID: 23881918 DOI: 10.1177/1073858413497430] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An epileptic brain is permanently in a diseased state, but seizures occur rarely and without warning. Here we examine this paradox, common to paroxysmal diseases. We review the problem in the context of the prototypic acquired epilepsies of the medial temporal lobe. We ask how an epileptic temporal lobe differs from a healthy one and examine biological mechanisms that may explain the transition to seizure. Attempts to predict seizure timing from analyses of brain electrical activity suggest that the neurological processes involved may be initiated significantly before a seizure. Furthermore, whereas seizures are said to occur without warning, some patients say they know when a seizure is imminent. Several factors, including sleep deprivation, oscillations in hormonal levels, or withdrawal from drugs, increase the probability of a seizure. We ask whether these seizure precipitants might act through common neuronal mechanisms. Several precipitating factors seem to involve relief from a neurosteroid modulation of gamma-amino butyric acid receptor type A (GABAA) receptors. We propose tests of this hypothesis.
Collapse
Affiliation(s)
- Gilles Huberfeld
- INSERM U975, Institut du Cerveau et la Moëlle Epinière, Paris, France
| | | | | | | | | | | |
Collapse
|
34
|
Blednov YA, Benavidez JM, Black M, Chandra D, Homanics GE, Rudolph U, Harris RA. Linking GABA(A) receptor subunits to alcohol-induced conditioned taste aversion and recovery from acute alcohol intoxication. Neuropharmacology 2012; 67:46-56. [PMID: 23147414 DOI: 10.1016/j.neuropharm.2012.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 10/12/2012] [Accepted: 10/28/2012] [Indexed: 10/27/2022]
Abstract
GABA type A receptors (GABA(A)-R) are important for ethanol actions and it is of interest to link individual subunits with specific ethanol behaviors. We studied null mutant mice for six different GABA(A)-R subunits (α1, α2, α3, α4, α5 and δ). Only mice lacking the α2 subunit showed reduction of conditioned taste aversion (CTA) to ethanol. These results are in agreement with data from knock-in mice with mutation of the ethanol-sensitive site in the α2-subunit (Blednov et al., 2011). All together, they indicate that aversive property of ethanol is dependent on ethanol action on α2-containing GABA(A)-R. Deletion of the α2-subunit led to faster recovery whereas absence of the α3-subunit slowed recovery from ethanol-induced incoordination (rotarod). Deletion of the other four subunits did not affect this behavior. Similar changes in this behavior for the α2 and α3 null mutants were found for flurazepam motor incoordination. However, no differences in recovery were found in motor-incoordinating effects of an α1-selective modulator (zolpidem) or an α4-selective agonist (gaboxadol). Therefore, recovery of rotarod incoordination is under control of two GABA(A)-R subunits: α2 and α3. For motor activity, α3 null mice demonstrated higher activation by ethanol (1 g/kg) whereas both α2 (-/-) and α3 (-/Y) knockout mice were less sensitive to ethanol-induced reduction of motor activity (1.5 g/kg). These studies demonstrate that the effects of ethanol at GABAergic synapses containing α2 subunit are important for specific behavioral effects of ethanol which may be relevant to the genetic linkage of the α2 subunit with human alcoholism.
Collapse
Affiliation(s)
- Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, 1 University Station, A4800, Austin, TX 78712, USA.
| | | | | | | | | | | | | |
Collapse
|
35
|
Ramaker MJ, Strong MN, Ford MM, Finn DA. Effect of ganaxolone and THIP on operant and limited-access ethanol self-administration. Neuropharmacology 2012; 63:555-64. [PMID: 22613838 DOI: 10.1016/j.neuropharm.2012.05.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Revised: 05/04/2012] [Accepted: 05/06/2012] [Indexed: 11/18/2022]
Abstract
Recent evidence suggests that GABA(A) receptor ligands may regulate ethanol intake via effects at both synaptic and extrasynaptic receptors. For example, the endogenous neurosteroid, allopregnanolone (ALLO) has a similar pharmacological profile as ethanol, and it alters ethanol intake in rodent models. Additionally, recent evidence suggests that δ-subunit-containing extrasynaptic GABA(A) receptors may confer high sensitivity to both ethanol and neurosteroids. The purpose of the present study was to determine the effects of ganaxolone (GAN; an ALLO analog) and gaboxadol (THIP; a GABA(A) receptor agonist with selectivity for the extrasynaptic δ-subunit) on ethanol intake, drinking patterns, and bout characteristics in operant and limited-access self-administration procedures. In separate studies, the effects of GAN (0-10 mg/kg) and THIP (2-16 mg/kg) were tested in C57BL/6J male mice provided with 2-h access to a two-bottle choice of water or 10% ethanol or trained to respond for 30 min of access to 10% ethanol. GAN had no overall significant effect on operant ethanol self-administration, but tended to decrease the latency to consume the first bout. In the limited-access procedure, GAN dose-dependently decreased ethanol intake. THIP dose-dependently decreased ethanol intake in both paradigms, altering both the consummatory and appetitive processes of operant self-administration as well as shifting the drinking patterns in both procedures. These results add to literature suggesting time-dependent effects of neurosteroids to promote the onset, and to subsequently decrease, ethanol drinking behavior, and they support a role for extrasynaptic GABA(A) receptor activation in ethanol reinforcement.
Collapse
Affiliation(s)
- Marcia J Ramaker
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | | | |
Collapse
|
36
|
Wilkie MP, Pamenter ME, Duquette S, Dhiyebi H, Sangha N, Skelton G, Smith MD, Buck LT. The relationship between NMDA receptor function and the high ammonia tolerance of anoxia-tolerant goldfish. ACTA ACUST UNITED AC 2012; 214:4107-20. [PMID: 22116753 DOI: 10.1242/jeb.057513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Acute ammonia toxicity in vertebrates is thought to be characterized by a cascade of deleterious events resembling those associated with anoxic/ischemic injury in the central nervous system. A key event is the over-stimulation of neuronal N-methyl-D-aspartate (NMDA) receptors, which leads to excitotoxic cell death. The similarity between the responses to acute ammonia toxicity and anoxia suggests that anoxia-tolerant animals such as the goldfish (Carassius auratus Linnaeus) may also be ammonia tolerant. To test this hypothesis, the responses of goldfish were compared with those of the anoxia-sensitive rainbow trout (Oncorhynchus mykiss Walbaum) during exposure to high external ammonia (HEA). Acute toxicity tests revealed that goldfish are ammonia tolerant, with 96 h median lethal concentration (LC(50)) values of 199 μmol l(-1) and 4132 μmol l(-1) for NH(3) and total ammonia ([T(Amm)]=[NH(3)]+[NH(4)(+)]), respectively. These values were ~5-6 times greater than corresponding NH(3) and T(Amm) LC(50) values measured in rainbow trout. Further, the goldfish readily coped with chronic exposure to NH(4)Cl (3-5 mmol l(-1)) for 5 days, despite 6-fold increases in plasma [T] to ~1300 μmol l(-1) and 3-fold increases in brain [T(Amm)] to 6700 μmol l(-1). Muscle [T(Amm)] increased by almost 8-fold from ~900 μmol kg(-1) wet mass (WM) to greater than 7000 μmol kg(-1) WM by 48 h, and stabilized. Although urea excretion rates (J(Urea)) increased by 2-3-fold during HEA, the increases were insufficient to offset the inhibition of ammonia excretion that occurred, and increases in urea were not observed in the brain or muscle. There was a marked increase in brain glutamine concentration at HEA, from ~3000 μmol kg(-1) WM to 15,000 μmol kg(-1) WM after 48 h, which is consistent with the hypothesis that glutamine production is associated with ammonia detoxification. Injection of the NMDA receptor antagonists MK801 (0.5-8 mg kg(-1)) or ethanol (1-8 mg kg(-1)) increased trout survival time by 1.5-2.0-fold during exposure to 2 mmol l(-1) ammonia, suggesting that excitotoxic cell death contributes to ammonia toxicity in this species. In contrast, similar doses of MK801 or ethanol had no effect on ammonia-challenged (8-9.5 mmol l(-1) T(Amm)) goldfish survival times, suggesting that greater resistance to excitotoxic cell death contributes to the high ammonia-tolerance of the goldfish. Whole-cell recordings measured in isolated brain slices of goldfish telencephalon during in vitro exposure to 5 mmol l(-1) or 10 mmol l(-1) T(Amm) reversibly potentiated NMDA receptor currents. This observation suggested that goldfish neurons may not be completely resistant to ammonia-induced excitotoxicity. Subsequent western blot and densitometric analyses revealed that NMDA receptor NR1 subunit abundance was 40-60% lower in goldfish exposed to 3-5 mmol l(-1) T(Amm) for 5 days, which was followed by a restoration of NR1 subunit abundance after 3 days recovery in ammonia-free water. We conclude that the goldfish brain may be protected from excitotoxicity by downregulating the abundance of functional NMDA receptors during periods when it experiences increased internal ammonia.
Collapse
Affiliation(s)
- Michael P Wilkie
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kozlov AP, Nizhnikov ME, Varlinskaya EI, Spear NE. The role of social isolation in ethanol effects on the preweanling rat. Behav Brain Res 2012; 227:43-57. [PMID: 22051944 DOI: 10.1016/j.bbr.2011.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2011] [Accepted: 10/19/2011] [Indexed: 01/08/2023]
Abstract
The present experiments investigated the effects of acute ethanol exposure on voluntary intake of 0.1% saccharin or water as well as behavioral and nociceptive reactivity in 12-day-old (P12) rats exposed to differing levels of isolation. The effects of ethanol emerged only during short-term social isolation (STSI) with different patterns observed in males and females and in pups exposed to saccharin or water. The 0.5g/kg ethanol dose selectively increased saccharin intake in females, decreased rearing activity in males and attenuated isolation-induced analgesia (IIA) in all water-exposed pups. Ingestion of saccharin decreased IIA, and the 0.5g/kg ethanol dose further reduced IIA. The 1.0g/kg ethanol dose, administered either intragastrically or intraparentionally, also decreased IIA in P12 females, but not in P9 pups. A significant correlation between voluntary saccharin intake and baseline nociceptive reactivity was revealed in saline injected animals, saccharin intake was inversely correlated with behavioral activation and latency of reaction to noxious heat after 0.5g/kg ethanol in females. The 0.5g/kg ethanol dose did not affect plasma corticosterone (CORT) measured 5h after maternal separation or 20min after ethanol injection. Female pups CORT level was inversely correlated with magnitude of IIA that accompanied the first episode of STSI (pretest isolation) 1.5-2h before CORT measurement. The present findings suggest that the anxiolytic properties of ethanol are responsible for enhancement of saccharin intake during STSI. Furthermore, differential reactivity of P12 males and females to STSI plays an important role in ethanol effects observed at this age.
Collapse
Affiliation(s)
- Andrey P Kozlov
- Center for Development & Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | | | | | | |
Collapse
|
38
|
Karim N, Gavande N, Wellendorph P, Johnston GAR, Hanrahan JR, Chebib M. 3-Hydroxy-2'-methoxy-6-methylflavone: a potent anxiolytic with a unique selectivity profile at GABA(A) receptor subtypes. Biochem Pharmacol 2011; 82:1971-83. [PMID: 21924247 DOI: 10.1016/j.bcp.2011.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/30/2022]
Abstract
Genetic and pharmacological studies have demonstrated that α2- and α4-containing GABA(A) receptors mediate the anxiolytic effects of a number of agents. Flavonoids are a class of ligands that act at GABA(A) receptors and possess anxiolytic effects in vivo. Here we demonstrate that the synthetic flavonoid, 3-hydroxy-2'-methoxy-6-methylflavone (3-OH-2'MeO6MF) potentiates GABA-induced currents at recombinant α1/2β2, α1/2/4/6β1-3γ2L but not α3/5β1-3γ2L receptors expressed in Xenopus oocytes. The enhancement was evident at micromolar concentrations (EC(50) values between 38 and 106 μM) and occurred in a flumazenil-insensitive manner. 3-OH-2'MeO6MF displayed preference for β2/3- over β1-containing receptors with the highest efficacy observed at α2β2/3γ2L, displaying a 4-11-fold increase in efficacy over α2β1γ2L and α1/4/6-containing subtypes. In contrast, 3-OH-2'MeO6MF acted as a potent bicuculline-sensitive activator, devoid of potentiation effects at extrasynaptic α4β2/3δ receptors expressed in oocytes. The affinity of 3-OH-2'MeO6MF for α4β2/3δ receptors (EC(50) values between 1.4 and 2.5 μM) was 10-fold higher than at α4β1δ GABA(A) receptors. 3-OH-2'MeO6MF acted as a full agonist at α4β2/3δ (105% of the maximal GABA response) but as a partial agonist at α4β1δ (61% of the maximum GABA response) receptors. In mice, 3-OH-2'MeO6MF (1-100 mg/kg i.p.) induced anxiolytic-like effects in two unconditioned models of anxiety: the elevated plus maze and light/dark paradigms. No sedative or myorelaxant effects were detected using holeboard, actimeter and horizontal wire tests and only weak barbiturate potentiating effects on the loss of righting reflex test. Taken together, these data suggest that 3-OH-2'MeO6MF is an anxiolytic without sedative and myorelaxant effects acting through positive allosteric modulation of the α2β2/3γ2L and direct activation of α4β2/3δ GABA(A) receptor subtypes.
Collapse
|
39
|
Qiu H, Yan H, Tang J, Zeng Z, Liu P. A study on the influence of ethanol over the primary cultured rat cortical neurons by using the scanning electron microscopy. Micron 2011; 43:135-40. [PMID: 21944548 DOI: 10.1016/j.micron.2011.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/23/2011] [Accepted: 08/24/2011] [Indexed: 10/17/2022]
Abstract
As an inhibitor and toxic factor of central nervous system, ethanol inhibits the action of the neurons and causes various kinds of neuronal damage. However, the precise mechanisms that ethanol-induced neuronal damage in the central nervous system remain unclear. In spite of thousands of published studies, little information is available on the neurons' morphological alteration in the central nervous system. In this study, we investigated the morphological alterations of the primary cultured rat cortical neurons after they were treated by different concentrations of ethanol using the scanning electron microscopy. Our results showed that the moderate or high concentration of ethanol could lead to morphological changes of these cultured rat cortical neurons, and they were closely associated with the duration of time. Our study will provide a new base for further studies on the effects of ethanol in the central nervous system.
Collapse
Affiliation(s)
- Hanmei Qiu
- Department of Forensic Medicine, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | | | | | | | | |
Collapse
|
40
|
Iyer SV, Benavides RA, Chandra D, Cook JM, Rallapalli S, June HL, Homanics GE. α4-Containing GABA(A) Receptors are Required for Antagonism of Ethanol-Induced Motor Incoordination and Hypnosis by the Imidazobenzodiazepine Ro15-4513. Front Pharmacol 2011; 2:18. [PMID: 21779248 PMCID: PMC3132666 DOI: 10.3389/fphar.2011.00018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2010] [Accepted: 03/21/2011] [Indexed: 01/26/2023] Open
Abstract
Alcohol (ethanol) is widely consumed for its desirable effects but unfortunately has strong addiction potential. Some imidazobenzodiazepines such as Ro15-4513 are able to antagonize many ethanol-induced behaviors. Controversial biochemical and pharmacological evidence suggest that the effects of these ethanol antagonists and ethanol are mediated specifically via overlapping binding sites on α4/δ-containing GABAA-Rs. To investigate the requirement of α4-containing GABAA-Rs in the mechanism of action of Ro15-4513 on behavior, wildtype (WT) and α4 knockout (KO) mice were compared for antagonism of ethanol-induced motor incoordination and hypnosis. Motor effects of ethanol were tested in two different fixed speed rotarod assays. In the first experiment, mice were injected with 2.0 g/kg ethanol followed 5 min later by 10 mg/kg Ro15-4513 (or vehicle) and tested on a rotarod at 8 rpm. In the second experiment, mice received a single injection of 1.5 g/kg ethanol ± 3 mg/kg Ro15-4513 and were tested on a rotarod at 12 rpm. In both experiments, the robust Ro15-4513 antagonism of ethanol-induced motor ataxia that was observed in WT mice was absent in KO mice. A loss of righting reflex (LORR) assay was used to test Ro15-4513 (20 mg/kg) antagonism of ethanol (3.5 g/kg)-induced hypnosis. An effect of sex was observed on the LORR assay, so males and females were analyzed separately. In male mice, Ro15-4513 markedly reduced ethanol-induced LORR in WT controls, but α4 KO mice were insensitive to this effect of Ro15-4513. In contrast, female KO mice did not differ from WT controls in the antagonistic effects of Ro15-4513 on ethanol-induced LORR. We conclude that Ro15-4513 requires α4-containing receptors for antagonism of ethanol-induced LORR (in males) and motor ataxia.
Collapse
Affiliation(s)
- Sangeetha V Iyer
- Department of Pharmacology and Chemical Biology, University of Pittsburgh Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Extrasynaptic GABAA receptors in the nucleus accumbens are necessary for alcohol drinking. Proc Natl Acad Sci U S A 2011; 108:4699-700. [PMID: 21389267 DOI: 10.1073/pnas.1102818108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
42
|
Melón LC, Boehm SL. GABAA receptors in the posterior, but not anterior, ventral tegmental area mediate Ro15-4513-induced attenuation of binge-like ethanol consumption in C57BL/6J female mice. Behav Brain Res 2011; 220:230-7. [PMID: 21320533 DOI: 10.1016/j.bbr.2011.02.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 02/02/2011] [Accepted: 02/08/2011] [Indexed: 02/05/2023]
Abstract
GABA(A) receptors have been shown to modulate dopaminergic output from the ventral tegmental area (VTA) in studies of both natural and drug rewards, including alcohol. Ro15-4513, the imidazobenzodiazepine derivative and allosteric modulator at the GABA(A) receptor, reliably antagonizes the behavioral effects of alcohol. Various models of alcohol consumption show a decrease in consummatory behaviors, specific to ethanol, following acute administration of the drug. In the present study, Ro15-4513 was systemically administered, or microinjected into the anterior or posterior VTA, to explore the role of GABA(A) receptors at this region in modulating the high pattern of alcohol consumption by C57BL/6J inbred mice in the Drinking in the Dark (DID) model. Animals had 2h access to ethanol for 6 days prior to drug manipulations. Immediately before the seventh day of access, mice were systemically (I.P.) or site-specifically administered Ro15-4513. Systemic Ro15-4513 (at 10mg/kg) decreased binge-like ethanol intake in the DID paradigm. Additionally, there was a stepwise decrease in consumption following Ro15-4513 microinjection into the posterior VTA, with the highest dose significantly decreasing ethanol intake. There was no effect found following microinjection into the anterior VTA, nor was there an effect of systemic or intra-posterior VTA Ro15-4513 on consumption of a 5% sucrose solution or water. The present findings support a role for Ro15-4513 sensitive VTA-GABA(A) receptors in modulating binge-like ethanol consumption. Moreover, the work here adds to the growing body of literature suggesting regional heterogeneity in the VTA.
Collapse
Affiliation(s)
- Laverne C Melón
- Psychobiology of Addictions, Department of Psychology, Indiana University/Purdue University-Indianapolis, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
43
|
Blednov YA, Borghese CM, McCracken ML, Benavidez JM, Geil CR, Osterndorff-Kahanek E, Werner DF, Iyer S, Swihart A, Harrison NL, Homanics GE, Harris RA. Loss of ethanol conditioned taste aversion and motor stimulation in knockin mice with ethanol-insensitive α2-containing GABA(A) receptors. J Pharmacol Exp Ther 2011; 336:145-54. [PMID: 20876231 PMCID: PMC3014308 DOI: 10.1124/jpet.110.171645] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 09/23/2010] [Indexed: 02/05/2023] Open
Abstract
GABA type A receptors (GABA(A)-Rs) are potential targets of ethanol. However, there are multiple subtypes of this receptor, and, thus far, individual subunits have not been definitively linked with specific ethanol behavioral actions. Interestingly, though, a chromosomal cluster of four GABA(A)-R subunit genes, including α2 (Gabra2), was associated with human alcoholism (Am J Hum Genet 74:705-714, 2004; Pharmacol Biochem Behav 90:95-104, 2008; J Psychiatr Res 42:184-191, 2008). The goal of our study was to determine the role of receptors containing this subunit in alcohol action. We designed an α2 subunit with serine 270 to histidine and leucine 277 to alanine mutations that was insensitive to potentiation by ethanol yet retained normal GABA sensitivity in a recombinant expression system. Knockin mice containing this mutant subunit were tested in a range of ethanol behavioral tests. These mutant mice did not develop the typical conditioned taste aversion in response to ethanol and showed complete loss of the motor stimulant effects of ethanol. Conversely, they also demonstrated changes in ethanol intake and preference in multiple tests. The knockin mice showed increased ethanol-induced hypnosis but no difference in anxiolytic effects or recovery from acute ethanol-induced motor incoordination. Overall, these studies demonstrate that the effects of ethanol at GABAergic synapses containing the α2 subunit are important for specific behavioral effects of ethanol that may be relevant to the genetic linkage of this subunit with human alcoholism.
Collapse
Affiliation(s)
- Y A Blednov
- Waggoner Center for Alcohol and Addiction Research, University of Texas, 1 University Station, Austin, TX 78712, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Meera P, Olsen RW, Otis TS, Wallner M. Alcohol- and alcohol antagonist-sensitive human GABAA receptors: tracking δ subunit incorporation into functional receptors. Mol Pharmacol 2010; 78:918-24. [PMID: 20699325 PMCID: PMC2981361 DOI: 10.1124/mol.109.062687] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2009] [Accepted: 08/10/2010] [Indexed: 12/25/2022] Open
Abstract
GABA(A) receptors (GABA(A)Rs) have long been a focus as targets for alcohol actions. Recent work suggests that tonic GABAergic inhibition mediated by extrasynaptic δ subunit-containing GABA(A)Rs is uniquely sensitive to ethanol and enhanced at concentrations relevant for human alcohol consumption. Ethanol enhancement of recombinant α4β3δ receptors is blocked by the behavioral alcohol antagonist 8-azido-5,6-dihydro-5-methyl-6-oxo-4H-imidazo[1,5-a][1,4]benzodiazepine-3-carboxylic acid ethyl ester (Ro15-4513), suggesting that EtOH/Ro15-4513-sensitive receptors mediate important behavioral alcohol actions. Here we confirm alcohol/alcohol antagonist sensitivity of α4β3δ receptors using human clones expressed in a human cell line and test the hypothesis that discrepant findings concerning the high alcohol sensitivity of these receptors are due to difficulties incorporating δ subunits into functional receptors. To track δ subunit incorporation, we used a functional tag, a single amino acid change (H68A) in a benzodiazepine binding residue in which a histidine in the δ subunit is replaced by an alanine residue found at the homologous position in γ subunits. We demonstrate that the δH68A substitution confers diazepam sensitivity to otherwise diazepam-insensitive α4β3δ receptors. The extent of enhancement of α4β3δH68A receptors by 1 μM diazepam, 30 mM EtOH, and 1 μM β-carboline-3-carboxy ethyl ester (but not 1 μM Zn(2+) block) is correlated in individual recordings, suggesting that δ subunit incorporation into recombinant GABA(A)Rs varies from cell to cell and that this variation accounts for the variable pharmacological profile. These data are consistent with the notion that δ subunit-incorporation is often incomplete in recombinant systems yet is necessary for high ethanol sensitivity, one of the features of native δ subunit-containing GABA(A)Rs.
Collapse
Affiliation(s)
- Pratap Meera
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095-1735, USA
| | | | | | | |
Collapse
|
45
|
Yevenes GE, Moraga-Cid G, Avila A, Guzmán L, Figueroa M, Peoples RW, Aguayo LG. Molecular requirements for ethanol differential allosteric modulation of glycine receptors based on selective Gbetagamma modulation. J Biol Chem 2010; 285:30203-13. [PMID: 20647311 PMCID: PMC2943258 DOI: 10.1074/jbc.m110.134676] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 07/19/2010] [Indexed: 12/18/2022] Open
Abstract
It is now believed that the allosteric modulation produced by ethanol in glycine receptors (GlyRs) depends on alcohol binding to discrete sites within the protein structure. Thus, the differential ethanol sensitivity of diverse GlyR isoforms and mutants was explained by the presence of specific residues in putative alcohol pockets. Here, we demonstrate that ethanol sensitivity in two ligand-gated ion receptor members, the GlyR adult α(1) and embryonic α(2) subunits, can be modified through selective mutations that rescued or impaired Gβγ modulation. Even though both isoforms were able to physically interact with Gβγ, only the α(1) GlyR was functionally modulated by Gβγ and pharmacological ethanol concentrations. Remarkably, the simultaneous switching of two transmembrane and a single extracellular residue in α(2) GlyRs was enough to generate GlyRs modulated by Gβγ and low ethanol concentrations. Interestingly, although we found that these TM residues were different to those in the alcohol binding site, the extracellular residue was recently implicated in conformational changes important to generate a pre-open-activated state that precedes ion channel gating. Thus, these results support the idea that the differential ethanol sensitivity of these two GlyR isoforms rests on conformational changes in transmembrane and extracellular residues within the ion channel structure rather than in differences in alcohol binding pockets. Our results describe the molecular basis for the differential ethanol sensitivity of two ligand-gated ion receptor members based on selective Gβγ modulation and provide a new mechanistic framework for allosteric modulations of abuse drugs.
Collapse
Affiliation(s)
| | | | - Ariel Avila
- From the Laboratory of Neurophysiology, Department of Physiology, and
| | - Leonardo Guzmán
- From the Laboratory of Neurophysiology, Department of Physiology, and
| | - Maximiliano Figueroa
- the Department of Biochemistry and Molecular Biology, University of Concepción, Concepción, Chile and
| | - Robert W. Peoples
- the Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Luis G. Aguayo
- From the Laboratory of Neurophysiology, Department of Physiology, and
| |
Collapse
|
46
|
Takahashi A, Kwa C, DeBold JF, Miczek KA. GABA(A) receptors in the dorsal raphé nucleus of mice: escalation of aggression after alcohol consumption. Psychopharmacology (Berl) 2010; 211:467-77. [PMID: 20589493 PMCID: PMC2992972 DOI: 10.1007/s00213-010-1920-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Accepted: 06/11/2010] [Indexed: 11/28/2022]
Abstract
RATIONALE The dorsal raphé nucleus (DRN), the origin for serotonin (5-HT) in forebrain areas, has been implicated in the neural control of escalated aggression. Gamma aminobutyric acid type-A (GABA(A)) and type-B (GABA(B)) receptors are expressed in the DRN and modulate 5-HT neuronal activity, and both play a role in the behavioral effect of alcohol. OBJECTIVE The purpose of this study is to examine the interaction between drugs acting on GABA receptors in the DRN and alcohol in their effects on aggressive behaviors. METHOD Male CFW mice, housed with a female, were trained to self-administer ethanol (1.0 g/kg) or water via an operant conditioning panel in their home cage. Immediately after they drank either ethanol or water, the animals were microinfused with a GABAergic drug into the DRN, and their aggressive behaviors were assessed 10 min later. Muscimol (0.006 nmol), a GABA(A) receptor agonist, escalated alcohol-heightened aggression but had no effect in the absence of ethanol. This effect of muscimol was prominent in the animals that showed alcohol-heightened aggression, but not the animals that reduced or did not change aggressive behavior after ethanol infusion compared to water. On the other hand, the GABA(B) agonist baclofen (0.06 nmol) increased aggressive behavior similarly in both water and ethanol conditions. Antagonists of the GABA(A) and GABA(B) receptors, bicuculline (0.006 nmol) and phaclofen (0.3 nmol) respectively, did not suppress heightened-aggressive behavior induced by ethanol self-administration. CONCLUSION GABA(A) receptors in the DRN are one of the neurobiological targets of alcohol-heightened aggression. Activation of the GABA(B) receptors in the DRN also produced escalated aggression, but that is independent of the effect of alcohol.
Collapse
Affiliation(s)
- Aki Takahashi
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA,
| | - Carolyn Kwa
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA,
| | - Joseph F. DeBold
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA,
| | - Klaus A. Miczek
- Department of Psychology, Tufts University, Bacon Hall, 530 Boston Ave, Medford, MA 02155, USA,
| |
Collapse
|
47
|
Pompili M, Serafini G, Innamorati M, Dominici G, Ferracuti S, Kotzalidis GD, Serra G, Girardi P, Janiri L, Tatarelli R, Sher L, Lester D. Suicidal behavior and alcohol abuse. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2010; 7:1392-431. [PMID: 20617037 PMCID: PMC2872355 DOI: 10.3390/ijerph7041392] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 03/15/2010] [Accepted: 03/19/2010] [Indexed: 12/22/2022]
Abstract
Suicide is an escalating public health problem, and alcohol use has consistently been implicated in the precipitation of suicidal behavior. Alcohol abuse may lead to suicidality through disinhibition, impulsiveness and impaired judgment, but it may also be used as a means to ease the distress associated with committing an act of suicide. We reviewed evidence of the relationship between alcohol use and suicide through a search of MedLine and PsychInfo electronic databases. Multiple genetically-related intermediate phenotypes might influence the relationship between alcohol and suicide. Psychiatric disorders, including psychosis, mood disorders and anxiety disorders, as well as susceptibility to stress, might increase the risk of suicidal behavior, but may also have reciprocal influences with alcohol drinking patterns. Increased suicide risk may be heralded by social withdrawal, breakdown of social bonds, and social marginalization, which are common outcomes of untreated alcohol abuse and dependence. People with alcohol dependence or depression should be screened for other psychiatric symptoms and for suicidality. Programs for suicide prevention must take into account drinking habits and should reinforce healthy behavioral patterns.
Collapse
Affiliation(s)
- Maurizio Pompili
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
- McLean Hospital, Harvard Medical School, Belmont, MA 02478, USA
- Author to whom correspondence should be addressed; E-Mail:
or
; Tel. +39-06 33775675; Fax +39-0633775342
| | - Gianluca Serafini
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Marco Innamorati
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Giovanni Dominici
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Stefano Ferracuti
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Giorgio D. Kotzalidis
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Giulia Serra
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Paolo Girardi
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Luigi Janiri
- Department of Psychiatry, Catholic University Medical School, Largo F. Vito 1, Rome 00168, Italy; E-Mail:
| | - Roberto Tatarelli
- Department of Neuroscience, Mental Health and Sensory Functions, Suicide Prevention Center, Sant’Andrea Hospital, Sapienza University of Rome, Rome 00189, Italy; E-Mails:
(G.S.);
(M.I.);
(G.D.);
(S.F.);
(G.D.K.);
(G.S.);
(P.G.);
(R.T.)
| | - Leo Sher
- Department of Psychiatry, Columbia University, New York, NY 10032, USA; E-Mail:
| | - David Lester
- The Richard Stockton College of New Jersey, Pomona, NJ 08240-0195, USA; E-Mail:
| |
Collapse
|
48
|
Abstract
There is no specialized alcohol addiction area in the brain; rather, alcohol acts on a wide range of excitatory and inhibitory nervous networks to modulate neurotransmitters actions by binding with and altering the function of specific proteins. With no hemato-encephalic barrier for alcohol, its actions are strongly related to the amount of intake. Heavy alcohol intake is associated with both structural and functional changes in the central nervous system with long-term neuronal adaptive changes contributing to the phenomena of tolerance and withdrawal. The effects of alcohol on the function of neuronal networks are heterogeneous. Because ethanol affects neural activity in some brain sites but is without effect in others, its actions are analyzed in terms of integrated connectivities in the functional circuitry of neuronal networks, which are of particular interest because of the cognitive interactions discussed in the manuscripts contributing to this review. Recent molecular data are reviewed as a support for the other contributions dealing with cognitive disturbances related to alcohol acute and addicted consumption.
Collapse
Affiliation(s)
- Claude Tomberg
- Brain Research Unit, Faculty of Medicine and CENOLI, Free University of Brussels, Belgium
| |
Collapse
|
49
|
Kozlov AP, Nizhnikov ME, Varlinskaya EI, Spear NE. Pharmacological effects of ethanol on ingestive behavior of the preweanling rat. Behav Brain Res 2009; 205:162-74. [PMID: 19549546 PMCID: PMC2753683 DOI: 10.1016/j.bbr.2009.06.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Revised: 06/09/2009] [Accepted: 06/15/2009] [Indexed: 01/03/2023]
Abstract
The present study was designed to test the hypothesis that sensitivity of ingestive behavior of infant rat to the pharmacological effects of ethanol changes between postnatal (P) days 9 and 12. The intake of 0.1% saccharin and water, general motor activity, and myoclonic twitching activity were assessed following administration of three doses of ethanol (0, 0.25, and 0.5 g/kg) while fluids were free available to the animals. The 0.5 g/kg dose of ethanol attenuated saccharin intake in P9 pups and enhanced saccharin intake in P12 rats. On P12 some sex-related differences emerged at 0.5 g/kg of ethanol, with saccharin intake being higher in females than in their male counterparts. Taste reactivity probe revealed that 0.5 g/kg of ethanol increased taste responsiveness to saccharin on P12 but only to infusions presented at a high rate. The results of the present study indicate that ontogenetic changes in sensitivity to the effects of ethanol on ingestive behavior occur during the second postnatal week, with P9 animals being more sensitive to the inhibitory (sedative) effects on saccharin intake and P12 rats being more sensitive to the stimulatory effects of ethanol. We suggest that acute ethanol enhanced saccharin intake via sensitization of oral response to appetitive taste stimulation.
Collapse
Affiliation(s)
- Andrey P Kozlov
- Center for Development & Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, NY 13902-6000, United States
| | | | | | | |
Collapse
|
50
|
Fleming RL, Manis PB, Morrow AL. The effects of acute and chronic ethanol exposure on presynaptic and postsynaptic gamma-aminobutyric acid (GABA) neurotransmission in cultured cortical and hippocampal neurons. Alcohol 2009; 43:603-18. [PMID: 20004338 DOI: 10.1016/j.alcohol.2009.10.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2009] [Revised: 10/07/2009] [Accepted: 10/07/2009] [Indexed: 01/04/2023]
Abstract
Decades after ethanol was first described as a gamma-aminobutyric acid (GABA) mimetic, the precise mechanisms that produce the acute effects of ethanol and the physiological adaptations that underlie ethanol tolerance and dependence remain unclear. Although a substantial body of evidence suggests that ethanol acts on GABAergic neurotransmission to enhance inhibition in the central nervous system, the precise mechanisms underlying the physiological effects of both acute and chronic ethanol exposure are still under investigation. We have used in vitro ethanol exposure followed by recording of miniature inhibitory postsynaptic currents (mIPSCs) to determine whether acute or chronic ethanol exposure directly alters synaptic GABA(A) receptor (GABA(A)R) function or GABA release in cultured cortical and hippocampal neurons. Acute ethanol exposure slightly increased the duration of mIPSCs in hippocampal neurons but did not alter mIPSC kinetics in cortical neurons. Acute ethanol exposure did not change mIPSC frequency in either hippocampal or cortical neurons. One day of chronic ethanol exposure produced a transient decrease in mIPSC duration in cortical neurons but did not alter mIPSC kinetics in hippocampal neurons. Chronic ethanol exposure did not change mIPSC frequency in either hippocampal or cortical neurons. Chronic ethanol exposure also did not produce substantial cross-tolerance to a benzodiazepine in either hippocampal or cortical neurons. The results suggest that ethanol exposure in vitro has limited effects on synaptic GABA(A)R function and action potential-independent GABA release in cultured neurons and that ethanol exposure in cultured cortical and hippocampal neurons may not reproduce all the effects that occur in vivo and in acute brain slices.
Collapse
|