1
|
Jie S, Fu A, Wang C, Rajabi S. A comprehensive review on the impact of polyphenol supplementation and exercise on depression and brain function parameters. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2025; 21:10. [PMID: 40140839 PMCID: PMC11948876 DOI: 10.1186/s12993-025-00273-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025]
Abstract
The objective of this review study is to examine the combined antidepressant effects of exercise and polyphenol supplementation, with a focus on specific polyphenolic compounds such as crocin, curcumin, and quercetin, as well as different forms of physical exercise, including aerobic and resistance training. The research examines how these interventions influence depressive-like behaviors, cognitive function, and neurochemical markers in animal models and human participants. The findings demonstrate that both exercise and polyphenols independently contribute to mood enhancement, reduced anxiety, and improved cognitive function through mechanisms such as neurogenesis, neurotransmitter modulation, and anti-inflammatory effects. Notably, the combined interventions showed a synergistic effect, providing more significant benefits in reducing symptoms of depression and anxiety, enhancing cognitive performance, and supporting overall mental well-being. These results suggest that integrating exercise and polyphenol supplementation could be a promising non-pharmacological approach to managing depression and related disorders.
Collapse
Affiliation(s)
- Shihong Jie
- Institute of Physical Education, Woosuk University, Jeollabuk-do, 55338, Korea
| | - Aili Fu
- Physical Education and Research Section, Basic Teaching Department, Guangdong Maoming Health Vocational College, Maoming, Guangdong, 525400, China
| | - Chuan Wang
- Physical Education Teaching and Research Office, Dalian University of Foreign Languages, Dalian, Liaoning, 116044, China.
| | - Sogand Rajabi
- Department of Cellular and Molecular Biology, Islamic Azad University, Sirjan Branch, Iran.
| |
Collapse
|
2
|
Wang P, Ouyang H, Bi G, Liang F, Hu S, Wu C, Jiang X, Zhou W, Li D, Zhang S, Yang X, Zhao M, Fang JH, Wang H, Jia W, Zhu ZJ, Bi H. Schisandrol B alleviates depression-like behavior in mice by regulating bile acid homeostasis in the brain-liver-gut axis via the pregnane X receptor. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 137:156340. [PMID: 39809031 DOI: 10.1016/j.phymed.2024.156340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/18/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Depression is a widely recognized neuropsychiatric disorder. Recent studies have shown a potential correlation between bile acid disorders and depression, highlighting the importance of maintaining bile acid balance for effective antidepressant treatment. Schisandrol B (SolB), a primary bioactive compound from Schisandra chinensis (Turcz.) Baill. or Schisandra sphenanthera Rehd.etWils, is pivotal in regulating bile acid homeostasis via pregnane X receptor (PXR) in cholestasis. However, the potential of SolB in alleviating depression-like symptoms, its pharmacological effects, and the underlying mechanisms remain to be fully elucidated. METHODS We confirmed the effect of SolB against depression induced by chronic restraint stress (CRS) and chronic unpredictable mild stress (CUMS) in mice. The role of SolB in bile acid homeostasis in depression was analyzed using the metabolomic. Gene analyses and 16S rRNA sequencing were employed to investigate the involvement of PXR. Experiments with Pxr-/- mice were conducted to confirm the essential role of the PXR pathway in SolB's antidepressant effects. RESULTS SolB treatment significantly increased sucrose consumption in the SPT and the locomotor activity in the OFT, while decreasing immobility time in the FST and TST in mice exposed to CRS and CUMS. Additionally, SolB treatment significantly preserved the integrity of the dendritic spine, elevated synaptic protein PSD95 levels, and augmented CREB/BDNF expression. Metabolomic and gene analyses indicated that SolB treatment significantly facilitated bile acid metabolism, promoted intestinal bile acid efflux, decreased hippocampal levels of the secondary bile acids DCA and TLCA, and upregulated expression of the PXR target proteins CYP3A11, SULT2A1, MRP2, and OATP1B1 in the liver, and MRP2 and MDR1 in hippocampus, which are integral to bile acid homeostasis. 16S rRNA sequencing revealed that SolB reduced the abundance of the bile salt hydrolase (BSH)-producing bacteria Lactobacillus johnsonii and Bacteroides fragilis and subsequently decreased the production of TLCA and DCA. Moreover, SolB failed to protect against depression induced by CRS in Pxr-null mice, suggesting that the antidepressant effect of SolB was PXR-dependent. CONCLUSIONS These results provide direct evidence of the antidepressant effect of SolB via activation of PXR to regulate bile acid homeostasis in the brain-liver-gut axis, suggesting that SolB may serve as a novel potential target for preventing and treating depression.
Collapse
Affiliation(s)
- Peng Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Hui Ouyang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Guofang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Fengting Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuang Hu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Chenghua Wu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaowen Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wenhong Zhou
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Dan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Shuaishuai Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China
| | - Mingliang Zhao
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China
| | - Jian-Hong Fang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Haitao Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Jia
- Center for Translational Medicine and Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200233, China; Department of Pharmacology and Pharmacy, University of Hong Kong, Hong Kong, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Huichang Bi
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening & Guangdong-Hongkong-Macao Joint Laboratory for New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China; The State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Shenzhen Graduate School of Peking University, Shenzhen, China.
| |
Collapse
|
3
|
Gao Y, Nie K, Wang H, Dong H, Tang Y. Research progress on antidepressant effects and mechanisms of berberine. Front Pharmacol 2024; 15:1331440. [PMID: 38318145 PMCID: PMC10839030 DOI: 10.3389/fphar.2024.1331440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024] Open
Abstract
Depression, a global health problem with growing prevalence, brings serious impacts on the daily life of patients. However, the antidepressants currently used in clinical are not perfectly effective, which greatly reduces the compliance of patients. Berberine is a natural quaternary alkaloid which has been shown to have a variety of pharmacological effects, such as hypoglycemic, lipid-regulation, anti-cancer, antibacterial, anti-oxidation, anti-inflammatory, and antidepressant. This review summarizes the evidence of pharmacological applications of berberine in treating depression and elucidates the mechanisms of berberine regulating neurotransmitter levels, promoting the regeneration of hippocampal neurons, improving hypothalamic-pituitary-adrenal axis dysfunction, anti-oxidative stress, and suppressing inflammatory status in order to provide a reference for further research and clinical application of berberine.
Collapse
Affiliation(s)
- Yang Gao
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Kexin Nie
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hongzhan Wang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Hui Dong
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yueheng Tang
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Rehabilitation Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Du Q, Gao C, Tsoi B, Wu M, Shen J. Niuhuang Qingxin Wan ameliorates depressive-like behaviors and improves hippocampal neurogenesis through modulating TrkB/ERK/CREB signaling pathway in chronic restraint stress or corticosterone challenge mice. Front Pharmacol 2024; 14:1274343. [PMID: 38273824 PMCID: PMC10808638 DOI: 10.3389/fphar.2023.1274343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction: Chronic stress-associated hormonal imbalance impairs hippocampal neurogenesis, contributing to depressive and anxiety behaviors. Targeting neurogenesis is thus a promising antidepressant therapeutic strategy. Niuhuang Qingxin Wan (NHQXW) is an herbal formula for mental disorders in Traditional Chinese Medicine (TCM) practice, but its anti-depressant efficacies and mechanisms remain unverified. Methods: In the present study, we tested the hypothesis that NHQXW could ameliorate depressive-like behaviors and improve hippocampal neurogenesis by modulating the TrkB/ERK/CREB signaling pathway by utilizing two depression mouse models including a chronic restraint stress (CRS) mouse model and a chronic corticosterone (CORT) stress (CCS) induced mouse model. The depression-like mouse models were orally treated with NHQXW whereas fluoxetine was used as the positive control group. We evaluated the effects of NHQXW on depressive- and anxiety-like behaviors and determined the effects of NHQXW on inducing hippocampal neurogenesis. Results: NHQXW treatment significantly ameliorated depressive-like behaviors in those chronic stress mouse models. NHQXW significantly improved hippocampal neurogenesis in the CRS mice and CCS mice. The potential neurogenic mechanism of NHQXW was identified by regulating the expression levels of BDNF, TrkB, p-ERK (T202/T204), p-MEK1/2 (S217/221), and p-CREB (S133) in the hippocampus area of the CCS mice. NHQXW revealed its antidepressant and neurogenic effects that were similar to fluoxetine. Moreover, NHQXW treatment revealed long-term effects on preventing withdrawal-associated rebound symptoms in the CCS mice. Furthermore, in a bioactivity-guided quality control study, liquiritin was identified as one of the bioactive compounds of NHQXW with the bioactivities of neurogenesis-promoting effects. Discussion: Taken together, NHQXW could be a promising TCM formula to attenuate depressive- and anxiety-like behaviors against chronic stress and depression. The underlying anti-depressant mechanisms could be correlated with its neurogenic activities by stimulating the TrkB/ERK/CREB signaling pathway.
Collapse
Affiliation(s)
- Qiaohui Du
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chong Gao
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- The Institute of Brain and Cognitive Sciences, School of Medicine, Zhejiang University City College, Hangzhou, China
| | - Bun Tsoi
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Meiling Wu
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| |
Collapse
|
5
|
Sun X, Yang X, Zhang Y, Liu Y, Xiao F, Guo H, Liu X. Correlation analysis between per-fluoroalkyl and poly-fluoroalkyl substances exposure and depressive symptoms in adults: NHANES 2005-2018. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167639. [PMID: 37813256 DOI: 10.1016/j.scitotenv.2023.167639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/27/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Excessive exposure to per and poly-fluoroalkyl compounds (PFAS) can lead to various negative health effects. However, there's a lack of research studying the link between PFAS exposure and depression in adults, and the existing findings are inconsistent. OBJECTIVES Utilizing data collected from the National Health and Nutrition Examination Survey (NHANES) database spanning 2005 to 2018, this study aimed to examine the potential connection between PFAS exposure and depressive symptoms in adults. METHODS The correlation between individual PFAS exposure and depressive symptoms was examined through the establishment of weighted logistic regression models (crude model, model 1, model 2) and restricted cubic spline models. To verify the stability of the model, receiver operating characteristic (ROC) curves of the logistic regression model were generated, and a ten-fold cross-validation model was employed. Additionally, the relationship between adult depressive symptoms and mixed PFAS exposure was tested through the utilization of quantile g-computation (qgcomp). RESULTS The findings revealed that heightened exposure levels to PFOA, PFHxS, and PFUnDA, were connected with a diminished risk of depressive symptoms in adults (ORPFOA: 0.67, 95 % confidence interval (CI): 0.47, 0.95; ORPFHxS: 0.66, 95 %CI: 0.49, 0.89; ORPFUnDA: 0.65, 95 %CI: 0.45, 0.96). PFOS, PFHxS, and PFDA demonstrated a dose-response relationship with the risk of depressive symptoms. The ROC curve indicated model stability, with recognition accuracy exceeding 90 % in the cross-validation model. The outcomes of qgcomp demonstrated that an increase in serum PFAS concentration was linked to a decreased risk of depressive symptoms in adults (OR: 0.85, 95 %CI: 0.75, 0.96). DISCUSSION Due to the cross-sectional design of this study, it's important to acknowledge the potential for reverse causality between PFAS exposure and depressive symptoms. As a result, the outcomes should not be oversimplified to interpret PFAS exposure as a protective factor against adult depressive symptoms.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China
| | - Xupu Yang
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China
| | - Yizhe Zhang
- Department of Preventive Medicine, School of Public Health, Hebei Medical University, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China
| | - Yi Liu
- Department of Toxicology, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China
| | - Fang Xiao
- Department of Toxicology, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China
| | - Huicai Guo
- Department of Toxicology, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China
| | - Xuehui Liu
- Department of Occupational and Environmental Health, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Zhongshan East Road 361, Shijiazhuang 050017, Hebei, PR China.
| |
Collapse
|
6
|
Xu Y, Li Y, Wang C, Han T, Wu Y, Wang S, Wei J. Clinical value and mechanistic analysis of HIIT on modulating risk and symptoms of depression: A systematic review. Int J Clin Health Psychol 2024; 24:100433. [PMID: 38226005 PMCID: PMC10788816 DOI: 10.1016/j.ijchp.2023.100433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
Background The exact causal mechanisms of depression remain unclear due to the complexity of the triggers, which has led to limitations in treating depression using modern drugs. High-intensity interval training (HIIT) is as effective as medication in treating depression without toxic side effects. Typically, HIIT requires less time commitment (i.e., shorter exercise duration) and exhibits pronounced benefits on depressive symptoms than other forms of physical exercise. This review summarizes the risk reduction and clinical effects of HIIT for depression and discusses the underlying mechanisms, providing a theoretical basis for utilizing HIIT in treating depression. Methods A database search was conducted in PubMed, Embase, Web of Science, and Scopus from inception up to October 2022. The methodological quality of the included literature was evaluated by the physiotherapy evidence database (PEDro) scale criteria. The review focused on evaluating the changes in depression risk or symptoms of HIIT interventions in healthy individuals, patients with depression, and patients with other disorders co-morbid with depression. Consequently, the mechanisms associated with depression related HIIT were summarized. Results A total of 586 participants (52 % female; mean age: 43.58±8.93 years) from 22 studies were included. Implementing HIIT using different exercise types alleviates depressive symptoms in individuals with depression and in individuals with depression who have exhibited comorbidities and reduced depression scale scores in subjects immediately after acute exercise. In addition, the long-interval HIIT and short-interval HIIT in the treatment of patients with cardiovascular or psychiatric disorders may reduce depressive symptoms via complex exercise-related changes on several levels, including by effecting the following measures: releasing monoamines, reducing neuronal death, inducing neurogenesis, modulating the functional homeostasis of the HPA axis, and enhancing the level of inflammation in the body. Conclusion HIIT is a relatively safe and effective antidepressant, which may involve multiple neurobiological mechanisms (release of monoamines, reducing neuronal death, inducing neurogenesis, modulating the functional homeostasis of the HPA axis, and enhancing the level of inflammation in the body), thereby reducing the risk or symptoms of depression in participants.
Collapse
Affiliation(s)
- Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yongjie Li
- Department of rehabilitation medicine, Beijing Jishuitan Hospital Guizhou Hospital, Guiyang, China
| | - Changqing Wang
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yue Wu
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China
| | - Song Wang
- Hubei Superior Discipline Group of Exercise and Brain Science from Hubei Provincial, Wuhan Sports University, Wuhan 430079, China
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
7
|
Weber BL, Beaver JN, Gilman TL. Summarizing studies using constitutive genetic deficiency to investigate behavioural influences of uptake 2 monoamine transporters. Basic Clin Pharmacol Toxicol 2023; 133:439-458. [PMID: 36316031 PMCID: PMC10657738 DOI: 10.1111/bcpt.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/14/2022] [Accepted: 10/24/2022] [Indexed: 11/27/2022]
Abstract
Burgeoning literature demonstrates that monoamine transporters with high transport capacity but lower substrate affinity (i.e., uptake 2) contribute meaningfully to regulation of monoamine neurotransmitter signalling. However, studying behavioural influences of uptake 2 is hindered by an absence of selective inhibitors largely free of off-target, confounding effects. This contrasts with study of monoamine transporters with low transport capacity but high substrate affinity (i.e., uptake 1), for which there are many reasonably selective inhibitors. To circumvent this dearth of pharmacological tools for studying uptake 2, researchers have instead employed mice with constitutive genetic deficiency in three separate transporters. By studying baseline behavioural shifts, plus behavioural responses to environmental and pharmacological manipulations-the latter primarily targeting uptake 1-investigators have been creatively characterizing the behavioural, and often sex-specific, influences of uptake 2. This non-systematic mini review summarizes current uptake 2 behaviour literature, highlighting emphases on stress responsivity in organic cation transporter 2 (OCT2) work, psychostimulant responsivity in OCT3 and plasma membrane monoamine transporter (PMAT) investigations, and antidepressant responsivity in all three. Collectively, this small but growing body of work reiterates the necessity for development of selective uptake 2-inhibiting drugs, with reviewed studies suggesting that these might advance personalized treatment approaches.
Collapse
Affiliation(s)
- Brady L Weber
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - Jasmin N Beaver
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| | - T Lee Gilman
- Department of Psychological Sciences & Brain Health Research Institute, Kent State University, Kent, Ohio, USA
| |
Collapse
|
8
|
Gao Z, Winhusen TJ, Gorenflo M, Ghitza UE, Nunes E, Saxon AJ, Korthuis T, Brady K, Luo SX, Davis PB, Kaelber DC, Xu R. Potential effect of antidepressants on remission from cocaine use disorder - A nationwide matched retrospective cohort study. Drug Alcohol Depend 2023; 251:110958. [PMID: 37703770 PMCID: PMC10556849 DOI: 10.1016/j.drugalcdep.2023.110958] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/30/2023] [Accepted: 09/02/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND Cocaine use disorder (CUD) is a significant public health issue for which there is no Food and Drug Administration-approved pharmacotherapy. Depressive disorders are common psychiatric comorbidity amongst individuals with CUD. METHODS A retrospective cohort study was conducted among 161,544 patients diagnosed with CUD and depression to evaluate the effectiveness of 13 antidepressants on CUD remission. For any antidepressant found to be associated with CUD remission that had an additional indication, we conducted an additional analysis to evaluate the effectiveness of the candidate drug in patients with CUD with that indication. We then analyzed publicly genomic and functional databases to identify potential explanatory mechanisms of action of the candidate drug in the treatment of CUD. RESULTS Among these antidepressants, bupropion was associated with higher rates of CUD remission compared to propensity-score matched patients prescribed other antidepressants: hazard ratio (HR) and 95% confidence interval (CI) 1.57 (95% CI: 1.27-1.94). Bupropion is also approved for smoking cessation. We identified CUD patients with co-occurring nicotine dependence and observed that patients prescribed bupropion displayed a higher rate of CUD remission compared to matched individuals prescribed other drugs for nicotine dependence: 1.38 (95% CI: 1.11-1.71). Genetic and functional analyses revealed that bupropion interacts with four protein-encoding genes (COMT, DRD2, SLC6A3, and SLC6A4) which are also associated with CUD and targets CUD-associated pathways including serotonergic synapses, cocaine addiction, and dopaminergic synapses. CONCLUSIONS Our findings suggest that bupropion might be considered a treatment for improving CUD remission in patients with CUD and co-occurring depression or nicotine dependence.
Collapse
Affiliation(s)
- Zhenxiang Gao
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - T John Winhusen
- Center for Addiction Research, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Maria Gorenflo
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA; Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Udi E Ghitza
- Center for the Clinical Trials Network (CCTN), National Institute on Drug Abuse (NIDA), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Edward Nunes
- Department of Psychiatry, New York State Psychiatric Institute, Irving Medical Center, Columbia University, New York, NY, USA
| | - Andrew J Saxon
- Department of Psychiatry and Behavioral Science, School of Medicine, University of Washington, Seattle, WA, USA
| | - Todd Korthuis
- Addiction Medicine Section, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Kathleen Brady
- Department of Psychiatry and Behavioral Sciences, College of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Sean X Luo
- Columbia University Division on Substance Use Disorders, and Research Scientist, New York State Psychiatric Institute, New York, NY, USA
| | - Pamela B Davis
- Center for Community Health Integration, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - David C Kaelber
- Center for Clinical Informatics Research and Education, The Metro Health System, Cleveland, OH, USA
| | - Rong Xu
- Center for Artificial Intelligence in Drug Discovery, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
9
|
Bhuia MS, Rokonuzzman M, Hossain MI, Ansari SA, Ansari IA, Islam T, Al Hasan MS, Mubarak MS, Islam MT. Anxiolytic- like Effects by trans-Ferulic Acid Possibly Occur through GABAergic Interaction Pathways. Pharmaceuticals (Basel) 2023; 16:1271. [PMID: 37765079 PMCID: PMC10535412 DOI: 10.3390/ph16091271] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Numerous previous studies reported that ferulic acid exerts anxiolytic activity. However, the mechanisms have yet to be elucidated. The current study aimed to investigate the anxiolytic effect of trans-ferulic acid (TFA), a stereoisomer of ferulic acid, and evaluated its underlying mechanism using in vivo and computational studies. For this, different experimental doses of TFA (25, 50, and 75 mg/kg) were administered orally to Swiss albino mice, and various behavioral methods of open field, hole board, swing box, and light-dark tests were carried out. Diazepam (DZP), a positive allosteric modulator of the GABAA receptor, was employed as a positive control at a dose of 2 mg/kg, and distilled water served as a vehicle. Additionally, molecular docking was performed to estimate the binding affinities of the TFA and DZP toward the GABAA receptor subunits of α2 and α3, which are associated with the anxiolytic effect; visualizations of the ligand-receptor interaction were carried out using various computational tools. Our findings indicate that TFA dose-dependently reduces the locomotor activity of the animals in comparison with the controls, calming their behaviors. In addition, TFA exerted the highest binding affinity (-5.8 kcal/mol) to the α2 subunit of the GABAA receptor by forming several hydrogen and hydrophobic bonds. Taken together, our findings suggest that TFA exerts a similar effect to DZP, and the compound exerts moderate anxiolytic activity through the GABAergic interaction pathway. We suggest further clinical studies to develop TFA as a reliable anxiolytic agent.
Collapse
Affiliation(s)
- Md. Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Rokonuzzman
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Imran Hossain
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, 10124 Turin, Italy;
| | - Tawhida Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | - Md. Sakib Al Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| | | | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh; (M.S.B.); (M.R.); (M.I.H.); (T.I.); (M.S.A.H.)
| |
Collapse
|
10
|
Cruz KLO, Salla DH, Oliveira MP, Silva LE, Vedova LMD, Mendes TF, Bressan CBC, Silva MR, Santos SML, Soares HJ, Mendes RL, Vernke CN, Silva MG, Laurentino AOM, Medeiros FD, Vilela TC, Lemos I, Bitencourt RM, Réus GZ, Streck EL, Mello AH, Rezin GT. Energy metabolism and behavioral parameters in female mice subjected to obesity and offspring deprivation stress. Behav Brain Res 2023; 451:114526. [PMID: 37271313 DOI: 10.1016/j.bbr.2023.114526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/20/2023] [Accepted: 06/01/2023] [Indexed: 06/06/2023]
Abstract
This study aimed to evaluate the behavioral and energy metabolism parameters in female mice subjected to obesity and offspring deprivation (OD) stress. Eighty female Swiss mice, 40 days old, were weighed and divided into two groups: Control group (control diet, n = 40) and Obese group (high-fat diet, n = 40), for induction of the animal model of obesity, the protocol was based on the consumption of a high-fat diet and lasted 8 weeks. Subsequently, the females were subjected to pregnancy, after the birth of the offspring, were divided again into the following groups (n = 20): Control non-deprived (ND), Control + OD, Obese ND, and Obese + OD, for induction of the stress protocol by OD. After the offspring were 21 days old, weaning was performed and the dams were subjected to behavioral tests. The animals were humanely sacrificed, the brain was removed, and brain structures were isolated to assess energy metabolism. Both obesity and OD led to anhedonia in the dams. It was shown that the structures most affected by obesity and OD are the hypothalamus and hippocampus, as evidenced by the mitochondrial dysfunction found in these structures. When analyzing the groups separately, it was observed that OD led to more pronounced mitochondrial damage; however, the association of obesity with OD, as well as obesity alone, also generated damage. Thus, it is concluded that obesity and OD lead to anhedonia in animals and to mitochondrial dysfunction in the hypothalamus and hippocampus, which may lead to losses in feeding control and cognition of the dams.
Collapse
Affiliation(s)
- Kenia L O Cruz
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Daniele H Salla
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariana P Oliveira
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Larissa E Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil.
| | - Larissa M D Vedova
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Talita F Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Catarina B C Bressan
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Mariella R Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Sheila M L Santos
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Hevylin J Soares
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Rayane L Mendes
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Camila N Vernke
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Marina G Silva
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Ana O M Laurentino
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Fabiana D Medeiros
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Thais C Vilela
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Isabela Lemos
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Rafael M Bitencourt
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| | - Gislaine Z Réus
- Translational Psychiatry Laboratory, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, Brazil
| | - Emilio L Streck
- Laboratory of Experimental Neurology, Postgraduate Program in Health Sciences, University of the Extreme South of Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Aline H Mello
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX, USA
| | - Gislaine T Rezin
- Laboratory of Neurobiology of Inflammatory and Metabolic Processes, Postgraduate Program in Health Sciences, University of South Santa Catarina (UNISUL), Tubarão, Brazil
| |
Collapse
|
11
|
Puppala ER, Aochenlar SL, Shantanu PA, Ahmed S, Jannu AK, Jala A, Yalamarthi SS, Borkar RM, Tripathi DM, Naidu VGM. Perillyl alcohol attenuates chronic restraint stress aggravated dextran sulfate sodium-induced ulcerative colitis by modulating TLR4/NF-κB and JAK2/STAT3 signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 106:154415. [PMID: 36070663 DOI: 10.1016/j.phymed.2022.154415] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Ulcerative colitis (UC) is the most prevalent chronic inflammatory immune bowel disease. The modernization of lifestyle accompanied by the stress to cope with the competition has resulted in a new range of complications where stress became a critical contributing factor for many diseases, including UC. Hence there is an urgent need to develop a dual role in curtailing both systemic and neuroinflammation. Perillyl alcohol (POH) is a natural essential oil found in lavender, peppermint, cherries etc and has been widely studied for its strong anti-inflammatory, antioxidant and anti-stress properties. HYPOTHESIS/PURPOSE POH regulates the various inflammatory signaling cascades involved in chronic inflammation by inhibiting farnesyltransferase enzyme. Several studies reported that POH could inhibit the phosphorylation of NF-κB, STAT3 and promote the endogenous antioxidant enzymes like Nrf2 via farnesyltransferase enzyme inhibition. Also, the effects of POH against UC is not known yet. Thus, this study aims to explore the anti-ulcerative properties of POH on stress aggravated ulcerative colitis in C57BL/6 mice. METHODS Ulcerative colitis was induced by duel exposure of chronic restraint stress (day 1 to day 28) and 2.5% dextran sulphate sodium (day8 to day14) in mice. POH treatment 100 and 200 mg/kg was administred from day14 ti day28 following oral route of administration. Disease activity index, colonoscopy, western blot analysis and histological analysis, neurotransmitter analysis and Gene expression studies were perofomerd to asses the anti-colitis effects of POH. RESULTS The treatment reversed the oxidative stress and inflammatory response by inhibiting TLR4/NF-kB pathway, and IL-6/JAK2/STAT3 pathway in both isolated mice colons and brains. The inhibition of these pathways resulted in a decrease in pro-inflammatory cytokines like IL-6, IL-1β and TNF-α. The treatment improved the physiological and histological changes with decreased ulcerations as examined by colonic endoscopy and Haematoxylin and Eosin staining. The treatment also improved the behavior response as it increased mobility time which was reduced by chronic restrained stress. This was due to increased satiety neurotransmitters like dopamine and serotonin and decreased cortisol in mice brains. CONCLUSION These results infer that POH has significant anti-colitis activity on chronic restraint stress aggravated DSS-induced UC in mice.
Collapse
Affiliation(s)
- Eswara Rao Puppala
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sunepjungla L Aochenlar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - P A Shantanu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sahabuddin Ahmed
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Arun Kumar Jannu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Aishwarya Jala
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Sai Sudha Yalamarthi
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Roshan M Borkar
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101
| | - Dinesh Mani Tripathi
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary sciences (ILBS), New Delhi, Delhi 110070
| | - V G M Naidu
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Assam, India, 781101.
| |
Collapse
|
12
|
Ahmad S, Azhar A, Tikmani P, Rafique H, Khan A, Mesiya H, Saeed H. A randomized clinical trial to test efficacy of chamomile and saffron for neuroprotective and anti-inflammatory responses in depressive patients. Heliyon 2022; 8:e10774. [PMID: 36217471 PMCID: PMC9547202 DOI: 10.1016/j.heliyon.2022.e10774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/26/2022] [Accepted: 09/22/2022] [Indexed: 11/24/2022] Open
Abstract
Depression is one of the common psychiatric problems in growing world population caused by long-term stressful events that may trigger the down regulation of neurogenesis. The pathogenesis of depression initially relies on serotonin deficiency which is associated with depressive feelings. Tryptophan (TRP) depletion participate crucial role in inducing depressive symptoms. Long-term reduction of 5-HT may disseminate to high sensitivity of MDD and alters the level of BDNF. Some studies have also revealed the strong association between excessive neuroinflammation and BDNF levels, due the release of pro-inflammatory cytokines. The treatment approach through FDA approved medicine has their own merits and drawbacks. Therefore, herbal alternatives have recently garnered attention for their effectiveness against depression. However, evidence-based synergic effects of antidepressant with different herbal agents are limited. The purpose of this study was to assess the synergistic effects of two well-known herbs, chamomile and saffron, as an adjuvant therapy in patients with mild to moderate depression. The present study was study randomized, open, blinded trial and comprised of 120 participants randomly allocated to control (n = 60) and test (n = 60). After consent, the patient health questionnaire- 9 (PHQ-9) was filled to obtain depression scores. The test participants were received herbal tea sachets twice a day for one month (20 mg Chamomile and 1 mg Saffron/sachet) along with routine medicines, while control participants were received only allopathic medications. Blood samples were taken before and after the treatment. The depressive symptoms improved significantly with both treatments. The effect of herbs enhanced the efficacy of medications and significantly improved PHQ-9 scale and BDNF while reduced the inflammatory markers (CRP) and TRP level in plasma thereby increased the availability of TRP in brain. It has been concluded that the herbal adjuvant therapy produced long term improvement against depression and enhanced the efficacy of allopathic treatment.
Collapse
|
13
|
Tsoi B, Gao C, Yan S, Du Q, Yu H, Li P, Deng J, Shen J. Camellia nitidissima Chi extract promotes adult hippocampal neurogenesis and attenuates chronic corticosterone-induced depressive behaviours through regulating Akt/GSK3β/CREB signaling pathway. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
14
|
Fu M, Chen S, Xu R, Chen J, Chen X, Gan W, Huang H, Duan G. Effects of Intravenous Analgesia Using Tramadol on Postoperative Depression State and Sleep Quality in Women Undergoing Abdominal Endoscopic Surgery: A Randomized Controlled Trial. Drug Des Devel Ther 2022; 16:1289-1300. [PMID: 35531319 PMCID: PMC9075899 DOI: 10.2147/dddt.s357773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Purpose This study aimed to explore the effects of intravenous analgesia using tramadol on postoperative depression, anxiety, and sleep in women undergoing abdominal endoscopic surgery. Patients and Methods Two hundred female patients (100 in each group) who underwent abdominal endoscopic surgery were recruited to randomly receive intravenous analgesia with sufentanil combined with tramadol (tramadol group) or sufentanil (control group). The primary outcome was the incidence of postoperative depression, which was assessed at 1, 2, and 3 days after surgery using the 13-item Beck Depression Inventory. The secondary outcomes were the incidence of anxiety and sleep quality, which were assessed using the 20-item Self-Rating Anxiety Scale and Richards–Campbell Sleep Questionnaire. Results The incidence of depression (Beck depression scale≥4) during the 3-day follow-up in the control group was 51%, which was significantly higher than that in the tramadol group of 28% (relative risk [RR]=0.55; 95% confidence interval [CI], 0.38–0.79; P=0.001). No difference was found in the incidence of anxiety state (Self-Rating Anxiety Scale≥40) between the tramadol and control groups (7%vs 5%; RR=1.40; 95% CI, 0.46–4.25; P=0.552). All of the Richards–Campbell sleep scales of patients in the tramadol group at 1 (77.4±15.2 vs 64.2±20.1, P<0.001), 2 (84.1±14.9 vs 71.8±18.8, P<0.001), and 3 days (87.0±12.2 vs 70.3±21.0, P<0.001) after surgery were higher than those in the control group. Conclusion Intravenous analgesia using tramadol can effectively improve the postoperative depression and sleep status of women undergoing abdominal endoscopic surgery. Tramadol is recommended for use in postoperative analgesia when improving postoperative mood, and sleep is needed in clinical practice.
Collapse
Affiliation(s)
- Mengyue Fu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Shi Chen
- Department of Anesthesiology, Chongqing Beibu Maternity Hospital, Chongqing, People’s Republic of China
| | - Rui Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Jie Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Xuehan Chen
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Wanxia Gan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - He Huang
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
| | - Guangyou Duan
- Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China
- Correspondence: Guangyou Duan; He Huang, Department of Anesthesiology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, People’s Republic of China, Email ;
| |
Collapse
|
15
|
Wang Q, Xu M, Xiao M, Luan X, Chen H, Ruan Y, Wang L, Tu Y, Huang G, He J. The relationship between serum levels of S-100β and anxiety symptoms in patients with acute stroke. Psychogeriatrics 2022; 22:291-298. [PMID: 35229415 DOI: 10.1111/psyg.12799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 11/22/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Post-stroke anxiety (PSA) is a common neuropsychiatric affective disorder occurring after a stroke. Animal experiments have indicated that serum S-100β levels are closely related to anxiety disorder. No clinical study has been done to explore the relationship between serum S-100β levels and anxiety symptoms in patients with acute stroke. The aim of our study was to investigate the association between serum S-100β levels and PSA. METHODS One hundred twenty-six acute stroke patients were recruited and followed up for 1 month. Blood samples were collected within 24 h after admission. The levels of serum S-100β were measured by enzyme-linked immunosorbent assays. Patients with significant clinical symptoms of anxiety and a Hamilton Anxiety Rating Scale score >7 at 1 month after stroke were diagnosed as PSA. RESULTS Serum S-100β levels in the non-PSA group were lower than the PSA group (838.97 (678.20-993.59) ng/L vs. 961.87 (796.09-1479.59) ng/L, Z = -2.661, P = 0.008). In multivariate analyses, we found that decreased risk of PSA was associated with low tertile serum S-100β levels (≤753.8 ng/L, OR 0.062, 95% CI 0.008-0.475, P = 0.007). CONCLUSIONS Low serum S-100β levels at admission may be associated with the decreased risk of PSA.
Collapse
Affiliation(s)
- Qiongzhang Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Minjie Xu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Meijuan Xiao
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoqian Luan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Huijun Chen
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yiting Ruan
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Liuyuan Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yujie Tu
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guiqian Huang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jincai He
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
16
|
Almudhi A, Gabr S. Green tea consumption and the management of adrenal stress hormones in adolescents who stutter. Biomed Rep 2022; 16:32. [PMID: 35251619 PMCID: PMC8889529 DOI: 10.3892/br.2022.1515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/14/2022] [Indexed: 11/29/2022] Open
Abstract
Green tea and its polyphenolic compounds have been shown to exert positive effects in individuals with psychological disorders. The protective role of green tea against stuttering or its related consequences, depression, anxiety and stress, were evaluated in adolescents with moderate stuttering (MS). A total of 60 adolescents aged (12-18) years old were enrolled in this study. Patients were classified according to standardized test material Stuttering Severity Instrument, 4th Edition was used to estimate the severity of stuttering; participants were classified into two groups: a normal healthy group (n=30) and a MS group (n=30). The Depression Anxiety Stress Scale and General Health Questionnaire were used to estimate the degree of depression, anxiety and stress as well as general mental health. The physiological profile of stress hormones, as a measure of the response to green tea response, was also measured amongst participants. Adrenal stress hormones cortisol, dehydroepiandrosterone (DHEA), acetylcholine (ACTH), corticosterone and the cortisol:DHEA ratio were assayed. In addition, the constituent green tea polyphenols and their quantities were determined using liquid chromatography analysis. Decaffeinated green tea was administered six cups/day for 6 weeks, and this significantly improved the depression, anxiety, stress and mental health consequences associated with stuttering in adolescents. In addition, increased consumption of green tea significantly reduced elevated levels of adrenal stress hormones; cortisol, DHEA, ACTH and corticosterone, and increased the cortisol:DHEA ratio in the control and adolescents who stuttered. The data showed that drinking six cups of decaffeinated green tea, which is enriched in catechins (1,580 mg) and other related polyphenols, was sufficient to improve the consequences of mental health associated with stuttering in younger aged individuals.
Collapse
Affiliation(s)
- Abdulaziz Almudhi
- Department of Medical Rehabilitation Sciences, College of Applied Medical Sciences, King Khalid University, Abha 61481, Saudi Arabia
| | - Sami Gabr
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
17
|
Wang X, Wang K, Wu X, Huang W, Yang L. Role of the cAMP-PKA-CREB-BDNF pathway in abnormal behaviours of serotonin transporter knockout mice. Behav Brain Res 2022; 419:113681. [PMID: 34838579 DOI: 10.1016/j.bbr.2021.113681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 11/02/2022]
Abstract
Serotonin transporter gene-linked polymorphic region polymorphisms are associated with anxiety, neuroticism, affective disorders and vulnerability to stressful life events; however, the relevant physiological mechanisms are not well understood. Serotonin transporter knockout mice have been widely used as a model of allelic variation of serotonin transporter function in humans; herein, wild-type mice and heterozygous and homozygous knockout mice models were established to explore the behavioural changes related to different genotypes and the possible physiological mechanisms. Behavioural changes were assessed using behavioural tests, namely, elevated plus maze, open field, Morris water maze and rotarod tests. Serum indicators were detected using the enzyme-linked immunosorbent assay. Compared with wild-type mice, homozygous mice showed significant anxiety-like behaviours in the plus maze and open field tests; conversely, anxiety-like behaviours in heterozygous mice were less pronounced. Homozygous mice also showed cognitive impairment and motor inhibition in the Morris water maze and rotarod tests. Serotonin levels decreased in both heterozygous and homozygous mice, and 5-hydroxytryptophan, protein kinase A, adenylyl cyclase, cyclic adenosine monophosphate response element-binding protein and brain-derived neurotrophic factor levels were lower in homozygous mice than in wild-type and heterozygous mice, whereas no statistical differences were found between wild-type and heterozygous mice. Additionally, there was a correlation between serological and behavioural indicators. This study provided experimental evidence that the cyclic adenosine monophosphate-protein kinase A-cyclic adenosine monophosphate response element-binding protein-brain-derived neurotrophic factor pathway may be involved in the regulation of polymorphism to stress and enriched the behavioural and physiological characteristics of serotonin transporter knockout mice.
Collapse
Affiliation(s)
- Xiaomin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Ke Wang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Xiangmin Wu
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Wenxiu Huang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China
| | - Li Yang
- Department of Occupational and Environmental Health, School of Public Health, Guangxi Medical University, Nanning, PR China.
| |
Collapse
|
18
|
Nozari A, Gagné R, Lu C, Yauk C, Trudeau VL. Brief Developmental Exposure to Fluoxetine Causes Life-Long Alteration of the Brain Transcriptome in Zebrafish. Front Endocrinol (Lausanne) 2022; 13:847322. [PMID: 35573988 PMCID: PMC9097470 DOI: 10.3389/fendo.2022.847322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 03/23/2022] [Indexed: 11/25/2022] Open
Abstract
Fluoxetine (FLX) and other selective serotonin reuptake inhibitors are widely used to treat depressive disorders during pregnancy. Early-life exposure to FLX is known to disrupt the normal function of the stress axis in humans, rodents, and teleosts. We used a zebrafish line with a cortisol-inducible fluorescent transgene to study the effects of developmental daily exposure to FLX (54 µg/L) on the transcriptomic profile of brain tissues in exposed larvae and later as 6-month-old adults. High throughput RNA sequencing was conducted on brain tissues in unstressed and stressed conditions. Long-lasting effects of FLX were observed in telencephalon (Tel) and hypothalamus (Hyp) of adult zebrafish with 1927 and 5055 genes significantly (≥1.2 fold-change, false-discovery p-value < 0.05) dysregulated in unstressed condition, respectively. Similar findings were observed in Hyp with 1245 and 723 genes being significantly dysregulated in stressed adults, respectively. Differentially expressed genes converted to Homo sapiens orthologues were used for Ingenuity Pathway Analysis. The results showed alteration of pathways involved in neuroendocrine signaling, cholesterol metabolism and synaptogenesis. Enriched networks included lipid metabolism, molecular transport, and nervous system development. Analysis of putative upstream transcription regulators showed potential dysregulation of clocka and nr3c1 which control circadian rhythm, stress response, cholesterol metabolism and histone modifications. Several genes involved in epigenetic regulation were also affected by FLX, including dnmt3a, adarb1, adarb2, hdac4, hdac5, hdac8, and atf2. We report life-long disruptive effects of FLX on pathways associated with neuroendocrine signaling, stress response and the circadian rhythm, and all of which are implicated in the development of depressive disorders in humans. Our results raise concern for the persistent endocrine-disrupting potential of brief antidepressant exposure during embryonic development.
Collapse
Affiliation(s)
- Amin Nozari
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Remi Gagné
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Chunyu Lu
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Carole Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
- *Correspondence: Vance L. Trudeau,
| |
Collapse
|
19
|
Tunc-Ozcan E, Brooker SM, Bonds JA, Tsai YH, Rawat R, McGuire TL, Peng CY, Kessler JA. Hippocampal BMP signaling as a common pathway for antidepressant action. Cell Mol Life Sci 2021; 79:31. [PMID: 34936033 PMCID: PMC8740160 DOI: 10.1007/s00018-021-04026-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/27/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022]
Abstract
The benefits of current treatments for depression are limited by low response rates, delayed therapeutic effects, and multiple side effects. Antidepressants affect a variety of neurotransmitter systems in different areas of the brain, and the mechanisms underlying their convergent effects on behavior have been unclear. Here we identify hippocampal bone morphogenetic protein (BMP) signaling as a common downstream pathway that mediates the behavioral effects of five different antidepressant classes (fluoxetine, bupropion, duloxetine, vilazodone, trazodone) and of electroconvulsive therapy. All of these therapies decrease BMP signaling and enhance neurogenesis in the hippocampus. Preventing the decrease in BMP signaling blocks the effect of antidepressant treatment on behavioral phenotypes. Further, inhibition of BMP signaling in hippocampal newborn neurons is sufficient to produce an antidepressant effect, while chemogenetic silencing of newborn neurons prevents the antidepressant effect. Thus, inhibition of hippocampal BMP signaling is both necessary and sufficient to mediate the effects of multiple classes of antidepressants.
Collapse
Affiliation(s)
- Elif Tunc-Ozcan
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA.
| | - Sarah M Brooker
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Jacqueline A Bonds
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Yung-Hsu Tsai
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Radhika Rawat
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Tammy L McGuire
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - Chian-Yu Peng
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| | - John A Kessler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, 303 E. Chicago Ave, Ward 10-233, Chicago, IL, 60611, USA
| |
Collapse
|
20
|
Xiao G, Zhao M, Liu Z, Du F, Zhou B. Zinc antagonizes iron-regulation of tyrosine hydroxylase activity and dopamine production in Drosophila melanogaster. BMC Biol 2021; 19:236. [PMID: 34732185 PMCID: PMC8564973 DOI: 10.1186/s12915-021-01168-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 10/15/2021] [Indexed: 12/21/2022] Open
Abstract
Background Dopamine (DA) is a neurotransmitter that plays roles in movement, cognition, attention, and reward responses, and deficient DA signaling is associated with the progression of a number of neurological diseases, such as Parkinson’s disease. Due to its critical functions, DA expression levels in the brain are tightly controlled, with one important and rate-limiting step in its biosynthetic pathway being catalyzed by tyrosine hydroxylase (TH), an enzyme that uses iron ion (Fe2+) as a cofactor. A role for metal ions has additionally been associated with the etiology of Parkinson’s disease. However, the way dopamine synthesis is regulated in vivo or whether regulation of metal ion levels is a component of DA synthesis is not fully understood. Here, we analyze the role of Catsup, the Drosophila ortholog of the mammalian zinc transporter SLC39A7 (ZIP7), in regulating dopamine levels. Results We found that Catsup is a functional zinc transporter that regulates intracellular zinc distribution between the ER/Golgi and the cytosol. Loss-of-function of Catsup leads to increased DA levels, and we showed that the increased dopamine production is due to a reduction in zinc levels in the cytosol. Zinc ion (Zn2+) negatively regulates dopamine synthesis through direct inhibition of TH activity, by antagonizing Fe2+ binding to TH, thus rendering the enzyme ineffective or non-functional. Conclusions Our findings uncovered a previously unknown mechanism underlying the control of cellular dopamine expression, with normal levels of dopamine synthesis being maintained through a balance between Fe2+ and Zn2+ ions. The findings also provide support for metal modulation as a possible therapeutic strategy in the treatment of Parkinson’s disease and other dopamine-related diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01168-0.
Collapse
Affiliation(s)
- Guiran Xiao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.,School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Mengran Zhao
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhihua Liu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, Anhui, China
| | - Fan Du
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Bing Zhou
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
21
|
UPLC-MS/MS-based profiling of 31 neurochemicals in the mouse brain after treatment with the antidepressant nefazodone. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106580] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
22
|
Fakhri S, Iranpanah A, Gravandi MM, Moradi SZ, Ranjbari M, Majnooni MB, Echeverría J, Qi Y, Wang M, Liao P, Farzaei MH, Xiao J. Natural products attenuate PI3K/Akt/mTOR signaling pathway: A promising strategy in regulating neurodegeneration. PHYTOMEDICINE 2021; 91:153664. [PMID: 34391082 DOI: 10.1016/j.phymed.2021.153664] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/04/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND As common, progressive, and chronic causes of disability and death, neurodegenerative diseases (NDDs) significantly threaten human health, while no effective treatment is available. Given the engagement of multiple dysregulated pathways in neurodegeneration, there is an imperative need to target the axis and provide effective/multi-target agents to tackle neurodegeneration. Recent studies have revealed the role of phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) in some diseases and natural products with therapeutic potentials. PURPOSE This is the first systematic and comprehensive review on the role of plant-derived secondary metabolites in managing and/or treating various neuronal disorders via the PI3K/Akt/mTOR signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was done based on the PubMed, Scopus, Web of Science, and Cochrane electronic databases. Two independent investigators followed the PRISMA guidelines and included papers on PI3K/Akt/mTOR and interconnected pathways/mediators targeted by phytochemicals in NDDs. RESULTS Natural products are multi-target agents with diverse pharmacological and biological activities and rich sources for discovering and developing novel therapeutic agents. Accordingly, recent studies have shown increasing phytochemicals in combating Alzheimer's disease, aging, Parkinson's disease, brain/spinal cord damages, depression, and other neuronal-associated dysfunctions. Amongst the emerging targets in neurodegeneration, PI3K/Akt/mTOR is of great importance. Therefore, attenuation of these mediators would be a great step towards neuroprotection in such NDDs. CONCLUSION The application of plant-derived secondary metabolites in managing and/or treating various neuronal disorders through the PI3K/Akt/mTOR signaling pathway is a promising strategy towards neuroprotection.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Amin Iranpanah
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Mohammad Ranjbari
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | | | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| | - Yaping Qi
- Purdue Quantum Science and Engineering Institute, Purdue University, West Lafayette, IN 47907, USA.
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, PR China.
| | - Pan Liao
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA.
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Jianbo Xiao
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China; Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, E-32004 Ourense, Spain.
| |
Collapse
|
23
|
You Y, Wang D, Wang Y, Li Z, Ma X. A Bird's-Eye View of Exercise Intervention in Treating Depression Among Teenagers in the Last 20 Years: A Bibliometric Study and Visualization Analysis. Front Psychiatry 2021; 12:661108. [PMID: 34220574 PMCID: PMC8249759 DOI: 10.3389/fpsyt.2021.661108] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/30/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Exercise is medicine. Multiple studies on the effects and mechanisms of exercise in treating depression among teenagers and adolescents have been widely reported. However, literature involving scientometric analysis of this topic is sparse. Here, we endeavored to conduct a bibliometric study and visualization analysis to give a bird's-eye view of publications between 2000 and 2020 on exercise therapy treating depression. Methods: Relevant original publications were obtained from the Science Citation Index Expanded in the Web of Science Core Collection (WoSCC) database between 2000 and 2020. CiteSpace (5.7.R 5) and VOSviewer (1.6.16) software were used to perform bibliometric analysis of countries, institutions, categories, journals, authors, references, and keywords involved in this topic. Results: A total number of 975 articles on this field were retrieved from the WoSCC database and we identified an overall increase in the amount of publications over the past two decades, with the United States and Harvard University leading the field. Most related publications were published in the journals with a focus on sport, medicine, rehabilitation, psychology, and health, as represented by the dual-map overlay. A series of authors and co-cited authors were identified as main contributors in the exercise-depression-teenager domain. Three major clusters were explored based on the reference co-citation analysis: "exercise," "suicide," and "concussion". Conclusions: Current concerns and hotspots of exercise intervention in depression treatments were summarized by "individual level," "social level," "role of exercise," and "research quality." We considered that the following four directions were potential future perspectives: "research on the effect of specific exercise intervention," "research on the essence of exercise and sports," "research on the combination mode of 'exercise + X'," and "research on the micro and molecular level," which should receive more attention.
Collapse
Affiliation(s)
| | | | | | | | - Xindong Ma
- Division of Sport Science and Physical Education, Tsinghua University, Beijing, China
| |
Collapse
|
24
|
Yin YY, Wang YH, Liu WG, Yao JQ, Yuan J, Li ZH, Ran YH, Zhang LM, Li YF. The role of the excitation:inhibition functional balance in the mPFC in the onset of antidepressants. Neuropharmacology 2021; 191:108573. [PMID: 33945826 DOI: 10.1016/j.neuropharm.2021.108573] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/30/2021] [Accepted: 04/14/2021] [Indexed: 12/15/2022]
Abstract
Currently available antidepressants, such as selective serotonin reuptake inhibitors (SSRIs) and serotonin and norepinephrine reuptake inhibitors (SNRIs), generally require weeks to months to produce a therapeutic response, but the mechanism of action underlying the delayed onset of antidepressant-like action remains to be elucidated. The balance between excitatory glutamatergic pyramidal neurons and inhibitory γ-aminobutyric acid (GABA) interneurons, i.e., the excitation:inhibition functional (E:I) balance, in the medial prefrontal cortex (mPFC) is critical in regulating several behaviors and might play an important mediating role in the mechanism of rapid antidepressant-like action reported by several studies. In the present study, the multichannel electrophysiological technique was used to record the firing activities of pyramidal neurons and interneurons and investigate the effects of a single dose of fluoxetine and ketamine (both 10 mg/kg, i.p.) on the E:I functional balance in the rat mPFC after 90 min or 24 h, and the forced swimming test (FST) was used to evaluate the antidepressant-like effects of fluoxetine and ketamine. The present study also explored the effects of chronic treatment with fluoxetine (10 mg/kg, i.g.) for 7 d or 21 d on the E:I functional balance in the mPFC. The present results suggested that a single dose of ketamine could both significantly increase the firing activities of pyramidal neurons and significantly decrease the firing activities of interneurons in the mPFC and exerted significant antidepressant-like action on the FST after 90 min and 24 h, but fluoxetine had no such effects under the same conditions. However, chronic treatment with fluoxetine for 21 d (but not 7 d) could significantly affect the firing activities of pyramidal neurons and interneurons in the mPFC. Taken together, the present results indicated that rapid regulation of the E:I functional balance in the mPFC might be an important common mechanism of rapid-acting antidepressants and the delayed onset of SSRIs might be partly attributed to their inability to rapidly regulate the E:I functional balance in the mPFC. The present study provided a new entry point to the development of rapid-acting antidepressants.
Collapse
Affiliation(s)
- Yong-Yu Yin
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Yun-Hui Wang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | | | - Jun-Qi Yao
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Jin Yuan
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Ze-Han Li
- Capital Normal University High School, Beijing, China
| | - Yu-Hua Ran
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China
| | - Li-Ming Zhang
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China.
| | - Yun-Feng Li
- Beijing Institute of Pharmacology and Toxicology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Key Laboratory of Neuropsychopharmacology, Beijing, China; Beijing Institute of Basic Medical Sciences, Beijing, China.
| |
Collapse
|
25
|
Majumdar S, Gupta S, Prajapati SK, Krishnamurthy S. Neuro-nutraceutical potential of Asparagus racemosus: A review. Neurochem Int 2021; 145:105013. [PMID: 33689806 DOI: 10.1016/j.neuint.2021.105013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 02/06/2023]
Abstract
Debilitating neuropsychiatric and neurodegenerative conditions are associated with complex multifactorial pathophysiology. Their treatment strategies often only provide symptomatic relief, delaying disease progression without giving a complete cure. Potent and safer treatment alternatives beyond symptomatic relief are sought. Herbal supplements have surely been explored due to their multiple component nature to enhance the effect of western medications. One such well-documented nutraceutical in the ancient Greek, Chinese, and Ayurvedic medicine system known for its various medicinal benefits is Asparagus racemosus. Widely used for its lactogenic properties, A. racemosus is also cited in Ayurveda as a nervine tonic. A. racemosus based nutraceuticals have shown to possess adaptogenic, neuroprotective, antioxidant, anti-inflammatory, and nootropic activity under preclinical and clinical settings without posing significant adverse effects. A. racemosus extracts restore the perturbed neurotransmitters and prevent oxidative neuronal damage. From the available neuropharmacological researches, the physiological actions of A. racemosus can ultimately be directed for either augmentation of cognitive ability or in the management of neurological conditions such as stress, anxiety, depression, epilepsy, Parkinson's, and Alzheimer's disease. The studies focus on the multi-component extract, and the lack of standardization has been a major hurdle in preventing the allotment of reported neuropharmacological activity to one of the phytoconstituent. Herbal standardization of the plant extract based on a specific biomarker can help elucidate the intricate biomolecular pathway and neurocircuitries being involved. This, followed by rigorous standardized clinical trials, fixing dosages, and determining contraindications would facilitate the translation of A. racemosus to a FDA-approved neuromedicine for neurological disorders.
Collapse
Affiliation(s)
- Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Santosh Kumar Prajapati
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, 221005, India.
| |
Collapse
|
26
|
Saied NM, Georgy GS, Hussien RM, Hassan WA. Neuromodulatory effect of curcumin on catecholamine systems and inflammatory cytokines in ovariectomized female rats. Clin Exp Pharmacol Physiol 2021; 48:337-346. [PMID: 33098686 DOI: 10.1111/1440-1681.13427] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/12/2020] [Accepted: 10/19/2020] [Indexed: 12/21/2022]
Abstract
Anti-inflammatory products may represent the future for depressive disorder therapies. Curcumin (CUR) is a polyphenol and an active component of the turmeric plant Curcuma longa. The aim of this study was to investigate the impact of CUR, as a natural anti-inflammatory agent, on neuro-inflammation related to depression and compare it with the effects of fluoxetine (FLX) and estradiol (E2 ) in ovariectomized (OVX) rats. The experimental animals were divided into the following five treatment groups (n = 10): sham-operated, OVX, OVX-E2 (100 μg/kg, im, every other day), OVX-FLX (20 mg/kg, ip, daily), and OVX-CUR (100 mg/kg, po, daily). The results indicated that CUR improved the animals' performances in the open field test and modulated dopamine (DA) and norepinephrine levels in several brain regions compared with the OVX group. CUR resulted in the down-regulation of monoamine oxidase b and up-regulation of tyrosine hydroxylase, as well asDA receptor mRNA in the limbic region. In addition, CUR significantly attenuated the production of serum corticosterone hormone, tumour necrosis factor-alpha, interleukin-β1, interleukin-6, and nitric oxide in the limbic system. Furthermore, CUR normalized malondialdehyde levels and led to a significant upsurge in total antioxidant capacity, compared with the OVX group. Consequently, CUR, besides being harmless, was efficient against inflammation and oxidative-nitrosative stress, showing a greater effect on DA receptor expression than FLX and E2 in OVX rats.
Collapse
Affiliation(s)
- Nashwa M Saied
- Department of Hormone, National Organization for Drug Control and Research, Giza, Egypt
| | - Gehan S Georgy
- Department of Pharmacology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rokaya M Hussien
- Department of Hormone, National Organization for Drug Control and Research, Giza, Egypt
| | - Wafaa A Hassan
- Department of Hormone, National Organization for Drug Control and Research, Giza, Egypt
| |
Collapse
|
27
|
Caparros-Gonzalez RA, Torre-Luque ADL, Romero-Gonzalez B, Quesada-Soto JM, Alderdice F, Peralta-Ramírez MI. Stress During Pregnancy and the Development of Diseases in the offspring: A Systematic-Review and Meta-Analysis. Midwifery 2021; 97:102939. [PMID: 33647755 DOI: 10.1016/j.midw.2021.102939] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/21/2021] [Accepted: 02/04/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The goal of this systematic-review and meta-analysis was to assess whether high maternal stress during pregnancy is associated with the development of pediatric pathology. DESIGN Epidemiological peer-reviewed studies published in English or Spanish assessing associations between maternal stress during pregnancy and psychiatric and medical diseases were selected. PARTICIPANTS We retrieved 73,024 citations; 42 studies meeting inclusion criteria were assessed. Overall sample included 65,814,076 women. FINDINGS Overall odds ratio for the development of a medical disease was OR=1.24 (CI95=1.11, 1.39), Z=3.85, p<.01. Overall odds ratio for psychiatric disorders was OR=1.28 (CI95=1.06, 1.56), Z=2.54, p<.02. Multivariate meta-analysis showed a significant coefficient for autism spectrum disorder studies, B=0.42, SE=0.16, Z=2.67, p<.01. We found a significant overall effect size for autism spectrum disorder (OR=1.45 [CI95=1.24, 1.70], Z=4.69, p<.01). In terms of medical diseases, studies including obesity and infantile colic presented a significant overall effect size, as OR=1.20 (CI95=1.03, 1.39), Z=2.41, p<.02. The highest effect size was found regarding the first trimester (B=1.62, SE=0.16, Z=9.90, p<.01). KEY CONCLUSIONS We concluded that exposure to high levels of stress during pregnancy are associated with autism spectrum disorder, obesity, and infantile colic in offspring. IMPLICATIONS FOR PRACTICE Maternal stress during pregnancy should be addressed to tackle its potential impact in health across the life span.
Collapse
Affiliation(s)
| | | | - Borja Romero-Gonzalez
- Mind, Brain, and Behavior Research Center (CIMCYC), University of Granada, Granada, Spain
| | | | - Fiona Alderdice
- National Perinatal Epidemiology Unit, Nuffield Department of Population Health, Medical Sciences Division, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
28
|
Becker M, Pinhasov A, Ornoy A. Animal Models of Depression: What Can They Teach Us about the Human Disease? Diagnostics (Basel) 2021; 11:123. [PMID: 33466814 PMCID: PMC7830961 DOI: 10.3390/diagnostics11010123] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/28/2020] [Accepted: 01/08/2021] [Indexed: 12/14/2022] Open
Abstract
Depression is apparently the most common psychiatric disease among the mood disorders affecting about 10% of the adult population. The etiology and pathogenesis of depression are still poorly understood. Hence, as for most human diseases, animal models can help us understand the pathogenesis of depression and, more importantly, may facilitate the search for therapy. In this review we first describe the more common tests used for the evaluation of depressive-like symptoms in rodents. Then we describe different models of depression and discuss their strengths and weaknesses. These models can be divided into several categories: genetic models, models induced by mental acute and chronic stressful situations caused by environmental manipulations (i.e., learned helplessness in rats/mice), models induced by changes in brain neuro-transmitters or by specific brain injuries and models induced by pharmacological tools. In spite of the fact that none of the models completely resembles human depression, most animal models are relevant since they mimic many of the features observed in the human situation and may serve as a powerful tool for the study of the etiology, pathogenesis and treatment of depression, especially since only few patients respond to acute treatment. Relevance increases by the fact that human depression also has different facets and many possible etiologies and therapies.
Collapse
Affiliation(s)
- Maria Becker
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Albert Pinhasov
- Department of Molecular Biology and Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
| | - Asher Ornoy
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel;
- Hebrew University Hadassah Medical School, Jerusalem 9112102, Israel
| |
Collapse
|
29
|
Bassett B, Subramaniyam S, Fan Y, Varney S, Pan H, Carneiro AMD, Chung CY. Minocycline alleviates depression-like symptoms by rescuing decrease in neurogenesis in dorsal hippocampus via blocking microglia activation/phagocytosis. Brain Behav Immun 2021; 91:519-530. [PMID: 33176182 DOI: 10.1016/j.bbi.2020.11.009] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/12/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Clinical studies examining the potential of anti-inflammatory agents, specifically of minocycline, as a treatment for depression has shown promising results. However, mechanistic insights into the neuroprotective and anti-inflammatory actions of minocycline need to be provided. We evaluated the effect of minocycline on chronic mild stress (CMS) induced depressive-like behavior, and behavioral assays revealed minocycline ameliorate depressive behaviors. Multiple studies suggest a role of microglia in depression, revealing that microglia activation correlates with a decrease in neurogenesis and increased depressive-like behavior. The effect of minocycline on microglia activation in different areas of the dorsal or ventral hippocampus in stressed mice was examined by immunohistochemistry. We observed the increase in the number of activated microglia expressing CD68 after exposure to three weeks of chronic stress, whereas no changes in total microglia number were observed. These changes were observed throughout the DG, CA1 and CA2 regions in dorsal hippocampus but restricted to the DG of the ventral hippocampus. In vitro experiments including western blotting and phagocytosis assay were used to investigate the effect of minocycline on microglia activation. Activation of primary microglia by LPS in vitro causes and ERK1/2 activation, enhancement of iNOS expression and phagocytic activity, and alterations in cellular morphology that are reversed by minocycline exposure, suggesting that minocycline directly acts on microglia to reduce phagocytic potential. Our results suggest the most probable mechanism by which minocycline reverses the pathogenic phagocytic potential of neurotoxic M1 microglia, and reduces the negative phenotypes associated with reduced neurogenesis caused by exposure to chronic stress.
Collapse
Affiliation(s)
- Ben Bassett
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Selvaraj Subramaniyam
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yang Fan
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Seth Varney
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Hope Pan
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Ana M D Carneiro
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA
| | - Chang Y Chung
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA; School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China; Division of Natural Science, Duke Kunshan University, Kunshan 215316, China.
| |
Collapse
|
30
|
Li Z, Li Z, Lv X, Li Z, Xiong L, Hu X, Qin D. Intracerebroventricular Administration of Interferon-Alpha Induced Depressive-Like Behaviors and Neurotransmitter Changes in Rhesus Monkeys. Front Neurosci 2020; 14:585604. [PMID: 33328856 PMCID: PMC7710898 DOI: 10.3389/fnins.2020.585604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/19/2020] [Indexed: 02/05/2023] Open
Abstract
Interferon-alpha (IFN-α) is a cytokine widely used in the treatment of brain cancers and virus infections with side effects including causing depression. Monoamine neurotransmitter systems have been found playing important roles in peripheral IFN-α-induced depression, but how peripheral IFN-α accesses the central nervous system and contributes to the development of depression is poorly known. This study aimed to develop a non-human primate model using long-term intracerebroventricular (i.c.v.) administration of IFN-α (5 days/week for 6 weeks), to observe the induced depressive-like behaviors and to explore the contributions of monoamine neurotransmitter systems in the development of depression. In monkeys receiving i.c.v. IFN-α administration, anhedonia was observed as decreases of sucrose consumption, along with depressive-like symptoms including increased huddling behavior, decreases of spontaneous and reactive locomotion in home cage, as well as reduced exploration and increased motionless in the open field. Chronic central IFN-α infusion significantly increased the cerebrospinal fluid (CSF) concentrations of noradrenaline (NA), and 3,4-dihydroxyphenylacetic acid (DOPAC), but not 5-hydroxyindoleacetic acid (5-HIAA) and homovanillic acid (HVA). These CSF monoamine metabolites showed associations with some specific depression-related behaviors. In conclusion, central IFN-α administration induced anhedonia and depression-related behaviors comparable to the results with peripheral administration, and the development of depression was associated with the dysfunction of monoamine neurotransmitters.
Collapse
Affiliation(s)
- Zhifei Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Zhaoxia Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Xiaoman Lv
- Yunnan University of Chinese Medicine, Kunming, China
| | - Zhaofu Li
- Yunnan University of Chinese Medicine, Kunming, China
| | - Lei Xiong
- Yunnan University of Chinese Medicine, Kunming, China
| | - Xintian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- National Resource Center for Non-Human Primates, Kunming Primate Research Center, National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Dongdong Qin
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
31
|
Uselman TW, Barto DR, Jacobs RE, Bearer EL. Evolution of brain-wide activity in the awake behaving mouse after acute fear by longitudinal manganese-enhanced MRI. Neuroimage 2020; 222:116975. [PMID: 32474079 PMCID: PMC7805483 DOI: 10.1016/j.neuroimage.2020.116975] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 01/08/2023] Open
Abstract
Life threatening fear after a single exposure evolves in a subset of vulnerable individuals to anxiety, which may persist for their lifetime. Yet neither the whole brain's response to innate acute fear nor how brain activity evolves over time is known. Sustained neuronal activity may be a factor in the development of a persistent fear response. We couple two experimental protocols to provoke acute fear leading to prolonged fear: Predator stress (PS), a naturalistic approach to induce fear in rodents; and Serotonin transporter knockout mouse (SERT-KO) that responds to PS with sustained defensive behavior. Behavior was monitored before, during and at short and long times after PS in wild type (WT) and SERT-KO mice. Both genotypes responded to PS with defensive behavior. SERT-KO retained defensive behavior for 23 days, while WT mice returned to baseline exploratory behavior by 9 days. Thus, differences in neural activity between WT and SERT-KO 9 days after PS identifies neural correlates of persistent defensive behavior, in mice. We used longitudinal manganese-enhanced magnetic resonance imaging (MEMRI) to identify brain-wide neural activity associated with different behaviors. Mn2+ accumulation in active neurons occurs in awake, behaving mice and is retrospectively imaged. Following the same two cohorts of mice, WT and SERT-KO, longitudinally allowed unbiased quantitative comparisons of brain-wide activity by statistical parametric mapping (SPM). During natural behavior in WT, only low levels of activity-induced Mn2+-accumulation were detected, while much more accumulation appeared immediately after PS in both WT and SERT-KO, and evolved at 9 days to a new activity pattern (p < 0.0001, uncorr., T = 5.4). Patterns of accumulation differed between genotypes, with more regions of the brain and larger volumes within regions involved in SERT-KO than WT. A new computational segmentation analysis, using our InVivo Atlas based on a manganese-enhanced MR image of a living mouse, revealed dynamic changes in the volume of significantly enhanced voxels within each segment that differed between genotypes across 45 of 87 segmented regions. At Day 9 after PS, the striatum and ventral pallidum were active in both genotypes but more so in the SERT-KO. SERT-KO also displayed sustained or increased volume of Mn2+ accumulations between Post-Fear and Day 9 in eight segments where activity was decreased or silenced in WT. C-fos staining, an alternative neural activity marker, of brains from the same mice fixed at conclusion of imaging sessions confirmed that MEMRI detected active neurons. Intensity measurements in 12 regions of interest (ROIs) supported the SPM results. Between group comparisons by SPM and of ROI measurements identified specific regions differing between time points and genotypes. We report brain-wide activity in response to a single exposure of acute fear, and, for the first time, its evolution to new activity patterns over time in individuals vulnerable to persistent fear. Our results show multiple regions with dynamic changes in neural activity and that the balance of activity between segments is disordered in the SERT-KO. Thus, longitudinal MEMRI represents a powerful approach to discover how brain-wide activity evolves from the natural state either after an experience or during a disease process.
Collapse
Affiliation(s)
- Taylor W Uselman
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Daniel R Barto
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Russell E Jacobs
- Zilkha Neurogenetics Institute, University of Southern California, Los Angeles, CA, USA; California Institute of Technology, Pasadena, CA, USA
| | - Elaine L Bearer
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
32
|
Xiao Z, Liu C, Duan J, Zhou T, Liu X, Lu S, Yang Z, Xu F. Pharmacological Targets and Active Components of Gastrodiae rhizoma Against Depression: Findings of Network Pharmacology. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.500.513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
33
|
Neuropharmacological Effects of Mesaconitine: Evidence from Molecular and Cellular Basis of Neural Circuit. Neural Plast 2020; 2020:8814531. [PMID: 32904549 PMCID: PMC7456483 DOI: 10.1155/2020/8814531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 12/28/2022] Open
Abstract
Mesaconitine (MA), a diester-diterpenoid alkaloid in aconite roots, is considered to be one of the most important bioactive ingredients. In this review, we summarized its neuropharmacological effects, including analgesic effects and antiepileptiform effects. Mesaconitine can act on the central noradrenergic system and the serotonin system; behaving like the norepinephrine reuptake inhibitors and tricyclic antidepressants that increase norepinephrine levels in stress-induced depression. Therefore, the possible perspectives for future studies on the depression of MA were also discussed as well. The pharmacological effect of MA on depression is worthy of further study.
Collapse
|
34
|
Raman S, Asle-Rousta M, Rahnema M. Protective effect of fennel, and its major component trans-anethole against social isolation induced behavioral deficits in rats. Physiol Int 2020; 107:30-39. [PMID: 32491286 DOI: 10.1556/2060.2020.00012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 02/05/2020] [Indexed: 11/19/2022]
Abstract
Social isolation damages the nervous system by weakening the antioxidant system and leading to behavioral disorders. Fennel (Foeniculum vulgare Mill.) is an herbal plant that has antioxidant and neuroprotective properties. The objective of this study was to evaluate the effect of fennel methanol extract and its major component trans-anethole on spatial learning and memory, anxiety and depression in male rats exposed to social isolation stress.Rats were divided into six groups of Control (C), Fennel (F), trans-Anethole (A), Isolation, Isolation-F and Isolation-A. The rats were kept in the cage alone for 30 days to induce isolation. Fennel extract (150 mg/kg) and trans-anethole (80 mg/kg) were also gavaged during this period. At the end of the course, spatial learning and memory, anxiety and depression were measured by Morris water maze (MWM), elevated plus maze (EPM) and forced swimming test (FST), respectively.Learning and memory were impaired in isolated rats. Swimming time and distance to reach the hidden platform in these animals increased compared with controls (P < 0.05). In the EPM test, the percentage of open arm entries and open arm time also decreased significantly in the Isolation group (P < 0.01). The immobilization time in FST also increased significantly in these animals compared with the Control group (P < 0.001). Fennel and trans-anethole were both able to eliminate these changes in isolated rats.It is concluded that fennel and its major component, trans-anethole are suitable candidates for the prevention and treatment of stress-induced neurological disorders.
Collapse
Affiliation(s)
- S Raman
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | | | - M Rahnema
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| |
Collapse
|
35
|
Colaço CS, Alves SS, Nolli LM, Pinheiro WO, de Oliveira DGR, Santos BWL, Pic-Taylor A, Mortari MR, Caldas ED. Toxicity of ayahuasca after 28 days daily exposure and effects on monoamines and brain-derived neurotrophic factor (BDNF) in brain of Wistar rats. Metab Brain Dis 2020; 35:739-751. [PMID: 32103409 DOI: 10.1007/s11011-020-00547-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 02/05/2020] [Indexed: 12/28/2022]
Abstract
Ayahuasca is a hallucinogenic beverage that affects the serotonergic system and have therapeutic potential for many diseases and disorders, including depression and drug addiction. The objectives of this study were to evaluate the potential toxic effects of ayahuasca on rats after chronic exposure, and the levels of monoamines, their metabolites and the brain-derived neurotrophic factor (BDNF) in the brain. Female and male rats were treated orally for 28 days with H2O (control), fluoxetine (FLX), a selective serotonin reuptake inhibitor antidepressant, or ayahuasca (Aya) at doses of 0.5X, 1X and 2X the ritualistic dose (7 to 10 animals/group). Clinical, hematological and macroscopic results showed that ayahuasca was safe to the rats. Behavior tests conducted one hour after the last treatment showed that male rats from the Aya1 group explored the open field central area less than the control group, and the number of entries in the central area compared to total locomotion was also significantly lower in this group and in the FLX group. The hippocampus was removed for BDNF analysis and the remaining brain was used for monoamine analysis by HPLC-FL. Serotonin levels were significantly higher than control only in the Aya2 female group, while a significant reduction of its metabolite 5-HIAA was observed in the FLX group. Dopamine levels were similar among the experimental groups, but the levels of its metabolite DOPAC increased significantly in the Aya1 and Aya2 groups compared to controls, especially in females, and the DOPAC/dopamine turnover was significantly higher in Aya2 group. The levels of HVA, another dopamine metabolite, did not change with the treatments compared to controls, but HVA/DOPAC ratio was significantly lower in all ayahuasca male groups. Norepinephrine was not detected in any brain sample, and the levels of its metabolite MHPG did not change significantly among the groups. BDNF levels in the hippocampus were significantly higher in the FLX and Aya2 female groups compared to controls when expressed in relation to the total brain weight. The mechanisms involved in the increase in serotonin, dopamine turnover and BDNF levels observed in ayahuasca treated animals should be further investigated in specific brain areas.
Collapse
Affiliation(s)
- Camila Schoueri Colaço
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Stefany Sousa Alves
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Luciana Marangni Nolli
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Willie Oliveira Pinheiro
- Laboratory of Embryology and Developmental Biology, Department of Genetic and Morphology, Institute of Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Danilo Gustavo Rodrigues de Oliveira
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Beatriz Werneck Lopes Santos
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Aline Pic-Taylor
- Laboratory of Embryology and Developmental Biology, Department of Genetic and Morphology, Institute of Biology, University of Brasilia, Brasilia, DF, Brazil
| | - Márcia Renata Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasilia, DF, Brazil
| | - Eloisa Dutra Caldas
- Laboratory of Toxicology, Department of Pharmacy, Faculty of Health Sciences, University of Brasilia, Brasilia, DF, Brazil.
| |
Collapse
|
36
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
37
|
Perinatal exposure of rats to the HIV drug efavirenz affects medial prefrontal cortex cytoarchitecture. Biochem Pharmacol 2020; 178:114050. [PMID: 32446887 DOI: 10.1016/j.bcp.2020.114050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/19/2020] [Indexed: 12/29/2022]
Abstract
Efavirenz (EFV) is used for antiretroviral treatment of HIV infection, and successfully inhibits viral replication and mother-to-child transmission of HIV during pregnancy and childbirth. Unfortunately, the drug induces neuropsychiatric symptoms such as anxiety and depressed mood and potentially affects cognitive performance. EFV acts on, among others, the serotonin transporter and serotonin receptors that are expressed in the developing brain. Yet, how perinatal EFV exposure affects brain cytoarchitecture remains unclear. Here, we exposed pregnant and lactating rats to EFV, and examined in the medial prefrontal cortex (mPFC) of their adult offspring the effects of the maternal EFV exposure on cortical architecture. We observed a significant decrease in the number of cells, mainly mature neurons, in the infra/prelimbic and cingulate cortices of adult offspring. Next, we found an altered cortical cytoarchitecture characterized by a significant reduction in deep- and superficial-layer cells. This was accompanied by a sharp increase in programmed cell death, as we identified a significantly higher number of cleaved Caspase-3-positive cells. Finally, the serotonergic and dopaminergic innervation of the mPFC subdomains was increased. Thus, the perinatal exposure to EFV provoked in the mPFC of adult offspring cell death, significant changes in cytoarchitecture, and disturbances in serotonergic and dopaminergic innervation. Our results are important in the light of EFV treatment of HIV-positive pregnant women, and its effect on brain development and cognitive behavior.
Collapse
|
38
|
Hou W, Wang Y, Zheng P, Cui R. Effects of Ginseng on Neurological Disorders. Front Cell Neurosci 2020; 14:55. [PMID: 32265659 PMCID: PMC7099600 DOI: 10.3389/fncel.2020.00055] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/27/2020] [Indexed: 12/12/2022] Open
Abstract
Ginseng (Panax ginseng Meyer), a famous traditional medicinal herb, has been widely used for many centuries. Numerous studies have shown that ginseng has a positive effect on the prevention and treatment of neurological disorders. In this review, we summarized the effects of ginseng in treating neurological diseases, particularly the anti-depressant effects of ginseng. Furthermore, its potential mechanism was also outlined. Therefore, this review may provide new insight into the treatment of ginseng on neurological diseases.
Collapse
Affiliation(s)
- Wei Hou
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yingping Wang
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Peihe Zheng
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Ranji Cui
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Zhao Y, Chen J, Liu Q, Li Y. Profiling the Structural Determinants of Aryl Benzamide Derivatives as Negative Allosteric Modulators of mGluR5 by In Silico Study. Molecules 2020; 25:molecules25020406. [PMID: 31963723 PMCID: PMC7024197 DOI: 10.3390/molecules25020406] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 11/16/2022] Open
Abstract
Glutamate plays a crucial role in the treatment of depression by interacting with the metabotropic glutamate receptor subtype 5 (mGluR5), whose negative allosteric modulators (NAMs) are thus promising antidepressants. At present, to explore the structural features of 106 newly synthesized aryl benzamide series molecules as mGluR5 NAMs, a set of ligand-based three-dimensional quantitative structure-activity relationship (3D-QSAR) analyses were firstly carried out applying comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) methods. In addition, receptor-based analysis, namely molecular docking and molecular dynamics (MD) simulations, were performed to further elucidate the binding modes of mGluR5 NAMs. As a result, the optimal CoMSIA model obtained shows that cross-validated correlation coefficient Q2 = 0.70, non-cross-validated correlation coefficient R2ncv = 0.89, predicted correlation coefficient R2pre = 0.87. Moreover, we found that aryl benzamide series molecules bind as mGluR5 NAMs at Site 1, which consists of amino acids Pro655, Tyr659, Ile625, Ile651, Ile944, Ser658, Ser654, Ser969, Ser965, Ala970, Ala973, Trp945, Phe948, Pro903, Asn907, Val966, Leu904, and Met962. This site is the same as that of other types of NAMs; mGluR5 NAMs are stabilized in the "linear" and "arc" configurations mainly through the H-bonds interactions, π-π stacking interaction with Trp945, and hydrophobic contacts. We hope that the models and information obtained will help understand the interaction mechanism of NAMs and design and optimize NAMs as new types of antidepressants.
Collapse
Affiliation(s)
- Yujing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (J.C.)
| | - Jiabin Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (J.C.)
| | - Qilei Liu
- Institute of Chemical Process Systems Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China;
| | - Yan Li
- Key Laboratory of Industrial Ecology and Environmental Engineering, Faculty of Chemical, Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116024, China; (Y.Z.); (J.C.)
- Correspondence: ; Tel.: +86-15640888728
| |
Collapse
|
40
|
Kang J, Wang Y, Wang D. Endurance and resistance training mitigate the negative consequences of depression on synaptic plasticity through different molecular mechanisms. Int J Neurosci 2019; 130:541-550. [DOI: 10.1080/00207454.2019.1679809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jie Kang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Youhua Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Di Wang
- Institute of Physical Education, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
41
|
Wang L, Zhang Y, Du X, Ding T, Gong W, Liu F. Review of antidepressants in clinic and active ingredients of traditional Chinese medicine targeting 5-HT1A receptors. Biomed Pharmacother 2019; 120:109408. [DOI: 10.1016/j.biopha.2019.109408] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
|
42
|
Gene knockout animal models of depression, anxiety and obsessive compulsive disorders. Psychiatr Genet 2019; 29:191-199. [DOI: 10.1097/ypg.0000000000000238] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
43
|
Tang YQ, Li ZR, Zhang SZ, Mi P, Chen DY, Feng XZ. Venlafaxine plus melatonin ameliorate reserpine-induced depression-like behavior in zebrafish. Neurotoxicol Teratol 2019; 76:106835. [PMID: 31518687 DOI: 10.1016/j.ntt.2019.106835] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/07/2019] [Accepted: 09/09/2019] [Indexed: 12/13/2022]
Abstract
Venlafaxine (VEN) is one of the first clinical drugs for the treatment of depression. Long-term use may cause a potentially life-threatening serotonin syndrome. Melatonin (MT) could ameliorate depression behavior. Therefore, the aim of this study was to investigate the antidepressant effects of venlafaxine in combination with melatonin on zebrafish. Reserpine was used to induce depression-like behavioral zebrafish. To explore the effects of combined use of venlafaxine and melatonin on depression-like zebrafish induced by reserpine. We tested the depressive behavior of adult zebrafish through a novel tank test, and evaluated the levels of serotonin (5-HT), dopamine (DA) and noradrenaline (NA) in zebrafish brain using enzyme-linked immunosorbent assay (ELISA), besides that the gene expression of serotonin transporters a (serta), dopamine transporters (dat) and norepinephrine transporters (net), vesicular monoamine transporter2 (vmat2) and monoamine oxidase (mao) were evaluated by qRT-PCR. The results showed that, compared with reserpine-only group, venlafaxine (VEN, 0.025 mg/L) and melatonin (MT, 1 μM) increased the parameters of exploration in the top of the tank and decreased freezing behavior significantly. Compared with reserpine-only group, the use of VEN combined with MT increased serotonin and norepinephrine levels significantly, while there was no obvious difference in dopamine content. The results of qRT-PCR showed that the use of VEN combined with MT significantly reduced the expression of serta and promoted the expression of vmat2, but had no significant effect on the expression of net, dat and mao. The results indicated that venlafaxine combined with melatonin showed more effective role to remedy the depressive symptoms in zebrafish, providing a reference for the clinical application of antidepressants.
Collapse
Affiliation(s)
- Ya-Qiu Tang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Zhuo-Ran Li
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Shao-Zhi Zhang
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Ping Mi
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China
| | - Dong-Yan Chen
- Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Department of Histology and Embryology, School of Medicine, Nankai University, Tianjin, 300071, China.
| | - Xi-Zeng Feng
- State Key Laboratory of Medicinal Chemical Biology, The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
44
|
The Neuroprotective Effects of Astaxanthin: Therapeutic Targets and Clinical Perspective. Molecules 2019; 24:molecules24142640. [PMID: 31330843 PMCID: PMC6680436 DOI: 10.3390/molecules24142640] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/22/2022] Open
Abstract
As the leading causes of human disability and mortality, neurological diseases affect millions of people worldwide and are on the rise. Although the general roles of several signaling pathways in the pathogenesis of neurodegenerative disorders have so far been identified, the exact pathophysiology of neuronal disorders and their effective treatments have not yet been precisely elucidated. This requires multi-target treatments, which should simultaneously attenuate neuronal inflammation, oxidative stress, and apoptosis. In this regard, astaxanthin (AST) has gained growing interest as a multi-target pharmacological agent against neurological disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD), brain and spinal cord injuries, neuropathic pain (NP), aging, depression, and autism. The present review highlights the neuroprotective effects of AST mainly based on its anti-inflammatory, antioxidative, and anti-apoptotic properties that underlies its pharmacological mechanisms of action to tackle neurodegeneration. The need to develop novel AST delivery systems, including nanoformulations, targeted therapy, and beyond, is also considered.
Collapse
|
45
|
Van Dyke AM, Francis TC, Chen H, Bailey AM, Thompson SM. RETRACTED: Chronic fluoxetine treatment in vivo enhances excitatory synaptic transmission in the hippocampus. Neuropharmacology 2019; 150:38-45. [PMID: 30851310 PMCID: PMC6475886 DOI: 10.1016/j.neuropharm.2019.03.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/07/2019] [Accepted: 03/02/2019] [Indexed: 12/17/2022]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/our-business/policies/article-withdrawal). This article has been retracted at the request of the Authors. After publication, Scott M. Thompson found significant concerns about the data and duly notified The University of Maryland. The University of Maryland conducted an internal investigation which confirmed that the article was compromised. Namely in Figure 2B, the Investigation Committee determined that the western blots used to create the figure were not the ones used for the quantification and concluded that the figure was falsified to fit the hypothesis. In Figure 2C and 2D, the Investigation Committee determined that the densitometry data (pCaMKII, pS831, CamKII and GluA1) used to create the histogram were falsified to fit the hypothesis.
Collapse
Affiliation(s)
- Adam M Van Dyke
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA; Training Programs in Neuroscience, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA; Membrane Biology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| | - T Chase Francis
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA; Training Programs in Neuroscience, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Haiwen Chen
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA; Training Programs in Neuroscience, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA; Membrane Biology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA; Medical Scientist Training Program, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA
| | - Aileen M Bailey
- Department of Psychology, Saint Mary's College of Maryland, St. Mary's City, MD, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, 655 West Baltimore Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
46
|
Kalinichenko LS, Hammad L, Reichel M, Kohl Z, Gulbins E, Kornhuber J, Müller CP. Acid sphingomyelinase controls dopamine activity and responses to appetitive stimuli in mice. Brain Res Bull 2019; 146:310-319. [DOI: 10.1016/j.brainresbull.2019.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/18/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022]
|
47
|
Tactile Stimulation on Adulthood Modifies the HPA Axis, Neurotrophic Factors, and GFAP Signaling Reverting Depression-Like Behavior in Female Rats. Mol Neurobiol 2019; 56:6239-6250. [PMID: 30741369 DOI: 10.1007/s12035-019-1522-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022]
Abstract
Depression is a common psychiatric disease which pharmacological treatment relieves symptoms, but still far from ideal. Tactile stimulation (TS) has shown beneficial influences in neuropsychiatric disorders, but the mechanism of action is not clear. Here, we evaluated the TS influence when applied on adult female rats previously exposed to a reserpine-induced depression-like animal model. Immediately after reserpine model (1 mg/kg/mL, 1×/day, for 3 days), female Wistar rats were submitted to TS (15 min, 3×/day, for 8 days) or not (unhandled). Imipramine (10 mg/kg/mL) was used as positive control. After behavioral assessments, animals were euthanized to collect plasma and prefrontal cortex (PFC). Behavioral observations in the forced swimming test, splash test, and sucrose preference confirmed the reserpine-induced depression-like behavior, which was reversed by TS. Our findings showed that reserpine increased plasma levels of adrenocorticotropic hormone and corticosterone, decreased brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B, and increased proBDNF immunoreactivity in the PFC, which were also reversed by TS. Moreover, TS reestablished glial fibrillary acidic protein and glucocorticoid receptor levels, decreased by reserpine in PFC, while glial cell line-derived neurotrophic factor was increased by TS per se. Our outcomes are showing that TS applied in adulthood exerts a beneficial influence in depression-like behaviors, modulating the HPA axis and regulating neurotrophic factors more effectively than imipramine. Based on this, our proposal is that TS, in the long term, could be considered a new therapeutic strategy for neuropsychiatric disorders improvement in adult life, which may represent an interesting contribution to conventional pharmacological treatment.
Collapse
|
48
|
Drug-Loaded Biocompatible Nanocarriers Embedded in Poloxamer 407 Hydrogels as Therapeutic Formulations. MEDICINES 2018; 6:medicines6010007. [PMID: 30597953 PMCID: PMC6473859 DOI: 10.3390/medicines6010007] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 02/07/2023]
Abstract
Hydrogels are three-dimensional networks of hydrophilic polymers able to absorb and retain a considerable amount of water or biological fluid while maintaining their structure. Among these, thermo-sensitive hydrogels, characterized by a temperature-dependent sol–gel transition, have been massively used as drug delivery systems for the controlled release of various bioactives. Poloxamer 407 (P407) is an ABA-type triblock copolymer with a center block of hydrophobic polypropylene oxide (PPO) between two hydrophilic polyethyleneoxide (PEO) lateral chains. Due to its unique thermo-reversible gelation properties, P407 has been widely investigated as a temperature-responsive material. The gelation phenomenon of P407 aqueous solutions is reversible and characterized by a sol–gel transition temperature. The nanoencapsulation of drugs within biocompatible delivery systems dispersed in P407 hydrogels is a strategy used to increase the local residence time of various bioactives at the injection site. In this mini-review, the state of the art of the most important mixed systems made up of colloidal carriers localized within a P407 hydrogel will be provided in order to illustrate the possibility of obtaining a controlled release of the entrapped drugs and an increase in their therapeutic efficacy as a function of the biomaterial used.
Collapse
|
49
|
Rouine J, Callaghan CK, O'Mara SM. Opioid modulation of depression: A focus on imaging studies. PROGRESS IN BRAIN RESEARCH 2018; 239:229-252. [PMID: 30314568 DOI: 10.1016/bs.pbr.2018.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Depression is the leading cause of disability worldwide, with over 300 million people affected. Almost all currently available antidepressant treatments target monoamine neurotransmitter systems and have a delayed onset of action up to several weeks that can be associated with low rates of treatment response. The endogenous opioid system has been identified as a potential target for the development of novel antidepressants due to its high opioid receptor concentrations in central limbic areas that are also implicated in physiological processes including regulation of mood and emotion. Genetic depletion, pharmacological manipulation, and preclinical models have been widely used to characterize the role of opioid transmission in depressive states. Neuroimaging studies have been carried out in clinical populations to investigate opioid transmission in mood and emotion in an attempt to identify those regional anatomical and functional brain changes that are associated with depression. Great insight has been provided into the cerebral structural and functional changes associated with depression but there remains a need to tie the functional theories of depression to anatomical localization and further neuroimaging studies are best placed to do this.
Collapse
Affiliation(s)
- Jennifer Rouine
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland.
| | - Charlotte K Callaghan
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Shane M O'Mara
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
50
|
Wang C, Li S, Shen C, Shan J, Fan Y. Expression and significance of phosphodiesterase 4B gene in peripheral blood of patients with oral lichen planus. Int J Dermatol 2018; 58:302-310. [PMID: 30229893 DOI: 10.1111/ijd.14203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 06/04/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND The pathogenesis of oral lichen planus (OLP) may be related to mental factors. In this study, we investigated the molecular mechanism of mental factors in the development of OLP. METHODS The normal control group and OLP patients were tested and evaluated by Zung self-rating anxiety scale and self-rating depression scale. Secondly, Agilent human LncRNA chip technology was used to detect differential genes in the total RNA of the normal control group and OLP patients, and to screen out the differentially expressed genes related to anxiety and depression. Thirdly, we verified the genes at gene level and protein level, respectively. RESULTS Zung self-rating anxiety scale and self-rating depression scale showed that tendency of anxiety and depression in OLP patients is significantly higher than that in normal controls, but there was no significant difference between the erosion form group and the reticular form group; the duration of OLP showed significant negative correlations between degree of anxiety and depression. Microarray analysis showed there were four differential genes (PDE4B, RGS2, SYNGR1, and SYNE1) related to anxiety and depression in OLP patients; real-time qPCR confirmed the expression of PDE4B mRNA was lower in the peripheral blood of normal control group (P < 0.001). The expression of RGS2, SYNGR1, and SYNE1 mRNA was higher in the normal control group (P < 0.05, P < 0.05, P < 0.05). Wes automatic western blot confirmed that the expression of PDE4B protein was lower in the peripheral blood of the normal control group (P < 0.01). CONCLUSION PDE4B gene may play a role in the pathogenesis of OLP.
Collapse
Affiliation(s)
- Chen Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Shan Li
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chen Shen
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jing Shan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yuan Fan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Oral Medicine, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| |
Collapse
|