1
|
Heidari A, Hajikarim-Hamedani A, Asefi M, Soltani H, Zamani MS, Ghane Y, Rassa S, Sadat-Shirazi M, Zarrindast MR. Impact of parental ethanol exposure on offspring memory: Sex differences in spatial and passive avoidance tasks. Alcohol 2025; 124:13-21. [PMID: 39904476 DOI: 10.1016/j.alcohol.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/26/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
The impact of parental alcohol exposure on subsequent generations recently gained significant attention. Ethanol, widely consumed by humans, is known for its anxiolytic effects upon initial use. However, repeated ethanol consumption leads to cognitive dysfunction, dependence, and other physical abnormalities. In line with recent publications from our group, this study investigated the role of parental ethanol exposure-10 days prior to gestation-on learning and memory, which are critical cognitive abilities, in male and female offspring. Adult male and female Wistar rats (n = 12) were exposed to ethanol (in drinking water) for 30 days, followed by a 10-day ethanol-free period. Each rat was then paired to mate with either an ethanol-naïve (control, n = 12) or ethanol-exposed rat, resulting in four distinct groups: (1) control male and female, (2) ethanol-exposed male and control female (P.EE), (3) ethanol-exposed female and control male (M.EE), and (4) ethanol-exposed male and female (P + M.EE). Adult male and female offspring were tested for spatial learning and memory (Morris Water Maze) and passive avoidance memory. Additionally, brain-derived neurotrophic factor (BDNF) levels in the cerebrospinal fluid were evaluated. Results showed that spatial memory was negatively affected by parental ethanol consumption in both male and female offspring, while spatial learning was impaired only in female offspring of ethanol-exposed dams. In the passive avoidance paradigm, memory retrieval was impaired in ethanol-exposed male offspring, whereas in females, only the P + M.EE group showed a deficit in memory retention. While BDNF levels decreased in male offspring, an enhancement in BDNF was observed in female offspring of the P. EE group. In conclusion, our findings suggest that parental ethanol exposure before conception has differential impacts on learning and memory, depending on the offspring's sex and the type of memory tested. Spatial memory was affected in both sexes (except for females in the P. EE group), while memory retrieval in the passive avoidance task remained unaffected in female offspring of the P. EE and M. EE groups. Conversely, male offspring of ethanol-exposed sires and dams exhibited deficits in passive avoidance memory. This may suggest that in memory tasks involving inhibitory cues, such as passive avoidance, female offspring of ethanol-exposed dams or sires are more resilient to memory deficits compared to male offspring. This resilience could possibly be attributed to their higher anxiety levels relative to males.
Collapse
Affiliation(s)
- Amirhossein Heidari
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arman Hajikarim-Hamedani
- Cognitive Neurology, Dementia and Neuropsychiatry Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - MohammadBasir Asefi
- Faculty of Pharmacy and Pharmaceutical Sciences, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Haniyeh Soltani
- Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | | | - Yekta Ghane
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Setareh Rassa
- Cognitive Neurology, Dementia and Neuropsychiatry Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mitra Sadat-Shirazi
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Reza Zarrindast
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran; Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Bae H, Won SD, Kim J, Seo HJ, Han C. Relationship Between Brain-Derived Neurotrophic Factor and Cognitive Function in Methamphetamine-Dependent Patients. Psychiatry Investig 2025; 22:252-257. [PMID: 40143721 PMCID: PMC11962524 DOI: 10.30773/pi.2023.0346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 09/30/2024] [Accepted: 12/11/2024] [Indexed: 03/28/2025] Open
Abstract
OBJECTIVE Methamphetamine (METH) is a neurotoxic substance that can induce neurodegeneration in the human brain. Consequently chronic METH use can affect the cognitive functions in METH-dependent patients. In this study, we aimed to identify the relationship between cognitive function and brain-derived neurotrophic factor (BDNF), which reflects the status of neuroadaptive changes, by characterizing the effects on the cognitive function of METH-dependent patients. METHODS A total of 38 METH-dependent patients participated in this study. BDNF levels were measured using the enzyme-linked immunosorbent assay. We also examined the clinical features based on the measurements of the Consortium to Establish a Registry for Alzheimer's Disease-Korean version (CERAD-K). Finally, the relationships between various parts of CERAD-K and BDNF were compared with one another. RESULTS METH-dependent patients were able to conduct most parts of CERAD-K stably. Among the parts of CERAD-K, only trail-making test part B was correlated with BDNF. CONCLUSION The trail-making test is specific for evaluating executive function; therefore, BDNF may play an essential role in detecting neurocognitive functional decline in METH dependence.
Collapse
Affiliation(s)
- Hwallip Bae
- Department of Psychiatry, National Medical Center, Seoul, Republic of Korea
| | - Sung-Doo Won
- Department of Psychology, Daegu Catholic University, Daegu, Republic of Korea
| | - Jiyoun Kim
- Department of Addiction, Catholic University, Seoul, Republic of Korea
- Korea Addiction Culture Institute, Seoul, Republic of Korea
| | - Hye-Jin Seo
- Department of Psychiatry, Yongin Mental Hospital, Yongin, Republic of Korea
| | - Changwoo Han
- Department of Psychiatry, Myongji Hospital, Hanyang University, Goyang, Republic of Korea
| |
Collapse
|
3
|
Xu L, Xiong J, Li X, Wang J, Wang P, Wu X, Wang J, Liu Y, Guo R, Fan X, Zhu X, Guan Y. Role of Lactobacillus plantarum-Derived Extracellular Vesicles in Regulating Alcohol Consumption. Mol Neurobiol 2025; 62:2889-2902. [PMID: 39180695 DOI: 10.1007/s12035-024-04447-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Alcohol Use Disorder (AUD), characterized by repeated alcohol consumption and withdrawal symptoms, poses a significant public health issue. Alcohol-induced impairment of the intestinal barrier results in alterations in intestinal permeability and the composition of the intestinal microbiota. Such alterations lead to a reduced relative abundance of intestinal lactic acid bacteria. However, the role of gut microbiota in alcohol consumption is not yet fully understood. In this study, we explore the mechanism by which gut microbiota regulates alcohol consumption, specifically using extracellular vesicles derived from Lactobacillus plantarum (L-EVs). L-EVs were administered to Sprague-Dawley rats either through intraperitoneal injection or microinjection into the ventral tegmental area (VTA), resulting in a significant reduction in alcohol consumption 72 hours after withdrawal. The observed reduction was akin to the effect of an intra-VTA microinjection of Brain-Derived Neurotrophic Factor (BDNF). Intriguingly, the microinjection of K252a (a Trk B antagonist) into the VTA blocked the reducing effect of L-EVs on alcohol consumption. The intraperitoneal injection of L-EVs restored the diminished BDNF expression in the VTA of alcohol-dependent rats. Furthermore, L-EVs rescued the low BDNF expression in alcohol-incubated PC12 cells. In conclusion, our study demonstrates that L-EVs attenuated alcohol consumption by enhancing BDNF expression in alcohol-dependent rats, thus suggesting the significant therapeutic potential of L-EVs in preventing excessive alcohol consumption.
Collapse
Affiliation(s)
- Lulu Xu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Junwei Xiong
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xinxin Li
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China
| | - Jiajia Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Pengyu Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaobin Wu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Jiaxi Wang
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Yong Liu
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China
| | - Ran Guo
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China
| | - Xiaohe Fan
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China
| | - Xiaofeng Zhu
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China.
- Development and Application of North Traditional Chinese Medicine Collaborative Innovation Center in Mudanjiang, Mudanjiang, 157011, China.
| | - Yanzhong Guan
- Department of Physiology & Neurobiology, Mudanjiang Medical University, Mudanjiang, 157011, China.
- Heilongjiang Province Key Laboratory of Mechanism and Prevention of Substance Dependence Disease, Mudanjiang, 157011, China.
- Development and Application of North Traditional Chinese Medicine Collaborative Innovation Center in Mudanjiang, Mudanjiang, 157011, China.
| |
Collapse
|
4
|
Silverstein AL, Alilain WJ. Ethanol abolishes ventilatory long-term facilitation and blunts the ventilatory response to hypoxia in female rats. Respir Physiol Neurobiol 2025; 332:104373. [PMID: 39603312 PMCID: PMC11710997 DOI: 10.1016/j.resp.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Obstructive sleep apnea (OSA) is a breathing disorder in which airway obstruction during sleep leads to periodic bouts of inadequate (hypopneic) or absent (apneic) ventilation despite neurorespiratory effort. Repetitive apneic and hypopneic exposures can induce intermittent hypoxemia and lead to a host of maladaptive behavioral and physiological outcomes. Intermittent hypoxia treatment (IH), which consists of alternating exposure to hypoxic and normal air, can induce a long-lasting increase in breathing motor outputs called long term facilitation (LTF). IH models key aspects of the hypoxemia experienced during OSA and LTF might serve to prevent OSA or ameliorate its severity by stimulating ventilatory output during or after apnea/hypopnea. Ethanol consumption prior to sleep exacerbates existing OSA, but it is unknown how ethanol affects LTF expression. Thus, we hypothesized that ethanol treatment would attenuate LTF expression and the magnitude of the ventilatory response during acute hypoxic exposure. We administered either low-dose (0.8 g/kg) or high-dose (3 g/kg) ethanol or saline to adult female Sprague-Dawley rats through intraperitoneal injection and then measured subjects' ventilatory output by whole-body plethysmography during baseline, a 5 by 3-minute moderate IH protocol (hypoxia: FiO2 = 0.11, Normoxia: room air), and for one hour following the end of IH. Results indicate that low-dose ethanol abolishes LTF of respiratory rate and minute ventilation and trends suggest that low-dose ethanol might attenuate respiratory rate and minute ventilation during acute hypoxic exposure. While high-dose ethanol significantly diminished subjects' respiratory rate and minute ventilation during hypoxia, LTF expression was not significantly different between high-dose ethanol and saline-treated subjects. Overall, data indicate that ethanol exposure dramatically attenuates LTF expression following IH treatment and impairs ventilatory responses to hypoxia in a dose-dependent manner. Such findings inspire further consideration of ethanol's negative effects upon endogenous compensatory mechanisms for repeated hypoxic exposure, both in the context of OSA and beyond.
Collapse
Affiliation(s)
- Aaron L Silverstein
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, 741 S. Limestone St., Lexington, KY 40508, USA..
| | - Warren J Alilain
- Department of Neuroscience, Spinal Cord and Brain Injury Research Center, College of Medicine, University of Kentucky, 741 S. Limestone St., Lexington, KY 40508, USA..
| |
Collapse
|
5
|
Kipp BT, Nunes PT, Savage LM. Dysregulation of neurotrophin expression in prefrontal cortex and nucleus basalis magnocellularis during and after adolescent intermittent ethanol exposure. Alcohol 2024; 120:1-14. [PMID: 38897258 PMCID: PMC11390331 DOI: 10.1016/j.alcohol.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024]
Abstract
A preclinical model of human adolescent binge drinking, adolescent intermittent ethanol exposure (AIE) recreates the heavy binge withdrawal consummatory patterns of adolescents and has identified the loss of basal forebrain cholinergic neurons as a pathological hallmark of this model. Cholinergic neurons of the nucleus basalis magnocellularis (NbM) that innervate the prefrontal cortex (PFC) are particularly vulnerable to alcohol related neurodegeneration. Target derived neurotrophins (nerve growth factor [NGF] and brain-derived neurotrophic factor [BDNF]) regulate cholinergic phenotype expression and survival. Evidence from other disease models implicates the role of immature neurotrophin, or proneurotrophins, activity at neurotrophic receptors in promoting cholinergic degeneration; however, it has yet to be explored in adolescent binge drinking. We sought to characterize the pro- and mature neurotrophin expression, alongside their cognate receptors and cholinergic markers in an AIE model. Male and female Sprague Dawley rats underwent 5 g/kg 20% EtOH or water gavage on two-day-on, two-day-off cycles from post-natal day 25-57. Rats were sacrificed 2 h, 24 h, or 3 weeks following the last gavage, and tissue were collected for protein measurement. Western blot analyses revealed that ethanol intoxication reduced the expression of BDNF and vesicular acetylcholine transporter (vAChT) in the PFC, while NGF was lower in the NbM of AIE treated animals. During acute alcohol withdrawal, proNGF in the PFC was increased while proBDNF decreased, and in the NbM proBDNF increased while NGF decreased. During AIE abstinence, the expression of neurotrophins, their receptors, and vAChT did not differ from controls in the PFC. In contrast, in the NbM the expression of both NGF and choline acetyltransferase (ChAT) were reduced long-term following AIE. Taken together these findings suggest that AIE alters the expression of proneurotrophins and neurotrophins during intoxication and withdrawal that favor prodegenerative mechanisms by increasing the expression of proNGF and proBDNF, while also reducing NGF and BDNF.
Collapse
Affiliation(s)
- Brian T Kipp
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - Polliana T Nunes
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - Lisa M Savage
- Department of Psychology, Binghamton University of the State University of New York, New York, USA.
| |
Collapse
|
6
|
Camarini R, Marianno P, Costa BY, Palombo P, Noto AR. Environmental enrichment and complementary clinical interventions as therapeutic approaches for alcohol use disorder in animal models and humans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 178:323-354. [PMID: 39523059 DOI: 10.1016/bs.irn.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Alcohol use disorder (AUD) is a multifactorial disorder arising from a complex interplay of various genetic, environmental, psychological, and social factors. Environmental factors influence alcohol misuse and can lead to AUD. While stress plays a crucial role in the onset and progression of this disorder, environmental enrichment (EE) also influences ethanol-induced behavioral and neurobiological responses. These alterations include reduced ethanol consumption, diminished operant self-administration, attenuated behavioral sensitization, and enhanced conditioned place preference. EE exerts modulatory effects on multiple neurobiological processes, such as the brain-derived neurotrophic factor/TrkB signaling pathway, the oxytocinergic system, and the hypothalamic-pituitary-adrenal axis. EE, which includes stimulating activities to counteract ethanol effects in animal studies, has parallels in human intervention that have shown potential benefits. Physical activity, cognitive behavioral therapy, and meditation, alongside techniques involving cognitive stimulation, social interaction, and recreational activities, may lead to more effective therapeutic outcomes in treatments of AUD.
Collapse
Affiliation(s)
- Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil.
| | - Priscila Marianno
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Beatriz Yamada Costa
- Department of Pharmacology, Institute of Biomedical Sciences, Universidade de Sao Paulo, São Paulo, Brazil
| | - Paola Palombo
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| | - Ana Regina Noto
- Department of Psychobiology, Universidade Federal de Sao Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Biggio F, Talani G, Asuni GP, Bassareo V, Boi M, Dazzi L, Pisu MG, Porcu P, Sanna E, Sanna F, Serra M, Serra MP, Siddi C, Acquas E, Follesa P, Quartu M. Mixing energy drinks and alcohol during adolescence impairs brain function: A study of rat hippocampal plasticity. Neuropharmacology 2024; 254:109993. [PMID: 38735368 DOI: 10.1016/j.neuropharm.2024.109993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/20/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
In the last decades, the consumption of energy drinks has risen dramatically, especially among young people, adolescents and athletes, driven by the constant search for ergogenic effects, such as the increase in physical and cognitive performance. In parallel, mixed consumption of energy drinks and ethanol, under a binge drinking modality, under a binge drinking modality, has similarly grown among adolescents. However, little is known whether the combined consumption of these drinks, during adolescence, may have long-term effects on central function, raising the question of the risks of this habit on brain maturation. Our study was designed to evaluate, by behavioral, electrophysiological and molecular approaches, the long-term effects on hippocampal plasticity of ethanol (EtOH), energy drinks (EDs), or alcohol mixed with energy drinks (AMED) in a rat model of binge-like drinking adolescent administration. The results show that AMED binge-like administration produces adaptive hippocampal changes at the molecular level, associated with electrophysiological and behavioral alterations, which develop during the adolescence and are still detectable in adult animals. Overall, the study indicates that binge-like drinking AMED adolescent exposure represents a habit that may affect permanently hippocampal plasticity.
Collapse
Affiliation(s)
- Francesca Biggio
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Giuseppe Talani
- Institute of Neurosciences, National Research Council (C.N.R.), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Gino Paolo Asuni
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Valentina Bassareo
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Marianna Boi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Laura Dazzi
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Maria Giuseppina Pisu
- Institute of Neurosciences, National Research Council (C.N.R.), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Patrizia Porcu
- Institute of Neurosciences, National Research Council (C.N.R.), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Enrico Sanna
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy; Institute of Neurosciences, National Research Council (C.N.R.), Cittadella Universitaria, 09042, Monserrato, Cagliari, Italy
| | - Fabrizio Sanna
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Mariangela Serra
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Maria Pina Serra
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Carlotta Siddi
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Elio Acquas
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| | - Paolo Follesa
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy.
| | - Marina Quartu
- Department of Biomedical Sciences, University of Cagliari, Cittadella Universitaria di Monserrato, 09042, Monserrato, Cagliari, Italy
| |
Collapse
|
8
|
Bakhtazad A, Asgari Taei A, Parvizi F, Kadivar M, Farahmandfar M. Repeated pre-exposure to morphine inhibited the amnesic effect of ethanol on spatial memory: Involvement of CaMKII and BDNF. Alcohol 2024; 114:9-24. [PMID: 37597575 DOI: 10.1016/j.alcohol.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Evidence has suggested that addiction and memory systems are related, but the signaling cascades underlying this interaction have not been completelyealed yet. The importance of calcium-calmodulin-dependent protein kinase II (CaMKII) and brain-derived neurotrophic factor (BDNF) in the memory processes and also in drug addiction has been previously established. In this present investigation, we examined the effects of repeated morphine pretreatment on impairment of spatial learning and memory acquisition induced by systemic ethanol administration in adult male rats. Also, we assessed how these drug exposures influence the expression level of CaMKII and BDNF in the hippocampus and amygdala. Animals were trained by a single training session of 8 trials, and a probe test containing a 60-s free-swim without a platform was administered 24 h later. Before training trials, rats were treated with a once-daily subcutaneous morphine injection for 3 days followed by a 5-day washout period. The results showed that pre-training ethanol (1 g/kg) impaired spatial learning and memory acquisition and down-regulated the mRNA expression of CaMKII and BDNF. The amnesic effect of ethanol was suppressed in morphine- (15 mg/kg/day) pretreated animals. Furthermore, the mRNA expression level of CaMKII and BDNF increased significantly following ethanol administration in morphine-pretreated rats. Conversely, this improvement in spatial memory acquisition was prevented by daily subcutaneous administration of naloxone (2 mg/kg) 15 min prior to morphine administration. Our findings suggest that sub-chronic morphine treatment reverses ethanol-induced spatial memory impairment, which could be explained by modulating CaMKII and BDNF mRNA expressions in the hippocampus and amygdala.
Collapse
Affiliation(s)
- Atefeh Bakhtazad
- Cellular and Molecular Research Center, Department of Neuroscience, Iran University of Medical Sciences, Tehran, Iran
| | - Afsaneh Asgari Taei
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Parvizi
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Kadivar
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Farahmandfar
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
9
|
Syed OA, Tsang B, Gerlai R. The zebrafish for preclinical psilocybin research. Neurosci Biobehav Rev 2023; 153:105381. [PMID: 37689090 DOI: 10.1016/j.neubiorev.2023.105381] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 09/01/2023] [Indexed: 09/11/2023]
Abstract
In this review, we discuss the possible utility of zebrafish in research on psilocybin, a psychedelic drug whose recreational use as well as possible clinical application are gaining increasing interest. First, we review behavioral tests with zebrafish, focussing on anxiety and social behavior, which have particular relevance in the context of psilocybin research. Next, we briefly consider methods of genetic manipulations with which psilocybin's phenotypical effects and underlying mechanisms may be investigated in zebrafish. We briefly review the known mechanisms of psilocybin, and also discuss what we know about its safety and toxicity profile. Last, we discuss examples of how psilocybin may be employed for testing treatment efficacy in preclinical research for affective disorders in zebrafish. We conclude that zebrafish has a promising future in preclinical research on psychedelic drugs.
Collapse
Affiliation(s)
- Omer A Syed
- Department of Biology, University of Toronto Mississauga, Canada.
| | - Benjamin Tsang
- Department of Cell & Systems Biology, University of Toronto, Canada.
| | - Robert Gerlai
- Department of Cell & Systems Biology, University of Toronto, Canada; Department of Psychology, University of Toronto Mississauga, Canada.
| |
Collapse
|
10
|
Benzerouk F, Gierski F, Lannoy S, Barrière S, Schmid F, Papillon CA, Houchi H, DeWever E, Quaglino V, Naassila M, Kaladjian A. Brain-derived neurotrophic factor Val66Met polymorphism moderates the relationship between impulsivity, negative emotions, and binge drinking intensity in university students. Alcohol Alcohol 2023; 58:505-511. [PMID: 37334438 DOI: 10.1093/alcalc/agad043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023] Open
Abstract
Studies on the genetic factors involved in binge drinking (BD) and its associated traits are very rare. The aim of this cross-sectional study was to investigate differences in the association between impulsivity, emotion regulation and BD in a sample of young adults according to the rs6265/Val66Met variant in the brain-derived neurotrophic factor (BDNF) gene, a well-known candidate gene in alcohol use disorders. We recruited 226 university students (112 women), aged between 18 and 25 years old, from two centers in France. The participants completed measures related to alcohol consumption, depression severity, state anxiety levels, impulsivity (UPPS-P), and difficulties in emotion regulation [Difficulty in Emotion Regulation Scale (DERS)]. The relationship between the BD score and the clinical characteristics in the BDNF genotype groups was assessed by partial correlation analyses and moderation analyses. The partial correlation analyses showed that, in the Val/Val genotype group, the BD score was positively related to UPPS-P Lack of Premeditation and Sensation Seeking scores. In the Met carriers group, the BD score was positively related to UPPS-P Positive Urgency, lack of Premeditation, lack of Perseverance and Sensation Seeking scores and to Clarity score of the DERS. Moreover, the BD score was positively associated with depression severity and state anxiety scores. The moderation analyses revealed that BDNF Val/Met genotype moderated the relationship between several clinical variables and BD. The results of the present study support the hypothesis of common and specific vulnerability factors regarding impulsivity and emotion regulation difficulties associated with BD according to this BDNF rs6265 polymorphism.
Collapse
Affiliation(s)
- Farid Benzerouk
- University of Reims Champagne-Ardenne, 51100 Reims, France; Cognition Health Society Laboratory (C2S-EA 6e291), 51100 Reims, France
- Department of Psychiatry, Marne Public Mental Health Institution & Reims University Hospital, 51100 Reims, France
- Institute of Psychiatry and Addictions, Paris, France
- Research Group on Alcohol and Pharmacodependences, INSERM UMRS 1247, University of Picardy Jules Verne, 80054 Amiens, France
| | - Fabien Gierski
- University of Reims Champagne-Ardenne, 51100 Reims, France; Cognition Health Society Laboratory (C2S-EA 6e291), 51100 Reims, France
- Department of Psychiatry, Marne Public Mental Health Institution & Reims University Hospital, 51100 Reims, France
- Institute of Psychiatry and Addictions, Paris, France
- Research Group on Alcohol and Pharmacodependences, INSERM UMRS 1247, University of Picardy Jules Verne, 80054 Amiens, France
| | - Séverine Lannoy
- Department of Psychiatry, Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0126, United States
| | - Sarah Barrière
- Department of Psychiatry, Marne Public Mental Health Institution & Reims University Hospital, 51100 Reims, France
| | - Franca Schmid
- University of Reims Champagne-Ardenne, 51100 Reims, France; Cognition Health Society Laboratory (C2S-EA 6e291), 51100 Reims, France
| | - Charles-Antoine Papillon
- Research Group on Alcohol and Pharmacodependences, INSERM UMRS 1247, University of Picardy Jules Verne, 80054 Amiens, France
| | - Hakim Houchi
- Research Group on Alcohol and Pharmacodependences, INSERM UMRS 1247, University of Picardy Jules Verne, 80054 Amiens, France
| | - Elodie DeWever
- CRP-CPO Laboratory (EA7273), Jules Verne Picardie University, 80025 Amiens, France
| | - Véronique Quaglino
- CRP-CPO Laboratory (EA7273), Jules Verne Picardie University, 80025 Amiens, France
| | - Mickael Naassila
- Institute of Psychiatry and Addictions, Paris, France
- Research Group on Alcohol and Pharmacodependences, INSERM UMRS 1247, University of Picardy Jules Verne, 80054 Amiens, France
| | - Arthur Kaladjian
- University of Reims Champagne-Ardenne, 51100 Reims, France; Cognition Health Society Laboratory (C2S-EA 6e291), 51100 Reims, France
- Department of Psychiatry, Marne Public Mental Health Institution & Reims University Hospital, 51100 Reims, France
- Institute of Psychiatry and Addictions, Paris, France
| |
Collapse
|
11
|
Jaehne EJ, McInerney E, Sharma R, Genders SG, Djouma E, van den Buuse M. A Rat Model of the Brain-Derived Neurotrophic Factor Val66Met Polymorphism Shows Attenuated Motivation for Alcohol Self-Administration and Diminished Propensity for Cue-Induced Relapse in Females. BIOLOGY 2023; 12:799. [PMID: 37372084 DOI: 10.3390/biology12060799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been implicated in alcohol use disorder. The Val66Met polymorphism is a common variant of the BDNF gene (rs6265) which reduces activity-dependent BDNF release, and has been suggested as a risk factor for psychiatric disorders and substance use. Using an operant self-administration paradigm, this study aimed to investigate ethanol preference and ethanol seeking in a novel rat model of the BDNF Val66Met polymorphism, Val68Met rats. Male and female BDNF Val68Met rats of three genotypes (Val/Val, Val/Met and Met/Met) were trained to lever press for a 10% ethanol solution. There was no effect of Val68Met genotype on acquisition of stable response to ethanol or its extinction. Met/Met rats of both sexes had a slight, but significantly lower breakpoint during progressive ratio sessions while female rats with the Met/Met genotype demonstrated a lower propensity for reinstatement of responding to cues. There were no effects of Val68Met genotype on anxiety-like behaviour or locomotor activity. In conclusion, Met/Met rats showed lower motivation to continue to press for a reward, and also a decreased propensity to relapse, suggesting a possible protective effect of the Met/Met genotype against alcohol use disorder, at least in females.
Collapse
Affiliation(s)
- Emily J Jaehne
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne 3086, Australia
| | - Elizabeth McInerney
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia
| | - Ronan Sharma
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne 3086, Australia
| | - Shannyn G Genders
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia
| | - Elvan Djouma
- Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Melbourne 3086, Australia
| | - Maarten van den Buuse
- Department of Psychology, Counselling and Therapy, School of Psychology and Public Health, La Trobe University, Melbourne 3086, Australia
- Department of Pharmacology, University of Melbourne, Melbourne 3052, Australia
| |
Collapse
|
12
|
Valerio AG, Ornell F, Roglio VS, Scherer JN, Schuch JB, Bristot G, Pechansky F, Kapczinski F, Kessler FHP, von Diemen L. Increase in serum brain-derived neurotrophic factor levels during early withdrawal in severe alcohol users. TRENDS IN PSYCHIATRY AND PSYCHOTHERAPY 2022; 44:e20210254. [PMID: 34060728 PMCID: PMC10039723 DOI: 10.47626/2237-6089-2021-0254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 05/23/2021] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Changes in brain-derived neurotrophic factor (BDNF) have been linked to the neuroadaptative consequences of chronic alcohol use and associated with disease severity and prognosis. Few studies have evaluated the influence of drug withdrawal and clinical and sociodemographic data on BDNF levels in severe alcohol users. OBJECTIVES Our goals were (1) to evaluate variation in BDNF levels during alcohol withdrawal and, (2) to assess the influence of putative confounding factors on BDNF levels. METHODS Our sample consists of 62 men with alcohol use disorder undergoing a detoxification process. Serum BDNF levels were measured using a commercial sandwich-ELISA kit, at two points: before and after the detoxification period. RESULTS We found an increase in BDNF levels during alcohol withdrawal (25.4±9.6 at admission vs. 29.8±10.2 ng/ml at discharge; p < 0.001), even after controlling for potential confounders (positive family history, number of days between blood sample collections, and age) (Generalized Estimating Equation: coefficient = -4.37, 95% confidence interval [95%CI] -6.3; -2.4; p < 0.001). Moreover, individuals who had first-degree relative with alcohol dependence had smaller increases in BDNF levels than individuals with no family history (14.8 [95%CI -5.3; 35.6] vs. 35.3 [95%CI 15.4; 74.8]; p = 0.005). CONCLUSIONS In summary, variation in BDNF levels seems to be influenced by withdrawal in severe alcohol users. A positive family history of alcohol dependence could also be a factor that influences variation in this biomarker.
Collapse
Affiliation(s)
- Andrei Garziera Valerio
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Felipe Ornell
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Vinicius Serafini Roglio
- Centro de Pesquisa em Álcool e Drogas,Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Juliana Nichterwitz Scherer
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Programa de Pós-Graduação em Saúde Coletiva, Universidade do Vale do Rio dos Sinos (Unisinos), São Leopoldo, RS, Brazil
| | - Jaqueline Bohrer Schuch
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Giovana Bristot
- Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil. Programa de Pós-Graduação em Bioquímica, UFRGS, Porto Alegre, RS, Brazil
| | - Flavio Pechansky
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Flavio Kapczinski
- Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil. Laboratório de Psiquiatria Molecular, Hospital de Clínicas de Porto Alegre (HCPA), Porto Alegre, RS, Brazil. Department of Psychiatry and Behavioural Neurosciences, McMaster University and St. Joseph's Healthcare Hamilton, Hamilton, ON, Canada
| | - Felix Henrique Paim Kessler
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| | - Lisia von Diemen
- Centro de Pesquisa em Álcool e Drogas, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Programa de Pós-Graduação em Psiquiatria e Ciências do Comportamento, UFRGS, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Cutuli D, Sampedro-Piquero P. BDNF and its Role in the Alcohol Abuse Initiated During Early Adolescence: Evidence from Preclinical and Clinical Studies. Curr Neuropharmacol 2022; 20:2202-2220. [PMID: 35748555 PMCID: PMC9886842 DOI: 10.2174/1570159x20666220624111855] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/23/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a crucial brain signaling protein that is integral to many signaling pathways. This neurotrophin has shown to be highly involved in brain plastic processes such as neurogenesis, synaptic plasticity, axonal growth, and neurotransmission, among others. In the first part of this review, we revise the role of BDNF in different neuroplastic processes within the central nervous system. On the other hand, its deficiency in key neural circuits is associated with the development of psychiatric disorders, including alcohol abuse disorder. Many people begin to drink alcohol during adolescence, and it seems that changes in BDNF are evident after the adolescent regularly consumes alcohol. Therefore, the second part of this manuscript addresses the involvement of BDNF during adolescent brain maturation and how this process can be negatively affected by alcohol abuse. Finally, we propose different BNDF enhancers, both behavioral and pharmacological, which should be considered in the treatment of problematic alcohol consumption initiated during the adolescence.
Collapse
Affiliation(s)
- Debora Cutuli
- Department of Psychology, Medicine and Psychology Faculty, University Sapienza of Rome, Rome, Italy; ,I.R.C.C.S. Fondazione Santa Lucia, Laboratorio di Neurofisiologia Sperimentale e del Comportamento, Via del Fosso di Fiorano 64, 00143 Roma, Italy; ,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| | - Piquero Sampedro-Piquero
- Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain,Address correspondence to these authors at the Department of Biological and Health Psychology, Psychology Faculty, Autonomous University of Madrid, Madrid, Spain, Spain and Cutuli, D. at Fondazione Santa Lucia. Laboratorio di Neurofisiologia Sperimentale e del Comportamento. Via del Fosso di Fiorano 64, 00143 Roma, Italy; E-mails: ;
| |
Collapse
|
14
|
Terracina S, Ferraguti G, Tarani L, Messina MP, Lucarelli M, Vitali M, De Persis S, Greco A, Minni A, Polimeni A, Ceccanti M, Petrella C, Fiore M. Transgenerational Abnormalities Induced by Paternal Preconceptual Alcohol Drinking: Findings from Humans and Animal Models. Curr Neuropharmacol 2022; 20:1158-1173. [PMID: 34720083 PMCID: PMC9886817 DOI: 10.2174/1570159x19666211101111430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/14/2021] [Accepted: 10/28/2021] [Indexed: 11/22/2022] Open
Abstract
Alcohol consumption during pregnancy and lactation is a widespread preventable cause of neurodevelopmental impairment in newborns. While the harmful effects of gestational alcohol use have been well documented, only recently, the role of paternal preconceptual alcohol consumption (PPAC) prior to copulating has drawn specific epigenetic considerations. Data from human and animal models have demonstrated that PPAC may affect sperm function, eliciting oxidative stress. In newborns, PPAC may induce changes in behavior, cognitive functions, and emotional responses. Furthermore, PPAC may elicit neurobiological disruptions, visuospatial impairments, hyperactivity disorders, motor skill disruptions, hearing loss, endocrine, and immune alterations, reduced physical growth, placental disruptions, and metabolic alterations. Neurobiological studies on PPAC have also disclosed changes in brain function and structure by disrupting the growth factors pathways. In particular, as shown in animal model studies, PPAC alters brain nerve growth factor (NGF) and brainderived neurotrophic factor (BDNF) synthesis and release. This review shows that the crucial topic of lifelong disabilities induced by PPAC and/or gestational alcohol drinking is quite challenging at the individual, societal, and familial levels. Since a nontoxic drinking behavior before pregnancy (for both men and women), during pregnancy, and lactation cannot be established, the only suggestion for couples planning pregnancies is to completely avoid the consumption of alcoholic beverages.
Collapse
Affiliation(s)
- Sergio Terracina
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Giampiero Ferraguti
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | - Luigi Tarani
- Department of Pediatrics, Medical Faculty, “Sapienza” University of Rome, Rome, Italy
| | | | - Marco Lucarelli
- Department of Experimental Medicine, Medical Faculty, Sapienza University of Rome, RomeItaly
| | | | | | - Antonio Greco
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonio Minni
- Department of Sense Organs, Sapienza University Hospital of Rome, Rome, Italy
| | - Antonella Polimeni
- Department of Odontostomatological and Maxillofacial Sciences, Sapienza University of Rome, Rome, Italy
| | - Mauro Ceccanti
- SITAC, Società Italiana per il Trattamento dell’Alcolismo e le sue Complicanze, Rome, Italy
| | - Carla Petrella
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy
| | - Marco Fiore
- Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy,Address correspondence to this author at the Institute of Biochemistry and Cell Biology (IBBC-CNR), Rome, Italy; E-mail:
| |
Collapse
|
15
|
Schreiber JA, Tajuddin NF, Kouzoukas DE, Kevala K, Kim HY, Collins MA. Moderate blood alcohol and brain neurovulnerability: Selective depletion of calcium-independent phospholipase A2, omega-3 docosahexaenoic acid, and its synaptamide derivative as a potential harbinger of deficits in anti-inflammatory reserve. Alcohol Clin Exp Res 2021; 45:2506-2517. [PMID: 34719812 PMCID: PMC11049540 DOI: 10.1111/acer.14734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 09/30/2021] [Accepted: 10/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Repetitive, highly elevated blood alcohol (ethanol) concentrations (BACs) of 350 to 450 mg/dl over several days cause brain neurodegeneration and coincident neuroinflammation in adult rats localized in the hippocampus (HC), temporal cortex (especially the entorhinal cortex; ECX), and olfactory bulb (OB). The profuse neuroinflammation involves microgliosis, increased proinflammatory cytokines, and elevations of Ca+2 -dependent phospholipase A2 (cPLA2) and secretory PLA2 (sPLA2), which both mobilize proinflammatory ω-6 arachidonic acid (ARA). In contrast, Ca+2 -independent PLA2 (iPLA2) and anti-inflammatory ω-3 docosahexaenoic acid (DHA), a polyunsaturated fatty acid regulated primarily by iPLA2, are diminished. Furthermore, supplemented DHA exerts neuroprotection. Given uncertainties about the possible effects of lower circulating BACs that are common occurring during short- term binges, we examined how moderate BACs affected the above inflammatory events, and the impact of supplemented DHA. METHODS AND RESULTS Young adult male rats sustaining upper-moderate BACs (~150 mg/dl) from once-daily alcohol intubations were sacrificed with appropriate controls after 1 week. The HC, ECX and OB were quantitatively examined using immunoblotting, neurodegeneration staining, and lipidomics assays. Whereas neurodegeneration, increases in cPLA2 IVA, sPLA2 IIA, and ARA, and microglial activation were not detected, the HC and ECX regions demonstrated significantly reduced iPLA2 levels. Levels of DHA and synaptamide, its anti-inflammatory N-docosahexaenoylethanolamide derivative, also were lower in HC, and DHA supplementation prevented the iPLA2 decrements in HC. Additionally, adult mice maintaining upper-moderate BACs from limited alcohol binges had reduced midbrain iPLA2 levels. CONCLUSIONS The apparently selective depletion by moderate BACs of the metabolically linked anti-inflammatory triad of hippocampal iPLA2, DHA, and synaptamide, and of iPLA2 in the ECX, potentially indicates an unappreciated deficit in brain anti-inflammatory reserve that may be a harbinger of regional neurovulnerability.
Collapse
Affiliation(s)
- Jennifer A Schreiber
- Neuroscience Graduate Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Alcohol Research Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, USA
| | - Nuzhath F Tajuddin
- Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Dimitrios E Kouzoukas
- Research Service, Edward Hines Jr. VA Hospital, Hines, Illinois, USA
- Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| | - Karl Kevala
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Hee-Yong Kim
- Laboratory of Molecular Signaling, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael A Collins
- Neuroscience Graduate Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Alcohol Research Program, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
- Molecular Pharmacology and Neuroscience, Loyola University Chicago, Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
16
|
Vizuete AFK, Mussulini BH, Zenki KC, Baggio S, Pasqualotto A, Rosemberg DB, Bogo MR, de Oliveira DL, Rico EP. Prolonged ethanol exposure alters glutamate uptake leading to astrogliosis and neuroinflammation in adult zebrafish brain. Neurotoxicology 2021; 88:57-64. [PMID: 34728274 DOI: 10.1016/j.neuro.2021.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 10/04/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
Abstract
High ethanol (EtOH) consumption is a serious condition that induces tremors, alcoholic psychosis, and delirium, being considered a public health problem worldwide. Prolonged EtOH exposure promotes neurodegeneration, affecting several neurotransmitter systems and transduction signaling pathways. Glutamate is the major excitatory amino acid in the central nervous system (CNS) and the extracellular glutamatergic tonus is controlled by glutamate transporters mostly located in astrocytes. Here, we explore the effects of prolonged EtOH exposure on the glutamatergic uptake system and its relationship with astroglial markers (GFAP and S100B), neuroinflammation (IL-1β and TNF-α), and brain derived neurotrophic factor (BDNF) levels in the CNS of adult zebrafish. Animals were exposed to 0.5% EtOH for 7, 14, and 28 days continuously. Glutamate uptake was significantly decreased after 7 and 14 days of EtOH exposure, returning to baseline levels after 28 days of exposure. No alterations were observed in crucial enzymatic activities linked to glutamate uptake, like Na,K-ATPase or glutamine synthetase. Prolonged EtOH exposure increased GFAP, S100B, and TNF-α levels after 14 days. Additionally, increased BDNF mRNA levels were observed after 14 and 28 days of EtOH exposure, while BDNF protein levels increased only after 28 days. Collectively, our data show markedly brain astroglial, neuroinflammatory and neurotrofic responses after an initial impairment of glutamate uptake following prolonged EtOH exposure. This neuroplasticity event could play a key role in the modulatory effect of EtOH on glutamate uptake after 28 days of continuous exposure.
Collapse
Affiliation(s)
- Adriana Fernanda Kuckartz Vizuete
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Ben Hur Mussulini
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Kamila Cagliari Zenki
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Suelen Baggio
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Amanda Pasqualotto
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil
| | - Denis Broock Rosemberg
- Programa de Pós-Graduação em Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Santa Maria, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Maurício Reis Bogo
- Programa de Pós-Graduação em Biologia Celular e Molecular, Laboratório de Neuroquímica e Psicofarmacologia, Pontifícia Universidade Católica do Rio Grande do Sul, Brazil
| | - Diogo Lösch de Oliveira
- Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul. Rua Ramiro Barcelos 2600-Anexo, 90035-003, Porto Alegre, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), 309 Palmer Court, Slidell, LA, 70458, USA
| | - Eduardo Pacheco Rico
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Extreme Southern Catarinense (UNESC), Criciúma, SC, Brazil.
| |
Collapse
|
17
|
Mahajan VR, Elvig SK, Vendruscolo LF, Koob GF, Darcey VL, King MT, Kranzler HR, Volkow ND, Wiers CE. Nutritional Ketosis as a Potential Treatment for Alcohol Use Disorder. Front Psychiatry 2021; 12:781668. [PMID: 34916977 PMCID: PMC8670944 DOI: 10.3389/fpsyt.2021.781668] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 12/28/2022] Open
Abstract
Alcohol use disorder (AUD) is a chronic, relapsing brain disorder, characterized by compulsive alcohol seeking and disrupted brain function. In individuals with AUD, abstinence from alcohol often precipitates withdrawal symptoms than can be life threatening. Here, we review evidence for nutritional ketosis as a potential means to reduce withdrawal and alcohol craving. We also review the underlying mechanisms of action of ketosis. Several findings suggest that during alcohol intoxication there is a shift from glucose to acetate metabolism that is enhanced in individuals with AUD. During withdrawal, there is a decline in acetate levels that can result in an energy deficit and could contribute to neurotoxicity. A ketogenic diet or ingestion of a ketone ester elevates ketone bodies (acetoacetate, β-hydroxybutyrate and acetone) in plasma and brain, resulting in nutritional ketosis. These effects have been shown to reduce alcohol withdrawal symptoms, alcohol craving, and alcohol consumption in both preclinical and clinical studies. Thus, nutritional ketosis may represent a unique treatment option for AUD: namely, a nutritional intervention that could be used alone or to augment the effects of medications.
Collapse
Affiliation(s)
- Vikrant R Mahajan
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Sophie K Elvig
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Leandro F Vendruscolo
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - George F Koob
- Integrative Neuroscience Research Branch, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Valerie L Darcey
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, United States
| | - M Todd King
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Henry R Kranzler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Rockville, MD, United States
| | - Corinde E Wiers
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
18
|
Alcohol. Alcohol 2021. [DOI: 10.1016/b978-0-12-816793-9.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Huang Z, Wu D, Qu X, Li M, Zou J, Tan S. BDNF and nicotine dependence: associations and potential mechanisms. Rev Neurosci 2020; 32:/j/revneuro.ahead-of-print/revneuro-2020-0044/revneuro-2020-0044.xml. [PMID: 32887210 DOI: 10.1515/revneuro-2020-0044] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/18/2020] [Indexed: 12/30/2022]
Abstract
Smoking is the leading preventable cause of death worldwide and tobacco addiction has become a serious public health problem. Nicotine is the main addictive component of tobacco, and the majority of people that smoke regularly develop nicotine dependence. Nicotine addiction is deemed to be a chronic mental disorder. Although it is well known that nicotine binds to the nicotinic acetylcholine receptors (nAChRs) and activates the mesolimbic dopaminergic system (MDS) to generate the pleasant and rewarding effects, the molecular mechanisms of nicotine addiction are not fully understood. Brain-derived neurotrophic factor (BDNF) is the most prevalent growth factor in the brain, which regulates neuron survival, differentiation, and synaptic plasticity, mainly through binding to the high affinity receptor tyrosine kinase receptor B (TrkB). BDNF gene polymorphisms are associated with nicotine dependence and blood BDNF levels are altered in smokers. In this review, we discussed the effects of nicotine on BDNF expression in the brain and summarized the underlying signaling pathways, which further indicated BDNF as a key regulator in nicotine dependence. Further studies that aim to understand the neurobiological mechanism of BDNF in nicotine addcition would provide a valuable reference for quitting smoking and developing the treatment of other addictive substances.
Collapse
Affiliation(s)
- Zeyi Huang
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Daichao Wu
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Xilin Qu
- Grade 2017 of Clinical Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Meixiang Li
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| | - Ju Zou
- Department of Parasitology, Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, Hengyang421001,Hunan, China
| | - Sijie Tan
- Department of Histology and Embryology, Institute of Clinical Anatomy & Reproductive Medicine, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, University of South China, 28 W. Changsheng Road, Hengyang421001,Hunan, China
| |
Collapse
|
20
|
Marshall SA, McClain JA, Wooden JI, Nixon K. Microglia Dystrophy Following Binge-Like Alcohol Exposure in Adolescent and Adult Male Rats. Front Neuroanat 2020; 14:52. [PMID: 32903737 PMCID: PMC7439004 DOI: 10.3389/fnana.2020.00052] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Microglia are dynamic cells that have roles in neuronal plasticity as well as in recovery responses following neuronal injury. Although many hypothesize that hyperactivation of microglia contributes to alcohol-induced neuropathology, in other neurodegenerative conditions disruption of normal microglial processes also contributes to neuronal loss, particularly as microglia become dystrophic or dysfunctional. Based on the observation of a striking, abnormal morphology in microglia during binge-like ethanol exposure, the present study investigated the impact of excessive ethanol exposure on microglia number and dystrophic morphology in a model of alcohol dependence that includes neurodegeneration in both adult and adolescent rats. Following 2- and 4-day binge ethanol exposure, the number of microglia was decreased in the hippocampus and the perirhinal and entorhinal cortices of both adult and adolescent rats. Furthermore, a significant number of microglia with a dystrophic morphology were observed in ethanol-exposed tissue, accompanied by a significant decrease in brain-derived neurotrophic factor (BDNF) expression in the hippocampus. Together these findings suggest another means by which microglia may contribute to alcohol-induced neurodegeneration, specifically dystrophic microglia and/or loss of microglia may disrupt homeostatic and recovery mechanisms. These results demonstrate that microglia also degenerate with excessive alcohol exposure, which has important implications for understanding the role of microglia-and specifically their contributions to plasticity and neuronal survival-in neurodegenerative disease.
Collapse
Affiliation(s)
- S Alex Marshall
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Justin A McClain
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States
| | - Jessica I Wooden
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas, Austin, TX, United States
| | - Kimberly Nixon
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, United States.,Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas, Austin, TX, United States
| |
Collapse
|
21
|
Gamma oryzanol impairs alcohol-induced anxiety-like behavior in mice via upregulation of central monoamines associated with Bdnf and Il-1β signaling. Sci Rep 2020; 10:10677. [PMID: 32606350 PMCID: PMC7326911 DOI: 10.1038/s41598-020-67689-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/10/2020] [Indexed: 02/06/2023] Open
Abstract
Adolescent alcohol exposure may increase anxiety-like behaviors by altering central monoaminergic functions and other important neuronal pathways. The present study was designed to investigate the anxiolytic effect of 0.5% γ-oryzanol (GORZ) and its neurochemical and molecular mechanisms under chronic 10% ethanol consumption. Five-week-old ICR male mice received either control (14% casein, AIN 93 M) or GORZ (14% casein, AIN 93 M + 0.5% GORZ) diets in this study. We showed that GORZ could potentially attenuate alcohol-induced anxiety-like behaviors by significantly improving the main behavioral parameters measured by the elevated plus maze test. Moreover, GORZ treatment significantly restored the alcohol-induced downregulation of 5-hydroxytryptophan and 5-hydroxyindole acetic acid in the hippocampus and improved homovanillic acid levels in the cerebral cortex. Furthermore, a recovery increase in the level of 3-methoxy-4-hydroxyphenylglycol both in the hippocampus and cerebral cortex supported the anxiolytic effect of GORZ. The significant elevation and reduction in the hippocampus of relative mRNA levels of brain-derived neurotrophic factor and interleukin 1β, respectively, also showed the neuroprotective role of GORZ in ethanol-induced anxiety. Altogether, these results suggest that 0.5% GORZ is a promising neuroprotective drug candidate with potential anxiolytic, neurogenic, and anti-neuroinflammatory properties for treating adolescent alcohol exposure.
Collapse
|
22
|
Fatahi Z, Zeinaddini-Meymand A, Karimi S, Khodagholi F, Haghparast A. Impairment of cost-benefit decision making in morphine-dependent rats is partly mediated via the alteration of BDNF and p-CREB levels in the nucleus accumbens. Pharmacol Biochem Behav 2020; 194:172952. [PMID: 32428531 DOI: 10.1016/j.pbb.2020.172952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 05/14/2020] [Indexed: 02/09/2023]
Abstract
The ability to choose goals based on decision usefulness or the time required to reach the goals chosen are important aspects of decision making. There is considerable evidence in the literature indicating the fact that drug abuse affects different aspects of cognition. In the current study, we assessed the effects of morphine dependence and its withdrawal on cost-benefit decision making and furthermore the involvement of BDNF and p-CREB in the nucleus accumbens, a key brain area involved in decision making was measured. Different groups of male Wistar rats were trained in an effort-based and/or delay-based form of cost-benefit T-maze decision-making task. Thereafter, the animals were morphine dependent and the percentage of the high reward preference was evaluated. After behavioral tests, the BDNF level, and p-CREB/CREB ratio were measured by Western blot analysis. The results showed that during effort-based but not delay-based decision making, BDNF and p-CREB levels increased. During effort-based decision making in morphine dependent rats, BDNF decreased but there was no significant change in p-CREB. Besides, during delay-based decision making in the morphine dependent group, both BDNF and p-CREB did not show any significant change. These findings revealed that BDNF and p-CREB/CREB ratio in the NAc are essential factors for effort-based but not delay-based decision making. In addition, impairment of effort-based decision making in morphine dependent rats is related to the decrease of BDNF level but not p-CREB/CREB ratio in the NAc. However, delay-based decision making defects in morphine dependent rats did not associate with the change in BDNF and p-CREB levels in the NAc.
Collapse
Affiliation(s)
- Zahra Fatahi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arman Zeinaddini-Meymand
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Karimi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Haghparast
- Neuroscience Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Li XX, Yang T, Wang N, Zhang LL, Liu X, Xu YM, Gao Q, Zhu XF, Guan YZ. 7,8-Dihydroxyflavone Attenuates Alcohol-Related Behavior in Rat Models of Alcohol Consumption via TrkB in the Ventral Tegmental Area. Front Neurosci 2020; 14:467. [PMID: 32508571 PMCID: PMC7248303 DOI: 10.3389/fnins.2020.00467] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022] Open
Abstract
Alcohol use disorder (AUD) is a ubiquitous substance use disorder in the world, of which neural mechanisms remain unclear. Alcohol consumption induces neuro-adaptations in the dopaminergic system originating from the ventral tegmental area (VTA), an important brain region for the reward function in AUD. Endogenous brain-derived neurotrophic factor (BDNF)-TrkB implicated in the development of neuroplasticity, including long-term potentiation of GABAergic synapses (LTP GABA ). We previously found that ethanol blocks LTP GABA in the VTA, either in vivo or in vitro. 7,8-dihydroflavone (7,8-DHF), a BDNF-mimicking small compound, was recently found to penetrate the blood-brain barrier to mimic the biological role of BDNF-TrkB. In this study, we demonstrate that repeated ethanol consumption (including intermittent and continuous ethanol exposure) results in low expression of BDNF in rat VTA. The amount of ethanol intake enhances significantly in rats with intermittent ethanol exposure after 72 h abstinence. Withdrawal signs emerge in rats with continuous ethanol exposure within 3 days after abstinence. Using behavioral tests, intraperitoneal injection of 7,8-DHF can reduce excessive ethanol consumption and preference as well as withdrawal signs in rats with repeated ethanol exposure. Interestingly, microinjection of K252a, an antagonist of TrkB, into the VTA blocks the effects of 7,8-DHF on ethanol-related behaviors. Furthermore, direct microinjection of BDNF into the VTA mimics the effect of 7,8-DHF on ethanol related behaviors. Taken together, 7,8-DHF attenuates alcohol-related behaviors in rats undergoing alcohol consumption via TrkB in the VTA. Our findings suggest BDNF-TrkB in VTA is a part of regulating signals for opposing neural adaptations in AUD, and 7,8-DHF may serve as a potential candidate for treating alcoholism.
Collapse
Affiliation(s)
- Xin-Xin Li
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Tao Yang
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Na Wang
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Li-Li Zhang
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Xing Liu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Yan-Min Xu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Qing Gao
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Xiao-Feng Zhu
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| | - Yan-Zhong Guan
- Department of Physiology and Neurobiology, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
24
|
Hogarth SJ, Djouma E, van den Buuse M. 7,8-Dihydroxyflavone Enhances Cue-Conditioned Alcohol Reinstatement in Rats. Brain Sci 2020; 10:brainsci10050270. [PMID: 32369970 PMCID: PMC7287665 DOI: 10.3390/brainsci10050270] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 04/27/2020] [Accepted: 04/29/2020] [Indexed: 12/21/2022] Open
Abstract
Alcohol use disorder (AUD) is a detrimental disease that develops through chronic ethanol exposure. Reduced brain-derived neurotrophic factor (BDNF) expression has been associated with AUD and alcohol addiction, however the effects of activation of BDNF signalling in the brain on voluntary alcohol intake reinstatement and relapse are unknown. We therefore trained male and female Sprague Dawley rats in operant chambers to self-administer a 10% ethanol solution. Following baseline acquisition and progressive ratio (PR) analysis, rats were split into drug and vehicle groups during alcohol lever extinction. The animals received two weeks of daily IP injection of either the BDNF receptor, TrkB, agonist, 7,8-dihydroxyflavone (7,8-DHF), or vehicle. During acquisition of alcohol self-administration, males had significantly higher absolute numbers of alcohol-paired lever presses and a higher PR breakpoint. However, after adjusting for body weight, the amount of ethanol was not different between the sexes and the PR breakpoint was higher in females than males. Following extinction, alcohol-primed reinstatement in male rats was not altered by pretreatment with 7,8-DHF when adjusted for body weight. In contrast, in female rats, the weight-adjusted potential amount of ethanol, but not absolute numbers of active lever presses, was significantly enhanced by 7,8-DHF treatment during reinstatement. Analysis of spontaneous locomotor activity in automated photocell cages suggested that the effect of 7,8-DHF was not associated with hyperactivity. These results suggest that stimulation of the TrkB receptor may contribute to reward craving and relapse in AUD, particularly in females.
Collapse
Affiliation(s)
- Samuel J. Hogarth
- School of Psychology and Public Health, Department of Psychology and Counselling, La Trobe University, Melbourne 3086, VIC, Australia;
| | - Elvan Djouma
- School of Life Sciences, Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne 3086, VIC, Australia;
| | - Maarten van den Buuse
- School of Psychology and Public Health, Department of Psychology and Counselling, La Trobe University, Melbourne 3086, VIC, Australia;
- Department of Pharmacology, University of Melbourne, Melbourne 3010, VIC, Australia
- The College of Public Health, Medicinal and Veterinary Sciences, James Cook University Townsville, Townsville 4811, QLD, Australia
- Correspondence: ; Tel.: +61-3-9479-5257
| |
Collapse
|
25
|
Three-Dimensional Model of Dorsal Root Ganglion Explant as a Method of Studying Neurotrophic Factors in Regenerative Medicine. Biomedicines 2020; 8:biomedicines8030049. [PMID: 32138155 PMCID: PMC7175199 DOI: 10.3390/biomedicines8030049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Neurotrophic factors play a key role in the development, differentiation, and survival of neurons and nerve regeneration. In the present study, we evaluated the effect of certain neurotrophic factors (NGF, BDNF, and GDNF) on axon growth and migration of Nestin-green fluorescent protein (GFP)-positive cells using a 3D model of dorsal root ganglion (DRG) explant culture in Matrigel. Our method generally represents a convenient model for assessing the effects of soluble factors and therapeutic agents on axon growth and nerve regeneration in R&D studies. By analyzing the DRG explants in ex vivo culture for 21 days, one can evaluate the parameters of neurite outgrowth and the rate of cell migration from the DRG explants into the Matrigel. For the current study, we used Nestin-GFP-expressing mice in which neural precursors express Nestin and the green fluorescent protein (GFP) under the same promoter. We revealed that GDNF significantly (two fold) stimulated axon outgrowth (p < 0.05), but not BDNF or NGF. It is well-known that axon growth can be stimulated by activated glial cells that fulfill a trophic function for regenerating nerves. For this reason, we evaluated the number of Nestin-GFP-positive cells that migrated from the DRG into the Matrigel in our 3D ex vivo explant model. We found that NGF and GDNF, but not BDNF, stimulated the migration of Nestin-GFP cells compared to the control (p < 0.05). On the basis of the aforementioned finding, we concluded that GDNF had the greatest stimulating potential for axon regeneration, as it stimulated not only the axon outgrowth, but also glial cell migration. Although NGF significantly stimulated glial cell migration, its effect on axon growth was insufficient for axon regeneration.
Collapse
|
26
|
Oxidative stress inhibition by resveratrol in alcohol-dependent mice. Nutrition 2020; 79-80:110783. [PMID: 32569950 DOI: 10.1016/j.nut.2020.110783] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 01/13/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Uncontrolled ingestion of alcohol has dramatic consequences on the entire organism that are also associated with the oxidation process induced by alcohol and elevate radical oxygen species. Resveratrol, a nonflavonoid phenol, shows well-documented antioxidant properties. We investigated the potential antioxidant ability of this natural compound in a mouse model of alcohol addiction. METHODS We administered (per os) for 60 d 10 mg · kg-1 · d-1 of resveratrol in alcoholic adult male mice. Oxidative stress was evaluated by measuring serum-free oxygen radicals defense and free oxygen radical levels. Resveratrol metabolites were measured in the serum of mice that were administered with resveratrol. Finally, the effect of resveratrol on the alcohol-induced alteration of brain-derived neurotrophic factors (BDNF) in the liver was investigated. RESULTS Prolonged consumption of resveratrol strongly counteracts serum radical oxygen species formation caused by chronic alcohol intake without effects on natural, free oxygen radical defense. The presence of resveratrol metabolites in the serum only of animals supplemented with resveratrol potentiates the evidence that the antioxidant effect observed is due to the ingestion of the natural compound. Moreover, resveratrol supplementation can counteract alcohol-induced BDNF elevation in the liver, which is the main target of organ alcohol-induced damage. CONCLUSIONS The consumption of resveratrol through metabolite formation may play a protective role by decreasing free radical formation and modulating the BDNF involved in hepatic disruption induced by chronic alcohol consumption. Further investigation into the mechanism underlying the protective effect could reinforce the potential use of resveratrol as a dietary supplement to prevent damage associated with chronic alcohol abuse.
Collapse
|
27
|
Flores-Bastías O, Adriasola-Carrasco A, Karahanian E. Activation of Melanocortin-4 Receptor Inhibits Both Neuroinflammation Induced by Early Exposure to Ethanol and Subsequent Voluntary Alcohol Intake in Adulthood in Animal Models: Is BDNF the Key Mediator? Front Cell Neurosci 2020; 14:5. [PMID: 32063838 PMCID: PMC6997842 DOI: 10.3389/fncel.2020.00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/10/2020] [Indexed: 12/31/2022] Open
Abstract
The concept that neuroinflammation induced by excessive alcohol intake in adolescence triggers brain mechanisms that perpetuate consumption has strengthened in recent years. The melanocortin system, composed of the melanocortin 4 receptor (MC4R) and its ligand α-melanocyte-stimulating hormone (α-MSH), has been implicated both in modulation of alcohol consumption and in ethanol-induced neuroinflammation decrease. Chronic alcohol consumption in adolescent rats causes a decrease in an α-MSH release by the hypothalamus, while the administration of synthetic agonists of MC4R causes a decrease in neuroinflammation and a decrease in voluntary alcohol consumption. However, the mechanism that connects the activation of MC4R with the decrease of both neuroinflammation and voluntary alcohol consumption has not been elucidated. Brain-derived neurotrophic factor (BDNF) has been implicated in alcohol drinking motivation, dependence and withdrawal, and its levels are reduced in alcoholics. Deficiencies in BDNF levels increased ethanol self-administration in rats. Further, BDNF triggers important anti-inflammatory effects in the brain, and this could be one of the mechanisms by which BDNF reduces chronic alcohol intake. Interestingly, MC4R signaling induces BDNF expression through the activation of the cAMP-responsive element-binding protein (CREB). We hypothesize that ethanol exposure during adolescence decreases the expression of α-MSH and hence MC4R signaling in the hippocampus, leading to a lower BDNF activity that causes dramatic changes in the brain (e.g., neuroinflammation and decreased neurogenesis) that predispose to maintain alcohol abuse until adulthood. The activation of MC4R either by α-MSH or by synthetic agonist peptides can induce the expression of BDNF, which would trigger several processes that lead to lower alcohol consumption.
Collapse
Affiliation(s)
- Osvaldo Flores-Bastías
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| | - Alfredo Adriasola-Carrasco
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile
| | - Eduardo Karahanian
- Institute of Biomedical Sciences, Faculty of Health Sciences, Universidad Autónoma de Chile, Santiago, Chile.,Research Center for the Study of Alcohol Drinking Behavior in Adolescents, Universidad Autónoma de Chile, Santiago, Chile
| |
Collapse
|
28
|
Moreira da Silva Santos A, Gorman AM, Kelly JP, Doyle KM. Time and region-dependent manner of increased brain derived neurotrophic factor and TrkB in rat brain after binge-like methamphetamine exposure. Neurosci Lett 2020; 715:134606. [PMID: 31693929 DOI: 10.1016/j.neulet.2019.134606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/06/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Methamphetamine (MA), a synthetic derivate of amphetamine, has become a major drug of abuse worldwide. This study investigated the effect of binge-like MA dosing (4 x 4 mg/kg, s.c., 2 h (h) apart) at a range of different time points (from 2 h to 7 days after treatment) on brain-derived neurotrophic factor (BDNF) levels and its receptors, TrkB and p75NTR. BDNF levels were significantly increased in the frontal cortex from 2 to 36 h after treatment, returning to normal within 48 h after treatment. In the striatum, BDNF expression was increased at 12 and 24 h after binge-like MA treatment and had returned to normal at 36 h. Increased expression of the TrkB receptor was observed in the frontal cortex at 2, 24 and 48 h after MA treatment and in the striatum at 24 and 48 h after the MA regimen. A significant increase in the p75NTR receptor was also noted in the striatum but not the frontal cortex, and it was less pronounced than the effect on TrkB receptor expression. These findings show that the binge-like regimen of MA affects expression of BDNF and its receptors, particularly the TrkB receptor, in a time and region dependent manner, and highlights the importance of the frontal cortex and the striatum in the response following MA binge-like dosing.
Collapse
Affiliation(s)
- Andreia Moreira da Silva Santos
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland; Centro Universitário Unievangélica, Anápolis - GO CEP: 75083-515, Brazil
| | - Adrienne M Gorman
- School of Natural Sciences and Apoptosis Research Centre, National University of Ireland, Galway, Ireland
| | - John P Kelly
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland
| | - Karen M Doyle
- School of Medicine and Galway Neuroscience Centre, National University of Ireland, Galway, Ireland.
| |
Collapse
|
29
|
Ieraci A, Herrera DG. Early Postnatal Ethanol Exposure in Mice Induces Sex-Dependent Memory Impairment and Reduction of Hippocampal NMDA-R2B Expression in Adulthood. Neuroscience 2019; 427:105-115. [PMID: 31874240 DOI: 10.1016/j.neuroscience.2019.11.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 12/11/2022]
Abstract
Drinking alcohol during pregnancy is particularly detrimental for the developing brain and may cause a broad spectrum of cognitive and behavioral impairments, collectively known as fetal alcohol spectrum disorder (FASD). While behavioral abnormalities and brain damage have been widely investigated in animal models of FASD, the sex differences in the vulnerability to perinatal ethanol exposure have received less consideration. Here we investigated the long-term behavioral and molecular effects of acute ethanol-binge like exposure during the early postnatal period (equivalent to the third trimester of human pregnancy) in adult male and female mice. CD1 mice received a single ethanol exposure on P7 and were analyzed starting from P60. We found that ethanol-exposed mice showed increased activity in the open field test and in the plus-maze test, regardless of the sex. Interestingly, only ethanol-exposed adult male mice exhibited memory impairment in the water maze and fear-conditioning tests. Remarkably, hippocampal levels of NMDA-R2B were reduced only in ethanol-exposed male, while total BDNF levels were increased in both male and female ethanol-exposed mice. Our data suggest a different susceptibility of early postnatal ethanol exposure in male and female CD1 mice.
Collapse
Affiliation(s)
- Alessandro Ieraci
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA.
| | - Daniel G Herrera
- Department of Psychiatry, Weill Medical College of Cornell University, New York, NY 10065, USA
| |
Collapse
|
30
|
Anokhin PK, Veretinskaya AG, Pavshintsev VV, Shamakina IY. [The effect of the dopamine D2 receptor agonist cabergoline on the content of catecholamines and expression of BDNF mRNA in the rat midbrain and hypothalamus]. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:54-59. [PMID: 31851173 DOI: 10.17116/jnevro201911911154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
AIM To study an effect of cabergoline on dopamine and noradrenaline concentration and BDNF mRNA level in the rat midbrain and hypothalamus. MATERIAL AND METHODS Twenty adult male Wistar rats were used in a single treatment paradigm: animals of the treatment group (n=10) received cabergoline (i.p., 0.5 mg/kg) and the control group (n=10) received an equivalent volume of the solvent. Quantitative analysis for the dopamine (DA) and noradrenaline (NA) was carried out using high-performance liquid chromatography (HPLC) coupled with electrochemical detection. BDNF mRNA levels were studied using quantitative RT-PCR. RESULTS AND CONCLUSION Cabergoline significantly increases NA concentration in the midbrain 24 hours after injection: 639.2±64.5 ng/g in the treatment group versus 398.0±66.0 ng/g in the control group (p<0.05), while mean content of DA is not significantly changed (211.4±16.3 ng/g vs 169.7±54.6 ng/g, respectively). Cabergoline does not affect hypothalamic DA and NA levels. The drug increases BDNF mRNA levels by 2-times in the midbrain, but not in the hypothalamus, 24 hours after injection.
Collapse
Affiliation(s)
- P K Anokhin
- Nationa Research Center on Addiction - The Branch of Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | - A G Veretinskaya
- Nationa Research Center on Addiction - The Branch of Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| | | | - I Yu Shamakina
- Nationa Research Center on Addiction - The Branch of Serbsky National Medical Research Centre for Psychiatry and Narcology, Moscow, Russia
| |
Collapse
|
31
|
Mohseni F, Bagheri F, Rafaiee R, Norozi P, Khaksari M. Hydrogen sulfide improves spatial memory impairment via increases of BDNF expression and hippocampal neurogenesis following early postnatal alcohol exposure. Physiol Behav 2019; 215:112784. [PMID: 31863854 DOI: 10.1016/j.physbeh.2019.112784] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/26/2019] [Accepted: 12/17/2019] [Indexed: 12/16/2022]
Abstract
According to experimental and clinical findings, fetal brain development may be interrupted by maternal alcohol consumption during pregnancy. Adult hippocampal neurogenesis is thought to play a role in cognition function (i.e. learning and memory). Recent evidence suggests that ethanol administration causes major apoptotic neurodegeneration in many regions of the rats' developing brain during the synaptogenesis period. Based on the recent studies, H2S improve learning and memory via increased neurogenesis and antiapoptotic mechanisms in different animal models. In this study, we aimed to evaluate the protective effects of hydrogen sulfide on alcohol-induced memory impairment, hippocampus neurogenesis and neuronal apoptosis in rat pups with postnatal ethanol exposure. Administration of ethanol to male rat pups was performed through intragastric intubation on postnatal days 2-10. The pups were administered 1 mg/kg of NaHS (H2S donor) on postnatal days 2-10. For examining the spatial memory, Morris water maze test was carried out 36 days after birth. Following the behavioral test, immunohistochemical staining was performed to evaluate the expression levels of BrdU, BDNF and Apoptotic cell death was detected by TUNEL staining. Hydrogen sulfide (H2S) treatment could significantly improve spatial memory impairment (P < 0.05) and significantly increase the expression of BrdU and BDNF in dentate gyrus area (P < 0.05). It also decreased positive TUNEL cells, compared with the ethanol group (P < 0.01). Based on the findings, H2S makes significant neuroprotective effects on Ethanol neurotoxicity due to its neurogenesis and anti-apoptotic activity.
Collapse
Affiliation(s)
- Fahimeh Mohseni
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | | | - Raheleh Rafaiee
- Department of Neuroscience, School of Advanced Technologies in Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Pirasteh Norozi
- School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehdi Khaksari
- Addiction Research Center, Shahroud University of Medical Sciences, Shahroud, Iran.
| |
Collapse
|
32
|
Nunes PT, Kipp BT, Reitz NL, Savage LM. Aging with alcohol-related brain damage: Critical brain circuits associated with cognitive dysfunction. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:101-168. [PMID: 31733663 PMCID: PMC7372724 DOI: 10.1016/bs.irn.2019.09.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcoholism is associated with brain damage and impaired cognitive functioning. The relative contributions of different etiological factors, such as alcohol, thiamine deficiency and age vulnerability, to the development of alcohol-related neuropathology and cognitive impairment are still poorly understood. One reason for this quandary is that both alcohol toxicity and thiamine deficiency produce brain damage and cognitive problems that can be modulated by age at exposure, aging following alcohol toxicity or thiamine deficiency, and aging during chronic alcohol exposure. Pre-clinical models of alcohol-related brain damage (ARBD) have elucidated some of the contributions of ethanol toxicity and thiamine deficiency to neuroinflammation, neuronal loss and functional deficits. However, the critical variable of age at the time of exposure or long-term aging with ARBD has been relatively ignored. Acute thiamine deficiency created a massive increase in neuroimmune genes and proteins within the thalamus and significant increases within the hippocampus and frontal cortex. Chronic ethanol treatment throughout adulthood produced very minor fluctuations in neuroimmune genes, regardless of brain region. Intermittent "binge-type" ethanol during the adolescent period established an intermediate neuroinflammatory response in the hippocampus and frontal cortex, that can persist into adulthood. Chronic excessive drinking throughout adulthood, adolescent intermittent ethanol exposure, and thiamine deficiency all led to a loss of the cholinergic neuronal phenotype within the basal forebrain, reduced hippocampal neurogenesis, and alterations in the frontal cortex. Only thiamine deficiency results in gross pathological lesions of the thalamus. The behavioral impairment following these types of treatments is hierarchical: Thiamine deficiency produces the greatest impairment of hippocampal- and prefrontal-dependent behaviors, chronic ethanol drinking ensues mild impairments on both types of tasks and adolescent intermittent ethanol exposure leads to impairments on frontocortical tasks, with sparing on most hippocampal-dependent tasks. However, our preliminary data suggest that as rodents age following adolescent intermittent ethanol exposure, hippocampal functional deficits began to emerge. A necessary requirement for the advancement of understanding the neural consequences of alcoholism is a more comprehensive assessment and understanding of how excessive alcohol drinking at different development periods (adolescence, early adulthood, middle-aged and aged) influences the trajectory of the aging process, including pathological aging and disease.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Brian T Kipp
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Nicole L Reitz
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States
| | - Lisa M Savage
- Developmental Exposure Alcohol Research Center, Behavioral Neuroscience Program, Department of Psychology, Binghamton University, State University of New York, Binghamton, NY, United States.
| |
Collapse
|
33
|
The Long-Term Effects of Ethanol and Corticosterone on the Mood-Related Behaviours and the Balance Between Mature BDNF and proBDNF in Mice. J Mol Neurosci 2019; 69:60-68. [PMID: 31127538 DOI: 10.1007/s12031-019-01328-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2018] [Accepted: 04/16/2019] [Indexed: 12/21/2022]
Abstract
In this study, we aimed to establish the effects of chronic corticosterone (CORT) and ethanol administration on mood-related behaviour and the levels of mature brain-derived neurotrophic factor (mBDNF) and its precursor protein proBDNF in mice. C57BL6 male and female mice received drinking water (n = 22), 1% ethanol in drinking water (n = 16) or 100 μg/ml corticosterone in drinking water (containing 1% ethanol, n = 18) for 4.5 weeks. At the end of experimental protocol, the open field test (OFT) and elevated plus maze test were performed. Brain and adrenal tissues were collected and mBDNF and proBDNF were measured by ELISA assays. We found that the mice fed with corticosterone and ethanol developed anxiety-like behaviours as evidenced by reduced time in the central zone in the OFT compared with the control group. Both proBDNF and mBDNF were significantly decreased in the corticosterone and ethanol groups compared with the control group in the prefrontal cortex, hippocampus, hypothalamus and adrenal. The ratio of proBDNF/mBDNF in prefrontal cortex in the corticosterone group was increased compared with the ethanol group. Our data suggest that the ratio of proBDNF/mBDNF is differentially regulated in different tissues. Ethanol and corticosterone downregulate both mBDNF and proBDNF and alter the balance of proBDNF/mBDNF in some tissues. In conclusion, the ethanol and corticosterone may cause abnormal regulation of mBDNF and proBDNF which may lead to mood disorders.
Collapse
|
34
|
Toledo Nunes P, Vedder LC, Deak T, Savage LM. A Pivotal Role for Thiamine Deficiency in the Expression of Neuroinflammation Markers in Models of Alcohol-Related Brain Damage. Alcohol Clin Exp Res 2019; 43:425-438. [PMID: 30589435 DOI: 10.1111/acer.13946] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/18/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) is associated with neurotoxic effects of heavy alcohol use and nutritional deficiency, in particular thiamine deficiency (TD), both of which induce inflammatory responses in brain. Although neuroinflammation is a critical factor in the induction of ARBD, few studies have addressed the specific contribution(s) of ethanol (EtOH) versus TD. METHODS Adult rats were randomly divided into 6 conditions: chronic EtOH treatment (CET) where rats consumed a 20% v/v solution of EtOH for 6 months; CET with injections of thiamine (CET + T); severe pyrithiamine-induced TD (PTD); moderate PTD; moderate PTD during CET; and pair-fed controls. After the treatments, the rats were split into 3 recovery phase time points: the last day of treatment (time point 1), acute recovery (time point 2: 24 hours posttreatment), and delayed recovery (time point 3: 3 weeks posttreatment). At these time points, vulnerable brain regions (thalamus, hippocampus, frontal cortex) were collected and changes in neuroimmune markers were assessed using a combination of reverse transcription polymerase chain reaction and protein analysis. RESULTS CET led to minor fluctuations in neuroimmune genes, regardless of the structure being examined. In contrast, PTD treatment led to a profound increase in neuroimmune genes and proteins within the thalamus. Cytokine changes in the thalamus ranged in magnitude from moderate (3-fold and 4-fold increase in interleukin-1β [IL-1β] and IκBα) to severe (8-fold and 26-fold increase in tumor necrosis factor-α and IL-6, respectively). Though a similar pattern was observed in the hippocampus and frontal cortex, overall fold increases were moderate relative to the thalamus. Importantly, neuroimmune gene induction varied significantly as a function of severity of TD, and most genes displayed a gradual recovery across time. CONCLUSIONS These data suggest an overt brain inflammatory response by TD and a subtle change by CET alone. Also, the prominent role of TD in the immune-related signaling pathways leads to unique regional and temporal profiles of induction of neuroimmune genes.
Collapse
Affiliation(s)
- Polliana Toledo Nunes
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lindsey C Vedder
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Terrence Deak
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| | - Lisa M Savage
- Behavioral Neuroscience Program (PTN, LCV, TD, LMS), Department of Psychology, Binghamton University, State University of New York, Binghamton, New York
| |
Collapse
|
35
|
Maxi JK, Mercante D, Foret B, Oberhelman S, Ferguson TF, Bagby GJ, Nelson S, Amedee AM, Edwards S, Simon L, Molina PE. Chronic Binge Alcohol-Associated Differential Brain Region Modulation of Growth Factor Signaling Pathways and Neuroinflammation in Simian Immunodeficiency Virus-Infected Male Macaques. Alcohol Alcohol 2019; 54:477-486. [PMID: 31322648 PMCID: PMC6751413 DOI: 10.1093/alcalc/agz056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/08/2019] [Accepted: 06/18/2019] [Indexed: 01/09/2023] Open
Abstract
AIMS Microarray analysis of hippocampal tissue from chronic binge alcohol (CBA)-administered, simian immunodeficiency virus (SIV)-infected male macaques identified altered immune response and neurogenesis as potential mechanisms underlying cognitive deficits in macaques. This study investigated the differential brain region associations between markers of neuroinflammation and growth factor signaling with microtubule-associated protein 2 (MAP2) expression. METHODS Adult male rhesus macaques were administered CBA (13-14 g EtOH/kg/week, n = 8) or sucrose (SUC, n = 7) beginning 3 months prior to SIV infection and continued until animals reached end-stage disease criteria (3-24 months post infection). Expression of inflammatory cytokines, growth factors, and viral loads were determined in the prefrontal cortex (PFC), caudate (CD), and hippocampus (HP). Brain-derived neurotropic factor (BDNF) expression and phosphorylation of intracellular kinases downstream of BDNF were investigated in the PFC. RESULTS Our results show reduced MAP2 expression in the PFC of longer-surviving, CBA/SIV macaques. BDNF expression was most closely associated with MAP2 expression in the PFC. In the caudate, significant positive associations were observed between MAP2 and BDNF, time to end-stage and set-point viral load and significant negative associations for CBA. In the hippocampus, positive associations were observed between MAP2 and inflammatory cytokines, and negative associations for brain viral load and CBA. CONCLUSIONS CBA differentially affects growth factor and inflammatory cytokine expression and viral load across brain regions. In the PFC, suppression of growth factor signaling may be an important neuropathological mechanism, while inflammatory processes may play a more important role in the CD and HP.
Collapse
Affiliation(s)
- John K Maxi
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Don Mercante
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Epidemiology, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Brittany Foret
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Sarah Oberhelman
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Epidemiology, School of Public Health, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Gregory J Bagby
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Steve Nelson
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- School of Medicine
| | - Angela M Amedee
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Scott Edwards
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Liz Simon
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Patricia E Molina
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
- Comprehensive Alcohol-HIV/AIDS Research Center, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
36
|
A comparison of hippocampal microglial responses in aged and young rodents following dependent and non-dependent binge drinking. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 148:305-343. [PMID: 31733666 PMCID: PMC9875180 DOI: 10.1016/bs.irn.2019.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alcoholism is a highly visible and prevalent issue in the United States. Although binge-drinking is assumed to be a college-age problem, older adults (ages 65+) consume binge amounts of alcohol and have alcohol use disorders (AUDs). Moreover, individuals with alcohol dependence in their youth often continue to drink as they age. As such, this study tested the hypothesis that the effects of alcohol on hippocampal microglia are exacerbated in aged versus younger rodents in two AUD models. Briefly, adult (2-3 months) and aged (15+ months) Sprague-Dawley rats were administered alcohol or control diet using the Majchrowicz model to study alcohol-induced neurodegeneration. To study the effects of non-dependent binge consumption on microglia, adolescent (6-8 weeks) and aged (18+ months) C57/BL6N were subjected to the Drinking in the Dark paradigm. Microglia number and densitometry were assessed using immunohistochemistry. Hippocampal subregional and model/species-specific effects of alcohol were observed, but overall, aging did not appear to increase the alcohol-induced microglia reactivity as measured by Iba-1 densitometry. However, analysis of microglial counts revealed a significant decrease in the number microglia cells in both the alcohol-induced neurodegeneration and DID model across age groups. In the dentate gyrus, the loss of microglia was exacerbated by aging, particularly in mice after DID, non-dependent model. Using qRT-PCR, the persistence of alcohol and aging effects was assessed following the DID model. Allograft Inflammatory Factor 1 mRNA was increased in both young and aged mice by alcohol exposure; however, only in the aged mice did the alcohol effect persist. Overall, these data imply that the microglial response to alcohol is complex with evidence of depressed numbers of microglia but also increased reactivity with advanced age.
Collapse
|
37
|
Molina PE, Simon L, Amedee AM, Welsh DA, Ferguson TF. Impact of Alcohol on HIV Disease Pathogenesis, Comorbidities and Aging: Integrating Preclinical and Clinical Findings. Alcohol Alcohol 2018; 53:439-447. [PMID: 29546271 DOI: 10.1093/alcalc/agy016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 03/01/2018] [Indexed: 12/12/2022] Open
Abstract
Short Summary : Effective combined antiretroviral therapy regimens have extended survival of persons living with HIV (PLWH). Heavy alcohol consumption is common in PLWH. This overview integrates evidence from clinical and preclinical research to identify salient alcohol-related mechanisms and comorbidities contributing to disease pathogenesis and accelerated aging and senescence in PLWH.
Collapse
Affiliation(s)
- Patricia E Molina
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Liz Simon
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Angela M Amedee
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - David A Welsh
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| | - Tekeda F Ferguson
- Comprehensive Alcohol-HIV/AIDS Research Center and Alcohol and Drug Abuse Center of Excellence, LSUHSC, 1901 Perdido St., New Orleans, LA, USA
| |
Collapse
|
38
|
Hashikawa-Hobara N, Mishima S, Nagase S, Morita K, Otsuka A, Hashikawa N. Effects of alcoholic beverage treatment on spatial learning and fear memory in mice. Biosci Biotechnol Biochem 2018; 82:1417-1424. [PMID: 29685094 DOI: 10.1080/09168451.2018.1464898] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
ABSTRACT
Although chronic ethanol treatment is known to impair learning and memory, humans commonly consume a range of alcoholic beverages. However, the specific effects of some alcoholic beverages on behavioral performance are largely unknown. The present study compared the effects of a range of alcoholic beverages (plain ethanol solution, red wine, sake and whiskey; with a matched alcohol concentration of 10%) on learning and memory. 6-week-old C57BL6J mice were orally administered alcohol for 7 weeks. The results revealed that red wine treatment exhibited a trend toward improvement of spatial memory and advanced extinction of fear memory. Additionally, red wine treatment significantly increased mRNA levels of brain-derived neurotrophic factor (BDNF) and N-methyl-D-aspartate (NMDA) receptors in mice hippocampus. These results support previous reports that red wine has beneficial effects.
Collapse
Affiliation(s)
| | - Shuta Mishima
- Department of Life Science, Okayama University of Science , Okayama, Japan
| | - Shotaro Nagase
- Department of Life Science, Okayama University of Science , Okayama, Japan
| | - Keishi Morita
- Department of Life Science, Okayama University of Science , Okayama, Japan
| | - Ami Otsuka
- Department of Life Science, Okayama University of Science , Okayama, Japan
| | - Naoya Hashikawa
- Department of Life Science, Okayama University of Science , Okayama, Japan
| |
Collapse
|
39
|
Increasing Brain-Derived Neurotrophic Factor (BDNF) in medial prefrontal cortex selectively reduces excessive drinking in ethanol dependent mice. Neuropharmacology 2018; 140:35-42. [PMID: 30056122 DOI: 10.1016/j.neuropharm.2018.07.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/05/2018] [Accepted: 07/26/2018] [Indexed: 01/18/2023]
Abstract
The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) has been implicated in a number of neuropsychiatric disorders, including alcohol use disorder. Studies have shown that BDNF activity in cortical regions, such as the medial prefrontal cortex (mPFC) mediates various ethanol-related behaviors. We previously reported a significant down-regulation in Bdnf mRNA in mPFC following chronic ethanol exposure compared to control mice. The present study was conducted to extend these findings by examining whether chronic ethanol treatment reduces BDNF protein expression in mPFC and whether reversing this deficit via direct injection of BDNF or viral-mediated overexpression of BDNF in mPFC alters voluntary ethanol consumption in dependent and nondependent mice. Repeated cycles of chronic intermittent ethanol (CIE) exposure was employed to model ethanol dependence, which produces robust escalation of ethanol intake. Results indicated that CIE treatment significantly increased ethanol intake and this was accompanied by a significant decrease in BDNF protein in mPFC that lasted at least 72 h after CIE exposure. In a separate study, once dependence-related increased drinking was established, bilateral infusion of BDNF (0, 0.25, 0.50 μg) into mPFC significantly decreased ethanol intake in a dose-related manner in dependent mice but did not affect moderate drinking in nondependent mice. In a third study, viral-mediated overexpression of BDNF in mPFC prevented escalation of drinking in dependent mice but did not alter intake in nondependent mice. Collectively, these results provide evidence that adaptations in cortical (mPFC) BDNF activity resulting from chronic ethanol exposure play a role in mediating excessive ethanol drinking associated with dependence.
Collapse
|
40
|
Jamal M, Ito A, Tanaka N, Miki T, Takakura A, Suzuki S, Ameno K, Kinoshita H. The Role of Apolipoprotein E and Ethanol Exposure in Age-Related Changes in Choline Acetyltransferase and Brain-Derived Neurotrophic Factor Expression in the Mouse Hippocampus. J Mol Neurosci 2018; 65:84-92. [PMID: 29717403 DOI: 10.1007/s12031-018-1074-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 04/20/2018] [Indexed: 12/17/2022]
Abstract
Disruption of apolipoprotein E (APOE) is responsible for age-dependent neurodegeneration and cognitive impairment. Elderly individuals are more sensitive than young individuals to the effects of ethanol (EtOH), particularly those affecting cognition. We investigated the role of APOE deficiency and EtOH exposure on age-dependent alterations in choline acetyltransferase (ChAT) and brain-derived neurotrophic factor (BDNF) mRNA and protein expression in the mouse hippocampus. Three-month-old (young) and 12-month-old (aged) ApoE-knockout (ApoE-KO) and wild-type (WT) mice were treated with saline or 2 g/kg EtOH, and the bilateral hippocampus was collected after 60 min for real-time PCR and western blotting analyses. ChAT (P < 0.01) and BDNF (P < 0.01) expression were significantly decreased in both young and aged saline- and EtOH-treated ApoE-KO mice versus young and aged saline- and EtOH-treated WT mice. Aged saline- and EtOH-treated ApoE-KO mice exhibited greater differences in ChAT and BDNF expression (P < 0.01) than young saline- and EtOH-treated ApoE-KO mice. Aged EtOH-treated WT mice also exhibited larger decreases in BDNF expression (P < 0.01)-but not in ChAT expression-than young EtOH-treated WT mice. EtOH decreased ChAT and BDNF expression in both young (P < 0.01) and aged (P < 0.01) ApoE-KO mice versus EtOH-free ApoE-KO mice of the same age. EtOH also decreased BDNF expression in aged (P < 0.01) WT mice versus EtOH-free aged WT mice. In summary, these results suggest that APOE deficiency and EtOH exposure cause age-dependent decreases in ChAT and BDNF in the hippocampus. Importantly, the decreases in ChAT and BDNF were greater in aged EtOH-treated mice, particularly those lacking APOE, raising the possibility that APOE-deficient individuals who consume alcohol may be at greater risk of memory deficit.
Collapse
Affiliation(s)
- Mostofa Jamal
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan.
| | - Asuka Ito
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Naoko Tanaka
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Takanori Miki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kita, Japan
| | - Ayaka Takakura
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Shingo Suzuki
- Department of Anatomy and Neurobiology, Faculty of Medicine, Kagawa University, Kita, Japan
| | - Kiyoshi Ameno
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| | - Hiroshi Kinoshita
- Department of Forensic Medicine, Faculty of Medicine, Kagawa University, 1750-1, Ikenobe, Miki, Kita, Kagawa, 761-0793, Japan
| |
Collapse
|
41
|
Weinstein G, Preis SR, Beiser AS, Kaess B, Chen TC, Satizabal C, Rahman F, Benjamin EJ, Vasan RS, Seshadri S. Clinical and Environmental Correlates of Serum BDNF: A Descriptive Study with Plausible Implications for AD Research. Curr Alzheimer Res 2018; 14:722-730. [PMID: 28164772 DOI: 10.2174/1567205014666170203094520] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 12/13/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Brain derived neurotrophic factor (BDNF) may play a central role in the pathogenesis of Alzheimer's disease (AD) through neurotrophic effects on basal cholinergic neurons. Reduced serum levels of BDND are observed among AD patients and may predict AD risk. Nevertheless, knowledge about factors associated with its levels in blood is lacking. OBJECTIVE To identify clinical and demographic correlates of serum BDNF levels. METHODS BDNF was measured from serum collected between 1992-1996 and 1998-2001 in participants from the Original and Offspring cohorts of the Framingham Study, respectively. A cross-sectional analysis was done to evaluate the relationship between clinical measures and BDNF levels using standard linear regression and stepwise models. Analyses were conducted in the total sample and separately in each cohort, and were adjusted for age and sex. RESULTS BDNF was measured in 3,689 participants (mean age 65 years, 56% women; 82% Offspring). Cigarette smoking and high total cholesterol were associated with elevated BDNF levels, and history of atrial fibrillation was associated with decreased levels. Elevated BDNF levels were related to greater physical activity and lower Tumor Necrosis Factor-α levels in Offspring. Stepwise models also revealed associations with statin use, alcohol consumption and Apolipoprotein Eε4 genotype. CONCLUSION Serum BDNF correlates with various metabolic, inflammatory and life-style measures which in turn have been linked with risk of AD. Future studies of serum BDNF should adjust for these correlates and are needed to further explore the underlying interplay between BDNF and other factors in the pathophysiology of cognitive impairment and AD.
Collapse
Affiliation(s)
- Galit Weinstein
- School of Public Health, University of Haifa, 199 Aba Khoushy Ave., Mount Carmel, Haifa. Israel
| | | | - Alexa S Beiser
- The Department of Biostatistics, Boston University School of Public Health, Boston, MA, United States
| | | | - Tai C Chen
- The Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Claudia Satizabal
- The Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Faisal Rahman
- The Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Emelia J Benjamin
- The Department of Epidemiology, Boston University School of Public Health, Boston, MA, Boston, United States
| | - Ramachandran S Vasan
- The Department of Epidemiology, Boston University School of Public Health, Boston, MA, Boston, United States
| | | |
Collapse
|
42
|
Brain-derived neurotrophic factor (BDNF) determines a sex difference in cue-conditioned alcohol seeking in rats. Behav Brain Res 2018; 339:73-78. [DOI: 10.1016/j.bbr.2017.11.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 11/23/2022]
|
43
|
Low Vs. High Alcohol: Central Benefits Vs. Detriments. Neurotox Res 2018; 34:860-869. [DOI: 10.1007/s12640-017-9859-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 01/05/2023]
|
44
|
Kaur C, Rathnasamy G, Ling EA. Biology of Microglia in the Developing Brain. J Neuropathol Exp Neurol 2017; 76:736-753. [PMID: 28859332 DOI: 10.1093/jnen/nlx056] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Microglia exist in different morphological forms in the developing brain. They show a small cell body with scanty cytoplasm with many branching processes in the grey matter of the developing brain. However, in the white matter such as the corpus callosum where the unmyelinated axons are loosely organized, they appear in an amoeboid form having a round cell body endowed with copious cytoplasm rich in organelles. The amoeboid cells eventually transform into ramified microglia in the second postnatal week when the tissue becomes more compact with the onset of myelination. Microglia serve as immunocompetent macrophages that act as neuropathology sensors to detect and respond swiftly to subtle changes in the brain tissues in pathological conditions. Microglial functions are broadly considered as protective in the normal brain development as they phagocytose dead cells and sculpt neuronal connections by pruning excess axons and synapses. They also secrete a number of trophic factors such as insulin-like growth factor-1 and transforming growth factor-β among many others that are involved in neuronal and oligodendrocyte survival. On the other hand, microglial cells when activated produce a plethora of molecules such as proinflammatory cytokines, chemokines, reactive oxygen species, and nitric oxide that are implicated in the pathogenesis of many pathological conditions such as epilepsy, cerebral palsy, autism, and perinatal hypoxic-ischemic brain injury. Although many studies have investigated the origin and functions of the microglia in the developing brain, in-depth in vivo studies along with analysis of their transcriptome and epigenetic changes need to be undertaken to elucidate their full potential be it protective or neurotoxic. This would lead to a better understanding of their roles in the healthy and diseased developing brain and advancement of therapeutic strategies to target microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- Charanjit Kaur
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Gurugirijha Rathnasamy
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; and Department of Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
45
|
Kalejaiye O, Getachew B, Ferguson CL, Taylor RE, Tizabi Y. Alcohol-Induced Increases in Inflammatory Cytokines Are Attenuated by Nicotine in Region-Selective Manner in Male Rats. JOURNAL OF DRUG AND ALCOHOL RESEARCH 2017; 6:236036. [PMID: 29416901 PMCID: PMC5798246 DOI: 10.4303/jdar/236036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Heavy use of alcohol is commonly associated with heavy smoking (nicotine intake). Although many factors, including mood effects of these two drugs may contribute to their co-use, the exact neurobiological underpinnings are far from clear. It is well known that chronic alcohol exposure induces neuroinflammation that may precipitate depressive-like behavior, which is considered an important factor in alcohol relapse. Nicotine, on the other hand, possesses anti-inflammatory and antidepressant effects. PURPOSE In this study, we sought to determine which proinflammatory markers may be associated with the depressogenic effects of chronic alcohol and whether nicotine pretreatment may normalize these changes. STUDY DESIGN For this purpose, we treated adult male Wistar rats with alcohol (1.0 g/kg, IP), nicotine (0.3 mg/kg, IP) or their combination once daily for 14 days. Two prominent proinflammatory cytokines (IL-1β and TNF-α) in two primary brain regions, namely the hippocampus and frontal cortex that are intimately involved in mood regulation, were evaluated. RESULTS Chronic alcohol resulted in increases in both cytokines in both regions as determined by Western blot. Nicotine completely blocked alcohol-induced effects in the hippocampus, but not in the frontal cortex. These data suggest that nicotine may mitigate the inflammatory effects of alcohol in brain-selective region. Hence, the previously observed depressogenic effects of alcohol and the antidepressant effects of nicotine may at least be partially mediated through manipulations of proinflammatory cytokines in the hippocampus. CONCLUSION These findings suggest possible therapeutic potential of anti-inflammatory cytokines in combating alcohol-induced depression and/or relapse.
Collapse
Affiliation(s)
- Olubukola Kalejaiye
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Bruk Getachew
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Clifford L Ferguson
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Robert E Taylor
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| | - Yousef Tizabi
- Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, USA
| |
Collapse
|
46
|
Yang JW, Ma W, Yang YL, Wang XB, Li XT, Wang TT, Wang XP, Gao W, Li JY, Zhou XF, Guo JH, Li LY. Region-specific expression of precursor and mature brain-derived neurotrophic factors after chronic alcohol exposure. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2017; 43:602-608. [PMID: 28032807 DOI: 10.1080/00952990.2016.1263642] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 11/14/2016] [Accepted: 11/17/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Alcohol abuse is a serious health problem worldwide that causes a variety of physical and mental disorders. Research has shown that the brain-derived neurotrophic factor (BDNF) plays an important role in alcohol addiction. The BDNF precursor (proBDNF) exhibits different actions than BDNF through separate receptors and pathways in the central nervous system. However, the effects of proBDNF and BDNF in alcohol addiction are not fully known. OBJECTIVES The objective was to identify the expression patterns and effects of proBDNF and BDNF after chronic alcohol exposure. METHODS A total of 40 male adult mice were studied. A mouse psychomotor sensitization (PS) model was established to explore the effects of BDNF and proBDNF treatment following chronic alcohol exposure. Reverse transcription PCR (RT-PCR) was performed to measure mRNA levels for BDNF, TrkB, P75NTR, and sortilin in the prefrontal cortex, hippocampus, and dorsal striatum of Kunming mice after chronic alcohol exposure. RESULTS In Kunming mice, chronic alcohol exposure up-regulated BDNF and TrkB mRNA levels in the prefrontal cortex, but decreased sortilin and P75 mRNA levels in the dorsal striatum. No changes in mRNA levels were found in other measured brain regions in the alcohol and control groups. CONCLUSION Chronic alcohol exposure induced the region-specific expression of BDNF and proBDNF and their respective receptors in the brain. These results suggest that BDNF and proBDNF signaling pathways may play major roles in alcohol preference and addiction.
Collapse
Affiliation(s)
- Jin-Wei Yang
- a Institute of Neuroscience , Kunming Medical University , Yunnan Kunming , China
- b Second Department of General Surgery , First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Wei Ma
- a Institute of Neuroscience , Kunming Medical University , Yunnan Kunming , China
| | - Yan-Lei Yang
- a Institute of Neuroscience , Kunming Medical University , Yunnan Kunming , China
- c First People's Hospital of Honghe State , Yunnan Mengzi , China
| | - Xian-Bin Wang
- a Institute of Neuroscience , Kunming Medical University , Yunnan Kunming , China
| | - Xing-Tong Li
- a Institute of Neuroscience , Kunming Medical University , Yunnan Kunming , China
| | - Tong-Tong Wang
- a Institute of Neuroscience , Kunming Medical University , Yunnan Kunming , China
| | - Xiang-Peng Wang
- a Institute of Neuroscience , Kunming Medical University , Yunnan Kunming , China
- d Department of Neurosurgery , First Affiliated Hospital of Kunming Medical University , Yunnan Kunming , China
| | - Wei Gao
- a Institute of Neuroscience , Kunming Medical University , Yunnan Kunming , China
| | - Jun-Yan Li
- e Department of Neurosurgery , First People's Hospital of Kunming City , Yunnan Kunming , China
| | - Xin-Fu Zhou
- f School of Pharmacy and Medical Sciences, Sansom Institute, Faculty of Health Sciences , University of South Australia , Adelaide , Australia
| | - Jian-Hui Guo
- b Second Department of General Surgery , First People's Hospital of Yunnan Province , Yunnan Kunming , China
| | - Li-Yan Li
- a Institute of Neuroscience , Kunming Medical University , Yunnan Kunming , China
| |
Collapse
|
47
|
Gatta E, Auta J, Gavin DP, Bhaumik DK, Grayson DR, Pandey SC, Guidotti A. Emerging Role of One-Carbon Metabolism and DNA Methylation Enrichment on δ-Containing GABAA Receptor Expression in the Cerebellum of Subjects with Alcohol Use Disorders (AUD). Int J Neuropsychopharmacol 2017; 20:1013-1026. [PMID: 29020412 PMCID: PMC5716183 DOI: 10.1093/ijnp/pyx075] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 08/11/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Cerebellum is an area of the brain particularly sensitive to the effects of acute and chronic alcohol consumption. Alcohol exposure decreases cerebellar Purkinje cell output by increasing GABA release from Golgi cells onto extrasynaptic α6/δ-containing GABAA receptors located on glutamatergic granule cells. Here, we studied whether chronic alcohol consumption induces changes in GABAA receptor subunit expression and whether these changes are associated with alterations in epigenetic mechanisms via DNA methylation. METHODS We used a cohort of postmortem cerebellum from control and chronic alcoholics, here defined as alcohol use disorders subjects (n=25/group). S-adenosyl-methionine/S-adenosyl-homocysteine were measured by high-performance liquid chromatography. mRNA levels of various genes were assessed by reverse transcriptase-quantitative polymerase chain reaction. Promoter methylation enrichment was assessed using methylated DNA immunoprecipitation and hydroxy-methylated DNA immunoprecipitation assays. RESULTS mRNAs encoding key enzymes of 1-carbon metabolism that determine the S-adenosyl-methionine/S-adenosyl-homocysteine ratio were increased, indicating higher "methylation index" in alcohol use disorder subjects. We found that increased methylation of the promoter of the δ subunit GABAA receptor was associated with reduced mRNA and protein levels in the cerebellum of alcohol use disorder subjects. No changes were observed in α1- or α6-containing GABAA receptor subunits. The expression of DNA-methyltransferases (1, 3A, and 3B) was unaltered, whereas the mRNA level of TET1, which participates in the DNA demethylation pathway, was decreased. Hence, increased methylation of the δ subunit GABAA receptor promoter may result from alcohol-induced reduction of DNA demethylation. CONCLUSION Together, these results support the hypothesis that aberrant DNA methylation pathways may be involved in cerebellar pathophysiology of alcoholism. Furthermore, this work provides novel evidence for a central role of DNA methylation mechanisms in the alcohol-induced neuroadaptive changes of human cerebellar GABAA receptor function.
Collapse
Affiliation(s)
- Eleonora Gatta
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - James Auta
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - David P Gavin
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Dulal K Bhaumik
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Dennis R Grayson
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Subhash C Pandey
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey)
| | - Alessandro Guidotti
- Center of Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, Chicago, Illinois (Drs Gatta, Auta, Gavin, Bhaumik, Grayson, Pandey, Guidotti); Jesse Brown VA Medical Center, Chicago, Illinois (Drs Gavin and Pandey),Correspondence: Alessandro Guidotti, MD, Center for Alcohol Research in Epigenetics, Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 West Taylor Street, Chicago, IL 60612 ()
| |
Collapse
|
48
|
Hydrophilic compartments of Capsosiphon fulvescens protein alleviate impaired spatial memory by regulating BDNF-mediated ER stress against chronic ethanol exposure. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Maynard ME, Barton EA, Robinson CR, Wooden JI, Leasure JL. Sex differences in hippocampal damage, cognitive impairment, and trophic factor expression in an animal model of an alcohol use disorder. Brain Struct Funct 2017; 223:195-210. [PMID: 28752318 DOI: 10.1007/s00429-017-1482-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 07/20/2017] [Indexed: 12/21/2022]
Abstract
Compared to men, women disproportionally experience alcohol-related organ damage, including brain damage, and while men remain more likely to drink and to drink heavily, there is cause for concern because women are beginning to narrow the gender gap in alcohol use disorders. The hippocampus is a brain region that is particularly vulnerable to alcohol damage, due to cell loss and decreased neurogenesis. In the present study, we examined sex differences in hippocampal damage following binge alcohol. Consistent with our prior findings, we found a significant binge-induced decrement in dentate gyrus (DG) granule neurons in the female DG. However, in the present study, we found no significant decrement in granule neurons in the male DG. We show that the decrease in granule neurons in females is associated with both spatial navigation impairments and decreased expression of trophic support molecules. Finally, we show that post-binge exercise is associated with an increase in trophic support and repopulation of the granule neuron layer in the female hippocampus. We conclude that sex differences in alcohol-induced hippocampal damage are due in part to a paucity of trophic support and plasticity-related signaling in females.
Collapse
Affiliation(s)
- Mark E Maynard
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA.,Department of Neurobiology and Anatomy, University of Texas Health Science Center, PO Box 20708, Houston, TX, 77225-0708, USA
| | - Emily A Barton
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA
| | - Caleb R Robinson
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA.,Department of Biology, Eastern Nazarene College, 23 E Elm Ave, Shrader Hall 30B, Quincy, MA, 02170, USA
| | - Jessica I Wooden
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX, 77204-5022, USA. .,Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5022, USA.
| |
Collapse
|
50
|
Schunck RVA, Macedo IC, Laste G, de Souza A, Valle MTC, Salomón JLO, Nunes EA, Campos ACW, Gnoatto SCB, Bergold AM, Konrath EL, Dallegrave E, Arbo MD, Torres ILS, Leal MB. Standardized Passiflora incarnata L. Extract Reverts the Analgesia Induced by Alcohol Withdrawal in Rats. Phytother Res 2017; 31:1199-1208. [PMID: 28568647 DOI: 10.1002/ptr.5839] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 04/14/2017] [Accepted: 05/03/2017] [Indexed: 12/13/2022]
Abstract
Passiflora incarnata L. (Passifloraceae) has been traditionally used for treatment of anxiety, insomnia, drug addiction, mild infections, and pain. The aim of this study was to investigate the effect of a commercial extract of P. incarnata in the analgesia induced by alcohol withdrawal syndrome in rats. In addition, brain-derived neurotrophic factor and interleukin-10 levels were evaluated in prefrontal cortex, brainstem, and hippocampus. Male adult rats received by oral gavage: (1: water group) water for 19 days, 1 day interval and water (8 days); (2: P. incarnata group) water for 19 days, 1 day interval and P. incarnata 200 mg/kg (8 days); (3: alcohol withdrawal group) alcohol for 19 days, 1 day interval and water (8 days); and (4: P. incarnata in alcohol withdrawal) alcohol for 19 days, 1 day interval and P. incarnata 200 mg/kg (8 days). The tail-flick and hot plate tests were used as nociceptive response measures. Confirming previous study of our group, it was showed that alcohol-treated groups presented an increase in the nociceptive thresholds after alcohol withdrawal, which was reverted by P. incarnata, measured by the hot plate test. Besides, alcohol treatment increased brain-derived neurotrophic factor and interleukin-10 levels in prefrontal cortex, which was not reverted by P. incarnata. Considering these results, the P. incarnata treatment might be a potential therapy in the alcohol withdrawal syndrome. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Rebeca Vargas Antunes Schunck
- Programa de Pós-Graduação em Ciências Biológicas - Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/107, 90050-170, Porto Alegre, RS, Brazil.,Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/202, 90050-170, Porto Alegre, RS, Brazil
| | - Isabel Cristina Macedo
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, RS, Brazil
| | - Gabriela Laste
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, RS, Brazil
| | - Andressa de Souza
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, RS, Brazil
| | - Marina Tuerlinckx Costa Valle
- Programa de Pós-Graduação em Ciências Biológicas - Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/107, 90050-170, Porto Alegre, RS, Brazil.,Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/202, 90050-170, Porto Alegre, RS, Brazil
| | - Janaína L O Salomón
- Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/202, 90050-170, Porto Alegre, RS, Brazil
| | - Ellen Almeida Nunes
- Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, RS, Brazil
| | - Andreia Cristina Wildner Campos
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Simone Cristina Baggio Gnoatto
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Ana Maria Bergold
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Eduardo L Konrath
- Departamento de Produção de Matéria-Prima, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90610-000, Porto Alegre, RS, Brazil
| | - Eliane Dallegrave
- Departamento de Farmacociências, Universidade Federal de Ciências da Saúde de Porto Alegre, Rua Sarmento Leite, 245, 90050-170, Porto Alegre, RS, Brazil
| | - Marcelo Dutra Arbo
- Laboratório de Toxicologia (LATOX), Departamento de Análises, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Av. Ipiranga 2752, 90050-000, Porto Alegre, RS, Brazil
| | - Iraci L S Torres
- Programa de Pós-Graduação em Ciências Biológicas - Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/107, 90050-170, Porto Alegre, RS, Brazil.,Laboratório de Farmacologia da Dor e Neuromodulação: Investigações Pré-clínicas, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite 500, 90050-170, Porto Alegre, RS, Brazil
| | - Mirna Bainy Leal
- Programa de Pós-Graduação em Ciências Biológicas - Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/107, 90050-170, Porto Alegre, RS, Brazil.,Laboratório de Farmacologia e Toxicologia de Produtos Naturais, Departamento de Farmacologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Rua Sarmento Leite, 500/202, 90050-170, Porto Alegre, RS, Brazil
| |
Collapse
|