1
|
Rismani E, Mafakher L, Asgari M, Raz A. Leech, potato, and tomato carboxypeptidase inhibitors against Anopheles stephensi carboxypeptidase B1 and B2. Arch Biochem Biophys 2024; 759:110086. [PMID: 38972626 DOI: 10.1016/j.abb.2024.110086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/09/2024]
Abstract
Carboxypeptidase B (CPB) in Anopheles spp. breaks down blood and releases free amino acids, which promote Plasmodium sexual development in the mosquito midgut. Our goal was to computationally assess the inhibitory effectiveness of carboxypeptidase inhibitors obtained from tomato, potato (CPiSt), and leech against the Anopheles stephensi CPBAs1 and CPBAs2 enzymes. The tertiary structures of CPB inhibitors were predicted and their interaction mode with CPBAs1 and CPBAs2 were examined using molecular docking. Next, this data was compared with four licensed medications that are known to reduce the Anopheles' CPB activity. Molecular dynamics simulations were used to evaluate the stability of complexes containing CPiSt and its mutant form. Both CPiSt and its mutant form showed promise as possible candidates for further evaluations in the paratransgenesis technique for malaria control, based on the similar bindings of CPiSt and CPiSt-Mut to the active sites of CPBAs1 and CPBAs2, as well as their binding affinity in comparison to the drugs.
Collapse
Affiliation(s)
- Elham Rismani
- Molecular Medicine Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ladan Mafakher
- Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Majid Asgari
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
2
|
Aggarwal KK. A Non-competitive Serpin-Like Thrombin Inhibitor Isolated from Moringa oleifera Exhibit a High Affinity for Thrombin. Protein J 2023:10.1007/s10930-023-10116-6. [PMID: 37149510 DOI: 10.1007/s10930-023-10116-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 05/08/2023]
Abstract
The majority of the clotting factors involved in blood coagulation pathways are serine proteases and thrombin is one of the key serine proteases involved in blood clotting. Many synthetic and chemical drugs targeting these proteases as therapeutics are known. However, they are associated with serious side effects such as bleeding, haemorrhage, edema etc. Serine protease inhibitors from plants have been suggested as one of the potential anticoagulant molecules against thrombosis. In the present work, a direct thrombin inhibitor from Moringa oleifera was isolated, purified and characterized. The homogeneity of the inhibitor is confirmed on native- PAGE. The purified inhibitor (5 µg) showed 63% thrombin inhibition at pH 7.2 at 37 °C. The IC50 value of the isolated inhibitor was determined as 4.23 µg. The inhibitor on SDS-PAGE appeared as a single protein-stained band corresponding to 50 kDa thereby indicating its molecular weight as 50 kDa. Purified thrombin inhibitor (5 µg) showed 12% inhibition of trypsin, and 17% inhibition of chymotrypsin. This suggests more specificity of purified inhibitor towards thrombin. The isolated inhibitor showed a non-competitive mode of inhibition against thrombin as determined by the Dixon plot. The inhibition constant (Ki) was calculated as 4.35 × 10-7 M. The present work reports for the first time a direct thrombin inhibitor from M. oleifera which may be further explored as an antithrombotic drug.
Collapse
Affiliation(s)
- Kamal Krishan Aggarwal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16-C Dwarka, New Delhi, 110078, India.
| |
Collapse
|
3
|
Ochoa R, Cossio P, Fox T. Protocol for iterative optimization of modified peptides bound to protein targets. J Comput Aided Mol Des 2022; 36:825-835. [PMID: 36258137 PMCID: PMC9640467 DOI: 10.1007/s10822-022-00482-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/03/2022] [Indexed: 12/02/2022]
Abstract
Peptides are commonly used as therapeutic agents. However, they suffer from easy degradation and instability. Replacing natural by non-natural amino acids can avoid these problems, and potentially improve the affinity towards the target protein. Here, we present a computational pipeline to optimize peptides based on adding non-natural amino acids while improving their binding affinity. The workflow is an iterative computational evolution algorithm, inspired by the PARCE protocol, that performs single-point mutations on the peptide sequence using modules from the Rosetta framework. The modifications can be guided based on the structural properties or previous knowledge of the biological system. At each mutation step, the affinity to the protein is estimated by sampling the complex conformations and applying a consensus metric using various open protein-ligand scoring functions. The mutations are accepted based on the score differences, allowing for an iterative optimization of the initial peptide. The sampling/scoring scheme was benchmarked with a set of protein-peptide complexes where experimental affinity values have been reported. In addition, a basic application using a known protein-peptide complex is also provided. The structure- and dynamic-based approach allows users to optimize bound peptides, with the option to personalize the code for further applications. The protocol, called mPARCE, is available at: https://github.com/rochoa85/mPARCE/.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, 050010, Colombia. .,Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach/Riss, Germany.
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, Medellín, 050010, Colombia.,Center for Computational Mathematics, Flatiron Institute, New York, 10010, USA.,Center for Computational Biology, Flatiron Institute, New York, 10010, USA
| | - Thomas Fox
- Medicinal Chemistry, Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach/Riss, Germany
| |
Collapse
|
4
|
Joshi JR, Brown K, Charkowski AO, Heuberger AL. Protease Inhibitors from Solanum chacoense Inhibit Pectobacterium Virulence by Reducing Bacterial Protease Activity and Motility. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:825-834. [PMID: 36104309 DOI: 10.1094/mpmi-04-22-0072-r] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Potato is a major staple crop, and necrotrophic bacterial pathogens such as Pectobacterium spp. are a major threat to global food security. Most lines of cultivated potato (Solanum tuberosum) are susceptible to Pectobacterium spp., but some lines of wild potato are resistant, including Solanum chacoense M6. Despite the discovery of resistance in wild potatoes, specific resistance genes are yet to be discovered. Crude protein extract from M6 had a global effect on Pectobacterium brasiliense Pb1692 (Pb1692) virulence phenotypes. Specifically, M6 protein extracts resulted in reduced Pectobacterium exo-protease activity and motility, induced cell elongation, and affected bacterial virulence and metabolic gene expression. These effects were not observed from protein extracts of susceptible potato S. tuberosum DM1. A proteomics approach identified protease inhibitors (PIs) as candidates for S. chacoense resistance, and genomic analysis showed higher abundance and diversity of PIs in M6 than in DM1. We cloned five PIs that are unique or had high abundance in M6 compared with DM1 and purified the proteins (g18987, g28531, g39249, g40384, g6571). Four of the PIs significantly reduced bacterial protease activity, with strongest effects from g28531 and g6571. Three PIs (g18987, g28531, g6571) inhibited disease when co-inoculated with Pectobacterium pathogens into potato tubers. Two PIs (g28531, g6571) also significantly reduced Pb1692 motility and are promising as resistance genes. These results show that S. chacoense PIs contribute to bacterial disease resistance by inhibiting exo-proteases, motility, and tuber maceration and by modulating cell morphology and metabolism. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Janak R Joshi
- Department of Horticulture and Landscape Architecture, Colorado State University, 1173 Campus Delivery, Fort Collins, CO 80523, U.S.A
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Kitty Brown
- Analytical Resource Center-Bioanalysis and Omics, Colorado State University, 2021 Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Amy O Charkowski
- Department of Agricultural Biology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO 80523, U.S.A
| | - Adam L Heuberger
- Department of Horticulture and Landscape Architecture, Colorado State University, 1173 Campus Delivery, Fort Collins, CO 80523, U.S.A
- Department of Soil and Crop Sciences, Colorado State University, 1170 Campus Delivery, Fort Collins, CO 80523, U.S.A
| |
Collapse
|
5
|
Vishvakarma R, Mishra A. Characterization of a Novel Protease Inhibitor from the Edible Mushroom
Agaricus bisporus. Protein Pept Lett 2022; 29:460-472. [DOI: 10.2174/0929866529666220405161903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/23/2021] [Accepted: 02/08/2022] [Indexed: 11/22/2022]
Abstract
Background:
Protease inhibitors inhibit the activity of protease enzymes, hence are essentially involved in the regulation of the metabolic processes involving protease enzymes and protection the host organism against external damage due to proteases. These inhibitors are abundantly present in all living organisms but have not been much reported in mushrooms. Mushrooms are one of the major food components of humans with delicious taste and high nutritional value. Mushrooms also have therapeutic and economic significance. The edible mushrooms with medicinal properties are much in commercial demand. To date, the presence of protease inhibitors has not been reported much in edible mushrooms. The present study reports the characterization of a protease inhibitor isolated from the common white button mushroom Agaricus bisporus.
Objective:
The objective of the present study is to characterize the novel protease inhibitor from Agaricus bisporus to determine its nature and activity at varying environmental conditions.
Method:
The protease inhibitor was characterized through SDS PAGE, gel filtration chromatography, and de novo sequencing to determine its molecular mass, and sequence respectively. The optimum pH and temperature, and the pH and thermal stability were studied to determine the optimum working range of the protease inhibitor. The protease inhibitory activity (%) was determined in presence of metal ions, surfactants, oxidizing agents, and reducing agents. The kinetic parameters and the type of inhibition exhibited by the protease inhibitor were determined using casein and trypsin protease enzyme.
Results:
The protease inhibitor was found to be a low molecular mass compound of 25 kDa. The de novo sequencing matched the inhibitor against a 227 amino acid containing peptide molecular mass of 24.6 kDa molecular mass. The protease inhibitory activity (%) was found highest at pH 7.0 and temperature 50 0C, and was stable from pH 4.0-9.0 and temperature 30-80 0C. In presence of metal ions, the residual protease inhibitory activity (%) enhanced in presence of Na+, Mg2+, and Fe3+. The residual activity increased in presence of the surfactant SDS slightly in comparison to control, while decreased in the case of Triton-X and Tween 20. The presence of oxidizing agents, hydrogen peroxide, and dimethyl sulfoxide decreased the residual inhibitory activity. The protease inhibitor was unaffected by the reducing agents: dithiothreitol and β-mercaptoethanol up to 2mM concentration but decreased at higher concentrations. The inhibitor exhibited uncompetitive inhibition against trypsin with an inhibitory constant of 166 nM, indicating a strong affinity towards the protease, with a half-life of 93.90 minutes at 37 0C.
Conclusion:
Protease inhibitors isolated from mushrooms are generally small in size, more stable, and tolerant towards varying external conditions. The protease inhibitor isolated from Agaricus bisporus also exhibited similar characteristics.
Collapse
Affiliation(s)
- Reena Vishvakarma
- Department of Bioengineering, Integral University, Lucknow, Uttar Pradesh-226026, India
| | - Abha Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh-221005, India
| |
Collapse
|
6
|
Naeem M, Manzoor S, Abid MUH, Tareen MBK, Asad M, Mushtaq S, Ehsan N, Amna D, Xu B, Hazafa A. Fungal Proteases as Emerging Biocatalysts to Meet the Current Challenges and Recent Developments in Biomedical Therapies: An Updated Review. J Fungi (Basel) 2022; 8:109. [PMID: 35205863 PMCID: PMC8875690 DOI: 10.3390/jof8020109] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
With the increasing world population, demand for industrialization has also increased to fulfill humans' living standards. Fungi are considered a source of essential constituents to produce the biocatalytic enzymes, including amylases, proteases, lipases, and cellulases that contain broad-spectrum industrial and emerging applications. The present review discussed the origin, nature, mechanism of action, emerging aspects of genetic engineering for designing novel proteases, genome editing of fungal strains through CRISPR technology, present challenges and future recommendations of fungal proteases. The emerging evidence revealed that fungal proteases show a protective role to many environmental exposures and discovered that an imbalance of protease inhibitors and proteases in the epithelial barriers leads to the protection of chronic eosinophilic airway inflammation. Moreover, mitoproteases recently were found to execute intense proteolytic processes that are crucial for mitochondrial integrity and homeostasis function, including mitochondrial biogenesis, protein synthesis, and apoptosis. The emerging evidence revealed that CRISPR/Cas9 technology had been successfully developed in various filamentous fungi and higher fungi for editing of specific genes. In addition to medical importance, fungal proteases are extensively used in different industries such as foods to prepare butter, fruits, juices, and cheese, and to increase their shelf life. It is concluded that hydrolysis of proteins in industries is one of the most significant applications of fungal enzymes that led to massive usage of proteomics.
Collapse
Affiliation(s)
- Muhammad Naeem
- College of Life Science, Hebei Normal University, Shijiazhuang 050025, China;
| | - Saba Manzoor
- Department of Zoology, University of Sialkot, Sialkot 51310, Pakistan;
| | | | | | - Mirza Asad
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Sajida Mushtaq
- Department of Zoology, Government College Women University, Sialkot 51040, Pakistan;
| | - Nazia Ehsan
- Department of Zoology, Wildlife and Fisheries, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| | - Dua Amna
- Institute of Food Science & Nutrition, Bahauddin Zakariya University, Multan 60800, Pakistan;
| | - Baojun Xu
- Food Science and Technology Program, Beijing Normal University-Hong Kong Baptist University (BNU-HKBU) United International College, Zhuhai 519087, China
| | - Abu Hazafa
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan;
| |
Collapse
|
7
|
Bernardi M, Ghaani MR, Bayazeid O. Phenylethanoid glycosides as a possible COVID-19 protease inhibitor: a virtual screening approach. J Mol Model 2021; 27:341. [PMID: 34731296 PMCID: PMC8565174 DOI: 10.1007/s00894-021-04963-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/22/2021] [Indexed: 11/16/2022]
Abstract
From the beginning of pandemic, more than 240 million people have been infected with a death rate higher than 2%. Indeed, the current exit strategy involving the spreading of vaccines must be combined with progress in effective treatment development. This scenario is sadly supported by the vaccine's immune activation time and the inequalities in the global immunization schedule. Bringing the crises under control means providing the world population with accessible and impactful new therapeutics. We screened a natural product library that contains a unique collection of 2370 natural products into the binding site of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro). According to the docking score and to the interaction at the active site, three phenylethanoid glycosides (forsythiaside A, isoacteoside, and verbascoside) were selected. In order to provide better insight into the atomistic interaction and test the impact of the three selected compounds at the binding site, we resorted to a half microsecond-long molecular dynamics simulation. As a result, we are showing that forsythiaside A is the most stable molecule and it is likely to possess the highest inhibitory effect against SARS-CoV-2 Mpro. Phenylethanoid glycosides also have been reported to have both protease and kinase activity. This kinase inhibitory activity is very beneficial in fighting viruses inside the body as kinases are required for viral entry, metabolism, and/or reproduction. The dual activity (kinase/protease) of phenylethanoid glycosides makes them very promising anit-COVID-19 agents.
Collapse
Affiliation(s)
- Mario Bernardi
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey
| | - Mohammad Reza Ghaani
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Omer Bayazeid
- Department of Pharmacognosy, Faculty of Pharmacy, Hacettepe University, Ankara, 06100, Turkey.
| |
Collapse
|
8
|
Kårlund A, Paukkonen I, Gómez-Gallego C, Kolehmainen M. Intestinal Exposure to Food-Derived Protease Inhibitors: Digestion Physiology- and Gut Health-Related Effects. Healthcare (Basel) 2021; 9:1002. [PMID: 34442141 PMCID: PMC8394810 DOI: 10.3390/healthcare9081002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/22/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Plant-derived protease inhibitors (PI), such as Bowman-Birk inhibitors and Kunitz-type inhibitors, have been suggested to negatively affect dietary protein digestion by blocking the activity of trypsin and chymotrypsin in the human gastrointestinal system. In addition, some PIs may possess proinflammatory activities. However, there is also scientific evidence on some beneficial effects of PIs, for example, gut-related anti-inflammatory and chemopreventive activities in vitro and in vivo. Some PIs are sensitive to processing and digestion; thus, their survival is an important aspect when considering their positive and negative bioactivities. The aim of this review was to evaluate the relevance of PIs in protein digestion in humans and to discuss the potential of PIs from whole foods and as purified compounds in decreasing symptoms of bowel-related conditions. Based on the reviewed literature, we concluded that while the complex interactions affecting plant protein digestibility and bioavailability remain unclear, PI supplements could be considered for targeted purposes to mitigate inflammation and gastric pain.
Collapse
Affiliation(s)
- Anna Kårlund
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Isa Paukkonen
- Institute of Biomedicine, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland;
| | - Carlos Gómez-Gallego
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| | - Marjukka Kolehmainen
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, FI-70211 Kuopio, Finland; (C.G.-G.); (M.K.)
| |
Collapse
|
9
|
Tandi M, Sundriyal S. Recent trends in the design of antimicrobial agents using Ugi-multicomponent reaction. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Kallingal A, Thachan Kundil V, Ayyolath A, Muringayil Joseph T, Kar Mahapatra D, Haponiuk JT, Variyar EJ. Identification of sustainable trypsin active-site inhibitors from Nigrospora sphaerica strain AVA-1. J Basic Microbiol 2021; 61:709-720. [PMID: 34228389 DOI: 10.1002/jobm.202100221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 05/25/2021] [Accepted: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Trypsin is a protein-digesting enzyme that is essential for the growth and regeneration of bone, muscle, cartilage, skin, and blood. The trypsin inhibitors have various role in diseases such as inflammation, Alzheimer's disease, pancreatitis, rheumatoid arthritis, cancer prognosis, metastasis and so forth. From 10 endophytic fungi isolated, we were able to screen only one strain with the required activity. The fungus with activity was obtained as an endophyte from Dendrophthoe falcata and was later identified as Nigrospora sphaerica. The activity was checked by enzyme assays using trypsin. The fungus was fermented and the metabolites were extracted and further purified by bioassay-guided chromatographic methods and the compound isolated was identified using gas chromatography-mass spectrometry. The compound was identified as quercetin. Docking studies were employed to study the interaction. The absorption, distribution, metabolism, and excretion analysis showed satisfactory results and the compound has no AMES and hepatotoxicity. This study reveals the ability of N. sphaerica to produce bioactive compound quercetin has been identified as a potential candidate for trypsin inhibition. The present communication describes the first report claiming that N. sphaerica strain AVA-1 can produce quercetin and it can be considered as a sustainable source of trypsin active-site inhibitors.
Collapse
Affiliation(s)
- Anoop Kallingal
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Varun Thachan Kundil
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Aravind Ayyolath
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| | - Tomy Muringayil Joseph
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - Debarshi Kar Mahapatra
- Department of Pharmaceutical Chemistry, Dadasaheb Balpande College of Pharmacy, Nagpur, Maharashtra, India
| | - Józef T Haponiuk
- Polymers Technology Department, Chemical Faculty, Gdansk University of Technology, Gdansk, Poland
| | - E Jayadevi Variyar
- Department of Biotechnology and Microbiology, School of Life Science, Kannur University, Palayad, Kerala, India
| |
Collapse
|
11
|
Almaraz-Girón MA, Calderón-Jaimes E, Carrillo AS, Díaz-Cervantes E, Alonso EC, Islas-Jácome A, Domínguez-Ortiz A, Castañón-Alonso SL. Search for Non-Protein Protease Inhibitors Constituted with an Indole and Acetylene Core. Molecules 2021; 26:molecules26133817. [PMID: 34201422 PMCID: PMC8270299 DOI: 10.3390/molecules26133817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
A possible inhibitor of proteases, which contains an indole core and an aromatic polar acetylene, was designed and synthesized. This indole derivative has a molecular architecture kindred to biologically relevant species and was obtained through five synthetic steps with an overall yield of 37% from the 2,2'-(phenylazanediyl)di(ethan-1-ol). The indole derivative was evaluated through docking assays using the main protease (SARS-CoV-2-Mpro) as a molecular target, which plays a key role in the replication process of this virus. Additionally, the indole derivative was evaluated as an inhibitor of the enzyme kallikrein 5 (KLK5), which is a serine protease that can be considered as an anticancer drug target.
Collapse
Affiliation(s)
- Marco A. Almaraz-Girón
- Departament de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México C.P. 09340, Mexico; (M.A.A.-G.); (A.I.-J.); (A.D.-O.)
| | - Ernesto Calderón-Jaimes
- Laboratory de Investigación en Inmunoquímica, Unidad de Investigación en Inmunología Proteómica, Hospital Infantil de México Federico Gómez, Calle Dr. Márquez Nº 162, Col. Doctores, Delegación Cuauhtémoc, Ciudad de México C.P. 06720, Mexico; (A.S.C.); (E.C.A.)
- Correspondence: (E.C.-J.); (E.D.-C.); (S.L.C.-A.); Tel.: +52-55-5804-4600 (S.L.C.-A.)
| | - Adrián Sánchez Carrillo
- Laboratory de Investigación en Inmunoquímica, Unidad de Investigación en Inmunología Proteómica, Hospital Infantil de México Federico Gómez, Calle Dr. Márquez Nº 162, Col. Doctores, Delegación Cuauhtémoc, Ciudad de México C.P. 06720, Mexico; (A.S.C.); (E.C.A.)
| | - Erik Díaz-Cervantes
- Centro Interdisciplinario del Noreste, Departament de Alimentos, Universidad de Guanajuato, Tierra Blanca, Guanajuato C.P. 37975, Mexico
- Correspondence: (E.C.-J.); (E.D.-C.); (S.L.C.-A.); Tel.: +52-55-5804-4600 (S.L.C.-A.)
| | - Edith Castañón Alonso
- Laboratory de Investigación en Inmunoquímica, Unidad de Investigación en Inmunología Proteómica, Hospital Infantil de México Federico Gómez, Calle Dr. Márquez Nº 162, Col. Doctores, Delegación Cuauhtémoc, Ciudad de México C.P. 06720, Mexico; (A.S.C.); (E.C.A.)
| | - Alejandro Islas-Jácome
- Departament de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México C.P. 09340, Mexico; (M.A.A.-G.); (A.I.-J.); (A.D.-O.)
| | - Armando Domínguez-Ortiz
- Departament de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México C.P. 09340, Mexico; (M.A.A.-G.); (A.I.-J.); (A.D.-O.)
| | - Sandra L. Castañón-Alonso
- Departament de Química, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, Col. Vicentina, Iztapalapa, Ciudad de México C.P. 09340, Mexico; (M.A.A.-G.); (A.I.-J.); (A.D.-O.)
- Correspondence: (E.C.-J.); (E.D.-C.); (S.L.C.-A.); Tel.: +52-55-5804-4600 (S.L.C.-A.)
| |
Collapse
|
12
|
Abuelhassan S, Bakhite EA, Abdel‐Rahman AE, El‐Mahdy AFM. Synthesis, characterization, and biological activities of some novel thienylpyrido[3′,2′:4,5]thieno[3,2‐
d
]pyrimidines and related heterocycles. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Suzan Abuelhassan
- Department of Chemistry, Faculty of Science Assiut University Assiut Egypt
| | | | | | | |
Collapse
|
13
|
Mall R, Elbasir A, Almeer H, Islam Z, Kolatkar PR, Chawla S, Ullah E. A Modelling Framework for Embedding-based Predictions for Compound-Viral Protein Activity. Bioinformatics 2021; 37:2544-2555. [PMID: 33638345 PMCID: PMC8163000 DOI: 10.1093/bioinformatics/btab130] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/16/2021] [Accepted: 02/24/2021] [Indexed: 11/14/2022] Open
Abstract
Motivation A global effort is underway to identify compounds for the treatment of COVID-19. Since de novo compound design is an extremely long, time-consuming, and expensive process, efforts are underway to discover existing compounds that can be repurposed for COVID-19 and new viral diseases. Model We propose a machine learning representation framework that uses deep learning induced vector embeddings of compounds and viral proteins as features to predict compound-viral protein activity. The prediction model in-turn uses a consensus framework to rank approved compounds against viral proteins of interest. Results Our consensus framework achieves a highmean Pearson correlation of 0.916, mean R2 of 0.840 and a low mean squared error of 0.313 for the task of compound-viral protein activity prediction on an independent test set. As a use case, we identify a ranked list of 47 compounds common to three main proteins of SARS-COV-2 virus (PL-PRO, 3CL-PRO and Spike protein) as potential targets including 21 antivirals, 15 anticancer, 5 antibiotics and 6 other investigationalhuman compounds.We performadditional molecular docking simulations to demonstrate thatmajority of these compounds have low binding energies and thus high binding affinity with the potential to be effective against the SARS-COV-2 virus. Availability All the source code and data is available at: https://github.com/raghvendra5688/Drug-Repurposing and https://dx.doi.org/10.17632/8rrwnbcgmx.3. We also implemented a web-server at: https://machinelearning-protein.qcri.org/index.html. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Raghvendra Mall
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Abdurrahman Elbasir
- ICT Division, College of Science and Engineering, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Hossam Almeer
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Zeyaul Islam
- Qatar Biomedical Research Institute, Hamad Bin Khalifa Univeristy, Doha, 34110, Qatar
| | - Prasanna R Kolatkar
- Qatar Biomedical Research Institute, Hamad Bin Khalifa Univeristy, Doha, 34110, Qatar
| | - Sanjay Chawla
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, 34110, Qatar
| | - Ehsan Ullah
- Qatar Computing Research Institute, Hamad Bin Khalifa University, Doha, 34110, Qatar
| |
Collapse
|
14
|
Savant S, Srinivasan S, Kruthiventi AK. Potential Nutraceuticals for COVID-19. NUTRITION AND DIETARY SUPPLEMENTS 2021. [DOI: 10.2147/nds.s294231] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
15
|
Rudzińska M, Daglioglu C, Savvateeva LV, Kaci FN, Antoine R, Zamyatnin AA. Current Status and Perspectives of Protease Inhibitors and Their Combination with Nanosized Drug Delivery Systems for Targeted Cancer Therapy. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:9-20. [PMID: 33442233 PMCID: PMC7797289 DOI: 10.2147/dddt.s285852] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/15/2020] [Indexed: 12/12/2022]
Abstract
In cancer treatments, many natural and synthetic products have been examined; among them, protease inhibitors are promising candidates for anti-cancer agents. Since dysregulated proteolytic activities can contribute to tumor development and metastasis, antagonization of proteases with tailored inhibitors is an encouraging approach. Although adverse effects of early designs of these inhibitors disappeared after the introduction of next-generation agents, most of the proposed inhibitors did not pass the early stages of clinical trials due to their nonspecific toxicity and lack of pharmacological effects. Therefore, new applications that modulate proteases more specifically and serve their programmed way of administration are highly appreciated. In this context, nanosized drug delivery systems have attracted much attention because preliminary studies have demonstrated that the therapeutic capacity of inhibitors has been improved significantly with encapsulated formulation as compared to their free forms. Here, we address this issue and discuss the current application and future clinical prospects of this potential combination towards targeted protease-based cancer therapy.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Cenk Daglioglu
- Biotechnology and Bioengineering Application and Research Center, Integrated Research Centers, Izmir Institute of Technology, Urla, Izmir 35430, Turkey
| | - Lyudmila V Savvateeva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| | - Fatma Necmiye Kaci
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Yakutiye, Erzurum 25050, Turkey
| | - Rodolphe Antoine
- CNRS, Institut Lumière Matière, Univ Lyon, Université Claude Bernard Lyon 1, Lyon F-69622, France
| | - Andrey A Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Moscow 119991, Russia.,Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia.,Department of Biotechnology, Sirius University of Science and Technology, Sochi 354340, Russia
| |
Collapse
|
16
|
Ochoa R, Magnitov M, Laskowski RA, Cossio P, Thornton JM. An automated protocol for modelling peptide substrates to proteases. BMC Bioinformatics 2020; 21:586. [PMID: 33375946 PMCID: PMC7771086 DOI: 10.1186/s12859-020-03931-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/09/2020] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Proteases are key drivers in many biological processes, in part due to their specificity towards their substrates. However, depending on the family and molecular function, they can also display substrate promiscuity which can also be essential. Databases compiling specificity matrices derived from experimental assays have provided valuable insights into protease substrate recognition. Despite this, there are still gaps in our knowledge of the structural determinants. Here, we compile a set of protease crystal structures with bound peptide-like ligands to create a protocol for modelling substrates bound to protease structures, and for studying observables associated to the binding recognition. RESULTS As an application, we modelled a subset of protease-peptide complexes for which experimental cleavage data are available to compare with informational entropies obtained from protease-specificity matrices. The modelled complexes were subjected to conformational sampling using the Backrub method in Rosetta, and multiple observables from the simulations were calculated and compared per peptide position. We found that some of the calculated structural observables, such as the relative accessible surface area and the interaction energy, can help characterize a protease's substrate recognition, giving insights for the potential prediction of novel substrates by combining additional approaches. CONCLUSION Overall, our approach provides a repository of protease structures with annotated data, and an open source computational protocol to reproduce the modelling and dynamic analysis of the protease-peptide complexes.
Collapse
Affiliation(s)
- Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, 050010, Medellín, Colombia.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK.
| | - Mikhail Magnitov
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
- Department of Biological and Medical Physics, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia, 141701
| | - Roman A Laskowski
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Pilar Cossio
- Biophysics of Tropical Diseases, Max Planck Tandem Group, University of Antioquia, 050010, Medellín, Colombia
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, 60438, Frankfurt am Main, Germany
| | - Janet M Thornton
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| |
Collapse
|
17
|
Discovery of potent thrombin inhibitors from a protease-focused DNA-encoded chemical library. Proc Natl Acad Sci U S A 2020; 117:16782-16789. [PMID: 32641511 PMCID: PMC7382296 DOI: 10.1073/pnas.2005447117] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To rapidly identify small-molecule lead compounds to target healthcare-associated proteases, we constructed a unique 9.8-million-membered protease-focused DNA-encoded chemical library. Affinity selection of this library with a healthcare-relevant protease (i.e., thrombin, a key protein necessary for blood coagulation) revealed potent inhibitors in the first screening attempt. Our results emphasize the utility of a structurally focused DNA-encoded chemical library approach to rapidly uncover hits for healthcare targets (e.g., proteases) where no drug exists (e.g., male contraception) and for emerging diseases (e.g., coronavirus disease 2019). DNA-encoded chemical libraries are collections of compounds individually coupled to unique DNA tags serving as amplifiable identification barcodes. By bridging split-and-pool combinatorial synthesis with the ligation of unique encoding DNA oligomers, million- to billion-member libraries can be synthesized for use in hundreds of healthcare target screens. Although structural diversity and desirable molecular property ranges generally guide DNA-encoded chemical library design, recent reports have highlighted the utility of focused DNA-encoded chemical libraries that are structurally biased for a class of protein targets. Herein, a protease-focused DNA-encoded chemical library was designed that utilizes chemotypes known to engage conserved catalytic protease residues. The three-cycle library features functional moieties such as guanidine, which interacts strongly with aspartate of the protease catalytic triad, as well as mild electrophiles such as sulfonamide, urea, and carbamate. We developed a DNA-compatible method for guanidinylation of amines and reduction of nitriles. Employing these optimized reactions, we constructed a 9.8-million-membered DNA-encoded chemical library. Affinity selection of the library with thrombin, a common protease, revealed a number of enriched features which ultimately led to the discovery of a 1 nM inhibitor of thrombin. Thus, structurally focused DNA-encoded chemical libraries have tremendous potential to find clinically useful high-affinity hits for the rapid discovery of drugs for targets (e.g., proteases) with essential functions in infectious diseases (e.g., severe acute respiratory syndrome coronavirus 2) and relevant healthcare conditions (e.g., male contraception).
Collapse
|
18
|
Parveen M, Aslam A, Alam M, Siddiqui MF, Bano B, Azaz S, Silva MR, Silva PSP. Synthesisand Characterization of Benzothiophene‐3‐carbonitrile Derivative and Its Interactions with Human Serum Albumin (HSA). ChemistrySelect 2019. [DOI: 10.1002/slct.201902378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mehtab Parveen
- Division of Organic SynthesisDepartment of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Afroz Aslam
- Division of Organic SynthesisDepartment of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Mahboob Alam
- Division of Chemistry and BiotechnologyDongguk University 123Dongdae-ro Gyeongju 780-714 Republic of Korea
| | | | - Bilqees Bano
- Department of BiochemistryAligarh Muslim University Aligarh 202002 India
| | - Shaista Azaz
- Division of Organic SynthesisDepartment of ChemistryAligarh Muslim University Aligarh 202002 India
| | - Manuela Ramos Silva
- CFisUCDepartment of PhysicsUniversity of Coimbra, P- 3004-516 Coimbra Portugal
| | - P. S. Pereira Silva
- CFisUCDepartment of PhysicsUniversity of Coimbra, P- 3004-516 Coimbra Portugal
| |
Collapse
|
19
|
GII.4 Norovirus Protease Shows pH-Sensitive Proteolysis with a Unique Arg-His Pairing in the Catalytic Site. J Virol 2019; 93:JVI.01479-18. [PMID: 30626675 DOI: 10.1128/jvi.01479-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/17/2018] [Indexed: 11/20/2022] Open
Abstract
Human noroviruses (NoVs) are the main cause of epidemic and sporadic gastroenteritis. Phylogenetically, noroviruses are divided into seven genogroups, with each divided into multiple genotypes. NoVs belonging to genogroup II and genotype 4 (GII.4) are globally most prevalent. Genetic diversity among the NoVs and the periodic emergence of novel strains present a challenge for the development of vaccines and antivirals to treat NoV infection. NoV protease is essential for viral replication and is an attractive target for the development of antivirals. The available structure of GI.1 protease provided a basis for the design of inhibitors targeting the active site of the protease. These inhibitors, although potent against the GI proteases, poorly inhibit the GII proteases, for which structural information is lacking. To elucidate the structural basis for this difference in the inhibitor efficiency, we determined the crystal structure of a GII.4 protease. The structure revealed significant changes in the S2 substrate-binding pocket, making it noticeably smaller, and in the active site, with the catalytic triad residues showing conformational changes. Furthermore, a conserved arginine is found inserted into the active site, interacting with the catalytic histidine and restricting substrate/inhibitor access to the S2 pocket. This interaction alters the relationships between the catalytic residues and may allow for a pH-dependent regulation of protease activity. The changes we observed in the GII.4 protease structure may explain the reduced potency of the GI-specific inhibitors against the GII protease and therefore must be taken into account when designing broadly cross-reactive antivirals against NoVs.IMPORTANCE Human noroviruses (NoVs) cause sporadic and epidemic gastroenteritis worldwide. They are divided into seven genogroups (GI to GVII), with each genogroup further divided into several genotypes. Human NoVs belonging to genogroup II and genotype 4 (GII.4) are the most prevalent. Currently, there are no vaccines or antiviral drugs available for NoV infection. The protease encoded by NoV is considered a valuable target because of its essential role in replication. NoV protease structures have only been determined for the GI genogroup. We show here that the structure of the GII.4 protease exhibits several significant changes from GI proteases, including a unique pairing of an arginine with the catalytic histidine that makes the proteolytic activity of GII.4 protease pH sensitive. A comparative analysis of NoV protease structures may provide a rational framework for structure-based drug design of broadly cross-reactive inhibitors targeting NoVs.
Collapse
|
20
|
Vishvakarma R, Mishra A. Protective effect of a protease inhibitor from Agaricus bisporus on Saccharomyces cerevisiae cells against oxidative stress. Prep Biochem Biotechnol 2019; 49:244-254. [PMID: 30821200 DOI: 10.1080/10826068.2018.1536992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Protease inhibitors are known to resist damage to host organisms against external threats, hence form a part of their defense system. This property of protease inhibitors was studied on protecting oxidatively stressed Saccharomyces cerevisiae yeast cells. The protease inhibitor was extracted from Agaricus bisporus, an edible mushroom. The inhibitor showed the presence of antioxidant activity as the purified inhibitor fraction gave an IC50 value of 45.13 ± 0.88 µg/mL and 33.30 ± 1.5 µg/mL when checked, respectively, by 2, 2-diphenyl-1-picrylhydrazyl, DPPH and 2, 2'-azo-bis(3-ethylbenzthiazoline-6- sulfonic acid), ABTS•+ scavenging activity. The yeast cells' survival rate (%), was determined through 3-(4, 5-dimethylthiazol-2-yl) - 2, 5-diphenyltetrazolium bromide, MTT assay, and it was found that in the presence of 2 mM H2O2 cell survival decreased to 26.33%, whereas when the experiment was conducted in the presence of protease inhibitor and 2 mM H2O2 cell survival percentage rose to 74%. The protease inhibitor's effect on the oxidatively stressed yeast cells was further studied by using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and Confocal Microscopy to understand the morphological changes. The viable and non-viable cell populations were quantified using Fluorescence Assorted Cell Sorting (FACS) using propidium iodide, PI, 4', 6-diamidino-2-phenylindole, DAPI and 2', 7'-dichlorofluorescein, DCF dyes.
Collapse
Affiliation(s)
- Reena Vishvakarma
- a School of Biochemical Engineering , Indian Institute of Technology Banaras Hindu University , Varanasi , Uttar Pradesh , India
| | - Abha Mishra
- a School of Biochemical Engineering , Indian Institute of Technology Banaras Hindu University , Varanasi , Uttar Pradesh , India
| |
Collapse
|
21
|
Palayam M, Ganapathy J, Balu KE, Pennathur G, Krishnasamy G. Structural insights into a multifunctional inhibitor, 'AMTIN' from tubers of Alocasia macrorrhizos and its possible role in dengue protease (NS2B-NS3) inhibition. Int J Biol Macromol 2018; 113:681-691. [PMID: 29505868 DOI: 10.1016/j.ijbiomac.2018.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 02/20/2018] [Accepted: 03/02/2018] [Indexed: 11/25/2022]
Abstract
Protease inhibitors from plants play major role in defensive mechanism against various pathogenic organisms. AMTIN from the tubers of Alocasia macrorrhiza has been purified and characterized as multi-functional Kunitz type protease inhibitor. AMTIN is varied from other KTIs by having three different loops specific for binding to trypsin/amylase and subtilisin that are located approximately 30Ǻ away from one another as evidenced from crystallographic efforts. Biochemical studies on AMTIN reveal simultaneous binding of protease/amylase and have been cross validated using in-silico tools to model Amylase - AMTIN - Trypsin complex without any steric clashes. Apart from multi functionality, the remarkable structural and functional stability of AMTIN at high temperature, presence of many phosphorylation, myristoylation and glycosylation sites and molecular docking studies with dengue viral protease (NS2B-NS3) makes this protein interesting. Hence AMTIN can be considered as a template to design effective antivirals against dengue virus.
Collapse
Affiliation(s)
- Malathy Palayam
- CAS in Crystallography & Biophysics and BIF center, University of Madras, Guindy campus, Chennai 600025, India
| | | | - Kanal Elamparithi Balu
- CAS in Crystallography & Biophysics and BIF center, University of Madras, Guindy campus, Chennai 600025, India
| | - Gautam Pennathur
- Center for Biotechnology, Anna University, Chennai 600025, India
| | - Gunasekaran Krishnasamy
- CAS in Crystallography & Biophysics and BIF center, University of Madras, Guindy campus, Chennai 600025, India.
| |
Collapse
|
22
|
Cotabarren J, Tellechea ME, Avilés FX, Lorenzo Rivera J, Obregón WD. Biochemical characterization of the YBPCI miniprotein, the first carboxypeptidase inhibitor isolated from Yellow Bell Pepper ( Capsicum annuum L). A novel contribution to the knowledge of miniproteins stability. Protein Expr Purif 2018; 144:55-61. [DOI: 10.1016/j.pep.2017.12.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
|
23
|
Zhmud E, Kuban I, Emtseva M, Dorogina O. Comparative analysis of trypsin inhibitor activity in the wet and dry weight of leaves in representatives of Hedysarum L. in the foreststeppe of Western Siberia. BIO WEB OF CONFERENCES 2018. [DOI: 10.1051/bioconf/20181100052] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The trypsin inhibitor activity (TIA) in fresh leaves in Hedysarum alpinum L., H. flavescens Regel & Schmalh. and H. theinum Krasnob. in Central Siberian Botanical Garden Siberian Branch Russian Academy Science (CSBG SB RAS, in the foreststeppe of Western Siberia) was investigated in the vegetative phase of seasonal development. Trypsin inhibitors (PR-6 proteins) play the role of immunity factors, since under various influences on plants, the genes encoding the production of this group of substances are activated. They are synthesized in different plant organs, and are necessary for plant control with biotic and abiotic stresses. TIA in the species was characterized by low (< 20 mg/g dry weight) and medium (≥ 20 mg/g dry weight) values, as we identified. It was found that the TIA values vary at a high and very high degree when determining in fresh leaves, and in the study in dry leaf flour - to medium degree. The preservation of TIA values in the species in the dried leaves is shown. On the basis of this fact, the possibility of studying TIA in these species in dried leaves is justified.
Collapse
|
24
|
Pontual EV, Pires-Neto DF, Fraige K, Higino TMM, Carvalho BEA, Alves NMP, Lima TA, Zingali RB, Coelho LCBB, Bolzani VS, Figueiredo RCBQ, Napoleão TH, Paiva PMG. A trypsin inhibitor from Moringa oleifera flower extract is cytotoxic to Trypanosoma cruzi with high selectivity over mammalian cells. Nat Prod Res 2017; 32:2940-2944. [DOI: 10.1080/14786419.2017.1389932] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Emmanuel V. Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco, Recife, Brazil
| | - Divar F. Pires-Neto
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | - Karina Fraige
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Taciana M. M. Higino
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | - Belany E. A. Carvalho
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Neyla M. P. Alves
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | - Thâmarah A. Lima
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Russolina B. Zingali
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luana C. B. B. Coelho
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Vanderlan S. Bolzani
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista Júlio de Mesquita Filho, Araraquara, Brazil
| | - Regina C. B. Q. Figueiredo
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães, Fundação Oswaldo Cruz, Recife, Brazil
| | - Thiago H. Napoleão
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| | - Patrícia M. G. Paiva
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, Recife, Brazil
| |
Collapse
|
25
|
Eatemadi A, Aiyelabegan HT, Negahdari B, Mazlomi MA, Daraee H, Daraee N, Eatemadi R, Sadroddiny E. Role of protease and protease inhibitors in cancer pathogenesis and treatment. Biomed Pharmacother 2016; 86:221-231. [PMID: 28006747 DOI: 10.1016/j.biopha.2016.12.021] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 11/26/2016] [Accepted: 12/05/2016] [Indexed: 10/20/2022] Open
Abstract
Cancer is the second cause of death in 2015, and it has been estimated to surpass heart diseases as the leading cause of death in the next few years. Several mechanisms are involved in cancer pathogenesis. Studies have indicated that proteases are also implicated in tumor growth and progression which is highly dependent on nutrient and oxygen supply. On the other hand, protease inhibitors could be considered as a potent strategy in cancer therapy. On the basis of the type of the key amino acid in the active site of the protease and the mechanism of peptide bond cleavage, proteases can be classified into six groups: cysteine, serine, threonine, glutamic acid, aspartate proteases, as well as matrix metalloproteases. In this review, we focus on the role of different types of proteases and protease inhibitors in cancer pathogenesis.
Collapse
Affiliation(s)
- Ali Eatemadi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran.
| | - Hammed T Aiyelabegan
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran; Tehran University of Medical Sciences International Campus (TUMS-IC), Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadis Daraee
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasim Daraee
- Department of Medical Biotechnology, School of Medicine, Lorestan University of Medical Sciences, Lorestan, Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Esmaeil Sadroddiny
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Patriota LLS, Procópio TF, de Souza MFD, de Oliveira APS, Carvalho LVN, Pitta MGR, Rego MJBM, Paiva PMG, Pontual EV, Napoleão TH. A Trypsin Inhibitor from Tecoma stans Leaves Inhibits Growth and Promotes ATP Depletion and Lipid Peroxidation in Candida albicans and Candida krusei. Front Microbiol 2016; 7:611. [PMID: 27199940 PMCID: PMC4847156 DOI: 10.3389/fmicb.2016.00611] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 04/12/2016] [Indexed: 01/13/2023] Open
Abstract
Tecoma stans (yellow elder) has shown medicinal properties and antimicrobial activity. Previous reports on antifungal activity of T. stans preparations and presence of trypsin inhibitor activity from T. stans leaves stimulated the investigation reported here. In this work, we proceeded to the purification and characterization of a trypsin inhibitor (TesTI), which was investigated for anti-Candida activity. Finally, in order to determine the potential of TesTI as a new natural chemotherapeutic product, its cytotoxicity to human peripheral blood mononuclear cells (PBMCs) was evaluated. TesTI was isolated from saline extract by ammonium sulfate fractionation followed by ion exchange and gel filtration chromatographies. Antifungal activity was evaluated by determining the minimal inhibitory (MIC) and fungicide (MFC) concentrations using fungal cultures containing only yeast form or both yeast and hyphal forms. Candida cells treated with TesTI were evaluated for intracellular ATP levels and lipid peroxidation. Cytotoxicity of TesTI to PBMCs was evaluated by MTT assay. TesTI (39.8 kDa, pI 3.41, Ki 43 nM) inhibited similarly the growth of both C. albicans and C. krusei culture types at MIC of 100 μg/mL. The MFCs were 200 μg/mL for C. albicans and C. krusei. Time-response curves revealed that TesTI (at MIC) was more effective at inhibiting the replication of C. albicans cells. At MIC, TesTI promoted reduction of ATP levels and lipid peroxidation in the Candida cells, being not cytotoxic to PBMCs. In conclusion, TesTI is an antifungal agent against C. albicans and C. krusei, without toxicity to human cells.
Collapse
Affiliation(s)
| | - Thamara F Procópio
- Departamento de Bioquímica, Universidade Federal de Pernambuco Recife, Brazil
| | - Maria F D de Souza
- Departamento de Bioquímica, Universidade Federal de Pernambuco Recife, Brazil
| | | | - Lidiane V N Carvalho
- Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de Pernambuco Recife, Brazil
| | - Maira G R Pitta
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil; Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de PernambucoRecife, Brazil
| | - Moacyr J B M Rego
- Departamento de Bioquímica, Universidade Federal de PernambucoRecife, Brazil; Laboratório de Imunomodulação e Novas Abordagens Terapêuticas, Núcleo de Pesquisa em Inovação Terapêutica, Universidade Federal de PernambucoRecife, Brazil
| | - Patrícia M G Paiva
- Departamento de Bioquímica, Universidade Federal de Pernambuco Recife, Brazil
| | - Emmanuel V Pontual
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco Recife, Brazil
| | - Thiago H Napoleão
- Departamento de Bioquímica, Universidade Federal de Pernambuco Recife, Brazil
| |
Collapse
|
27
|
Samir EM, Abouzied AS, Hamed FI. The Synthesis and Cytotoxicity of Novel Thiophene Derivatives Derived from 2-(4-Oxo-4,4-Dihydrothiazol-2-yl) Acetonitrile. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ijoc.2016.62009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Lufrano D, Cotabarren J, Garcia-Pardo J, Fernandez-Alvarez R, Tort O, Tanco S, Avilés FX, Lorenzo J, Obregón WD. Biochemical characterization of a novel carboxypeptidase inhibitor from a variety of Andean potatoes. PHYTOCHEMISTRY 2015; 120:36-45. [PMID: 26521146 DOI: 10.1016/j.phytochem.2015.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 07/24/2015] [Accepted: 09/30/2015] [Indexed: 06/05/2023]
Abstract
Natural protease inhibitors of metallocarboxypeptidases are rarely reported. In this work, the cloning, expression and characterization of a proteinaceous inhibitor of the A/B-type metallocarboxypeptidases, naturally occurring in tubers of Solanum tuberosum, subsp. andigenum cv. Imilla morada, are described. The obtained cDNA encoded a polypeptide of 80 residues, which displayed the features of metallocarboxypeptidase inhibitor precursors from the Potato Carboxypeptidase Inhibitor (PCI) family. The mature polypeptide (39 residues) was named imaPCI and in comparison with the prototype molecule of the family (PCI from S. tuberosum subsp. tuberosum), its sequence showed one difference at its N-terminus and another three located at the secondary binding site, a region described to contribute to the stabilization of the complex inhibitor-target enzyme. In order to gain insights into the relevance of the secondary binding site in nature, a recombinant form of imaPCI (rimaPCI) having only differences at the secondary binding site with respect to recombinant PCI (rPCI) was cloned and expressed in Escherichia coli. The rimaPCI exhibited a molecular mass of 4234.8Da by MALDI-TOF/MS. It displayed potent inhibitory activity towards A/B-type carboxypeptidases (with a Ki in the nanomolar range), albeit 2-4-fold lower inhibitory capacity compared to its counterpart rPCI. This result is in agreement with our bioinformatic analysis, which showed that the main interaction established between the secondary binding site of rPCI and the bovine carboxypeptidase A is likely lost in the case of rimaPCI. These observations reinforce the importance of the secondary binding site of PCI-family members on inhibitory effects towards A/B-type metallocarboxypeptidases. Furthermore, as a simple proof of concept of its applicability in biotechnology and biomedicine, the ability of rimaPCI to protect human epidermal growth factor from C-terminal cleavage and inactivation by carboxypeptidases A and B was demonstrated.
Collapse
Affiliation(s)
- Daniela Lufrano
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Juliana Cotabarren
- Laboratorio de Investigación de Proteínas Vegetales, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 115 y 47 s/N, B1900AVW La Plata, Argentina
| | - Javier Garcia-Pardo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Roberto Fernandez-Alvarez
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Olivia Tort
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Sebastián Tanco
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Francesc Xavier Avilés
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquimica i Biologia Molecular, Universitat Autònoma de Barcelona, Campus Universitari, Bellaterra, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Walter D Obregón
- Laboratorio de Investigación de Proteínas Vegetales, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 115 y 47 s/N, B1900AVW La Plata, Argentina.
| |
Collapse
|
29
|
Park JY, Ko JA, Kim DW, Kim YM, Kwon HJ, Jeong HJ, Kim CY, Park KH, Lee WS, Ryu YB. Chalcones isolated from Angelica keiskei inhibit cysteine proteases of SARS-CoV. J Enzyme Inhib Med Chem 2015; 31:23-30. [PMID: 25683083 DOI: 10.3109/14756366.2014.1003215] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Two viral proteases of severe acute respiratory syndrome coronavirus (SARS-CoV), a chymotrypsin-like protease (3CL(pro)) and a papain-like protease (PL(pro)) are attractive targets for the development of anti-SARS drugs. In this study, nine alkylated chalcones (1-9) and four coumarins (10-13) were isolated from Angelica keiskei, and the inhibitory activities of these constituents against SARS-CoV proteases (3CL(pro) and PL(pro)) were determined (cell-free/based). Of the isolated alkylated chalcones, chalcone 6, containing the perhydroxyl group, exhibited the most potent 3CL(pro) and PL(pro) inhibitory activity with IC50 values of 11.4 and 1.2 µM. Our detailed protein-inhibitor mechanistic analysis of these species indicated that the chalcones exhibited competitive inhibition characteristics to the SARS-CoV 3CL(pro), whereas noncompetitive inhibition was observed with the SARS-CoV PL(pro).
Collapse
Affiliation(s)
- Ji-Young Park
- a Eco-friendly Bio Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Jin-A Ko
- a Eco-friendly Bio Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Dae Wook Kim
- b Division of Applied Life Science (BK21 program, IALS) , Graduate School of Gyeongsang National University , Jinju , Republic of Korea , and
| | - Young Min Kim
- c Department of Food Science & Technology and Functional Food Research Center , Chonnam National University , Gwangju , Republic of Korea
| | - Hyung-Jun Kwon
- a Eco-friendly Bio Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Hyung Jae Jeong
- a Eco-friendly Bio Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Cha Young Kim
- a Eco-friendly Bio Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Ki Hun Park
- b Division of Applied Life Science (BK21 program, IALS) , Graduate School of Gyeongsang National University , Jinju , Republic of Korea , and
| | - Woo Song Lee
- a Eco-friendly Bio Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| | - Young Bae Ryu
- a Eco-friendly Bio Material Research Center, Korea Research Institute of Bioscience and Biotechnology , Jeongeup , Republic of Korea
| |
Collapse
|
30
|
Fischer M, Kuckenberg M, Kastilan R, Muth J, Gebhardt C. Novel in vitro inhibitory functions of potato tuber proteinaceous inhibitors. Mol Genet Genomics 2015; 290:387-98. [PMID: 25260821 PMCID: PMC4309916 DOI: 10.1007/s00438-014-0906-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/23/2014] [Indexed: 11/25/2022]
Abstract
Plant protease inhibitors are a structurally highly diverse and ubiquitous class of small proteins, which play various roles in plant development and defense against pests and pathogens. Particular isoforms inhibit in vitro proteases and other enzymes that are not their natural substrates, for example proteases that have roles in human diseases. Mature potato tubers are a rich source of several protease inhibitor families. Different cultivars have different inhibitor profiles. With the objective to explore the functional diversity of the natural diversity of potato protease inhibitors, we randomly selected and sequenced 9,600 cDNA clones originated from mature tubers of ten potato cultivars. Among these, 120 unique inhibitor cDNA clones were identified by homology searches. Eighty-eight inhibitors represented novel sequence variants of known plant protease inhibitor families. Most frequent were Kunitz-type inhibitors (KTI), potato protease inhibitors I and II (PIN), pectin methylesterase inhibitors, metallocarboxypeptidase inhibitors and defensins. Twenty-three inhibitors were functionally characterized after heterologous expression in the yeast Pichia pastoris. The purified recombinant proteins were tested for inhibitory activity on trypsin, eleven pharmacological relevant proteases and the non-proteolytic enzyme 5-lipoxygenase. Members of the KTI and PIN families inhibited pig pancreas elastase, β-Secretase, Cathepsin K, HIV-1 protease and potato 5-lipoxygenase. Our results demonstrate in vitro inhibitory diversity of small potato tuber proteins commonly known as protease inhibitors, which might have biotechnological or medical applications.
Collapse
Affiliation(s)
- Matthias Fischer
- Department Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl von LinnéWeg 10, 50829 Cologne, Germany
| | - Markus Kuckenberg
- Department Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl von LinnéWeg 10, 50829 Cologne, Germany
| | - Robin Kastilan
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Jost Muth
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Forckenbeckstraße 6, 52074 Aachen, Germany
| | - Christiane Gebhardt
- Department Plant Breeding and Genetics, Max-Planck Institute for Plant Breeding Research, Carl von LinnéWeg 10, 50829 Cologne, Germany
| |
Collapse
|
31
|
Lv Y, Zhang J, Wu H, Zhao S, Song Y, Wang S, Wang B, Lv G, Ma X. A protease inhibition strategy based on acceleration of autolysis. Chem Commun (Camb) 2015; 51:5959-62. [DOI: 10.1039/c5cc01448d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An iconoclastic protease inhibition strategy based on autolysis acceleration: proteases are concentrated and induced to self-digest by a polymer via electrostatic interaction. Such a catalytic cycle results in high inhibition efficiency.
Collapse
Affiliation(s)
- Yan Lv
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Jianbin Zhang
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Hao Wu
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Shan Zhao
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Yizhe Song
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Shujun Wang
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Bing Wang
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Guojun Lv
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| | - Xiaojun Ma
- Laboratory of Biomedical Materials Engineering
- Dalian Institute of Chemical Physics
- Chinese Academy of Sciences
- Dalian 116023
- P. R. China
| |
Collapse
|
32
|
Vamvaka E, Twyman RM, Christou P, Capell T. Can plant biotechnology help break the HIV-malaria link? Biotechnol Adv 2014; 32:575-82. [PMID: 24607600 DOI: 10.1016/j.biotechadv.2014.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/19/2014] [Accepted: 02/25/2014] [Indexed: 10/25/2022]
Abstract
The population of sub-Saharan Africa is at risk from multiple, poverty-related endemic diseases. HIV and malaria are the most prevalent, but they disproportionately affect different groups of people, i.e. HIV predominantly affects sexually-active adults whereas malaria has a greater impact on children and pregnant women. Nevertheless, there is a significant geographical and epidemiological overlap which results in bidirectional and synergistic interactions with important consequences for public health. The immunosuppressive effects of HIV increase the risk of infection when individuals are exposed to malaria parasites and also the severity of malaria symptoms. Similarly, acute malaria can induce a temporary increase in the HIV viral load. HIV is associated with a wide range of opportunistic infections that can be misdiagnosed as malaria, resulting in the wasteful misuse of antimalarial drugs and a failure to address the genuine cause of the disease. There is also a cumulative risk of toxicity when antiretroviral and antimalarial drugs are given to the same patients. Synergistic approaches involving the control of malaria as a strategy to fight HIV/AIDS and vice versa are therefore needed in co-endemic areas. Plant biotechnology has emerged as a promising approach to tackle poverty-related diseases because plant-derived drugs and vaccines can be produced inexpensively in developing countries and may be distributed using agricultural infrastructure without the need for a cold chain. Here we explore some of the potential contributions of plant biotechnology and its integration into broader multidisciplinary public health programs to combat the two diseases in developing countries.
Collapse
Affiliation(s)
- E Vamvaka
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain
| | - R M Twyman
- TRM Ltd, PO Box 93, York YO43 3WE, United Kingdom
| | - P Christou
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - T Capell
- Department of Plant Production and Forestry Science, School of Agrifood and Forestry Science and Engineering (ETSEA), University of Lleida-Agrotecnio Center, Lleida, Spain.
| |
Collapse
|
33
|
Pontual EV, de Lima Santos ND, de Moura MC, Coelho LCBB, do Amaral Ferraz Navarro DM, Napoleão TH, Paiva PMG. Trypsin inhibitor from Moringa oleifera flowers interferes with survival and development of Aedes aegypti larvae and kills bacteria inhabitant of larvae midgut. Parasitol Res 2013; 113:727-33. [DOI: 10.1007/s00436-013-3702-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/12/2013] [Indexed: 11/29/2022]
|
34
|
Mashiyama ST, Koupparis K, Caffrey CR, McKerrow JH, Babbitt PC. A global comparison of the human and T. brucei degradomes gives insights about possible parasite drug targets. PLoS Negl Trop Dis 2012; 6:e1942. [PMID: 23236535 PMCID: PMC3516576 DOI: 10.1371/journal.pntd.0001942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 10/23/2012] [Indexed: 01/26/2023] Open
Abstract
We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups (“M32” and “C51”) that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html. Human African trypanosomiasis (HAT) is caused by the protozoan parasite Trypanosoma brucei. HAT is fatal unless treated, yet the current treatment itself can cause death. New treatments are urgently needed. Our study focuses on proteases, which are enzymes that break down proteins. Because of their roles in many centrally important biological processes, proteases are targets for drugs to treat a variety of diseases including parasite infection. The recent explosion of protein sequence and structure information in public databases has made surveys of proteins on a genomic scale possible. However, collecting specific data of interest from diverse databases and synthesizing them in a way that is easy to interpret can be difficult. We used T. brucei and human protease sequences, crystal structures, and models to create network views that show how proteases cluster by similarity. Such views are valuable not only for understanding the evolution of the protein repertoire in each species, but also can give important clues for drug design. Two T. brucei protease groups (“M32” and “C51”) that are very different in sequence from human proteases were examined in structural detail. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it.
Collapse
Affiliation(s)
- Susan T. Mashiyama
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biomedical Research (QB3), University of California San Francisco, San Francisco, California, United States of America
- Center for Discovery and Innovation in Parasitic Diseases, and Department of Pathology, QB3, University of California San Francisco, San Francisco, California, United States of America
| | - Kyriacos Koupparis
- Center for Discovery and Innovation in Parasitic Diseases, and Department of Pathology, QB3, University of California San Francisco, San Francisco, California, United States of America
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, and Department of Pathology, QB3, University of California San Francisco, San Francisco, California, United States of America
| | - James H. McKerrow
- Center for Discovery and Innovation in Parasitic Diseases, and Department of Pathology, QB3, University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (JHM); (PCB)
| | - Patricia C. Babbitt
- Department of Bioengineering and Therapeutic Sciences, California Institute for Quantitative Biomedical Research (QB3), University of California San Francisco, San Francisco, California, United States of America
- * E-mail: (JHM); (PCB)
| |
Collapse
|
35
|
Suppressive effect on food intake of a potato extract (Potein®) involving cholecystokinin release in rats. Biosci Biotechnol Biochem 2012; 76:1104-9. [PMID: 22790930 DOI: 10.1271/bbb.110936] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have recently reported that oral gavage of a potato extract (Potein®) suppressed the food intake in rats. The satiating effect of the potato extract was compared in the present study to other protein sources, and the involvement of endogenous cholecystokinin (CCK) secretion was examined. Food consumption was measured in 18-h fasted rats after oral gavage of the potato extract or other protein sources. The CCK-releasing activity of the potato extract was then examined in anesthetized rats with a portal cannula. Oral gavage of the potato extract reduced the food intake in the rats, the effect being greater than with casein and a soybean β-conglycinin hydrolysate. The suppressive effect on appetite of the potato extract was attenuated by treating with a CCK-receptor antagonist (devazepide). The portal CCK concentration was increased after a duodenal administration of the potato extract to anesthetized rats. These results indicate that the potato extract suppressed the food intake in rats through CCK secretion.
Collapse
|
36
|
Sugar–amino acid cyclic conjugates as novel conformationally constrained hydroxyethylamine transition-state isosteres. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.04.086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
Dali B, Keita M, Megnassan E, Frecer V, Miertus S. Insight into Selectivity of Peptidomimetic Inhibitors with Modified Statine Core for Plasmepsin II of Plasmodium falciparum over Human Cathepsin D. Chem Biol Drug Des 2012; 79:411-30. [DOI: 10.1111/j.1747-0285.2011.01276.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Viskupicova J, Danihelova M, Majekova M, Liptaj T, Sturdik E. Polyphenol fatty acid esters as serine protease inhibitors: a quantum-chemical QSAR analysis. J Enzyme Inhib Med Chem 2011; 27:800-9. [PMID: 21981000 DOI: 10.3109/14756366.2010.616860] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We investigated the ability of polyphenol fatty acid esters to inhibit the activity of serine proteases trypsin, thrombin, elastase and urokinase. Potent protease inhibition in micromolar range was displayed by rutin and rutin derivatives esterified with medium and long chain, mono- and polyunsaturated fatty acids (1e-m), followed by phloridzin and esculin esters with medium and long fatty acid chain length (2a-d, 3a-d), while unmodified compounds showed only little or no effect. QSAR study of the compounds tested provided the most significant parameters for individual inhibition activities, i.e. number of hydrogen bond donors for urokinase, molecular volume for thrombin, and solvation energy for elastase. According to the statistical analysis, the action of elastase inhibitors is opposed to those of urokinase and thrombin. Cluster analysis showed two groups of compounds: original polyphenols together with rutin esters with short fatty acid chain length and rutin esters with long fatty acid chain length.
Collapse
Affiliation(s)
- Jana Viskupicova
- Institute of Biochemistry, Nutrition and Health Protection, Faculty of Chemical and Food Technology, Slovak University of Technology, Bratislava, Slovakia.
| | | | | | | | | |
Collapse
|
39
|
Pimentel-Elardo SM, Buback V, Gulder TA, Bugni TS, Reppart J, Bringmann G, Ireland CM, Schirmeister T, Hentschel U. New tetromycin derivatives with anti-trypanosomal and protease inhibitory activities. Mar Drugs 2011; 9:1682-1697. [PMID: 22072992 PMCID: PMC3210601 DOI: 10.3390/md9101682] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/09/2011] [Accepted: 09/16/2011] [Indexed: 11/30/2022] Open
Abstract
Four new tetromycin derivatives, tetromycins 1–4 and a previously known one, tetromycin B (5) were isolated from Streptomyces axinellae Pol001T cultivated from the Mediterranean sponge Axinella polypoides. Structures were assigned using extensive 1D and 2D NMR spectroscopy as well as HRESIMS analysis. The compounds were tested for antiparasitic activities against Leishmania major and Trypanosoma brucei, and for protease inhibition against several cysteine proteases such as falcipain, rhodesain, cathepsin L, cathepsin B, and viral proteases SARS-CoV Mpro, and PLpro. The compounds showed antiparasitic activities against T. brucei and time-dependent inhibition of cathepsin L-like proteases with Ki values in the low micromolar range.
Collapse
Affiliation(s)
- Sheila M. Pimentel-Elardo
- Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg 97082, Germany; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-905-525-9140 (ext. 27334)
| | - Verena Buback
- Institute for Pharmacy and Food Chemistry, Am Hubland, Würzburg 97074, Germany; E-Mails: (V.B.); (T.S.)
| | - Tobias A.M. Gulder
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany; E-Mails: (T.A.M.G.); (G.B.)
| | - Tim S. Bugni
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA; E-Mails: (T.S.B.); (J.R.); (C.M.I.)
| | - Jason Reppart
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA; E-Mails: (T.S.B.); (J.R.); (C.M.I.)
| | - Gerhard Bringmann
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany; E-Mails: (T.A.M.G.); (G.B.)
| | - Chris M. Ireland
- Department of Medicinal Chemistry, University of Utah, Salt Lake City, UT 84112, USA; E-Mails: (T.S.B.); (J.R.); (C.M.I.)
| | - Tanja Schirmeister
- Institute for Pharmacy and Food Chemistry, Am Hubland, Würzburg 97074, Germany; E-Mails: (V.B.); (T.S.)
| | - Ute Hentschel
- Julius-von-Sachs Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg 97082, Germany; E-Mail:
| |
Collapse
|
40
|
Thibaut HJ, De Palma AM, Neyts J. Combating enterovirus replication: state-of-the-art on antiviral research. Biochem Pharmacol 2011; 83:185-92. [PMID: 21889497 DOI: 10.1016/j.bcp.2011.08.016] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/17/2011] [Accepted: 08/17/2011] [Indexed: 10/17/2022]
Abstract
Enteroviruses form an important genus within the large family of Picornaviridae. They are small, non-enveloped (+)RNA viruses, many of which are important pathogens in human and veterinary science. Despite their huge medical and socio-economical impact, there is still no approved antiviral therapy at hand for the treatment of these infections. Three capsid-targeting molecules (pleconaril, BTA-798 and V-073) are in clinical development. Pleconaril and BTA-798 are in phase II clinical trials for the treatment of enterovirus-induced sepsis syndrome and rhinovirus-induced aggravation of pre-existing asthma or COPD respectively. V-073 is in preclinical development for the treatment of poliovirus infections in the context of the worldwide polio eradication program. The capsid binding molecules have shown good in vitro potency against a number of enterovirus species, but lack activity against others. Another potential drawback of capsid inhibitors in the clinical setting could be the rapid emergence of drug resistance. It will therefore be important to develop inhibitors that affect other stages in the viral replication cycle. Several viral proteins, such as the viral 3C protease, the putative 2C helicase and the 3D RNA-dependent RNA polymerase may be/are excellent targets for inhibition of viral replication. Also host cell factors that are crucial in viral replication may be considered as potential targets for an antiviral approach. Unraveling these complex virus-host interactions will also provide better insights into the replication of enteroviruses. This review aims to summarize and discuss known inhibitors and potential viral and cellular targets for antiviral therapy against enteroviruses.
Collapse
Affiliation(s)
- Hendrik Jan Thibaut
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000 Leuven, Belgium
| | | | | |
Collapse
|
41
|
Lindner SE, Llinás M, Keck JL, Kappe SHI. The primase domain of PfPrex is a proteolytically matured, essential enzyme of the apicoplast. Mol Biochem Parasitol 2011; 180:69-75. [PMID: 21856338 DOI: 10.1016/j.molbiopara.2011.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/15/2011] [Accepted: 08/04/2011] [Indexed: 11/19/2022]
Abstract
The apicoplast of Plasmodium is an essential organelle with its own circular genome that must be faithfully replicated and segregated to its progeny during parasite sporogony and schizogony. DNA replication proteins are not encoded by its genome. Instead, the replication machinery must be imported from nuclear-encoded genes. A likely apicoplast DNA replication factor, PfPrex, bears a bipartite leader sequence for apicoplast trafficking and contains several DNA replication-related enzymatic domains. Here we analyze the domain structure of PfPrex and examine its trafficking and maturation within the parasite. A minimal primase domain of PfPrex is shown to contain functional zinc-binding and TOPRIM-fold domains, which in a recombinant form are sufficient to produce RNA primers from a single-stranded DNA template. PfPrex is shown to be extensively proteolytically matured within the parasite, which effectively separates its functional domains. Gene targeting attempts to knockout the Plasmodium yoelii ortholog of Prex were unsuccessful, indicating the apparent essentiality of this protein to the parasite. Finally, overexpression in Plasmodium falciparum of PfPrex's trafficking and primase sequences yielded specific and dynamic localization to foci within the apicoplast. Taken together, these observations strongly suggest an essential role of PfPrex primase in the production of RNA primers for lagging strand DNA synthesis of the apicoplast genome.
Collapse
Affiliation(s)
- Scott E Lindner
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, 550 Medical Sciences Center, 1300 University Avenue, Madison, WI 53706, USA.
| | | | | | | |
Collapse
|
42
|
Castro HC, Abreu PA, Geraldo RB, Martins RCA, dos Santos R, Loureiro NIV, Cabral LM, Rodrigues CR. Looking at the proteases from a simple perspective. J Mol Recognit 2011; 24:165-81. [PMID: 21360607 DOI: 10.1002/jmr.1091] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Proteases have received enormous interest from the research and medical communities because of their significant roles in several human diseases. Some examples include the involvement of thrombin in thrombosis, HIV-1 protease in Acquired Immune Deficiency Syndrome, cruzain in Trypanosoma cruzi infection, and membrane-type 1 matrix metalloproteinase in tumor invasion and metastasis. Many efforts has been undertaken to design effective inhibitors featuring potent inhibitory activity, specificity, and metabolic stability to those proteases involved in such pathologies. Protease inhibitors usually target the active site, but some of them act by other inhibitory mechanisms. The understanding of the structure-function relationships of proteases and inhibitors has an impact on new inhibitor drugs designing. In this paper, the structures of four proteases (thrombin, HIV-protease, cruzain, and a matrix metalloproteinase) are briefly reviewed, and used as examples of the importance of proteases for the development of new treatment strategies, leading to a longer and healthier life.
Collapse
Affiliation(s)
- Helena C Castro
- LABioMol, Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Rio de Janeiro, 24001-970, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Silva BA, Souza-Gonçalves AL, Pinto MR, Barreto-Bergter E, Santos ALS. Metallopeptidase inhibitors arrest vital biological processes in the fungal pathogen Scedosporium apiospermum. Mycoses 2011; 54:105-12. [PMID: 19702620 DOI: 10.1111/j.1439-0507.2009.01767.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Scedosporium apiospermum is an emerging agent of opportunistic mycoses in humans. Previously, we showed that mycelia of S. apiospermum secreted metallopeptidases which were directly linked to the destruction of key host proteins. In this study, we analysed the effect of metallopeptidase inhibitors on S. apiospermum development. As germination of inhaled conidia is a crucial event in the infectious process of S. apiospermum, we studied the morphological transformation induced by the incubation of conidia in Sabouraud-dextrose medium at 37 °C. After 6 h, some conidia presented a small projection resembling a germ-tube. A significant increase, around sixfold, in the germ-tube length was found after 12 h, and hyphae were exclusively observed after 24 h. Three distinct metallopeptidase inhibitors were able to arrest the transformation of conidia into hyphae in different ways; for instance, 1,10-phenanthroline (PHEN) completely blocked this process at 10 μmol l(-1), while ethylenediamine tetraacetic acid (EDTA) and ethylene glycol-bis (β-aminoethyl ether; EGTA) only partially inhibited the differentiation at up to 10 mmol l(-1). EGTA did not promote any significant reduction in the conidial growth, while PHEN and EDTA, both at 10 mmol l(-1), inhibited the proliferation around 100% and 65%, respectively. The secretion of polypeptides into the extracellular environment and the metallopeptidase activity secreted by mycelia were completely inhibited by PHEN. These findings suggest that metallo-type enzymes could be potential targets for future therapeutic interventions against S. apiospermum.
Collapse
Affiliation(s)
- Bianca A Silva
- Departamento de Microbiologia Geral, Instituto de Microbiologia Prof. Paulo de Góes (IMPPG), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
44
|
Vicari D, Foy KC, Liotta EM, Kaumaya PTP. Engineered conformation-dependent VEGF peptide mimics are effective in inhibiting VEGF signaling pathways. J Biol Chem 2011; 286:13612-25. [PMID: 21321115 DOI: 10.1074/jbc.m110.216812] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Angiogenesis, or formation of new blood vessels, is crucial to cancer tumor growth. Tumor growth, progression, and metastasis are critically influenced by the production of the pro-angiogenic vascular endothelial growth factor (VEGF). Promising anti-angiogenic drugs are currently available; however, their susceptibilities to drug resistance and long term toxicity are serious impediments to their use, thus requiring the development of new therapeutic approaches for safe and effective angiogenic inhibitors. In this work, peptides were designed to mimic the VEGF-binding site to its receptor VEGFR-2. The VEGF conformational peptide mimic, VEGF-P3(CYC), included two artificial cysteine residues, which upon cyclization constrained the peptide in a loop native-like conformation to better mimic the anti-parallel structure of VEGF. The engineered cyclic VEGF mimic peptide demonstrated the highest affinity to VEGFR-2 by surface plasmon resonance assay. The VEGF peptide mimics were evaluated as inhibitors in several in vitro assays in which VEGF-dependent signaling pathways were observed. All VEGF mimics inhibited VEGFR-2 phosphorylation with VEGF-P3(CYC) showing the highest inhibitory effects when compared with unstructured peptides. Additionally, we show in several angiogenic in vitro assays that all the VEGF mimics inhibited endothelial cell proliferation, migration, and network formation with the conformational VEGF-P3 (CYC) being the best. The VEGF-P3(CYC) also caused a significant delay in tumor development in a transgenic model of VEGF(+/-)Neu2-5(+/-). These results indicate that the structure-based design is important for the development of this peptidomimetic and for its anti-angiogenic effects.
Collapse
Affiliation(s)
- Daniele Vicari
- Department of Microbiology, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
45
|
Deu E, Leyva MJ, Albrow VE, Rice MJ, Ellman JA, Bogyo M. Functional studies of Plasmodium falciparum dipeptidyl aminopeptidase I using small molecule inhibitors and active site probes. ACTA ACUST UNITED AC 2011; 17:808-19. [PMID: 20797610 DOI: 10.1016/j.chembiol.2010.06.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2010] [Revised: 06/20/2010] [Accepted: 06/25/2010] [Indexed: 11/26/2022]
Abstract
The widespread resistance of malaria parasites to all affordable drugs has made the identification of new targets urgent. Dipeptidyl aminopeptidases (DPAPs) represent potentially valuable new targets that are involved in hemoglobin degradation (DPAP1) and parasite egress (DPAP3). Here we use activity-based probes to demonstrate that specific inhibition of DPAP1 by a small molecule results in the formation of an immature trophozoite that leads to parasite death. Using computational methods, we designed stable, nonpeptidic covalent inhibitors that kill Plasmodium falciparum at low nanomolar concentrations. These compounds show signs of slowing parasite growth in a murine model of malaria, which suggests that DPAP1 might be a viable antimalarial target. Interestingly, we found that resynthesis and activation of DPAP1 after inhibition is rapid, suggesting that effective drugs would need to sustain DPAP1 inhibition for a period of 2-3 hr.
Collapse
Affiliation(s)
- Edgar Deu
- Department of Pathology, Stanford School of Medicine, 300 Pasteur Drive, Stanford, CA 94305, USA
| | | | | | | | | | | |
Collapse
|
46
|
Kale SS, Chavan ST, Sabharwal SG, Puranik VG, Sanjayan GJ. Bicyclic amino acid-carbohydrate-conjugates as conformationally restricted hydroxyethylamine (HEA) transition-state isosteres. Org Biomol Chem 2011; 9:7300-2. [DOI: 10.1039/c1ob06215h] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Gabriel D, Zuluaga MF, Lange N. On the cutting edge: protease-sensitive prodrugs for the delivery of photoactive compounds. Photochem Photobiol Sci 2011; 10:689-703. [DOI: 10.1039/c0pp00341g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
48
|
Thornton PD, Heise A. Bio-functionalisation to enzymatically control the solution properties of a self-supporting polymeric material. Chem Commun (Camb) 2011; 47:3108-10. [DOI: 10.1039/c0cc03647a] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
49
|
Muricken DG, Gowda LR. Molecular engineering of a small trypsin inhibitor based on the binding loop of horsegram seed Bowman-Birk inhibitor. J Enzyme Inhib Med Chem 2010; 26:553-60. [DOI: 10.3109/14756366.2010.536158] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Deepa G. Muricken
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Council of Scientific and Industrial Research (CSIR), Mysore, India
| | - Lalitha R. Gowda
- Department of Protein Chemistry and Technology, Central Food Technological Research Institute, Council of Scientific and Industrial Research (CSIR), Mysore, India
| |
Collapse
|
50
|
Peters HPF, Foltz M, Kovacs EMR, Mela DJ, Schuring EAH, Wiseman SA. The effect of protease inhibitors derived from potato formulated in a minidrink on appetite, food intake and plasma cholecystokinin levels in humans. Int J Obes (Lond) 2010; 35:244-50. [PMID: 20644555 DOI: 10.1038/ijo.2010.136] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Protease inhibitor 2 derived from potato (PI2) is claimed to reduce appetite and food intake, stimulate the satiety hormone cholecystokinin (CCK) and lower postprandial glucose peaks when taken before a meal. However, current literature is inconclusive with regard to its efficacy and mechanism. Furthermore, the potential effect of PI2 on appetite motivational ratings without an immediately following meal has not previously been reported. OBJECTIVE To comprehensively test the effects of 30 mg PI2 in a minidrink on appetite ratings, subsequent food intake, and plasma CCK and glucose responses. DESIGN Minidrinks with or without 30 mg PI2 were compared in three separate substudies (A, B and C), each using a two-way, placebo-controlled, balanced-order, cross-over design and 23 or 24 subjects (mean over groups: body mass index 25.0 kg m(-2), range 22.5-30.7 kg m(-2); age 41.3, range 18-62 years). The minidrink was given (A) 120 or (B) 30 min before an ad libitum lunch or (C) 30 min before a fixed lunch. Study parameters were self-reported satiety (substudies A and C), ad libitum meal intake (substudies A and B), and (in an n=12 subset) plasma CCK and blood glucose in all substudies. All results were analyzed using analysis of covariance. Protease-inhibitory activity of the PI2-containing minidrinks was assessed under simulated gut conditions. RESULTS PI2 did not differ from control for any study parameters, in any substudy, despite confirmation of the inhibitory activity of PI2. CONCLUSIONS In this study protease inhibition using PI2 in a minidrink at a dose of 30 mg, as commercially used, had no (functional) efficacy on a range of behavioral and physiological appetite and intake control measures.
Collapse
Affiliation(s)
- H P F Peters
- Unilever Research & Development, Vlaardingen, The Netherlands.
| | | | | | | | | | | |
Collapse
|