1
|
Gong Q, Lv X, Liao C, Liang A, Luo C, Wu J, Zhou Y, Huang Y, Tong Z. Single-cell RNA sequencing combined with proteomics of infected macrophages reveals prothymosin-α as a target for treatment of apical periodontitis. J Adv Res 2024; 66:349-361. [PMID: 38237771 PMCID: PMC11675041 DOI: 10.1016/j.jare.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/03/2024] Open
Abstract
INTRODUCTION Chronic apical periodontitis (CAP) is a common infectious disease of the oral cavity. Immune responses and osteoclastogenesis of monocytes/macrophages play a crucial role in CAP progression, and this study want to clarify role of monocytes/macrophages in CAP, which will contribute to treatment of CAP. OBJECTIVES We aim to explore the heterogeneity of monocyte populations in periapical lesion of CAP tissues and healthy control (HC) periodontal tissues by single-cell RNA sequencing (scRNA-seq), search novel targets for alleviating CAP, and further validate it by proteomics and in vitro and in vivo evaluations. METHODS ScRNA-seq was used to analyze the heterogeneity of monocyte populations in CAP, and proteomics of THP-1-derived macrophages with porphyromonas gingivalis infection were intersected with the differentially expressed genes (DEGs) of macrophages between CAP and HC tissues. The upregulated PTMA (prothymosin-α) were validated by immunofluorescence staining and quantitative real time polymerase chain reaction. We evaluated the effect of thymosin α1 (an amino-terminal proteolytic cleavage product of PTMA protein) on inflammatory factors and osteoclast differentiation of macrophages infected by P. gingivalis. Furthermore, we constructed mouse and rat mandibular bone lesions caused by apical periodontitis, and estimated treatment of systemic and topical administration of PTMA for CAP. Statistical analyses were performed using GraphPad Prism software (v9.2) RESULTS: Monocytes were divided into seven sub-clusters comprising monocyte-macrophage-osteoclast (MMO) differentiation in CAP. 14 up-regulated and 21 down-regulated genes and proteins were intersected between the DEGs of scRNA-seq data and proteomics, including the high expression of PTMA. Thymosin α1 may decrease several inflammatory cytokine expressions and osteoclastogenesis of THP-1-derived macrophages. Both systemic administration in mice and topical administration in the pulp chamber of rats alleviated periapical lesions. CONCLUSIONS PTMA upregulation in CAP moderates the inflammatory response and prevents the osteoclastogenesis of macrophages, which provides a basis for targeted therapeutic strategies for CAP.
Collapse
Affiliation(s)
- Qimei Gong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaomin Lv
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chenxi Liao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ailin Liang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Cuiting Luo
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jie Wu
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanling Zhou
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yihua Huang
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Zhongchun Tong
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China; Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Zhao X, Ma R, Abulikemu A, Qi Y, Liu X, Wang J, Xu K, Guo C, Li Y. Proteomics revealed composition- and size-related regulators for hepatic impairments induced by silica nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:170584. [PMID: 38309355 DOI: 10.1016/j.scitotenv.2024.170584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/05/2024]
Abstract
Along with the growing production and application of silica nanoparticles (SiNPs), increased human exposure and ensuing safety evaluation have progressively attracted concern. Accumulative data evidenced the hepatic injuries upon SiNPs inhalation. Still, the understanding of the hepatic outcomes resulting from SiNPs exposure, and underlying mechanisms are incompletely elucidated. Here, SiNPs of two sizes (60 nm and 300 nm) were applied to investigate their composition- and size-related impacts on livers of ApoE-/- mice via intratracheal instillation. Histopathological and biochemical analysis indicated SiNPs promoted inflammation, lipid deposition and fibrosis in the hepatic tissue, accompanied by increased ALT, AST, TC and TG. Oxidative stress was activated upon SiNPs stimuli, as evidenced by the increased hepatic ROS, MDA and declined GSH/GSSG. Of note, these alterations were more dramatic in SiNPs with a smaller size (SiNPs-60) but the same dosage. LC-MS/MS-based quantitative proteomics unveiled changes in mice liver protein profiles, and filtered out particle composition- or size-related molecules. Interestingly, altered lipid metabolism and oxidative damage served as two critical biological processes. In accordance with correlation analysis and liver disease-targeting prediction, a final of 10 differentially expressed proteins (DEPs) were selected as key potential targets attributable to composition- (4 molecules) and size-related (6 molecules) liver impairments upon SiNPs stimuli. Overall, our study provided strong laboratory evidence for a comprehensive understanding of the harmful biological effects of SiNPs, which was crucial for toxicological evaluation to ensure nanosafety.
Collapse
Affiliation(s)
- Xinying Zhao
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ru Ma
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Alimire Abulikemu
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Yi Qi
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China
| | - Xiaoying Liu
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Ji Wang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Kun Xu
- School of Medicine, Hunan Normal University, Changsha, Hunan 410013, China
| | - Caixia Guo
- Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China; Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China.
| | - Yanbo Li
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
3
|
Prothymosin α Plays Role as a Brain Guardian through Ecto-F 1 ATPase-P2Y 12 Complex and TLR4/MD2. Cells 2023; 12:cells12030496. [PMID: 36766838 PMCID: PMC9914670 DOI: 10.3390/cells12030496] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Prothymosin alpha (ProTα) was discovered to be a necrosis inhibitor from the conditioned medium of a primary culture of rat cortical neurons under starved conditions. This protein carries out a neuronal cell-death-mode switch from necrosis to apoptosis, which is, in turn, suppressed by a variety of neurotrophic factors (NTFs). This type of NTF-assisted survival action of ProTα is reproduced in cerebral and retinal ischemia-reperfusion models. Further studies that used a retinal ischemia-reperfusion model revealed that ProTα protects retinal cells via ecto-F1 ATPase coupled with the Gi-coupled P2Y12 receptor and Toll-like receptor 4 (TLR4)/MD2 coupled with a Toll-IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF). In cerebral ischemia-reperfusion models, ProTα has additional survival mechanisms via an inhibition of matrix metalloproteases in microglia and vascular endothelial cells. Heterozygous or conditional ProTα knockout mice show phenotypes of anxiety, memory learning impairment, and a loss of neurogenesis. There are many reports that ProTα has multiple intracellular functions for cell survival and proliferation through a variety of protein-protein interactions. Overall, it is suggested that ProTα plays a key role as a brain guardian against ischemia stress through a cell-death-mode switch assisted by NTFs and a role of neurogenesis.
Collapse
|
4
|
Huang JQ, Jiang YY, Ren FZ, Lei XG. Novel role and mechanism of glutathione peroxidase-4 in nutritional pancreatic atrophy of chicks induced by dietary selenium deficiency. Redox Biol 2022; 57:102482. [PMID: 36162257 PMCID: PMC9516478 DOI: 10.1016/j.redox.2022.102482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/07/2022] Open
Abstract
Nutritional pancreatic atrophy (NPA) is a classical Se/vitamin E deficiency disease of chicks. To reveal molecular mechanisms of its pathogenesis, we fed day-old chicks a practical, low-Se diet (14 μg Se/kg), and replicated the typical symptoms of NPA including vesiculated mitochondria, cytoplasmic vacuoles, and hyaline bodies in acinar cells of chicks as early as day 18. Target pathway analyses illustrated a > 90% depletion (P < 0.05) of glutathione peroxidase 4 (GPX4) protein and up-regulated apoptotic signaling (cytochrome C/caspase 9/caspase 3) in the pancreas and(or) acinar cells of Se deficient chicks compared with Se-adequate chicks. Subsequently, we overexpressed and suppressed GPX4 expression in the pancreatic acinar cells and observed an inverse (P < 0.05) relationship between the GPX4 production and apoptotic signaling and cell death. Applying pull down and mass spectrometry, we unveiled that GPX4 bound prothymosin alpha (ProTalpha) to inhibit formation of apoptosome in the pancreatic acinar cells. Destroying this novel protein-protein interaction by silencing either gene expression accelerated H2O2-induced apoptosis in the cells. In the end, we applied GPX4 shRNA to silence GPX4 expression in chick embryo and confirmed the physiological relevance of the GPX4 role and mechanism shown ex vivo and in the acinar cells. Altogether, our results indicated that GPX4 depletion in Se-deficient chicks acted as a major contributor to their development of NPA due to the lost binding of GPX4 to ProTalpha and its subsequent inhibition on the cytochrome c/caspase 9/caspase 3 cascade in the acinar cells. Our findings not only provide a novel molecular mechanism for explaining pathogenesis of NPA but also reveal a completely new cellular pathway in regulating apoptosis by selenoproteins.
Collapse
Affiliation(s)
- Jia-Qiang Huang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China.
| | - Yun-Yun Jiang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Fa-Zheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, Department of Nutrition and Health, China Agricultural University, Beijing, 100083, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
5
|
Matsunaga H, Halder SK, Ueda H. Annexin A2 Flop-Out Mediates the Non-Vesicular Release of DAMPs/Alarmins from C6 Glioma Cells Induced by Serum-Free Conditions. Cells 2021; 10:cells10030567. [PMID: 33807671 PMCID: PMC7998613 DOI: 10.3390/cells10030567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/02/2021] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
Prothymosin alpha (ProTα) and S100A13 are released from C6 glioma cells under serum-free conditions via membrane tethering mediated by Ca2+-dependent interactions between S100A13 and p40 synaptotagmin-1 (Syt-1), which is further associated with plasma membrane syntaxin-1 (Stx-1). The present study revealed that S100A13 interacted with annexin A2 (ANXA2) and this interaction was enhanced by Ca2+ and p40 Syt-1. Amlexanox (Amx) inhibited the association between S100A13 and ANXA2 in C6 glioma cells cultured under serum-free conditions in the in situ proximity ligation assay. In the absence of Amx, however, the serum-free stress results in a flop-out of ANXA2 through the membrane, without the extracellular release. The intracellular delivery of anti-ANXA2 antibody blocked the serum-free stress-induced cellular loss of ProTα, S100A13, and Syt-1. The stress-induced externalization of ANXA2 was inhibited by pretreatment with siRNA for P4-ATPase, ATP8A2, under serum-free conditions, which ablates membrane lipid asymmetry. The stress-induced ProTα release via Stx-1A, ANXA2 and ATP8A2 was also evidenced by the knock-down strategy in the experiments using oxygen glucose deprivation-treated cultured neurons. These findings suggest that starvation stress-induced release of ProTα, S100A13, and p40 Syt-1 from C6 glioma cells is mediated by the ANXA2-flop-out via energy crisis-dependent recovery of membrane lipid asymmetry.
Collapse
Affiliation(s)
- Hayato Matsunaga
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- Department of Medical Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Sebok Kumar Halder
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- San Diego Biomedical Research Institute, San Diego, CA 92121, USA
| | - Hiroshi Ueda
- Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan; (H.M.); (S.K.H.)
- Department of Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
- Correspondence: ; Tel.: +81-75-753-4536
| |
Collapse
|
6
|
Halder SK, Sasaki K, Ueda H. Gγ7-specific prothymosin alpha deletion causes stress- and age-dependent motor dysfunction and anxiety. Biochem Biophys Res Commun 2019; 522:264-269. [PMID: 31759625 DOI: 10.1016/j.bbrc.2019.11.103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/16/2019] [Indexed: 01/15/2023]
Abstract
We previously showed that prothymosin alpha (ProTα) improves cerebral ischemia-induced motor dysfunction. Our recent study also demonstrated that heterozygous ProTα deletion exhibited an enhanced anxiety-like behavior in mice. However, it remains elusive which brain regions or cells are related to these phenotypes. Here we generated conditional Gγ7-specific ProTα knockout mice using G protein γ7 subunit gene (Gng7)-cre promoter to see the brain robustness roles of ProTα in the striatum and hippocampus. The younger conditional ProTα (Gng7) knockout mice at the age of 10 weeks showed no significant phenotypes in motor dysfunction in the Rotarod test and locomotor activity in the open-field test, whereas significant motor dysfunction was obtained by 15 min transient middle cerebral artery occlusion (tMCAO)-induced cerebral ischemia. The aged conditional ProTα (Gng7) knockout mice at the age of 20 weeks showed hypolocomotor activity with less center time in the open-field test and impaired motor coordination in the Rotarod test without ischemia. Thus, this study suggests that ProTα has important roles in the maintenance of motor coordination and anxiety-like behavior.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, 852-8521, Japan.
| |
Collapse
|
7
|
Ueda H. [Lysophosphatidic Acid Receptor Signaling Underlying Chronic Pain and Neuroprotective Mechanisms through Prothymosin α]. YAKUGAKU ZASSHI 2019; 139:1403-1415. [PMID: 31685737 DOI: 10.1248/yakushi.19-00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
For my Ph.D. research topic, I isolated endogenous morphine-like analgesic dipeptide, kyotorphin, which mediates Met-enkephalin release, and discovered kyotorphin synthetase, a putative receptor and antagonist. Furthermore, I succeeded in purifying μ-opioid receptor and functional reconstitution with purified G proteins. After receiving my full professor position at Nagasaki University in 1996, I worked on two topics of research, molecular mechanisms of chronic pain through lysophosphatidic acid (LPA) and identification and characterization of neuroprotective protein, prothymosin α. In a series of studies, we have shown that LPA signaling defines the molecular mechanisms of neuropathic pain and fibromyalgia in terms of development and maintenance. Above all, the discovery of feed-forward system in LPA production and pain memory may contribute to better understanding of chronic pain and future analgesic drug discovery. Regarding prothymosin α, we first discovered it as neuronal necrosis-inhibitory molecule through two independent mechanisms, such as toll-like receptor and F0/F1 ATPase, both which protect neurons through indirect mechanisms. Prothymosin α is released by non-classical and non-vesicular mechanisms on various stresses, such as ischemia, starvation, and heat-shock. Thus it may be called a new type of neuroprotective damage-associated molecular patterns (DAMPs)/Alarmins. Heterozygotic mice showed a defect in memory-learning and neurogenesis as well as anxiogenic behaviors. Small peptide, P6Q derived from prothymosin α retains neuroprotective actions, which include blockade of cerebral hemorrhage caused by late treatment with tissue plasminogen activator in the stroke model in mice.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University, Institute of Biomedical Sciences
| |
Collapse
|
8
|
Halder SK, Matsunaga H, Ueda H. Prothymosin alpha and its mimetic hexapeptide improve delayed tissue plasminogen activator-induced brain damage following cerebral ischemia. J Neurochem 2019; 153:772-789. [PMID: 31454420 DOI: 10.1111/jnc.14858] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/13/2019] [Accepted: 08/22/2019] [Indexed: 12/14/2022]
Abstract
Tissue plasminogen activator (tPA) administration beyond 4.5 h of stroke symptoms is beneficial for patients but has an increased risk of cerebral hemorrhage. Thus, increasing the therapeutic window of tPA is important for stroke recovery. We previously showed that prothymosin alpha (ProTα) or its mimetic hexapeptide (P6Q) has anti-ischemic activity. Here, we examined the beneficial effects of ProTα or P6Q against delayed tPA-induced brain damage following middle cerebral artery occlusion (MCAO) or photochemically induced thrombosis in mice. Brain hemorrhage was observed by tPA administration during reperfusion at 4.5 and 6 h after MCAO. Co-administration of ProTα with tPA at 4.5 h inhibited hemorrhage and motor dysfunction 2-4 days, but not 7 days after MCAO. ProTα administration at 2 and 4.5 h after MCAO significantly inhibited tPA (4.5 h)-induced motor dysfunction and death more than 7 days. Administration of tPA caused the loss of tight junction proteins, zona occulden-1 and occludin, and up-regulation of matrix metalloproteinase-2/9, in a ProTα-reversible manner. P6Q administration abolished tPA (4.5 h)-induced hemorrhage and reversed tPA (6 h)-induced vascular damage and matrix metalloproteinase-2 and 9 up-regulation. Twice administrations of P6Q at 2 h alone and 6 h with tPA significantly improved motor dysfunction more than 7 days. In photochemically induced thrombosis ischemia, similar vascular leakage and neuronal damage (infarction and motor dysfunction) by late tPA (4.5 or 6 h) were also inhibited by P6Q. Thus, these studies suggest that co-administration with ProTα or P6Q would be beneficial to inhibit delayed tPA-induced hemorrhagic mechanisms in acute ischemic stroke.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
9
|
Chen YC, Su YC, Shieh GS, Su BH, Su WC, Huang PH, Jiang ST, Shiau AL, Wu CL. Prothymosin α promotes STAT3 acetylation to induce cystogenesis in Pkd1-deficient mice. FASEB J 2019; 33:13051-13061. [PMID: 31589480 DOI: 10.1096/fj.201900504r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Polycystic kidney disease (PKD) is characterized by the expansion of fluid-filled cysts in the kidney, which impair the function of kidney and eventually leads to end-stage renal failure. It has been previously demonstrated that transgenic overexpression of prothymosin α (ProT) induces the development of PKD; however, the underlying mechanisms remain unclear. In this study, we used a mouse PKD model that sustains kidney-specific low-expression of Pkd1 to illustrate that aberrant up-regulation of ProT occurs in cyst-lining epithelial cells, and we further developed an in vitro cystogenesis model to demonstrate that the suppression of ProT is sufficient to reduce cyst formation. Next, we found that the expression of ProT was accompanied with prominent augmentation of protein acetylation in PKD, which results in the activation of downstream signal transducer and activator of transcription (STAT) 3. The pathologic role of STAT3 in PKD has been previously reported. We determined that this molecular mechanism of protein acetylation is involved with the interaction between ProT and STAT3; consequently, it causes the deprivation of histone deacetylase 3 from the indicated protein. Conclusively, these results elucidate the significant role of ProT, including protein acetylation and STAT3 activation in PKD, which represent potential for ameliorating the disease progression of PKD.-Chen, Y.-C., Su, Y.-C., Shieh, G.-S., Su, B.-H., Su, W.-C., Huang, P.-H., Jiang, S.-T., Shiau, A.-L., Wu, C.-L. Prothymosin α promotes STAT3 acetylation to induce cystogenesis in Pkd1-deficient mice.
Collapse
Affiliation(s)
- Yi-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chu Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Otolaryngology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan
| | - Bing-Hua Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Cheng Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Hsin Huang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Cunha-Rodrigues MC, Balduci CTDN, Tenório F, Barradas PC. GABA function may be related to the impairment of learning and memory caused by systemic prenatal hypoxia-ischemia. Neurobiol Learn Mem 2018; 149:20-27. [PMID: 29408270 DOI: 10.1016/j.nlm.2018.01.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/08/2017] [Accepted: 01/22/2018] [Indexed: 12/13/2022]
Abstract
Intrauterine adverse conditions may be responsible for long-lasting damages which impact health even during adult phase. Hypoxic-ischemic (HI) events are a relevant cause of newborn mortality and the principal factor leading to permanent brain lesions. Using a model in which the ovarian and uterine flux of a pregnant rat is obstructed for 45 min we have described oligodendrocyte death, astrogliosis and neuronal loss. In this work we investigated hippocampal neuronal population and performed a functional evaluation of memory and learning of young rats that had been affected by prenatal HI. Anesthetized Wistar rats on the 18th gestation day had the uterine horns exposed and the ovarian and uterine arteries clamped for 45 min (HI group). Sham-operated rats (SH group) had the horns exposed but no arteries were clamped. We measured the levels of different proteins related to excitatory/inhibitory transmission in the hippocampi of young pups (P45). Histological evaluation was also performed in order to characterize hippocampal neuronal population. Rats from both groups were tested through Novel Object Recognition Test (NORT) using two inter-trial intervals: 5 min and 8 h. Here we show a loss in the total number of hippocampal neurons although the immunostaining of parvalbumin and levels of GAD enzyme were increased in HI group. Functional assessment indicated a marked difference concerning HI learning and memory abilities. Our results reflect permanent damages concerning GABA function which may disturb neurotransmitter homeostasis leading to the observed deficits in learning and memory.
Collapse
Affiliation(s)
| | | | - Frank Tenório
- Depto. Farmacologia e Psicobiologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Penha Cristina Barradas
- Depto. Farmacologia e Psicobiologia, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
11
|
Abstract
SummaryProthymosin alpha (PTMA) is a highly acidic, intrinsically disordered protein that was first extracted from rat thymus and characterized as an immunogenic factor but soon detected in a variety of mammalian tissues. The presence of a nuclear localization signal and the adoption of a peculiar random-coil conformation are among the reasons behind its interaction with several molecular partners, hence at this time PTMA is known to be a very conserved and widely expressed molecule, involved in numerous and diverse biological processes. Only few studies have tried to weigh its possible involvement in reproduction, specifically in male gametogenesis: first reports have suggested that PTMA might be associated with the proliferative and early-meiotic phases of mammal spermatogenesis. Some years later, a comparative project on vertebrate spermatogenesis reported the isolation, for the first time, of prothymosin in a non-mammalian species, the amphibian Pelophylax esculentus. PTMA transcript and protein are localized in the germinal compartment, from spermatocytes to spermatozoa. A congruent pattern has been highlighted in studies on the fish Torpedo marmorata and Danio rerio, and in the mammal Rattus norvegicus, in which the expression of PTMA has been found in meiotic and post-meiotic germ cells inside testicular cysts and tubules. Moreover, its presence has been confirmed in rat and human spermatozoa (associated with the acrosome); its retention in the apical region of the head after the acrosome reaction revealed a striking conservation of the pattern during phylogenesis and suggested a possible role for the protein in gametogenesis and in fertilization.
Collapse
|
12
|
Song S, Lin F, Zhu P, Wu C, Zhao S, Han Q, Li X. Extract of Spatholobus suberctus Dunn ameliorates ischemia-induced injury by targeting miR-494. PLoS One 2017; 12:e0184348. [PMID: 28880896 PMCID: PMC5589225 DOI: 10.1371/journal.pone.0184348] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022] Open
Abstract
Cerebral stroke is a leading cause of death and permanent disability. The current therapeutic outcome of ischemic stroke (>85% of all strokes) is very poor, thus novel therapeutic drug is urgently needed. In vitro cell model of ischemia was established by oxygen-glucose deprivation (OGD) and in vivo animal model of ischemia was established by middle cerebral artery occlusion (MCAO). The effects of Spatholobus suberctus Dunn extract (SSCE) on OGD-induced cell injury, MCAO-induced neural injury and miR-494 level were all evaluated. The possible target genes were virtually screened utilizing bioinformatics and verified by luciferase assay. Subsequently, the effects of abnormally expressed miR-494 on OGD-induced cell injury and target gene expression were determined. Additionally, whether SSCE affected target gene expression through modulation of miR-494 was studied. Finally, the effects of aberrantly expressed Sox8 on OGD-induced injury and signaling pathways were estimated. SSCE reduced OGD-induced cell injury and ameliorated MCAO-induced neuronal injury, along with down-regulation of miR-494. Then, OGD-induced cell injury was increased by miR-494 overexpression but decreased by miR-494 silence. Sox8 was a target gene of miR-494, and SSCE could up-regulate Sox8 expression via down-regulating miR-494. Afterwards, OGD-induced cell injury was proved to be increased by Sox8 inhibition but reduced by Sox8 overexpression. Finally, OGD-induced inhibition of PI3K/AKT/mTOR and MAPK pathways was further inhibited by Sox8 silence but activated by Sox8 overexpression. SSCE ameliorates ischemia-induced injury both in vitro and in vivo by miR-494-mediated modulation of Sox8, involving activations of PI3K/AKT/mTOR and MAPK pathways.
Collapse
Affiliation(s)
- Shiqing Song
- Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Faliang Lin
- Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Pengyan Zhu
- Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Changyan Wu
- Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong, China
| | - Shuling Zhao
- Yantai Yuhuangding Hospital of Qingdao University Medical College, Yantai, Shandong, China
| | - Qiao Han
- Yantai Blood Center, Yantai, Shandong, China
| | - Xiaomei Li
- Affiliated Hospital of Zunyi Medical College, Zunyi, Guizhou, China
| |
Collapse
|
13
|
Ueda H, Sasaki K, Halder SK, Deguchi Y, Takao K, Miyakawa T, Tajima A. Prothymosin alpha-deficiency enhances anxiety-like behaviors and impairs learning/memory functions and neurogenesis. J Neurochem 2017; 141:124-136. [PMID: 28122138 DOI: 10.1111/jnc.13963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/13/2017] [Accepted: 01/14/2017] [Indexed: 01/11/2023]
Abstract
Prothymosin alpha (ProTα) is expressed in various mammalian organs including the neuronal nuclei in the brain, and is involved in multiple functions, such as chromatin remodeling, transcriptional regulation, cell proliferation, and survival. ProTα has beneficial actions against ischemia-induced necrosis and apoptosis in the brain and retina. However, characterizing the physiological roles of endogenous ProTα in the brain without stress remains elusive. Here, we generated ProTα-deficiency mice to explore whether endogenous ProTα is involved in normal brain functions. We successfully generated heterozygous ProTα knockout (ProTα+/- ) mice, while all homozygous ProTα knockout (ProTα-/- ) offspring died at early embryonic stage, suggesting that ProTα has crucial roles in embryonic development. In the evaluation of different behavioral tests, ProTα+/- mice exhibited hypolocomotor activity in the open-field test and enhanced anxiety-like behaviors in the light/dark transition test and the novelty induced hypophagia test. ProTα+/- mice also showed impaired learning and memory in the step-through passive avoidance test and the KUROBOX test. Depression-like behaviors in ProTα+/- mice in the forced swim and tail suspension tests were comparable with that of wild-type mice. Furthermore, adult hippocampal neurogenesis was significantly decreased in ProTα+/- mice. ProTα+/- mice showed an impaired long-term potentiation induction in the evaluation of electrophysiological recordings from acute hippocampal slices. Microarray analysis revealed that the candidate genes related to anxiety, learning/memory-functions, and neurogenesis were down-regulated in ProTα+/- mice. Thus, this study suggests that ProTα has crucial physiological roles in the robustness of brain.
Collapse
Affiliation(s)
- Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuichi Deguchi
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Keizo Takao
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, NINS, Okazaki, Aichi, Japan
| | - Tsuyoshi Miyakawa
- Section of Behavior Patterns, Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, NINS, Okazaki, Aichi, Japan.,Division of Systems Medical Science, Institute for Comprehensive Medical Science, Fujita Health University, Toyoake, Japan
| | - Atsushi Tajima
- Department of Bioinformatics and Genomics, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
14
|
Maeda S, Sasaki K, Halder SK, Fujita W, Ueda H. Neuroprotective DAMPs member prothymosin alpha has additional beneficial actions against cerebral ischemia-induced vascular damages. J Pharmacol Sci 2016; 132:100-104. [PMID: 27543170 DOI: 10.1016/j.jphs.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 04/25/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022] Open
Abstract
Prothymosin alpha (ProTα) suppresses stress-induced necrosis of cultured cortical neurons. As neuroprotection alone could not explain the long-lasting protective actions against cerebral ischemia by ProTα, we further examined whether ProTα, in addition to neuroprotective effects, has other anti-ischemic activities. When recombinant mouse ProTα (rmProTα) at 0.3 mg/kg was intravenously (i.v.) given 2 h after the start of tMCAO, all mice survived for more than 14 days. In evaluation of CD31- and tomato lectin-labeling as well as IgG and Evans blue leakage, rmProTα treatment (0.1 mg/kg) largely blocked ischemia-induced vascular damages. Therefore, rmProTα has novel beneficial effects against ischemia-induced brain damage through vascular mechanisms.
Collapse
Affiliation(s)
- Shiori Maeda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Keita Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Wakako Fujita
- Department of Frontier Life Sciences, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.
| |
Collapse
|
15
|
Ueda H, Halder SK, Matsunaga H, Sasaki K, Maeda S. Neuroprotective impact of prothymosin alpha-derived hexapeptide against retinal ischemia-reperfusion. Neuroscience 2016; 318:206-18. [PMID: 26779836 DOI: 10.1016/j.neuroscience.2016.01.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 12/17/2015] [Accepted: 01/05/2016] [Indexed: 01/13/2023]
Abstract
Prothymosin alpha (ProTα) has robustness roles against brain and retinal ischemia or serum-starvation stress. In the ProTα sequence, the active core 30-amino acid peptide/P30 (a.a.49-78) is necessary for the original neuroprotective actions against ischemia. Moreover, the 9-amino acid peptide sequence/P9 (a.a.52-60) in P30 still shows neuroprotective activity against brain and retinal ischemia, though P9 is less potent than P30. As the previous structure-activity relationship study for ProTα may not be enough, the possibility still exists that any sequence smaller than P9 retains potent neuroprotective activity. When different P9- and P30-related peptides were intravitreally injected 24h after retinal ischemia in mice, the 6-amino acid peptide/P6 (NEVDEE, a.a.51-56) showed potent protective effects against ischemia-induced retinal functional deficits, which are equipotent to the level of P30 peptide in electroretinography (ERG) and histological damage in Hematoxylin and Eosin (HE) staining. Further studies using ERG and HE staining suggested that intravitreal or intravenous (i.v.) injection with modified P6 peptide/P6Q (NEVDQE) potently inhibited retinal ischemia-induced functional and histological damage. In an immunohistochemical analysis, the ischemia-induced loss of retinal ganglion, bipolar, amacrine and photoreceptor cells were inhibited by a systemic administration with P6Q peptide 24h after the ischemic stress. In addition, systemic post-treatment with P6Q peptide significantly inhibited retinal ischemia-induced microglia and astrocyte activation in terms of increased ionized calcium-binding adaptor molecule 1 (Iba-1) and glial fibrillary acidic protein (GFAP) intensity, respectively, as well as their morphological changes, increased number and migration. Thus, this study demonstrates the therapeutic significance of modified P6 peptide P6Q (NEVDQE) derived from 6-amino acid peptide (P6) in ProTα against ischemic damage.
Collapse
Affiliation(s)
- H Ueda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan.
| | - S K Halder
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - H Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - K Sasaki
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - S Maeda
- Department of Pharmacology and Therapeutic Innovation, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| |
Collapse
|
16
|
Wang LC, Wu CL, Cheng YY, Tsai KJ. Deletion of Nuclear Localizing Signal Attenuates Proinflammatory Activity of Prothymosin-Alpha and Enhances Its Neuroprotective Effect on Transient Ischemic Stroke. Mol Neurobiol 2016; 54:582-593. [PMID: 26746667 DOI: 10.1007/s12035-015-9671-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 12/11/2022]
Abstract
Post-ischemic inflammation plays an important role in the progression of ischemia/reperfusion injuries. Prothymosin-α (ProT) can protect cells from necrotic death following ischemia; however, its immunostimulatory actions may counteract the neuroprotective effect. We proposed that ProTΔNLS, synthesized by deleting its nuclear localizing signal (NLS) at the C-terminal of ProT, can attenuate the immunostimulatory activity and has more salient neuroprotective effect. In this study, we examined the therapeutic effects of ProT and ProTΔNLS in a transient middle cerebral artery occlusion (tMCAO) model of rats. Rats that had sustained 90 min of tMCAO were treated with GST-vehicle, ProT, or ProTΔNLS. Therapeutic outcomes were evaluated by infarction volume assay and behavioral assessment. Changes to inflammatory mediators, including tumor necrosis factor α (TNF-α), interleukin-10 (IL-10), and myeloperoxidase (MPO) were evaluated by enzyme-linked immunosorbent assay. Activated matrix metalloproteinases 2 (MMP-2) and 9 (MMP-9) levels were evaluated by gelatin zymography. Microglial activation was identified by double-immunostaining for Iba-1 and CD68. Our results showed that while both ProT and ProTΔNLS reduce infarction volume and improve functional outcome, ProTΔNLS provides the best therapeutic outcome. ProT increases TNF-α but decreases IL-10 secretion after ischemic injury, reflecting its pro-inflammatory activity. ProTΔNLS suppresses expression of TNF-α, MPO, and activity of MMPs in ischemic brain tissue. It also suppresses activation of microglia in penumbral cortex. These data demonstrate the immunesuppressive activities of ProTΔNLS. In conclusion, ProT has pro-inflammatory effect that may counteract its neuroprotective effect. Deletion of NLS from ProT may attenuate post-ischemic inflammation and enhance the neuroprotective effects of ProT.
Collapse
Affiliation(s)
- Liang-Chao Wang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Yun Cheng
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
17
|
Prothymosin Alpha and Immune Responses: Are We Close to Potential Clinical Applications? VITAMINS AND HORMONES 2016; 102:179-207. [PMID: 27450735 PMCID: PMC7126549 DOI: 10.1016/bs.vh.2016.04.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The thymus gland produces soluble molecules, which mediate significant immune functions. The first biologically active thymic extract was thymosin fraction V, the fractionation of which led to the isolation of a series of immunoactive polypeptides, including prothymosin alpha (proTα). ProTα displays a dual role, intracellularly as a survival and proliferation mediator and extracellularly as a biological response modifier. Accordingly, inside the cell, proTα is implicated in crucial intracellular circuits and may serve as a surrogate tumor biomarker, but when found outside the cell, it could be used as a therapeutic agent for treating immune system deficiencies. In fact, proTα possesses pleiotropic adjuvant activity and a series of immunomodulatory effects (eg, anticancer, antiviral, neuroprotective, cardioprotective). Moreover, several reports suggest that the variable activity of proTα might be exerted through different parts of the molecule. We first reported that the main immunoactive region of proTα is the carboxy-terminal decapeptide proTα(100-109). In conjunction with data from others, we also revealed that proTα and proTα(100-109) signal through Toll-like receptor 4. Although their precise molecular mechanism of action is yet not fully elucidated, proTα and proTα(100-109) are viewed as candidate adjuvants for cancer immunotherapy. Here, we present a historical overview on the discovery and isolation of thymosins with emphasis on proTα and data on some immune-related new activities of the polypeptide and smaller immunostimulatory peptides thereof. Finally, we propose a compiled scenario on proTα's mode of action, which could eventually contribute to its clinical application.
Collapse
|
18
|
Su BH, Tseng YL, Shieh GS, Chen YC, Wu P, Shiau AL, Wu CL. Over-expression of prothymosin-α antagonizes TGFβ signalling to promote the development of emphysema. J Pathol 2015; 238:412-22. [DOI: 10.1002/path.4664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Revised: 09/11/2015] [Accepted: 10/08/2015] [Indexed: 12/25/2022]
Affiliation(s)
- Bing-Hua Su
- Department of Biochemistry and Molecular Biology, College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - Gia-Shing Shieh
- Department of Urology; Tainan Hospital, Ministry of Health and Welfare; Tainan Taiwan
| | - Yi-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - Pensee Wu
- Institute for Science and Technology in Medicine; Keele University; UK
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine; National Cheng Kung University; Tainan Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine; National Cheng Kung University; Tainan Taiwan
| |
Collapse
|
19
|
Halder SK, Matsunaga H, Ishii KJ, Ueda H. Prothymosin-alpha preconditioning activates TLR4-TRIF signaling to induce protection of ischemic retina. J Neurochem 2015; 135:1161-77. [PMID: 26364961 DOI: 10.1111/jnc.13356] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/20/2022]
Abstract
Prothymosin-alpha protects the brain and retina from ischemic damage. Although prothymosin-alpha contributes to toll-like receptor (TLR4)-mediated immnunopotentiation against viral infection, the beneficial effects of prothymosin-alpha-TLR4 signaling in protecting against ischemia remain to be elucidated. In this study, intravitreal administration of prothymosin-alpha 48 h before induction of retinal ischemia prevented retinal cellular damage as evaluated by histology, and retinal functional deficits as evaluated by electroretinography. Prothymosin-alpha preconditioning completely prevented the ischemia-induced loss of ganglion cells with partial survival of bipolar and photoreceptor cells, but not amacrine cells, in immunohistochemistry experiments. Prothymosin-alpha treatment in the absence of ischemia caused mild activation, proliferation, and migration of retinal microglia, whereas the ischemia-induced microglial activation was inhibited by prothymosin-alpha preconditioning. All these preventive effects of prothymosin-alpha preconditioning were abolished in TLR4 knock-out mice and by pre-treatments with anti-TLR4 antibodies or minocycline, a microglial inhibitor. Prothymosin-alpha preconditioning inhibited the retinal ischemia-induced up-regulation of TLR4-related injury genes, and increased expression of TLR4-related protective genes. Furthermore, the prothymosin-alpha preconditioning-induced prevention of retinal ischemic damage was abolished in TIR-domain-containing adapter-inducing interferon-β knock-out mice, but not in myeloid differentiation primary response gene 88 knock-out mice. Taken together, the results of this study suggest that prothymosin-alpha preconditioning selectively drives TLR4-TIR-domain-containing adapter-inducing interferon-β signaling and microglia in the prevention of retinal ischemic damage. We propose the following mechanism for prothymosin-alpha (ProTα) preconditioning-induced retinal prevention against ischemia: ProTα preconditioning-induced prevention of retinal ischemic damage is mediated by selective activation of the TIR-domain-containing adapter-inducing interferon-β (TRIF)- interferon regulatory factor 3 (IRF3) pathway downstream of toll-like receptor 4 (TLR4) in microglia, resulting in up-regulation of TRIF-IRF3-dependent protective genes and down-regulation of myeloid differentiation primary response gene 88 (MyD88)-Nuclear factor (NF)κB-dependent injury genes. Detailed investigations would be helpful to test the efficacy of ProTα as a therapeutic agent for the prevention of ischemic disorders.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hayato Matsunaga
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Ken J Ishii
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
20
|
Abstract
SummaryProthymosin α (PTMA) is a highly acidic, intrinsically disordered protein, which is widely expressed and conserved throughout evolution; its uncommon features are reflected by its involvement in a variety of processes, including chromatin remodelling, transcriptional regulation, cell proliferation and death, immunity. PTMA has also been implicated in spermatogenesis: during vertebrate germ cell progression in the testis the protein is expressed in meiotic and post-meiotic stages, and it is associated with the acrosome system of the differentiating spermatids in mammals. Then, it finally localizes on the inner acrosomal membrane of the mature spermatozoa, suggesting its possible role in both the maturation and function of the gametes. In the present work we studied PTMA expression during the spermatogenesis of the adult zebrafish, a species in which two paralogs have been described. Our data show thatptmatranscripts are expressed in the testis, and localize in meiotic and post-meiotic germ cells, namely spermatocytes and spermatids. Consistently, the protein is expressed in spermatocytes, spermatids, and spermatozoa: its initial perinuclear distribution is extended to the chromatin region during cell division and, in haploid phases, to the cytoplasm of the developing and final gametes. The nuclear localization in the acrosome-lacking spermatozoa suggests a role for PTMA in chromatin remodelling during gamete differentiation. These data further provide a compelling starting point for the study of PTMA functions during vertebrate fertilization.
Collapse
|
21
|
Teixeira A, Yen B, Gusella GL, Thomas AG, Mullen MP, Aberg J, Chen X, Hoshida Y, van Bakel H, Schadt E, Basler CF, García-Sastre A, Mosoian A. Prothymosin α variants isolated from CD8+ T cells and cervicovaginal fluid suppress HIV-1 replication through type I interferon induction. J Infect Dis 2015; 211:1467-75. [PMID: 25404520 PMCID: PMC4425839 DOI: 10.1093/infdis/jiu643] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/07/2014] [Indexed: 12/14/2022] Open
Abstract
Soluble factors from CD8(+) T cells and cervicovaginal mucosa of women are recognized as important in controlling human immunodeficiency virus type 1 (HIV-1) infection and transmission. Previously, we have shown the strong anti-HIV-1 activity of prothymosin α (ProTα) derived from CD8(+) T cells. ProTα is a small acidic protein with wide cell distribution, to which several functions have been ascribed, depending on its intracellular or extracellular localization. To date, activities of ProTα have been attributed to a single protein known as isoform 2. Here we report the isolation and identification of 2 new ProTα variants from CD8(+) T cells and cervicovaginal lavage with potent anti-HIV-1 activity. The first is a splice variant of the ProTα gene, known as isoform CRA_b, and the second is the product of a ProTα gene, thus far classified as a pseudogene 7. Native or recombinant ProTα variants potently restrict HIV-1 replication in macrophages through the induction of type I interferon. The baseline expression of interferon-responsive genes in primary human cervical tissues positively correlate with high levels of intracellular ProTα, and the knockdown of ProTα variants by small interfering RNA leads to downregulation of interferon target genes. Overall, these findings suggest that ProTα variants are innate immune mediators involved in immune surveillance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Harm van Bakel
- Department of Genetics and Genomics Sciences
- Icahn Institute for Genomics and Multiscale Biology
| | - Eric Schadt
- Department of Genetics and Genomics Sciences
- Icahn Institute for Genomics and Multiscale Biology
| | | | - Adolfo García-Sastre
- Department of Medicine
- Department of Microbiology
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | | |
Collapse
|
22
|
Wang N, Feng Y, Zhu M, Siu FM, Ng KM, Che CM. A novel mechanism of XIAP degradation induced by timosaponin AIII in hepatocellular carcinoma. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1833:2890-2899. [PMID: 23906794 DOI: 10.1016/j.bbamcr.2013.07.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 07/15/2013] [Accepted: 07/23/2013] [Indexed: 01/06/2023]
Abstract
Inducing tumor cell death is one of the major therapeutic strategies in treating cancer. The aim of this study is to investigate the mechanism underlying the involvement of autophagy in cell death induced by timosaponin AIII (TAIII). Cell viability was determined by MTT and cologenic assay; apoptosis was determined by flow cytometry and TUNEL assay; autophagy was examined by immunoblotting and immunofluorescence; ubiquitination was detected by co-immunoprecipitation; mRNA expression was detected by real-time PCR; and determination of necrotic cell death was approached with LDH assay. The in vivo tumor growth inhibition was determined by xenograft model. TAIII exhibits potent cytotoxicity on human hepatocellular carcinoma (HCC) cells without severe hepatic toxicity. TAIII induced caspase-dependent apoptosis in HCC, and the induction of apoptosis was attributed to the inhibition of TAIII on XIAP expression. Repressing XIAP expression allowed cell tolerance toward the treatment with TAIII. The suppression of XIAP by TAIII is under post-transcriptional control and independent of proteasomal-driven proteolysis. Instead, TAIII-induced AMPKα/mTOR-dependent autophagy was responsible for XIAP suppression and triggered the XIAP heading lysosomal degradation pathway. Ubiquitination of IAPs is required for the autophagic degradation induced by TAIII. Blockade of autophagy turns on the switch of necrotic cell death in TAIII-treated cells. Timosaponin AIII induces HCC cell apoptosis through a p53-independent mechanism involving XIAP degradation through autophagy-lysosomal pathway. The possibility of developing TAIII as a new anti-tumor agent is worth considering.
Collapse
Affiliation(s)
- Ning Wang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong,10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong,10 Sassoon Road, Pokfulam, Hong Kong, China.
| | - Meifen Zhu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong,10 Sassoon Road, Pokfulam, Hong Kong, China
| | - Fung-Ming Siu
- Department of Chemistry, Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Kwan-Ming Ng
- Department of Chemistry, Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chi-Ming Che
- Department of Chemistry, Open Laboratory of Chemical Biology of the Institute of Molecular Technology for Drug Discovery and Synthesis, and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
23
|
Halder SK, Sugimoto J, Matsunaga H, Ueda H. Therapeutic benefits of 9-amino acid peptide derived from prothymosin alpha against ischemic damages. Peptides 2013; 43:68-75. [PMID: 23499560 DOI: 10.1016/j.peptides.2013.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 02/27/2013] [Accepted: 02/27/2013] [Indexed: 12/11/2022]
Abstract
Prothymosin alpha (ProTα), a nuclear protein, plays multiple functions including cell survival. Most recently, we demonstrated that the active 30-amino acid peptide sequence/P30 (amino acids 49-78) in ProTα retains its substantial activity in neuroprotection in vitro and in vivo as well as in the inhibition of cerebral blood vessel damages by the ischemic stress in retina and brain. But, it has remained to identify the minimum peptide sequence in ProTα that retains neuroprotective activity. The present study using the experiments of alanine scanning suggested that any amino acid in 9-amino acid peptide sequence/P9 (amino acids 52-60) of P30 peptide is necessary for its survival activity of cultured rat cortical neurons against the ischemic stress. In the retinal ischemia-perfusion model, intravitreous injection of P9 24h after ischemia significantly inhibited the cellular and functional damages at day 7. On the other hand, 2,3,5-triphenyltetrazolium chloride (TTC) staining and electroretinogram assessment showed that systemic delivery with P9 1h after the cerebral ischemia (1h tMCAO) significantly blocks the ischemia-induced brain damages. In addition, systemic P9 delivery markedly inhibited the cerebral ischemia (tMCAO)-induced disruption of blood vessels in brain. Taken together, the present study provides a therapeutic importance of 9-amino acid peptide sequence against ischemic damages.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | |
Collapse
|
24
|
Ferrara D, Pariante P, Di Matteo L, Serino I, Oko R, Minucci S. First evidence of prothymosin alpha localization in the acrosome of mammalian male gametes. J Cell Physiol 2013; 228:1629-37. [DOI: 10.1002/jcp.24332] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 01/16/2013] [Indexed: 12/27/2022]
|
25
|
Halder S, Yano R, Chun J, Ueda H. Involvement of LPA1 receptor signaling in cerebral ischemia-induced neuropathic pain. Neuroscience 2013; 235:10-5. [DOI: 10.1016/j.neuroscience.2013.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Revised: 01/07/2013] [Accepted: 01/07/2013] [Indexed: 12/22/2022]
|
26
|
Halder SK, Matsunaga H, Yamaguchi H, Ueda H. Novel neuroprotective action of prothymosin alpha-derived peptide against retinal and brain ischemic damages. J Neurochem 2013; 125:713-23. [DOI: 10.1111/jnc.12132] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 12/03/2012] [Accepted: 12/04/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Sebok Kumar Halder
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Hayato Matsunaga
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Haruka Yamaguchi
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| | - Hiroshi Ueda
- Department of Molecular Pharmacology and Neuroscience; Nagasaki University Graduate School of Biomedical Sciences; Nagasaki Japan
| |
Collapse
|
27
|
Ueda H, Matsunaga H, Halder SK. Prothymosin α plays multifunctional cell robustness roles in genomic, epigenetic, and nongenomic mechanisms. Ann N Y Acad Sci 2012; 1269:34-43. [DOI: 10.1111/j.1749-6632.2012.06675.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Halder SK, Matsunaga H, Ueda H. Neuron-specific non-classical release of prothymosin alpha: a novel neuroprotective damage-associated molecular patterns. J Neurochem 2012; 123:262-75. [PMID: 22853710 DOI: 10.1111/j.1471-4159.2012.07897.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 07/24/2012] [Accepted: 07/25/2012] [Indexed: 11/27/2022]
Abstract
Prothymosin alpha (ProTα), a nuclear protein devoid of signal sequence, has been shown to possess a number of cellular functions including cell survival. Most recently, we demonstrated that ProTα is localized in the nuclei of neurons, while it is found in both nuclei and cytoplasm in the astrocytes and microglia of adult brain. However, the cell type-specific non-classical release of ProTα under cerebral ischemia is yet unknown. In this study, we report that ProTα is non-classically released along with S100A13 from neurons in the hippocampus, striatum and somatosensory cortex at 3 h after cerebral ischemia, but amlexanox (an anti-allergic compound) reversibly blocks this neuronal ProTα release. We found that none of ProTα is released from astrocytes and microglia under ischemic stress. Indeed, ProTα intensity is increased gradually in astrocytes and microglia through 24 h after the cerebral ischemia. Interestingly, Z-Val-Ala-Asp fluoromethyl ketone, a caspase 3 inhibitor, pre-treatment induces ProTα release from astrocytes in the ischemic brain, but this release is reversibly blocked by amlexanox. However, Z-Val-Ala-Asp fluoromethyl ketone as well as amlexanox has no effect on ProTα distribution in microglia upon cerebral ischemia. Taken together, these results suggest that only neurons have machineries to release ProTα upon cerebral ischemic stress in vivo.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Department of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | | | | |
Collapse
|
29
|
Kadam SD, Gucek M, Cole RN, Watkins PA, Comi AM. Cell proliferation and oxidative stress pathways are modified in fibroblasts from Sturge-Weber syndrome patients. Arch Dermatol Res 2012; 304:229-35. [PMID: 22402795 DOI: 10.1007/s00403-012-1210-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 01/03/2012] [Accepted: 01/09/2012] [Indexed: 01/05/2023]
Abstract
Sturge-Weber syndrome (SWS) is defined by vascular malformations of the face, eye and brain and an underlying somatic mutation has been hypothesized. We employed isobaric tags for relative and absolute quantification (iTRAQ-8plex)-based liquid chromatography interfaced with tandem mass spectrometry (LC-MS/MS) approach to identify differentially expressed proteins between port-wine-derived and normal skin-derived fibroblasts of four individuals with SWS. Proteins were identified that were significantly up- or down-regulated (i.e., ratios >1.2 or <0.8) in two or three pairs of samples (n = 31/972 quantified proteins) and their associated p values reported. Ingenuity pathway analysis (IPA) tool showed that the up-regulated proteins were associated with pathways that enhance cell proliferation; down-regulated proteins were associated with suppression of cell proliferation. The significant toxicologic list pathway in all four observations was oxidative stress mediated by Nrf2. This proteomics study highlights oxidative stress also consistent with a possible mutation in the RASA1 gene or pathway in SWS.
Collapse
Affiliation(s)
- Shilpa D Kadam
- Departments of Neurology and Developmental Medicine, Hugo Moser Kennedy Krieger Research Institute, Baltimore, MD, USA
| | | | | | | | | |
Collapse
|
30
|
Halder SK, Ueda H. Regional distribution and cell type-specific subcellular localization of Prothymosin alpha in brain. Cell Mol Neurobiol 2012; 32:59-66. [PMID: 21750924 PMCID: PMC11498650 DOI: 10.1007/s10571-011-9734-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 06/27/2011] [Indexed: 02/06/2023]
Abstract
Prothymosin alpha (ProTα) is an acidic nuclear protein implicated in several cellular functions including cell survival. ProTα is found in the central nervous system, but the regional and cell type-specific expression patterns are not known. In this study, our immunohistochemical analysis demonstrated that ProTα is expressed ubiquitously throughout adult brain with difference in the intensity of region-specific protein reactivity. Interestingly, the highest ProTα signals were observed in the brain regions relevant to neurogenesis, such as sub-ventricular zone, granular cell layer of dentate gyrus, as well as granule cell layer of olfactory bulb. Strong immunoreactivity was also found in habenula, ependymal cells lining the dorsal third and fourth ventricle, and in neurons in the Purkinje cell layer of cerebellum. We showed that ProTα was strictly localized in the nuclei of neurons, while it was found in the cytosolic space of astroglial and microglial processes and cell body in the adult brain. To clarify the phenomenon underlying cytosolic localization of ProTα in non-neuronal cells, ZVAD-fmk, a caspase-3 inhibitor, was delivered intracerebroventricularly in the brain. At the follow-up 24 h after ZVAD-fmk injection, we found that nuclear intensity of ProTα was significantly increased in astrocytes, whereas the ProTα expression was not affected in microglia. The present study would contribute toward better understanding of physiological and pathophysiological roles of ProTα in the brain.
Collapse
Affiliation(s)
- Sebok Kumar Halder
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
| | - Hiroshi Ueda
- Division of Molecular Pharmacology and Neuroscience, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
| |
Collapse
|
31
|
Maltman DJ, Brand S, Belau E, Paape R, Suckau D, Przyborski SA. Top-down label-free LC-MALDI analysis of the peptidome during neural progenitor cell differentiation reveals complexity in cytoskeletal protein dynamics and identifies progenitor cell markers. Proteomics 2011; 11:3992-4006. [DOI: 10.1002/pmic.201100024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2011] [Revised: 05/26/2011] [Accepted: 06/10/2011] [Indexed: 12/19/2022]
|
32
|
Basappa J, Turcan S, Vetter DE. Corticotropin-releasing factor-2 activation prevents gentamicin-induced oxidative stress in cells derived from the inner ear. J Neurosci Res 2010; 88:2976-90. [PMID: 20544827 DOI: 10.1002/jnr.22449] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Generation of reactive oxygen species (ROS) is a common denominator in many conditions leading to cell death in the cochlea, yet little is known of the cochlea's endogenous mechanisms involved in preventing oxidative stress and its consequences in the cochlea. We have recently described a corticotropin-releasing factor (CRF) signaling system in the inner ear involved in susceptibility to noise-induced hearing loss. We use biochemical and proteomics assays to define further the role of CRF signaling in the response of cochlear cells to aminoglycoside exposure. We demonstrate that activity via the CRF(2) class of receptors protects against aminoglycoside-induced ROS production and activation of cell death pathways. This study suggests for the first time a role for CRF signaling in protecting the cochlea against oxidative stress, and our proteomics data suggest novel mechanisms beyond induction of free radical scavengers that are involved in its protective mechanisms.
Collapse
Affiliation(s)
- Johnvesly Basappa
- Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
33
|
Borutaite V. Mitochondria as decision-makers in cell death. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2010; 51:406-416. [PMID: 20209625 DOI: 10.1002/em.20564] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mitochondria play an essential role in both cell health and death. Increasing experimental evidence suggests that mitochondria are involved in active control of cell death processes at several levels including (1) mitochondrial membrane permeabilization and release of proapoptotic proteins, (2) post-cytochrome c regulation of caspase activation, and (3) supply of energy for execution of death program. The purpose of this review is to discuss the main mechanisms by which alterations in mitochondrial outer membrane permit the translocation of proapoptotic proteins into cytosol, how mitochondria "make decisions" on the mode of cell death, and how they regulate caspase activation by changing the redox state of cytosolic cytochrome c. The interventions into these processes may constitute an important strategy for the pharmacological prevention of unwanted cell death in various pathologies or, conversely, for facilitation of anticancer therapy.
Collapse
Affiliation(s)
- Vilmante Borutaite
- Institute for Biomedical Research, Kaunas University of Medicine, Kaunas, Lithuania.
| |
Collapse
|
34
|
Stress-induced non-vesicular release of prothymosin-α initiated by an interaction with S100A13, and its blockade by caspase-3 cleavage. Cell Death Differ 2010; 17:1760-72. [PMID: 20467443 DOI: 10.1038/cdd.2010.52] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nuclear protein prothymosin-α (ProTα), which lacks a signal peptide sequence, is released from neurons and astrocytes on ischemic stress and exerts a unique form of neuroprotection through an anti-necrotic mechanism. Ischemic stress-induced ProTα release is initiated by a nuclear release, followed by extracellular release in a non-vesicular manner, in C6 glioma cells. These processes are caused by ATP loss and elevated Ca²(+), respectively. S100A13, a Ca²(+)-binding protein, was identified to be a major protein co-released with ProTα in an immunoprecipitation assay. The Ca²(+)-dependent interaction between ProTα and S100A13 was found to require the C-terminal peptide sequences of both proteins. In C6 glioma cells expressing a Δ88-98 mutant of S100A13, serum deprivation caused the release of S100A13 mutant, but not of ProTα. When cells were administered apoptogenic compounds, ProTα was cleaved by caspase-3 to generate a C-terminal peptide-deficient fragment, which lacks the nuclear localization signal (NLS). However, there was no extracellular release of ProTα. All these results suggest that necrosis-inducing stress induces an extacellular release of ProTα in a non-vesicular manner, whereas apoptosis-inducing stress does not, owing to the loss of its interaction with S100A13, a cargo molecule for extracellular release.
Collapse
|
35
|
Ueda H, Matsunaga H, Uchida H, Ueda M. Prothymosin α as robustness molecule against ischemic stress to brain and retina. Ann N Y Acad Sci 2010; 1194:20-6. [DOI: 10.1111/j.1749-6632.2010.05466.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|