1
|
ElAlfy MS, Ismail EAR, Makkeyah SM, Samir A, Salama DH, Salah Eldin NM, ElMaghraby DMF, Gad NA, Ali MFA, Ebeid FSE. Vasculopathy among children and adolescents with sickle cell disease: the crosstalk with annexin A1, vitamin D, and myocardial iron overload. Expert Rev Hematol 2025:1-10. [PMID: 40247642 DOI: 10.1080/17474086.2025.2495670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
BACKGROUND Annexin A1 plays an important role in myocardial defense against ischemia-reperfusion injury. We aimed to evaluate the role of annexin A1 as a potential marker of vasculopathy in children and adolescents with sickle cell disease (SCD) and its relation to myocardial iron content (MIC) and vitamin D status. RESEARCH DESIGN AND METHODS Forty-one patients with SCD were compared with 40 age- and sex-matched healthy controls, and underwent assessment of serum annexin A1, vitamin D, Doppler echocardiography and cardiac magnetic resonance (CMR). RESULTS Six (14.6%) SCD patients had cardiac disease, five (12.2%) had abnormal MIC (≥1.16) and 10 (24.4%) had pulmonary hypertension risk. Annexin A1 levels were significantly lower among patients with SCD compared with healthy controls (p < 0.001). SCD patients with pulmonary hypertension risk, evidence of diastolic dysfunction, and nephropathy as well as those with serum ferritin ≥ 2500 µg/L and vitamin D deficiency had lower Annexin A1 levels than those without. Serum annexin A1 levels were negatively correlated to urinary albumin creatinine ratio (UACR) and Tei index while positively correlated to vitamin D among SCD patients. CONCLUSIONS Annexin A1 could be a promising marker of vasculopathy and may provide a biochemical explanation for vitamin D deficiency in SCD.
Collapse
Affiliation(s)
- Mohsen Saleh ElAlfy
- Pediatric Hematology Oncology and BMT Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | | - Sara Mostafa Makkeyah
- Pediatric Hematology Oncology and BMT Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Ahmed Samir
- Radiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Dina Husseiny Salama
- Radiology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | - Dina Mohamed Fathy ElMaghraby
- Pediatric Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nada Ayman Gad
- Pediatric Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | | | | |
Collapse
|
2
|
Lin K, Hou Y, Li R, Fan F, Hao Y, Wang Y, Huang Y, Li P, Zhu L, Huang X, Zhao YQ. Annexin-A1 tripeptide enhances functional recovery and mitigates brain damage in traumatic brain injury by inhibiting neuroinflammation and preventing ANXA1 nuclear translocation in mice. Metab Brain Dis 2024; 39:1559-1571. [PMID: 39120851 DOI: 10.1007/s11011-024-01404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024]
Abstract
This study explores the role and mechanism of Annexin-A1 Tripeptide (ANXA1sp) in mitigating neuronal damage and promoting functional recovery in a mouse model of traumatic brain injury (TBI). Our goal is to identify ANXA1sp as a potential therapeutic drug candidate for TBI treatment. Adult male C57BL/6J mice were subjected to controlled cortical impact (CCI) to simulate TBI, supplemented by an in vitro model of glutamate-induced TBI in HT22 cells. We assessed neurological deficits using the Modified Neurological Severity Score (mNSS), tested sensorimotor functions with beam balance and rotarod tests, and evaluated cognitive performance via the Morris water maze. Neuronal damage was quantified using Nissl and TUNEL staining, while microglial activation and inflammatory responses were measured through immunostaining, quantitative PCR (qPCR), Western blotting, and ELISA. Additionally, we evaluated cell viability in response to glutamate toxicity using the Cell Counting Kit-8 (CCK-8) assay and lactate dehydrogenase (LDH) release. Intraperitoneal administration of ANXA1sp significantly enhanced neurological outcomes, markedly reducing sensorimotor and cognitive impairments caused by TBI. This treatment resulted in a significant reduction in lesion volume and decreased neuronal cell death in the ipsilateral cortex. Moreover, ANXA1sp effectively diminished microglial activation around the brain lesion and decreased the levels of pro-inflammatory markers such as IL-6, IL-1β, TNF-α, and TGF-β in the cortex, indicating a significant reduction in neuroinflammation post-TBI. ANXA1sp also offered protection against neuronal cell death induced by glutamate toxicity, primarily by inhibiting the nuclear translocation of ANXA1, highlighting its potential as a neuroprotective strategy in TBI management. Administration of ANXA1sp significantly reduced neuroinflammation and neuronal cell death, primarily by blocking the nuclear translocation of ANXA1. This treatment substantially reduced brain damage and improved neurological functional recovery after TBI. Consequently, ANXA1sp stands out as a promising neuroprotective agent for TBI therapy.
Collapse
Affiliation(s)
- Kai Lin
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yuejiao Hou
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Ruxin Li
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Fengyan Fan
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yinan Hao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Yuan Wang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Yue Huang
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Peng Li
- Department of Clinical Laboratory, Air Force Medical Center, Air Force Medical University, Beijing, 100142, China
| | - Lingling Zhu
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China
| | - Xin Huang
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| | - Yong-Qi Zhao
- Department of Cognitive and Stress Medicine, Beijing Institute of Basic Medical Sciences, Beijing, 100850, China.
| |
Collapse
|
3
|
Qi M, Huang H, Li Z, Quan J, Wang J, Huang F, Zhang X, Chen P, Liu A, Gao Z, Bai R, Chen C, Su X, Kong X. Qingxin Jieyu Granule alleviates myocardial infarction through inhibiting neutrophil extracellular traps via activating ANXA1/FPR2 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156147. [PMID: 39418972 DOI: 10.1016/j.phymed.2024.156147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Myocardial infarction (MI), representing the most severe manifestation of coronary artery disease (CAD), stands as a primary concern in the prevention and management of cardiovascular diseases. Clinical evidence demonstrates that Qingxin Jieyu Granule (QXJYG) is efficacious in treatment of MI patients. However, the mechanisms underlying its therapeutic effects remain to be elucidated. PURPOSE This study aimed to evaluate the effects of QXJYG on MI and investigate its underlying mechanisms. MATERIALS AND METHODS The MI model in rats was developed through ligating the left anterior descending (LAD) artery. The effect of QXJYG on cardiac function impairment in MI rats was assessed by echocardiography, while the improvement of cardiomyocyte morphology and myocardial fibrosis after treatment with QXJYG was evaluated through hematoxylin-eosin (H&E) staining and Masson staining. The chemical constituents of QXJYG in blood were identified by using the UPLC-Q-TOF/MS technique. Furthermore, the molecular mechanism underlying the QXJYG therapeutic effect in MI was postulated based on the disease gene-drug target network analysis. Other technical methods such as ELISA, immunohistochemical staining, Western Blot analysis and application of pharmacological inhibitors were employed to verify the effectiveness of QXJYG in treating MI and explore its potential molecular targets. RESULTS The cardiac function in experimental rats post-MI was significantly impaired, as evidenced by an enlarged infarction area, disordered arrangement of cardiomyocytes, and aggravated myocardial fibrosis. QXJYG treatment significantly enhanced the cardiac function and reduced the pathological damage of the cardiac tissue in MI rats. Through the network pharmacology analysis, we identified that FPR2 might be a potential target of QXJYG in its cardiac protection role. QXJYG markedly downregulated the level of neutrophil extracellular traps (NETs) in MI rats, specifically manifested as a significant reduction in the Histone-DNA level and expression of myeloperoxidase (MPO) and citrullinated histone H3 (CitH3) proteins. Furthermore, QXJYG upregulated the levels of ANXA1 and FPR2 proteins in MI rats. The level of FPR2 was markedly reduced in MI rats upon administration of WRW4, a specific inhibitor of FPR2, which was associated with exacerbated MI injury and an elevated level of NETs. When WRW4 was co-administered with QXJYG, the cardioprotective effects of QXJYG on MI were significantly diminished. However, the addition of DNase I did not result in significant changes of the outcomes in MI rats after QXJYG intervention. CONCLUSION QXJYG treatment alleviates cardiac tissue injury in MI rats by inhibiting NETs through activating the ANXA1/FPR2 axis. The findings extend our understanding of the therapeutic effectiveness of QXJYG and offer a scientific foundation for the clinical utilization of QXJYG.
Collapse
Affiliation(s)
- Mingzhu Qi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Helan Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuohang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jianye Quan
- Medical Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Jingbo Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fengyu Huang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xinzhuo Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peiping Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - An Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Zhuye Gao
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Chang Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiaohui Su
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xiangying Kong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
4
|
Ma W, Huang Z, Miao Y, Ma X, Zhang Z, Liu W, Xie P. ANXA1sp modulates the protective effect of Sirt3-induced mitophagy against sepsis-induced myocardial injury in mice. Acta Physiol (Oxf) 2024; 240:e14184. [PMID: 38822624 DOI: 10.1111/apha.14184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 06/03/2024]
Abstract
AIM Sepsis-induced myocardial injury (SIMI) may be associated with insufficient mitophagy in cardiomyocytes, but the exact mechanism involved remains unknown. Sirtuin 3 (Sirt3) is mainly found in the mitochondrial matrix and is involved in repairing mitochondrial function through means such as the activation of autophagy. Previously, we demonstrated that the annexin-A1 small peptide (ANXA1sp) can promote Sirt3 expression in mitochondria. In this study, we hypothesized that the activation of Sirt3 by ANXA1sp induces mitophagy, thereby providing a protective effect against SIMI in mice. METHODS A mouse model of SIMI was established via cecal ligation and puncture. Intraperitoneal injections of ANXA1sp, 3TYP, and 3MA were administered prior to modeling. After successful modeling, IL-6, TNF-α, CK-MB, and CTn-I levels were measured; cardiac function was assessed using echocardiography; myocardial mitochondrial membrane potential, ROS, and ATP production were determined; myocardial mitochondrial ultrastructure was observed using transmission electron microscopy; and the expression levels of Sirt3 and autophagy-related proteins were detected using western blotting. RESULTS ANXA1sp significantly reduced serum IL-6, TNF-α, CK-MB, and CTn-I levels; decreased myocardial ROS production; increased mitochondrial membrane potential and ATP synthesis; and improved myocardial mitochondrial ultrastructure in septic mice. Furthermore, ANXA1sp promoted Sirt3 expression and activated the AMPK-mTOR pathway to induce myocardial mitophagy. These protective effects of ANXA1sp were reversed upon treatment with the Sirt3 blocker, 3-TYP. CONCLUSION ANXA1sp can reverse SIMI, and the underlying mechanism may be related to the activation of the AMPK-mTOR pathway following upregulation of Sirt3 by ANXA1sp, which, in turn, induces autophagy.
Collapse
Affiliation(s)
- Wanyu Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhijia Huang
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Yanmei Miao
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Xinglong Ma
- Department of Critical Care Medicine of the Third Affiliated Hospital (The First People's Hospital of Zunyi), Zunyi Medical University, Zunyi, China
| | - Zhiquan Zhang
- Department of Anesthesiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Wenjie Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Peng Xie
- Department of Critical Care Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
5
|
Li T, Zhou X, Zhang Q, Miao Q, Woodman OL, Chen Y, Qin C. Formyl peptide receptor 1 mitigates colon inflammation and maintains mucosal homeostasis through the inhibition of CREB-C/EBPβ-S100a8 signaling. Mucosal Immunol 2024; 17:651-672. [PMID: 38614323 DOI: 10.1016/j.mucimm.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/07/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Excessive inflammatory responses are the main characteristic of ulcerative colitis (UC). Activation of formyl peptide receptor 1 (FPR1) has been found to promote the proliferation and migration of epithelial cells, but its role and therapeutic potential in UC remain unclear. This study observed an increased expression of FPR1 in a mouse model of colitis. Interestingly, FPR1 deficiency exacerbated UC and increased the secretion of the proinflammatory mediator from immune cells (e.g. macrophages), S100a8, a member of the damage-associated molecular patterns. Notably, the administration of the FPR agonist Cmpd43 ameliorated colon injury in a preclinical mice model of UC, likely via inhibiting phosphorylation of cyclic adenosine monophosphate-response element-binding protein and expression of CCAAT/enhancer-binding protein β, which in turn suppressed the secretion of S100a8. In conclusion, these findings discovered a novel role of FPR1 in the development of colitis and will facilitate the development of FPR1-based pharmacotherapy to treat UC.
Collapse
Affiliation(s)
- Tingting Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiaojun Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Endocrinology and Metabology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Jinan, China; Department of Endocrinology and Metabology, Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Shandong Institute of Nephrology, Shandong University, Jinan, China
| | - Qian Zhang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qi Miao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | - Yuguo Chen
- Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China; The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Qilu Hospital of Shandong University, Jinan, China
| | - Chengxue Qin
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia; Department of Emergency Medicine, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China; Baker Heart and Diabetes Institute, Melbourne, Australia.
| |
Collapse
|
6
|
Studley WR, Lamanna E, Martin KA, Nold-Petry CA, Royce SG, Woodman OL, Ritchie RH, Qin CX, Bourke JE. The small-molecule formyl peptide receptor biased agonist, compound 17b, is a vasodilator and anti-inflammatory in mouse precision-cut lung slices. Br J Pharmacol 2024; 181:2287-2301. [PMID: 37658546 DOI: 10.1111/bph.16231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Pulmonary arterial hypertension (PAH), a rare fatal disorder characterised by inflammation, vascular remodelling and vasoconstriction. Current vasodilator therapies reduce pulmonary arterial pressure but not mortality. The G-protein coupled formyl peptide receptors (FPRs) mediates vasodilatation and resolution of inflammation, actions possibly beneficial in PAH. We investigated dilator and anti-inflammatory effects of the FPR biased agonist compound 17b in pulmonary vasculature using mouse precision-cut lung slices (PCLS). EXPERIMENTAL APPROACH PCLS from 8-week-old male and female C57BL/6 mice, intrapulmonary arteries were pre-contracted with 5-HT for concentration-response curves to compound 17b and 43, and standard-of-care drugs, sildenafil, iloprost and riociguat. Compound 17b-mediated relaxation was assessed with FPR antagonists or inhibitors and in PCLS treated with TNF-α or LPS. Cytokine release from TNF-α- or LPS-treated PCLS ± compound 17b was measured. KEY RESULTS Compound 17b elicited concentration-dependent vasodilation, with potencies of iloprost > compound 17b = riociguat > compound 43 = sildenafil. Compound 17b was inhibited by the FPR1 antagonist cyclosporin H but not by soluble guanylate cyclase, nitric oxide synthase or cyclooxygenase inhibitors. Under inflammatory conditions, the efficacy and potency of compound 17b were maintained, while iloprost and sildenafil were less effective. Additionally, compound 17b inhibited secretion of PAH-relevant cytokines via FPR2. CONCLUSIONS AND IMPLICATIONS Vasodilation to compound 17b but not standard-of-care vasodilators, is maintained under inflammatory conditions, with additional inhibition of PAH-relevant cytokine release. This provides the first evidence that targeting FPR, with biased agonist, simultaneously targets vascular function and inflammation, supporting the development of FPR-based pharmacotherapy to treat PAH. LINKED ARTICLES This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- William R Studley
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Emma Lamanna
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Katherine A Martin
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Claudia A Nold-Petry
- Department of Paediatrics, Monash University, Clayton, Victoria, Australia
- Ritchie Centre, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Simon G Royce
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Owen L Woodman
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Rebecca H Ritchie
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Cheng Xue Qin
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - Jane E Bourke
- Department of Pharmacology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
7
|
Singh J, Jackson KL, Tang FS, Fu T, Nowell C, Salimova E, Kiriazis H, Ritchie RH, Head GA, Woodman OL, Qin CX. The pro-resolving mediator, annexin A1 regulates blood pressure, and age-associated changes in cardiovascular function and remodeling. FASEB J 2024; 38:e23457. [PMID: 38318648 DOI: 10.1096/fj.202301802r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Aging is associated with chronic, low-level inflammation which may contribute to cardiovascular pathologies such as hypertension and atherosclerosis. This chronic inflammation may be opposed by endogenous mechanisms to limit inflammation, for example, by the actions of annexin A1 (ANXA1), an endogenous glucocorticoid-regulated protein that has anti-inflammatory and pro-resolving activity. We hypothesized the pro-resolving mediator ANXA1 protects against age-induced changes in blood pressure (BP), cardiovascular structure and function, and cardiac senescence. BP was measured monthly in conscious mature (4-month) and middle-aged (12-month) ANXA1-deficient (ANXA1-/- ) and wild-type C57BL/6 mice. Body composition was measured using EchoMRI, and both cardiac and vascular function using ultrasound imaging. Cardiac hypertrophy, fibrosis and senescence, vascular fibrosis, elastin, and calcification were assessed histologically. Gene expression relevant to structural remodeling, inflammation, and cardiomyocyte senescence were also quantified. In C57BL/6 mice, progression from 4 to 12 months of age did not affect the majority of cardiovascular parameters measured, with the exception of mild cardiac hypertrophy, vascular calcium, and collagen deposition. Interestingly, ANXA1-/- mice exhibited higher BP, regardless of age. Additionally, age progression had a marked impact in ANXA1-/- mice, with markedly augmented vascular remodeling, impaired vascular distensibility, and body composition. Consistent with vascular dysfunction, cardiac dysfunction, and hypertrophy were also evident, together with markers of senescence and inflammation. These findings suggest that endogenous ANXA1 plays a critical role in regulating BP, cardiovascular function, and remodeling and delays cardiac senescence. Our findings support the development of novel ANXA1-based therapies to prevent age-related cardiovascular pathologies.
Collapse
Affiliation(s)
- Jaideep Singh
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Kristy L Jackson
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Feng Shii Tang
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ting Fu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cameron Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Ekaterina Salimova
- Monash Biomedical Imaging, Monash University, Clayton, Melbourne, Victoria, Australia
| | - Helen Kiriazis
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Geoffrey A Head
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
- Baker Heart & Diabetes Institute, Melbourne, Victoria, Australia
- Department of Pharmacology, School of Pharmaceutical Sciences, Qilu College of Medicine, Shandong University, Jinan, China
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
8
|
Yi X, Tran E, Odiba JO, Qin CX, Ritchie RH, Baell JB. The formyl peptide receptors FPR1 and FPR2 as targets for inflammatory disorders: recent advances in the development of small-molecule agonists. Eur J Med Chem 2024; 265:115989. [PMID: 38199163 DOI: 10.1016/j.ejmech.2023.115989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/20/2023] [Indexed: 01/12/2024]
Abstract
Formyl peptide receptors (FPRs) comprise a class of chemoattractant pattern recognition receptors, for which several physiological functions like host-defences, as well as the regulation of inflammatory responses, have been ascribed. With accumulating evidence that agonism of FPR1/FPR2 can confer pro-resolution of inflammation, increased attention from academia and industry has led to the discovery of new and interesting small-molecule FPR1/FPR2 agonists. Focused attention on the development of appropriate physicochemical and pharmacokinetic profiles is yielding synthesis of new compounds with promising in vivo readouts. This review presents an overview of small-molecule FPR1/FPR2 agonist medicinal chemistry developed over the past 20 years, with a particular emphasis on interrogation in the increasingly sophisticated bioassays which have been developed.
Collapse
Affiliation(s)
- Xiangyan Yi
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Eric Tran
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Jephthah O Odiba
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Rebecca H Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, 3052, Australia; Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria, 3004, Australia.
| | - Jonathan B Baell
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
9
|
Chen J, Oggero S, Cecconello C, Dalli J, Hayat H, Hjiej Andaloussi A, Sanni S, Jonassen TE, Perretti M. The Annexin-A1 mimetic RTP-026 promotes acute cardioprotection through modulation of immune cell activation. Pharmacol Res 2023; 198:107005. [PMID: 37992916 DOI: 10.1016/j.phrs.2023.107005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/09/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
AIMS The cardio-protective and immuno-regulatory properties of RTP-026, a synthetic peptide that spans the Annexin-A1 (AnxA1) N-terminal region, were tested in rat acute myocardial infarction. METHODS AND RESULTS In vitro, selective activation of formyl-peptide receptor type 2 (FPR2) by RTP-026 occurred with apparent EC50 in the 10-30 nM range. With human primary cells, RTP-026 counteracted extension of neutrophil life-span and augmented phagocytosis of fluorescent E.coli by blood myeloid cells. An in vivo model of rat acute infarction was used to quantify tissue injury and phenotype immune cells in myocardium and blood. The rat left anterior descending coronary artery was occluded and then reopened for 2-hour or 24-hour reperfusion. For the 2-hour reperfusion protocol, RTP-026 (25-500 µg/kg; given i.v. at the start of reperfusion) significantly reduced infarct size by ∼50 %, with maximal efficacy at 50 µg/kg. Analyses of cardiac immune cells showed that RTP-026 reduced neutrophil and classical monocyte recruitment to the damaged heart. In the blood, RTP-026 (50 µg/kg) attenuated activation of neutrophils and monocytes monitored through CD62L and CD54 expression. Modulation of vascular inflammation by RTP-026 was demonstrated by reduction in plasma levels of mediators like TNF-α, IL-1β, KC, PGE2 and PGF2α⊡ For the 24-hour reperfusion protocol, RTP-026 (30 µg/kg given i.v. at 0, 3 and 6 h reperfusion) reduced necrotic myocardium by ∼40 %. CONCLUSIONS RTP-026 modulate immune cell responses and decreases infarct size of the heart in preclinical settings. Tempering over-exuberant immune cell activation by RTP-026 is a suitable approach to translate the biology of AnxA1 for therapeutic purposes.
Collapse
Affiliation(s)
- Jianmin Chen
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Silvia Oggero
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Chiara Cecconello
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Jesmond Dalli
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Hedayatullah Hayat
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | - Ahmad Hjiej Andaloussi
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | - Mauro Perretti
- William Harvey Research Institute, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom; Centre for inflammation and Therapeutic Innovation, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, United Kingdom.
| |
Collapse
|
10
|
Soni SS, D'Elia AM, Rodell CB. Control of the post-infarct immune microenvironment through biotherapeutic and biomaterial-based approaches. Drug Deliv Transl Res 2023; 13:1983-2014. [PMID: 36763330 PMCID: PMC9913034 DOI: 10.1007/s13346-023-01290-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2023] [Indexed: 02/11/2023]
Abstract
Ischemic heart failure (IHF) is a leading cause of morbidity and mortality worldwide, for which heart transplantation remains the only definitive treatment. IHF manifests from myocardial infarction (MI) that initiates tissue remodeling processes, mediated by mechanical changes in the tissue (loss of contractility, softening of the myocardium) that are interdependent with cellular mechanisms (cardiomyocyte death, inflammatory response). The early remodeling phase is characterized by robust inflammation that is necessary for tissue debridement and the initiation of repair processes. While later transition toward an immunoregenerative function is desirable, functional reorientation from an inflammatory to reparatory environment is often lacking, trapping the heart in a chronically inflamed state that perpetuates cardiomyocyte death, ventricular dilatation, excess fibrosis, and progressive IHF. Therapies can redirect the immune microenvironment, including biotherapeutic and biomaterial-based approaches. In this review, we outline these existing approaches, with a particular focus on the immunomodulatory effects of therapeutics (small molecule drugs, biomolecules, and cell or cell-derived products). Cardioprotective strategies, often focusing on immunosuppression, have shown promise in pre-clinical and clinical trials. However, immunoregenerative therapies are emerging that often benefit from exacerbating early inflammation. Biomaterials can be used to enhance these therapies as a result of their intrinsic immunomodulatory properties, parallel mechanisms of action (e.g., mechanical restraint), or by enabling cell or tissue-targeted delivery. We further discuss translatability and the continued progress of technologies and procedures that contribute to the bench-to-bedside development of these critically needed treatments.
Collapse
Affiliation(s)
- Shreya S Soni
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Arielle M D'Elia
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA
| | - Christopher B Rodell
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, 19104, USA.
| |
Collapse
|
11
|
He Y, Zhang Y, Wu H, Luo J, Cheng C, Zhang H. The role of annexin A1 peptide in regulating PI3K/Akt signaling pathway to reduce lung injury after cardiopulmonary bypass in rats. Perfusion 2023; 38:320-329. [PMID: 34951334 DOI: 10.1177/02676591211052162] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Cardiopulmonary bypass (CPB) -induced lung ischemia-reperfusion (I/R) injury remains a large challenge in cardiac surgery; up to date, no effective treatment has been found. Annexin A1 (AnxA1) has an anti-inflammatory effect, and it has been proven to have a protective effect on CPB-induced lung injury. However, the specific mechanism of AnxA1 in CPB-induced lung injury is not well studied. Therefore, we established a CPB-induced lung injury model to explore the relevant mechanism of AnxA1 and try to find an effective treatment for lung protection. METHODS Male rats were randomized into five groups (n = 6, each): sham (S group), I/R exposure (I/R group), I/R + dimethyl sulfoxide (D group), I/R + Ac2-26 (AnxA1 peptide) (A group), and I/R + LY294002 (a PI3K specific inhibitor) (AL group). Arterial blood gas analysis and calculation of the oxygenation index, and respiratory index were performed. The morphological changes in lung tissues were observed under light and electron microscopes. TNF-α and IL-6 and total protein in lung bronchoalveolar lavage fluid were detected via enzyme-linked immunosorbent assay. The expressions of PI3K, Akt, and NF-κB (p65) as well as p-PI3K, p-Akt, p-NF-κB (p65), and AnxA1 were detected via western blotting. RESULTS Compared with the I/R group, the A group showed the following: lower lung pathological damage score; decreased expression of IL-6 and total protein in the bronchoalveolar lavage fluid, and TNF-α in the lung; increased lung oxygenation index; and improved lung function. These imply the protective role of Ac2-26, and show that LY294002 inhibited the ameliorative preconditioning effect of Ac2-26. CONCLUSION This finding suggested that the AnxA1 peptide Ac2-26 decreased the inflammation reaction and CPB-induced lung injury in rats, the lung protective effects of AnxA1may be correlated with the activation of PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Yunzi He
- Department of Anesthesiology, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, 66367Zunyi Medical University, Zunyi, China
| | - Yuanjie Zhang
- Department of Anesthesiology, The Fourth People's Hospital of Zunyi, Zunyi, China
| | - Hanhua Wu
- Department of Anesthesiology, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Junli Luo
- Department of Anesthesiology, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Chi Cheng
- Guizhou Key Laboratory of Anesthesia and Organ Protection, 66367Zunyi Medical University, Zunyi, China
| | - Hong Zhang
- Department of Anesthesiology, 66367Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Zharkova O, Salamah MF, Babak MV, Rajan E, Lim LHK, Andrade F, Gil CD, Oliani SM, Moraes LA, Vaiyapuri S. Deletion of Annexin A1 in Mice Upregulates the Expression of Its Receptor, Fpr2/3, and Reactivity to the AnxA1 Mimetic Peptide in Platelets. Int J Mol Sci 2023; 24:ijms24043424. [PMID: 36834844 PMCID: PMC9962723 DOI: 10.3390/ijms24043424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Annexin A1 (ANXA1) is an endogenous protein, which plays a central function in the modulation of inflammation. While the functions of ANXA1 and its exogenous peptidomimetics, N-Acetyl 2-26 ANXA1-derived peptide (ANXA1Ac2-26), in the modulation of immunological responses of neutrophils and monocytes have been investigated in detail, their effects on the modulation of platelet reactivity, haemostasis, thrombosis, and platelet-mediated inflammation remain largely unknown. Here, we demonstrate that the deletion of Anxa1 in mice upregulates the expression of its receptor, formyl peptide receptor 2/3 (Fpr2/3, orthologue of human FPR2/ALX). As a result, the addition of ANXA1Ac2-26 to platelets exerts an activatory role in platelets, as characterised by its ability to increase the levels of fibrinogen binding and the exposure of P-selectin on the surface. Moreover, ANXA1Ac2-26 increased the development of platelet-leukocyte aggregates in whole blood. The experiments carried out using a pharmacological inhibitor (WRW4) for FPR2/ALX, and platelets isolated from Fpr2/3-deficient mice ascertained that the actions of ANXA1Ac2-26 are largely mediated through Fpr2/3 in platelets. Together, this study demonstrates that in addition to its ability to modulate inflammatory responses via leukocytes, ANXA1 modulates platelet function, which may influence thrombosis, haemostasis, and platelet-mediated inflammation under various pathophysiological settings.
Collapse
Affiliation(s)
- Olga Zharkova
- Immunology Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | | | - Maria V. Babak
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| | | | - Lina H. K. Lim
- Immunology Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Frans Andrade
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04023-900, Brazil
| | - Cristiane D. Gil
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04023-900, Brazil
| | - Sonia M. Oliani
- Department of Morphology and Genetics, Federal University of São Paulo (UNIFESP), São Paulo 04023-900, Brazil
- Department of Biology, Instituto de Biociências, Letras e Ciências Exatas (IBILCE), São Paulo State University (UNESP), São José do Rio Preto, São Paulo 15054-000, Brazil
| | - Leonardo A. Moraes
- Immunology Program, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK
- Correspondence:
| |
Collapse
|
13
|
Perretti M, Dalli J. Resolution Pharmacology: Focus on Pro-Resolving Annexin A1 and Lipid Mediators for Therapeutic Innovation in Inflammation. Annu Rev Pharmacol Toxicol 2023; 63:449-469. [PMID: 36151051 DOI: 10.1146/annurev-pharmtox-051821-042743] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Chronic diseases that affect our society are made more complex by comorbidities and are poorly managed by the current pharmacology. While all present inflammatory etiopathogeneses, there is an unmet need for better clinical management of these diseases and their multiple symptoms. We discuss here an innovative approach based on the biology of the resolution of inflammation. Studying endogenous pro-resolving peptide and lipid mediators, how they are formed, and which target they interact with, can offer innovative options through augmenting the expression or function of pro-resolving pathways or mimicking their actions with novel targeted molecules. In all cases, resolution offers innovation for the treatment of the primary cause of a given disease and/or for the management of its comorbidities, ultimately improving patient quality of life. By implementing resolution pharmacology, we harness the whole physiology of inflammation, with the potential to bring a marked change in the management of inflammatory conditions.
Collapse
Affiliation(s)
- Mauro Perretti
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| | - Jesmond Dalli
- The William Harvey Research Institute, Faculty of Medicine and Dentistry, and Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom; ,
| |
Collapse
|
14
|
de Gaetano M. Development of synthetic lipoxin-A4 mimetics (sLXms): New avenues in the treatment of cardio-metabolic diseases. Semin Immunol 2023; 65:101699. [PMID: 36428172 DOI: 10.1016/j.smim.2022.101699] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 11/24/2022]
Abstract
Resolution of inflammation is a complex, dynamic process consisting of several distinct processes, including inhibition of endothelial activation and leukocyte trafficking; promotion of inflammatory cell apoptosis and subsequent non-phlogistic scavenging and degradation; augmentation of pathogen phagocytosis; modulation of stromal cell phenotype coupled to the promotion of tissue regeneration and repair. Among these tightly regulated processes, the clearance and degradation of apoptotic cells without eliciting an inflammatory response is a crucial allostatic mechanism vital to developmental processes, host defence, and the effective resolution of inflammation. These efferocytic and subsequent effero-metabolism processes can be carried out by professional and non-professional phagocytes. Defective removal or inadequate processing of apoptotic cells leads to persistent unresolved inflammation, which may promote insidious pathologies including scarring, fibrosis, and eventual organ failure. In this manuscript, the well-established role of endothelial activation and leukocyte extravasation, as classical vascular targets of the 'inflammation pharmacology', will be briefly reviewed. The main focus of this work is to bring attention to a less explored aspect of the 'resolution pharmacology', aimed at tackling defective efferocytosis and inefficient effero-metabolism, as key targeted mechanisms to prevent or pre-empt vascular complications in cardio-metabolic diseases. Despite the use of gold standard lipid-lowering drugs or glucose-lowering drugs, none of them are able to tackle the so called residual inflammatory risk and/or the metabolic memory. In this review, the development of synthetic mimetics of endogenous mediators of inflammation is highlighted. Such molecules finely tune key components across the whole inflammatory process, amongst various other novel therapeutic paradigms that have emerged over the past decade, including anti-inflammatory therapy. More specifically, FPR2-agonists in general, and Lipoxin analogues in particular, greatly enhance the reprogramming and cross-talk between classical and non-classical innate immune cells, thus inducing both termination of the pro-inflammatory state as well as promoting the subsequent resolving phase, which represent pivotal mechanisms in inflammatory cardio-metabolic diseases.
Collapse
Affiliation(s)
- Monica de Gaetano
- Diabetes Complications Research Centre, Conway Institute & School of Biomolecular & Biomedical Science, University College Dublin, Dublin, Ireland.
| |
Collapse
|
15
|
Qin CX, Norling LV, Vecchio EA, Brennan EP, May LT, Wootten D, Godson C, Perretti M, Ritchie RH. Formylpeptide receptor 2: Nomenclature, structure, signalling and translational perspectives: IUPHAR review 35. Br J Pharmacol 2022; 179:4617-4639. [PMID: 35797341 PMCID: PMC9545948 DOI: 10.1111/bph.15919] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/22/2022] [Accepted: 06/09/2022] [Indexed: 12/26/2022] Open
Abstract
We discuss the fascinating pharmacology of formylpeptide receptor 2 (FPR2; often referred to as FPR2/ALX since it binds lipoxin A4 ). Initially identified as a low-affinity 'relative' of FPR1, FPR2 presents complex and diverse biology. For instance, it is activated by several classes of agonists (from peptides to proteins and lipid mediators) and displays diverse expression patterns on myeloid cells as well as epithelial cells and endothelial cells, to name a few. Over the last decade, the pharmacology of FPR2 has progressed from being considered a weak chemotactic receptor to a master-regulator of the resolution of inflammation, the second phase of the acute inflammatory response. We propose that exploitation of the biology of FPR2 offers innovative ways to rectify chronic inflammatory states and represents a viable avenue to develop novel therapies. Recent elucidation of FPR2 structure will facilitate development of the anti-inflammatory and pro-resolving drugs of next decade.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Lucy V. Norling
- William Harvey Research Institute, Barts and the London School of MedicineQueen Mary University of LondonLondonUK
| | - Elizabeth A. Vecchio
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Eoin P. Brennan
- Diabetes Complications Research Centre, Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Denise Wootten
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Catherine Godson
- Diabetes Complications Research Centre, Conway Institute and School of MedicineUniversity College DublinDublinIreland
| | - Mauro Perretti
- William Harvey Research Institute, Barts and the London School of MedicineQueen Mary University of LondonLondonUK
| | - Rebecca H. Ritchie
- Drug Discovery Biology, Monash Institute of Pharmaceutical SciencesMonash UniversityMelbourneVictoriaAustralia
| |
Collapse
|
16
|
Li W, Jiang H, Bai C, Yu S, Pan Y, Wang C, Li H, Li M, Sheng Y, Chu F, Wang J, Chen Y, Li J, Jiang J. Ac2-26 attenuates hepatic ischemia-reperfusion injury in mice via regulating IL-22/IL-22R1/STAT3 signaling. PeerJ 2022; 10:e14086. [PMID: 36193422 PMCID: PMC9526407 DOI: 10.7717/peerj.14086] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 01/27/2023] Open
Abstract
Hepatic ischemia-reperfusion injury (HIRI) is one of the major sources of mortality and morbidity associated with hepatic surgery. Ac2-26, a short peptide of Annexin A1 protein, has been proved to have a protective effect against IRI. However, whether it exerts a protective effect on HIRI has not been reported. The HIRI mice model and the oxidative damage model of H2O2-induced AML12 cells were established to investigate whether Ac2-26 could alleviate HIRI by regulating the activation of IL-22/IL-22R1/STAT3 signaling. The protective effect of Ac2-26 was measured by various biochemical parameters related to liver function, apoptosis, inflammatory reaction, mitochondrial function and the expressions of IL-22, IL-22R1, p-STAT3Tyr705. We discovered that Ac2-26 reduced the Suzuki score and cell death rate, and increased the cell viability after HIRI. Moreover, we unraveled that Ac2-26 significantly decreased the number of apoptotic hepatocytes, and the expressions of cleaved-caspase-3 and Bax/Bcl-2 ratio. Furthermore, HIRI increased the contents of malondialdehyde (MDA), NADP+/NADPH ratio and reactive oxygen species (ROS), whereas Ac2-26 decreased them significantly. Additionally, Ac2-26 remarkably alleviated mitochondria dysfunction, which was represented by an increase in the adenosine triphosphate (ATP) content and mitochondrial membrane potential, a decrease in mitochondrial DNA (mtDNA) damage. Finally, we revealed that Ac2-26 pretreatment could significantly inhibit the activation of IL-22/IL22R1/STAT3 signaling. In conclusion, this work demonstrated that Ac2-26 ameliorated HIRI by reducing oxidative stress and inhibiting the mitochondrial apoptosis pathway, which might be closely related to the inhibition of the IL-22/IL22R1/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Wanzhen Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Hongxin Jiang
- Morphology Lab, Weifang Medical University, Weifang, Shandong, China
| | - Chen Bai
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Shuna Yu
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Yitong Pan
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Chenchen Wang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Huiting Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Ming Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Yaxin Sheng
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Fangfang Chu
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jie Wang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Yuting Chen
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jianguo Li
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| | - Jiying Jiang
- Department of Anatomy, Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
17
|
Yan Z, Cheng X, Wang T, Hong X, Shao G, Fu C. Therapeutic potential for targeting Annexin A1 in fibrotic diseases. Genes Dis 2022; 9:1493-1505. [PMID: 36157506 PMCID: PMC9485289 DOI: 10.1016/j.gendis.2022.05.038] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Annexin A1, a well-known endogenous anti-inflammatory mediator, plays a critical role in a variety of pathological processes. Fibrosis is described by a failure of tissue regeneration and contributes to the development of many diseases. Accumulating evidence supports that Annexin A1 participates in the progression of tissue fibrosis. However, the fundamental mechanisms by which Annexin A1 regulates fibrosis remain elusive, and even the functions of Annexin A1 in fibrotic diseases are still paradoxical. This review focuses on the roles of Annexin A1 in the development of fibrosis of lung, liver, heart, and other tissues, with emphasis on the therapy potential of Annexin A1 in fibrosis, and presents future research interests and directions in fibrotic diseases.
Collapse
|
18
|
Kelly L, McGrath S, Rodgers L, McCall K, Tulunay Virlan A, Dempsey F, Crichton S, Goodyear CS. Annexin-A1; the culprit or the solution? Immunology 2022; 166:2-16. [PMID: 35146757 PMCID: PMC9426623 DOI: 10.1111/imm.13455] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/23/2021] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Annexin‐A1 has a well‐defined anti‐inflammatory role in the innate immune system, but its function in adaptive immunity remains controversial. This glucocorticoid‐induced protein has been implicated in a range of inflammatory conditions and cancers, as well as being found to be overexpressed on the T cells of patients with autoimmune disease. Moreover, the formyl peptide family of receptors, through which annexin‐A1 primarily signals, has also been implicated in these diseases. In contrast, treatment with recombinant annexin‐A1 peptides resulted in suppression of inflammatory processes in murine models of inflammation. This review will focus on what is currently known about annexin‐A1 in health and disease and discuss the potential of this protein as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Lauren Kelly
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Sarah McGrath
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Lewis Rodgers
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Kathryn McCall
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Aysin Tulunay Virlan
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| | - Fiona Dempsey
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Scott Crichton
- Medannex Ltd, 1 Lochrin Square, Fountainbridge, Edinburgh, EH3 9QA
| | - Carl S Goodyear
- Institute of Infection, Immunity and Inflammation, University of Glasgow, 120 University Place, Glasgow, G12 8TA, Scotland, UK
| |
Collapse
|
19
|
Scott TE, Qin CX, Drummond GR, Hobbs AJ, Kemp-Harper BK. Innovative Anti-Inflammatory and Pro-resolving Strategies for Pulmonary Hypertension: High Blood Pressure Research Council of Australia Award 2019. Hypertension 2021; 78:1168-1184. [PMID: 34565184 DOI: 10.1161/hypertensionaha.120.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pulmonary hypertension is a rare, ostensibly incurable, and etiologically diverse disease with an unacceptably high 5-year mortality rate (≈50%), worse than many cancers. Irrespective of pathogenic origin, dysregulated immune processes underlie pulmonary hypertension pathobiology, particularly pertaining to pulmonary vascular remodeling. As such, a variety of proinflammatory pathways have been mooted as novel therapeutic targets. One such pathway involves the family of innate immune regulators known as inflammasomes. In addition, a new and emerging concept is differentiating between anti-inflammatory approaches versus those that promote pro-resolving pathways. This review will briefly introduce inflammasomes and examine recent literature concerning their role in pulmonary hypertension. Moreover, it will explore the difference between inflammation-suppressing and pro-resolution approaches and how this links to inflammasomes. Finally, we will investigate new avenues for targeting inflammation in pulmonary hypertension via more targeted anti-inflammatory or inflammation resolving strategies.
Collapse
Affiliation(s)
- Tara E Scott
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute (T.E.S., B.K.K.-H.), Monash University, Parkville, VIC, Australia
- Monash University, Clayton, VIC, Australia and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (T.E.S., C.X.Q.), Monash University, Parkville, VIC, Australia
| | - Cheng Xue Qin
- Monash University, Clayton, VIC, Australia and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences (T.E.S., C.X.Q.), Monash University, Parkville, VIC, Australia
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia (C.X.Q.)
| | - Grant R Drummond
- Centre for Cardiovascular Biology and Disease Research, Department of Physiology, Anatomy and Microbiology, La Trobe University, Bundoora, VIC, Australia (G.R.D.)
| | - Adrian J Hobbs
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, United Kingdom (A.J.H.)
| | - Barbara K Kemp-Harper
- Department of Pharmacology, Cardiovascular Disease Program, Biomedicine Discovery Institute (T.E.S., B.K.K.-H.), Monash University, Parkville, VIC, Australia
| |
Collapse
|
20
|
Payne JAE, Tailhades J, Ellett F, Kostoulias X, Fulcher AJ, Fu T, Leung R, Louch S, Tran A, Weber SA, Schittenhelm RB, Lieschke GJ, Qin CH, Irima D, Peleg AY, Cryle MJ. Antibiotic-chemoattractants enhance neutrophil clearance of Staphylococcus aureus. Nat Commun 2021; 12:6157. [PMID: 34697316 PMCID: PMC8546149 DOI: 10.1038/s41467-021-26244-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 09/22/2021] [Indexed: 01/28/2023] Open
Abstract
The pathogen Staphylococcus aureus can readily develop antibiotic resistance and evade the human immune system, which is associated with reduced levels of neutrophil recruitment. Here, we present a class of antibacterial peptides with potential to act both as antibiotics and as neutrophil chemoattractants. The compounds, which we term 'antibiotic-chemoattractants', consist of a formylated peptide (known to act as chemoattractant for neutrophil recruitment) that is covalently linked to the antibiotic vancomycin (known to bind to the bacterial cell wall). We use a combination of in vitro assays, cellular assays, infection-on-a-chip and in vivo mouse models to show that the compounds improve the recruitment, engulfment and killing of S. aureus by neutrophils. Furthermore, optimizing the formyl peptide sequence can enhance neutrophil activity through differential activation of formyl peptide receptors. Thus, we propose antibiotic-chemoattractants as an alternate approach for antibiotic development.
Collapse
Affiliation(s)
- Jennifer A E Payne
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia.
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.
| | - Julien Tailhades
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
| | - Felix Ellett
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Xenia Kostoulias
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
| | - Alex J Fulcher
- Monash Micro Imaging, Monash University, Clayton, Victoria, 3800, Australia
| | - Ting Fu
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
| | - Ryan Leung
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Stephanie Louch
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Amy Tran
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
| | - Severin A Weber
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia
| | - Ralf B Schittenhelm
- Monash Proteomics and Metabolomics Facility, Monash University, Clayton, Victoria, 3800, Australia
| | - Graham J Lieschke
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, 3800, Australia
| | - Chengxue Helena Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, 3052, Australia
- Baker Heart and Diabetes Institute, Melbourne, Victoria, 3004, Australia
| | - Daniel Irima
- BioMEMS Resource Center, Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Shriners Hospital for Children, and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Anton Y Peleg
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria, 3800, Australia
- Department of Infectious Diseases, The Alfred Hospital, Melbourne, Victoria, 3004, Australia
- Central Clinical School, Monash University, Melbourne, Victoria, 3004, Australia
| | - Max J Cryle
- Infection and Immunity Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, 3800, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, Monash University, Clayton, Victoria, 3800, Australia.
- EMBL Australia, Monash University, Clayton, Victoria, 3800, Australia.
| |
Collapse
|
21
|
Mui L, Martin CM, Tschirhart BJ, Feng Q. Therapeutic Potential of Annexins in Sepsis and COVID-19. Front Pharmacol 2021; 12:735472. [PMID: 34566657 PMCID: PMC8458574 DOI: 10.3389/fphar.2021.735472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a continuing problem in modern healthcare, with a relatively high prevalence, and a significant mortality rate worldwide. Currently, no specific anti-sepsis treatment exists despite decades of research on developing potential therapies. Annexins are molecules that show efficacy in preclinical models of sepsis but have not been investigated as a potential therapy in patients with sepsis. Human annexins play important roles in cell membrane dynamics, as well as mediation of systemic effects. Most notably, annexins are highly involved in anti-inflammatory processes, adaptive immunity, modulation of coagulation and fibrinolysis, as well as protective shielding of cells from phagocytosis. These discoveries led to the development of analogous peptides which mimic their physiological function, and investigation into the potential of using the annexins and their analogous peptides as therapeutic agents in conditions where inflammation and coagulation play a large role in the pathophysiology. In numerous studies, treatment with recombinant human annexins and annexin analogue peptides have consistently found positive outcomes in animal models of sepsis, myocardial infarction, and ischemia reperfusion injury. Annexins A1 and A5 improve organ function and reduce mortality in animal sepsis models, inhibit inflammatory processes, reduce inflammatory mediator release, and protect against ischemic injury. The mechanisms of action and demonstrated efficacy of annexins in animal models support development of annexins and their analogues for the treatment of sepsis. The effects of annexin A5 on inflammation and platelet activation may be particularly beneficial in disease caused by SARS-CoV-2 infection. Safety and efficacy of recombinant human annexin A5 are currently being studied in clinical trials in sepsis and severe COVID-19 patients.
Collapse
Affiliation(s)
- Louise Mui
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Claudio M Martin
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Brent J Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Qingping Feng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| |
Collapse
|
22
|
Zhu L, Shi Y, Xiong Y, Ba L, Li Q, Qiu M, Zou Z, Peng G. Emerging self-assembling peptide nanomaterial for anti-cancer therapy. J Biomater Appl 2021; 36:882-901. [PMID: 34180306 DOI: 10.1177/08853282211027882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recently it is mainly focused on anti-tumor comprehensive treatments like finding target tumor cells or activating immune cells to inhibit tumor recurrence and metastasis. At present, chemotherapy and molecular-targeted drugs can inhibit tumor cell growth to a certain extent. However, multi-drug resistance and immune escape often make it difficult for new drugs to achieve expected effects. Peptide hydrogel nanoparticles is a new type of biological material with functional peptide chains as the core and self-assembling peptide (SAP) as the framework. It has a variety of significant biological functions, including effective local inflammation suppression and non-drug-resistant cell killing. Besides, it can induce immune activation more persistently in an adjuvant independent manner when compared with simple peptides. Thus, SAP nanomaterial has great potential in regulating cell physiological functions, drug delivery and sensitization, vaccine design and immunotherapy. Not only that, it is also a potential way to focus on some specific proteins and cells through peptides, which has already been examined in previous research. A full understanding of the function and application of SAP nanoparticles can provide a simple and practical strategy for the development of anti-tumor drugs and vaccine design, which contributes to the historical transition of peptide nanohydrogels from bench to bedside and brings as much survival benefits as possible to cancer patients.
Collapse
Affiliation(s)
- Lisheng Zhu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yangyang Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Xiong
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Ba
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuting Li
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Qiu
- Division of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenwei Zou
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gang Peng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
23
|
Xu X, Gao W, Li L, Hao J, Yang B, Wang T, Li L, Bai X, Li F, Ren H, Zhang M, Zhang L, Wang J, Wang D, Zhang J, Jiao L. Annexin A1 protects against cerebral ischemia-reperfusion injury by modulating microglia/macrophage polarization via FPR2/ALX-dependent AMPK-mTOR pathway. J Neuroinflammation 2021; 18:119. [PMID: 34022892 PMCID: PMC8140477 DOI: 10.1186/s12974-021-02174-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/12/2021] [Indexed: 02/07/2023] Open
Abstract
Background Cerebral ischemia–reperfusion (I/R) injury is a major cause of early complications and unfavorable outcomes after endovascular thrombectomy (EVT) therapy in patients with acute ischemic stroke (AIS). Recent studies indicate that modulating microglia/macrophage polarization and subsequent inflammatory response may be a potential adjunct therapy to recanalization. Annexin A1 (ANXA1) exerts potent anti-inflammatory and pro-resolving properties in models of cerebral I/R injury. However, whether ANXA1 modulates post-I/R-induced microglia/macrophage polarization has not yet been fully elucidated. Methods We retrospectively collected blood samples from AIS patients who underwent successful recanalization by EVT and analyzed ANXA1 levels longitudinally before and after EVT and correlation between ANXA1 levels and 3-month clinical outcomes. We also established a C57BL/6J mouse model of transient middle cerebral artery occlusion/reperfusion (tMCAO/R) and an in vitro model of oxygen–glucose deprivation and reoxygenation (OGD/R) in BV2 microglia and HT22 neurons to explore the role of Ac2-26, a pharmacophore N-terminal peptide of ANXA1, in regulating the I/R-induced microglia/macrophage activation and polarization. Results The baseline levels of ANXA1 pre-EVT were significantly lower in 23 AIS patients, as compared with those of healthy controls. They were significantly increased to the levels found in controls 2–3 days post-EVT. The increased post-EVT levels of ANXA1 were positively correlated with 3-month clinical outcomes. In the mouse model, we then found that Ac2-26 administered at the start of reperfusion shifted microglia/macrophage polarization toward anti-inflammatory M2-phenotype in ischemic penumbra, thus alleviating blood–brain barrier leakage and neuronal apoptosis and improving outcomes at 3 days post-tMCAO/R. The protection was abrogated when mice received Ac2-26 together with WRW4, which is a specific antagonist of formyl peptide receptor type 2/lipoxin A4 receptor (FPR2/ALX). Furthermore, the interaction between Ac2-26 and FPR2/ALX receptor activated the 5’ adenosine monophosphate-activated protein kinase (AMPK) and inhibited the downstream mammalian target of rapamycin (mTOR). These in vivo findings were validated through in vitro experiments. Conclusions Ac2-26 modulates microglial/macrophage polarization and alleviates subsequent cerebral inflammation by regulating the FPR2/ALX-dependent AMPK-mTOR pathway. It may be investigated as an adjunct strategy for clinical prevention and treatment of cerebral I/R injury after recanalization. Plasma ANXA1 may be a potential biomarker for outcomes of AIS patients receiving EVT. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02174-3.
Collapse
Affiliation(s)
- Xin Xu
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China.
| | - Weiwei Gao
- Department of Neurology, Tianjin Huanhu Hospital, 6 Jizhao Road, Tianjin, 300350, China.
| | - Lei Li
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Jiheng Hao
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Bin Yang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Tao Wang
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Long Li
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Xuesong Bai
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China
| | - Fanjian Li
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Honglei Ren
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Meng Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Jiyue Wang
- Department of Neurosurgery, Liaocheng People's Hospital, 67 Dongchang West Road, Liaocheng, 252000, China
| | - Dong Wang
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Jianning Zhang
- Department of Neurosurgery & Neurology, Tianjin Medical University General Hospital, 154 Anshan Road, Tianjin, 300052, China
| | - Liqun Jiao
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,China International Neuroscience Institute (China-INI), 45 Changchun Street, Beijing, 100053, China. .,Department of Interventional Neuroradiology, Xuanwu Hospital, Capital Medical University, 45 Changchun Street, Beijing, 100053, China.
| |
Collapse
|
24
|
Lyngstadaas AV, Olsen MV, Bair JA, Hodges RR, Utheim TP, Serhan CN, Dartt DA. Pro-Resolving Mediator Annexin A1 Regulates Intracellular Ca 2+ and Mucin Secretion in Cultured Goblet Cells Suggesting a New Use in Inflammatory Conjunctival Diseases. Front Immunol 2021; 12:618653. [PMID: 33968020 PMCID: PMC8100605 DOI: 10.3389/fimmu.2021.618653] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 03/11/2021] [Indexed: 12/19/2022] Open
Abstract
The amount of mucin secreted by conjunctival goblet cells is regulated to ensure the optimal level for protection of the ocular surface. Under physiological conditions lipid specialized pro-resolving mediators (SPM) are essential for maintaining tissue homeostasis including the conjunctiva. The protein Annexin A1 (AnxA1) can act as an SPM. We used cultured rat conjunctival goblet cells to determine if AnxA1 stimulates an increase in intracellular [Ca2+] ([Ca2+]i) and mucin secretion and to identify the signaling pathways. The increase in [Ca2+]i was determined using fura2/AM and mucin secretion was measured using an enzyme-linked lectin assay. AnxA1 stimulated an increase in [Ca2+]i and mucin secretion that was blocked by the cell-permeant Ca2+ chelator BAPTA/AM and the ALX/FPR2 receptor inhibitor BOC2. AnxA1 increased [Ca2+]i to a similar extent as the SPMs lipoxin A4 and Resolvin (Rv) D1 and histamine. The AnxA1 increase in [Ca2+]i and mucin secretion were inhibited by blocking the phospholipase C (PLC) pathway including PLC, the IP3 receptor, the Ca2+/ATPase that causes the intracellular Ca2+ stores to empty, and blockade of Ca2+ influx. Inhibition of protein kinase C (PKC) and Ca2+/calmodulin-dependent protein kinase also decreased the AnxA1-stimulated increase in [Ca2+]i and mucin secretion. In contrast inhibitors of ERK 1/2, phospholipase A2 (PLA2), and phospholipase D (PLD) did not alter AnxA1-stimulated increase in [Ca2+]i, but did inhibit mucin secretion. Activation of protein kinase A did not decrease either the AnxA1-stimulated rise in [Ca2+]i or secretion. We conclude that in health, AnxA1 contributes to the mucin layer of the tear film and ocular surface homeostasis by activating the PLC signaling pathway to increase [Ca2+]i and stimulate mucin secretion and ERK1/2, PLA2, and PLD to stimulate mucin secretion from conjunctival goblet cells.
Collapse
Affiliation(s)
- Anne V Lyngstadaas
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Markus V Olsen
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Jeffrey A Bair
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Robin R Hodges
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| | - Tor P Utheim
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States.,Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.,Department of Plastic and Reconstructive Surgery, University of Oslo, Oslo, Norway
| | - Charles N Serhan
- Center for Experimental Therapeutics and Reperfusion Injury, Department of Anesthesia, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Darlene A Dartt
- Schepens Eye Research institute/Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
25
|
Zhou C, Lin Z, Cao H, Chen Y, Li J, Zhuang X, Ma D, Ji L, Li W, Xu S, Pan B, Zheng L. Anxa1 in smooth muscle cells protects against acute aortic dissection. Cardiovasc Res 2021; 118:1564-1582. [PMID: 33757117 DOI: 10.1093/cvr/cvab109] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 03/21/2021] [Indexed: 02/06/2023] Open
Abstract
AIMS Acute aortic dissection (AAD) is a life-threatening disease with high morbidity and mortality. Previous studies have showed that vascular smooth muscle cell (VSMC) phenotype switching modulates vascular function and AAD progression. However, whether an endogenous signaling system that protects AAD progression exists, remains unknown. Our aim is to investigate the role of Anxa1 in VSMC phenotype switching and the pathogenesis of AAD. METHODS AND RESULTS We first assessed Anxa1 expression levels by immunohistochemical staining in control aorta and AAD tissue from mice. A strong increase of Anxa1 expression was seen in the mouse AAD tissues. In line with these findings, micro-CT scan results indicated that Anxa1 plays a role in the development of AAD in our murine model, with systemic deficiency of Anxa1 markedly progressing AAD. Conversely, administration of Anxa1 mimetic peptide, Ac2-26, rescued the AAD phenotype in Anxa1-/- mice. Transcriptomic studies revealed a novel role for Anxa1 in VSMC phenotype switching, with Anxa1 deficiency triggering the synthetic phenotype of VSMCs via down-regulation of the JunB/MYL9 pathway. The resultant VSMC synthetic phenotype rendered elevated inflammation and enhanced matrix metalloproteinases (MMPs) production, leading to augmented elastin degradation. VSMC-restricted deficiency of Anxa1 in mice phenocopied VSMC phenotype switching and the consequent exacerbation of AAD. Finally, our studies in human AAD aortic specimens recapitulated key findings in murine AAD, specifically that the decrease of Anxa1 is associated with VSMC phenotype switch, heightened inflammation, and enhanced MMP production in human aortas. CONCLUSIONS Our findings demonstrated that Anxa1 is a novel endogenous defender that prevents acute aortic dissection by inhibiting vascular smooth muscle cell phenotype switching, suggesting that Anxa1 signaling may be a potential target for AAD pharmacological therapy. TRANSLATIONAL PERSPECTIVE Our studies herein may lead to a paradigm shift for pharmacologic therapy towards acute aortic dissection. Through careful examination of the pathological changes that occur during AAD onset in experimental animal models, we demonstrated that VSMC phenotype switching plays a critical role in the development of AAD. Inhibition of VSMC phenotype switching and its attendant impacts on aortic function may be a viable approach for future treatment. Toward that end, our studies highlighted the protective benefit of Anxa1 and its mimetic peptide Ac2-26 in AAD through prevention of the switching of VSMC to a synthetic phenotype.
Collapse
Affiliation(s)
- Changping Zhou
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Zhiyong Lin
- Cardiology Division, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Huanhuan Cao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Yue Chen
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Jingxuan Li
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Xiaofeng Zhuang
- FuWai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Dong Ma
- School of Public Health, North China University of Science and Technology, 21 Bohai Avenue, Caofeidian New City, Tangshan 063210, Hebei, China; Department of Biochemistry and Molecular Biology, Hebei Medical University, China
| | - Liang Ji
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Wei Li
- Peking University People's Hospital, Beijing, China
| | - Suowen Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Bing Pan
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Science of Ministry of Education, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Ministry of Health, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing, 100191, China.,Beijing Tiantan Hospital, The Capital Medical University; China National Clinical Research Center for Neurological Diseases; Advanced Innovation Center for Human Brain Protection, Beijing, 100050, China
| |
Collapse
|
26
|
McNeill SM, Baltos JA, White PJ, May LT. Biased agonism at adenosine receptors. Cell Signal 2021; 82:109954. [PMID: 33610717 DOI: 10.1016/j.cellsig.2021.109954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 02/11/2021] [Accepted: 02/13/2021] [Indexed: 01/14/2023]
Abstract
Adenosine modulates many aspects of human physiology and pathophysiology through binding to the adenosine family of G protein-coupled receptors, which are comprised of four subtypes, the A1R, A2AR, A2BR and A3R. Modulation of adenosine receptor function by exogenous agonists, antagonists and allosteric modulators can be beneficial for a number of conditions including cardiovascular disease, Parkinson's disease, and cancer. Unfortunately, many preclinical drug candidates targeting adenosine receptors have failed in clinical trials due to limited efficacy and/or severe on-target undesired effects. To overcome the key barriers typically encountered when transitioning adenosine receptor ligands into the clinic, research efforts have focussed on exploiting the phenomenon of biased agonism. Biased agonism provides the opportunity to develop ligands that favour therapeutic signalling pathways, whilst avoiding signalling associated with on-target undesired effects. Recent studies have begun to define the structure-function relationships that underpin adenosine receptor biased agonism and establish how this phenomenon can be harnessed therapeutically. In this review we describe the recent advancements made towards achieving therapeutically relevant biased agonism at adenosine receptors.
Collapse
Affiliation(s)
- Samantha M McNeill
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Jo-Anne Baltos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Department of Pharmacology, Monash University, Melbourne, VIC, Australia.
| | - Paul J White
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
| | - Lauren T May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia; Department of Pharmacology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
27
|
Weng H, Peng Y, Pei Q, Jing F, Yang M, Yi Q. Decreased serum Annexin A1 levels in Kawasaki disease with coronary artery aneurysm. Pediatr Res 2021; 89:569-573. [PMID: 32316027 DOI: 10.1038/s41390-020-0898-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/29/2020] [Accepted: 03/30/2020] [Indexed: 11/09/2022]
Abstract
BACKGROUND Kawasaki disease (KD) is an acute and systemic vasculitis whose etiology remains unclear. The most crucial complication is the formation of coronary artery aneurysm (CAA). Annexin A1 (ANXA1) is an endogenous anti-inflammatory agent and pro-resolving mediator involved in inflammation-related diseases. This study sought to investigate the serum ANXA1 levels in KD patients and further explore the relationship between ANXA1 and CAA, as well as additional clinical parameters. METHODS Serum samples were collected from 95 KD patients and 39 healthy controls (HCs). KD patients were further divided into two groups: KD with CAAs (KD-CAAs) and KD non-CAAs (KD-NCAAs). Serum levels of ANXA1 and interleukin-6 (IL-6) were determined using enzyme-linked immunosorbent assays. RESULTS Serum ANXA1 levels in the KD group were significantly lower than in the HC group. In particular, serum ANXA1 levels were substantially lower in the KD-CAA groups. Moreover, serum ANXA1 levels were positively correlated with N%, C-reactive protein (CRP), and IL-6 but negatively correlated with L% in the KD group. Positive correlations between serum ANXA1 levels and erythrocyte sedimentation rate (ESR), IL-6, and D-dimer (DD) were observed in the KD-CAA group. CONCLUSIONS ANXA1 may be involved in the development of KD, and downregulation of ANXA1 may lead to the hypercoagulability seen in KD. IMPACT For the first time, it was demonstrated that serum ANXA1 levels were significantly decreased in Kawasaki disease with coronary artery aneurysms. ANXA1 might be involved in the acute phase of Kawasaki disease. Low serum concentrations of ANXA1 might lead to the hypercoagulability stage in Kawasaki disease. ANXA1 might be a potential therapeutic target for patients with Kawasaki disease.
Collapse
Affiliation(s)
- Haobo Weng
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Yue Peng
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Qiongfei Pei
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Fengchuan Jing
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Maoling Yang
- Department of Cardiovascular Medicine; National Clinical Research Center for Child Health and Disorders; Ministry of Education Key Laboratory of Child Development and Disorders; China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China.,Chongqing Key Laboratory of Pediatrics, Chongqing, 400014, People's Republic of China
| | - Qijian Yi
- Department of Cardiovascular Medicine, Children's Hospital of Chongqing Medical University, Chongqing, 400014, People's Republic of China.
| |
Collapse
|
28
|
Xu J, Yu C, Luo J, Guo Y, Cheng C, Zhang H. The role and mechanism of the annexin A1 peptide Ac2-26 in rats with cardiopulmonary bypass lung injury. Basic Clin Pharmacol Toxicol 2021; 128:719-730. [PMID: 33455036 PMCID: PMC8247988 DOI: 10.1111/bcpt.13561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 12/31/2020] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
The main causes of lung injury after cardiopulmonary bypass (CPB) are systemic inflammatory response syndrome (SIRS) and pulmonary ischaemia‐reperfusion injury (IR‐I). SIRS and IR‐I are often initiated by a systemic inflammatory response. The present study investigated whether the annexin A1 (ANX‐A1) peptidomimetic Ac2‐26 by binding to formyl peptide receptors (FPRs) inhibit inflammatory cytokines and reduce lung injury after CPB. Male rats were randomized to the following five groups (n = 6, each): sham, exposed to pulmonary ischaemic‐reperfusion (IR‐I), IR‐I plus Ac2‐26, IR‐I plus the FPR antagonist, BoC2 (N‐tert‐butyloxycarbonyl‐Phe‐Leu‐Phe‐Leu‐Phe) and IR‐I plus Ac2‐26 and BoC2. Treatment with Ac2‐26 improved the oxygenation index, an effect blocked by BoC2. Histopathological analysis of the lung tissue revealed that the degree of lung injury was significantly less (P < 0.05) in the Ac2‐26‐treated rats compared to the other experimental groups exposed to IR‐I. Ac2‐26 treatment reduced the levels of the inflammatory cytokines TNF‐α, IL‐1β, ICAM‐1 and NF‐κB‐p65 (P < 0.05) compared to the vehicle‐treated group exposed to IR‐I. In conclusion, the annexin A1 (ANX‐A1) peptidomimetic Ac2‐26 by binding to formyl peptide receptors inhibit inflammatory cytokines and reduce ischaemic‐reperfusion lung injury after cardiopulmonary bypass.
Collapse
Affiliation(s)
- Jiyang Xu
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Chengkun Yu
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Junli Luo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yuhan Guo
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Chi Cheng
- Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi, China
| | - Hong Zhang
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, China
| |
Collapse
|
29
|
Bonavita AG. Ac2-26 mimetic peptide of annexin A1 to treat severe COVID-19: A hypothesis. Med Hypotheses 2020; 145:110352. [PMID: 33129009 PMCID: PMC7577270 DOI: 10.1016/j.mehy.2020.110352] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/17/2020] [Indexed: 02/07/2023]
Abstract
The Coronavirus Diseases-2019 (COVID-19) pandemic leads many researchers around the world to study the SARS-CoV-s2 infection and pathology to find a treatment for it. This generates a massive production of papers including pre-clinical, clinical and revisions but till now no specific treatment were identified. Meanwhile, like other coronavirus infections, COVID-19 leads to the cytokine storm syndrome resulting in hyperinflammation, exacerbated immune response and multiple organ dysfunctions indicating that drugs that modulate this response, as glucocorticoids could be a treatment option. However glucocorticoids have several side effects or usage limitations. In this sense a drug with anti-inflammatory effects and capable to reduce inflammation but with less after-effects could be a powerful tool to combat COVID-19. Thus the Ac2-26 Mimetic Peptide of Annexin A1 emerges as a possible therapy. The peptide has many anti-inflammatory effects described including the reduction of interleukin (IL)-6, one of the main mediators of cytokine storm syndrome. Therefore the hypothesis to use the Ac2-26 peptide to treat severe COVID-19 will be highlighted in this paper.
Collapse
Affiliation(s)
- Andre Gustavo Bonavita
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Campus UFRJ-Macaé Professor Aloizio Teixeira Macaé, Universidade Federal do Rio de Janeiro, Rua Aloísio da Silva Gomes, 50, Macaé, RJ, Brazil.
| |
Collapse
|
30
|
Rüger M, Kipp E, Schubert N, Schröder N, Pufe T, Stope MB, Kipp M, Blume C, Tauber SC, Brandenburg LO. The formyl peptide receptor agonist Ac2-26 alleviates neuroinflammation in a mouse model of pneumococcal meningitis. J Neuroinflammation 2020; 17:325. [PMID: 33121515 PMCID: PMC7596991 DOI: 10.1186/s12974-020-02006-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/21/2020] [Indexed: 01/20/2023] Open
Abstract
Background Bacterial meningitis is still a cause of severe neurological disability. The brain is protected from penetrating pathogens by the blood-brain barrier and the innate immune system. The invading pathogens are recognized by pattern recognition receptors including the G-protein-coupled formyl peptide receptors (FPRs), which are expressed by immune cells of the central nervous system. FPRs show a broad spectrum of ligands, including pro- and anti-inflammatory ones. Here, we investigated the effects of the annexin A1 mimetic peptide Ac2-26 in a mouse model of pneumococcal meningitis. Methods Wildtype (WT) and Fpr1- and Fpr2-deficient mice were intrathecally infected with Streptococcus pneumoniae D39 (type 2). Subsequently, the different mice groups were treated by intraperitoneal injections of Ac2-26 (1 mg/kg body weight) 2, 8, and 24 h post-infection. The extent of inflammation was analyzed in various brain regions by means of immunohistochemistry and real-time reverse transcription polymerase chain reaction (RT-PCR) 30 h post-infection. Results Ac2-26-treated WT mice showed less severe neutrophil infiltration, paralleled by a reduced induction of pro-inflammatory glial cell responses in the hippocampal formation and cortex. While meningitis was ameliorated in Ac2-26-treated Fpr1-deficient mice, this protective effect was not observed in Fpr2-deficient mice. Irrespective of Ac2-26 treatment, inflammation was more severe in Fpr2-deficient compared to Fpr1-deficient mice. Conclusions In summary, this study demonstrates anti-inflammatory properties of Ac2-26 in a model of bacterial meningitis, which are mediated via FPR2, but not FPR1. Ac2-26 and other FPR2 modulators might be promising targets for the development of novel therapies for Streptococcus pneumoniae-induced meningitis.
Collapse
Affiliation(s)
- Marvin Rüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Eugenia Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Nadine Schubert
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Nicole Schröder
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany
| | - Matthias B Stope
- Department of Urology, University Medicine Greifswald, Greifswald, Germany.,Department of Gynecology and Obstetrics, University Hospital Bonn, Bonn, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany.,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany
| | - Christian Blume
- Department of Neurosurgery, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Simone C Tauber
- Department of Neurology, RWTH University Hospital Aachen, Aachen, Germany
| | - Lars-Ove Brandenburg
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstrasse 9, 18057, Rostock, Germany. .,Department of Anatomy and Cell Biology, RWTH Aachen University, Aachen, Germany. .,Center for Transdisciplinary Neurosciences Rostock (CTNR), Rostock University Medical Center, Gelsheimer Strasse 20, 18147, Rostock, Germany.
| |
Collapse
|
31
|
Zhao C, Li S, Zhang J, Huang Y, Zhang L, Zhao F, Du X, Hou J, Zhang T, Shi C, Wang P, Huo R, Woodman OL, Qin CX, Xu H, Huang L. Current state and future perspective of cardiovascular medicines derived from natural products. Pharmacol Ther 2020; 216:107698. [PMID: 33039419 DOI: 10.1016/j.pharmthera.2020.107698] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/06/2023]
Abstract
The contribution of natural products (NPs) to cardiovascular medicine has been extensively documented, and many have been used for centuries. Cardiovascular disease (CVD) is the leading cause of morbidity and mortality worldwide. Over the past 40 years, approximately 50% of newly developed cardiovascular drugs were based on NPs, suggesting that NPs provide essential skeletal structures for the discovery of novel medicines. After a period of lower productivity since the 1990s, NPs have recently regained scientific and commercial attention, leveraging the wealth of knowledge provided by multi-omics, combinatorial biosynthesis, synthetic biology, integrative pharmacology, analytical and computational technologies. In addition, as a crucial part of complementary and alternative medicine, Traditional Chinese Medicine has increasingly drawn attention as an important source of NPs for cardiovascular drug discovery. Given their structural diversity and biological activity NPs are one of the most valuable sources of drugs and drug leads. In this review, we briefly described the characteristics and classification of NPs in CVDs. Then, we provide an up to date summary on the therapeutic potential and the underlying mechanisms of action of NPs in CVDs, and the current view and future prospect of developing safer and more effective cardiovascular drugs based on NPs.
Collapse
Affiliation(s)
- Chunhui Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Sen Li
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Junhong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yuanyun Huang
- Biology Department, Cornell University, Ithaca, NY 14850, United States of America
| | - Luoqi Zhang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Feng Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xia Du
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; Shaanxi Academy of Traditional Chinese Medicine, Xi'an 710003, China
| | - Jinli Hou
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chenjing Shi
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ping Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruili Huo
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Owen L Woodman
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia
| | - Cheng Xue Qin
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3800, Australia; School of Pharmaceutical Science, Shandong University, Shandong 250100, China; Qilu Hospital, Cheeloo College of Medicine, Shandong University, Shandong 250100, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
32
|
Shen X, Zhang S, Guo Z, Xing D, Chen W. The crosstalk of ABCA1 and ANXA1: a potential mechanism for protection against atherosclerosis. Mol Med 2020; 26:84. [PMID: 32894039 PMCID: PMC7487582 DOI: 10.1186/s10020-020-00213-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Atherosclerosis, characterized by the formation of fat-laden plaques, is a chronic inflammatory disease. ABCA1 promotes cholesterol efflux, reduces cellular cholesterol accumulation, and regulates anti-inflammatory activities in an apoA-I- or ANXA1-dependent manner. The latter activity occurs by mediating the efflux of ANXA1, which plays a critical role in anti-inflammatory effects, cholesterol transport, exosome and microparticle secretion, and apoptotic cell clearance. ApoA-I increases ANXA1 expression via the ERK, p38MAPK, AKT, and PKC pathways. ApoA-I regulates the signaling pathways by binding to ABCA1, suggesting that apoA-I increases ANXA1 expression by binding to ABCA1. Furthermore, ANXA1 may increase ABCA1 expression. ANXA1 increases PPARγ expression by modulating STAT6 phosphorylation. PPARγ also increases ANXA1 expression by binding to the promoter of ANXA1. Therefore, ABCA1, PPARγ, and ANXA1 may form a feedback loop and regulate each other. Interestingly, the ANXA1 needs to be externalized to the cell membrane or secreted into the extracellular fluids to exert its anti-inflammatory properties. ABCA1 transports ANXA1 from the cytoplasm to the cell membrane by regulating lipidization and serine phosphorylation, thereby mediating ANXA1 efflux, likely by promoting microparticle and exosome release. The direct role of ABCA1 expression and ANXA1 release in atherosclerosis has been unclear. In this review, we focus on the role of ANXA1 in atheroprogression and its novel interaction with ABCA1, which may be useful for providing basic knowledge for the development of novel therapeutic targets for atherosclerosis and cardiovascular disease.
Collapse
Affiliation(s)
- Xin Shen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Shun Zhang
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China
| | - Zhu Guo
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.,Department of Spine Surgery, The Affiliated Hospital of Qingdao University, Qingdao, 266071, Shandong, China
| | - Dongming Xing
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China. .,School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Wujun Chen
- Cancer Institute, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, 266071, Shandong, China.
| |
Collapse
|
33
|
Giannarelli C, Wong CK. Crosstalk Between Inflammatory Cells to Promote Cardioprotective Angiogenesis. J Am Coll Cardiol 2020; 73:3003-3005. [PMID: 31196458 DOI: 10.1016/j.jacc.2019.04.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/17/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Chiara Giannarelli
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Department of Genetics and Genomic Sciences, The Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Christine K Wong
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
34
|
Annexin A1 accounts for an anti-inflammatory binding target of sesamin metabolites. NPJ Sci Food 2020; 4:4. [PMID: 32133417 PMCID: PMC7033200 DOI: 10.1038/s41538-020-0064-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/27/2020] [Indexed: 12/16/2022] Open
Abstract
Sesamin [(7α,7'α,8α,8'α)-3,4:3',4'-bis(methylenedioxy)-7,9':7',9-diepoxylignane] is a major lignan in sesame seeds. Sesamin is converted to the catechol metabolite, SC1 [(7α,7'α,8α,8'α)-3',4'-methylenedioxy-7,9':7',9-diepoxylignane-3,4-diol] with anti-inflammatory effects after oral administration. However, its molecular target remains unknown. Analysis using high-performance affinity nanobeads led to the identification of annexin A1 (ANX A1) as an SC1-binding protein. SC1 was found to bind to the annexin repeat 3 region of ANX A1 with a high-affinity constant (Kd = 2.77 μmol L-1). In U937 cells, SC1 exhibited an anti-inflammatory effect dependent on ANX A1. Furthermore, administration of sesamin or SC1 attenuated carbon tetrachloride-induced liver damage in mice and concurrently suppressed inflammatory responses dependent on ANX A1. The mechanism involved SC1-induced ANX A1 phosphorylation at serine 27 that facilitates extracellular ANX A1 release. Consequently, the ANX A1 released into the extracellular space suppressed the production of tumor necrosis factor α. This study demonstrates that ANX A1 acts as a pivotal target of sesamin metabolites to attenuate inflammatory responses.
Collapse
|
35
|
The Novel Small-molecule Annexin-A1 Mimetic, Compound 17b, Elicits Vasoprotective Actions in Streptozotocin-induced Diabetic Mice. Int J Mol Sci 2020; 21:ijms21041384. [PMID: 32085666 PMCID: PMC7073122 DOI: 10.3390/ijms21041384] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/11/2022] Open
Abstract
The formyl peptide receptor (FPR) family are a group of G-protein coupled receptors that play an important role in the regulation of inflammatory processes. It is well-established that activation of FPRs can have cardioprotective properties. Recently, more stable small-molecule FPR1/2 agonists have been described, including both Compound 17b (Cmpd17b) and Compound 43 (Cmpd43). Both agonists activate a range of signals downstream of FPR1/2 activation in human-engineered FPR-expressing cells, including ERK1/2 and Akt. Importantly, Cmpd17b (but not Cmpd43) favours bias away from intracellular Ca2+ mobilisation in this context, which has been associated with greater cardioprotection in response to Cmpd17b over Cmpd43. However, it is unknown whether these FPR agonists impact vascular physiology and/or elicit vasoprotective effects in the context of diabetes. First, we localized FPR1 and FPR2 receptors predominantly in vascular smooth muscle cells in the aortae of male C57BL/6 mice. We then analysed the vascular effects of Cmpd17b and Cmpd43 on the aorta using wire-myography. Cmpd17b but not Cmpd43 evoked a concentration-dependent relaxation of the mouse aorta. Removal of the endothelium or blockade of endothelium-derived relaxing factors using pharmacological inhibitors had no effect on Cmpd17b-evoked relaxation, demonstrating that its direct vasodilator actions were endothelium-independent. In aortae primed with elevated K+ concentration, increasing concentrations of CaCl2 evoked concentration-dependent contraction that is abolished by Cmpd17b, suggesting the involvement of the inhibition of Ca2+ mobilisation via voltage-gated calcium channels. Treatment with Cmpd17b for eight weeks reversed endothelial dysfunction in STZ-induced diabetic aorta through the upregulation of vasodilator prostanoids. Our data indicate that Cmpd17b is a direct endothelium-independent vasodilator, and a vasoprotective molecule in the context of diabetes.
Collapse
|
36
|
Jelinic M, Kahlberg N, Leo CH, Ng HH, Rosli S, Deo M, Li M, Finlayson S, Walsh J, Parry LJ, Ritchie RH, Qin CX. Annexin-A1 deficiency exacerbates pathological remodelling of the mesenteric vasculature in insulin-resistant, but not insulin-deficient, mice. Br J Pharmacol 2020; 177:1677-1691. [PMID: 31724161 DOI: 10.1111/bph.14927] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/04/2019] [Accepted: 10/27/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND PURPOSE Arterial stiffness, a characteristic feature of diabetes, increases the risk of cardiovascular complications. Potential mechanisms that promote arterial stiffness in diabetes include oxidative stress, glycation and inflammation. The anti-inflammatory protein annexin-A1 has cardioprotective properties, particularly in the context of ischaemia. However, the role of endogenous annexin-A1 in the vasculature in both normal physiology and pathophysiology remains largely unknown. Hence, this study investigated the role of endogenous annexin-A1 in diabetes-induced remodelling of mouse mesenteric vasculature. EXPERIMENTAL APPROACH Insulin-resistance was induced in male mice (AnxA1+/+ and AnxA1-/- ) with the combination of streptozotocin (55mg/kg i.p. x 3 days) with high fat diet (42% energy from fat) or citrate vehicle with normal chow diet (20-weeks). Insulin-deficiency was induced in a separate cohort of mice using a higher total streptozocin dose (55mg/kg i.p. x 5 days) on chow diet (16-weeks). At study endpoint, mesenteric artery passive mechanics were assessed by pressure myography. KEY RESULTS Insulin-resistance induced significant outward remodelling but had no impact on passive stiffness. Interestingly, vascular stiffness was significantly increased in AnxA1-/- mice when subjected to insulin-resistance. In contrast, insulin-deficiency induced outward remodelling and increased volume compliance in mesenteric arteries, regardless of genotype. In addition, the annexin-A1 / formyl peptide receptor axis is upregulated in both insulin-resistant and insulin-deficient mice. CONCLUSION AND IMPLICATIONS Our study provided the first evidence that endogenous AnxA1 may play an important vasoprotective role in the context of insulin-resistance. AnxA1-based therapies may provide additional benefits over traditional anti-inflammatory strategies for reducing vascular injury in diabetes.
Collapse
Affiliation(s)
- Maria Jelinic
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.,Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC, Australia
| | - Nicola Kahlberg
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Chen Huei Leo
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.,Science, Math and Technology, Singapore University of Technology and Design, Singapore
| | - Hooi Hooi Ng
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia.,Department of Human and Molecular Genetics, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida
| | - Sarah Rosli
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mandy Li
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Siobhan Finlayson
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jesse Walsh
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Laura J Parry
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Fu T, Mohan M, Brennan EP, Woodman OL, Godson C, Kantharidis P, Ritchie RH, Qin CX. Therapeutic Potential of Lipoxin A 4 in Chronic Inflammation: Focus on Cardiometabolic Disease. ACS Pharmacol Transl Sci 2020; 3:43-55. [PMID: 32259087 DOI: 10.1021/acsptsci.9b00097] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Indexed: 02/07/2023]
Abstract
Several studies have shown that failure to resolve inflammation may contribute to the progression of many chronic inflammatory disorders. It has been suggested targeting the resolution of inflammation might be a novel therapeutic approach for chronic inflammatory diseases, including inflammatory bowel disease, diabetic complications, and cardiometabolic disease. Lipoxins [LXs] are a class of endogenously generated mediators that promote the resolution of inflammation. Biological actions of LXs include inhibition of neutrophil infiltration, promotion of macrophage polarization, increase of macrophage efferocytosis, and restoration of tissue homeostasis. Recently, several studies have demonstrated that LXs and synthetic analogues protect tissues from acute and chronic inflammation. The mechanism includes down-regulation of pro-inflammatory cytokines and chemokines (e.g., interleukin-1β and tumor necrosis factor-α), inhibition of the activation of the master pro-inflammatory pathway (e.g., nuclear factor κ-light-chain-enhancer of activated B cells pathway) and increased release of the pro-resolving cytokines (e.g., interleukin-10). Three generations of LXs analogues are well described in the literature, and more recently a fourth generation has been generated that appears to show enhanced potency. In this review, we will briefly discuss the potential therapeutic opportunity provided by lipoxin A4 as a novel approach to treat chronic inflammatory disorders, focusing on cardiometabolic disease and the current drug development in this area.
Collapse
Affiliation(s)
- Ting Fu
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Muthukumar Mohan
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, UCD Conway Institute, UCD School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Owen L Woodman
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, UCD Conway Institute, UCD School of Medicine, University College Dublin, Dublin, 4, Ireland
| | - Phillip Kantharidis
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca H Ritchie
- Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia.,Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.,Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cheng Xue Qin
- Heart Failure Pharmacology, Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia.,Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia.,Department of Diabetes, Central Clinical School, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
38
|
Abstract
Ca2+ binding proteins (CBP) are of key importance for calcium to play its role as a pivotal second messenger. CBP bind Ca2+ in specific domains, contributing to the regulation of its concentration at the cytosol and intracellular stores. They also participate in numerous cellular functions by acting as Ca2+ transporters across cell membranes or as Ca2+-modulated sensors, i.e. decoding Ca2+ signals. Since CBP are integral to normal physiological processes, possible roles for them in a variety of diseases has attracted growing interest in recent years. In addition, research on CBP has been reinforced with advances in the structural characterization of new CBP family members. In this chapter we have updated a previous review on CBP, covering in more depth potential participation in physiopathological processes and candidacy for pharmacological targets in many diseases. We review intracellular CBP that contain the structural EF-hand domain: parvalbumin, calmodulin, S100 proteins, calcineurin and neuronal Ca2+ sensor proteins (NCS). We also address intracellular CBP lacking the EF-hand domain: annexins, CBP within intracellular Ca2+ stores (paying special attention to calreticulin and calsequestrin), proteins that contain a C2 domain (such as protein kinase C (PKC) or synaptotagmin) and other proteins of interest, such as regucalcin or proprotein convertase subtisilin kexins (PCSK). Finally, we summarise the latest findings on extracellular CBP, classified according to their Ca2+ binding structures: (i) EF-hand domains; (ii) EGF-like domains; (iii) ɣ-carboxyl glutamic acid (GLA)-rich domains; (iv) cadherin domains; (v) Ca2+-dependent (C)-type lectin-like domains; (vi) Ca2+-binding pockets of family C G-protein-coupled receptors.
Collapse
|
39
|
Ma Q, Zhang Z, Shim JK, Venkatraman TN, Lascola CD, Quinones QJ, Mathew JP, Terrando N, Podgoreanu MV. Annexin A1 Bioactive Peptide Promotes Resolution of Neuroinflammation in a Rat Model of Exsanguinating Cardiac Arrest Treated by Emergency Preservation and Resuscitation. Front Neurosci 2019; 13:608. [PMID: 31258464 PMCID: PMC6587399 DOI: 10.3389/fnins.2019.00608] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/28/2019] [Indexed: 12/19/2022] Open
Abstract
Neuroinflammation initiated by damage-associated molecular patterns, including high mobility group box 1 protein (HMGB1), has been implicated in adverse neurological outcomes following lethal hemorrhagic shock and polytrauma. Emergency preservation and resuscitation (EPR) is a novel method of resuscitation for victims of exsanguinating cardiac arrest, shown in preclinical studies to improve survival with acceptable neurological recovery. Sirtuin 3 (SIRT3), the primary mitochondrial deacetylase, has emerged as a key regulator of metabolic and energy stress response pathways in the brain and a pharmacological target to induce a neuronal pro-survival phenotype. This study aims to examine whether systemic administration of an Annexin-A1 bioactive peptide (ANXA1sp) could resolve neuroinflammation and induce sirtuin-3 regulated cytoprotective pathways in a novel rat model of exsanguinating cardiac arrest and EPR. Adult male rats underwent hemorrhagic shock and ventricular fibrillation, induction of profound hypothermia, followed by resuscitation and rewarming using cardiopulmonary bypass (EPR). Animals randomly received ANXA1sp (3 mg/kg, in divided doses) or vehicle. Neuroinflammation (HMGB1, TNFα, IL-6, and IL-10 levels), cerebral cell death (TUNEL, caspase-3, pro and antiapoptotic protein levels), and neurologic scores were assessed to evaluate the inflammation resolving effects of ANXA1sp following EPR. Furthermore, western blot analysis and immunohistochemistry were used to interrogate the mechanisms involved. Compared to vehicle controls, ANXA1sp effectively reduced expression of cerebral HMGB1, IL-6, and TNFα and increased IL-10 expression, which were associated with improved neurological scores. ANXA1sp reversed EPR-induced increases in expression of proapoptotic protein Bax and reduction in antiapoptotic protein Bcl-2, with a corresponding decrease in cerebral levels of cleaved caspase-3. Furthermore, ANXA1sp induced autophagic flux (increased LC3II and reduced p62 expression) in the brain. Mechanistically, these findings were accompanied by upregulation of the mitochondrial protein deacetylase Sirtuin-3, and its downstream targets FOXO3a and MnSOD in ANXA1sp-treated animals. Our data provide new evidence that engaging pro-resolving pharmacological strategies such as Annexin-A1 biomimetic peptides can effectively attenuate neuroinflammation and enhance the neuroprotective effects of EPR after exsanguinating cardiac arrest.
Collapse
Affiliation(s)
- Qing Ma
- Systems Modeling of Perioperative Organ Injury Laboratory, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Zhiquan Zhang
- Neuroinflammation and Cognitive Outcomes Laboratory, Department of Anesthesiology, Duke University, Durham, NC, United States.,Center for Translational Pain Medicine, Duke University, Durham, NC, United States
| | - Jae-Kwang Shim
- Department of Anesthesiology and Pain Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | | | - Christopher D Lascola
- Departments of Radiology and Neurobiology, Duke University, Durham, NC, United States.,Duke-UNC Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Quintin J Quinones
- Systems Modeling of Perioperative Organ Injury Laboratory, Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University, Durham, NC, United States
| | - Niccolò Terrando
- Neuroinflammation and Cognitive Outcomes Laboratory, Department of Anesthesiology, Duke University, Durham, NC, United States.,Center for Translational Pain Medicine, Duke University, Durham, NC, United States
| | - Mihai V Podgoreanu
- Systems Modeling of Perioperative Organ Injury Laboratory, Department of Anesthesiology, Duke University, Durham, NC, United States
| |
Collapse
|
40
|
Up-regulation of ANXA1 suppresses polymorphonuclear neutrophil infiltration and myeloperoxidase activity by activating STAT3 signaling pathway in rat models of myocardial ischemia-reperfusion injury. Cell Signal 2019; 62:109325. [PMID: 31132398 DOI: 10.1016/j.cellsig.2019.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 12/18/2022]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is recognized as a major cause of morbidity and mortality which is commonly associated with coronary artery disease. In recent studies, annexin A1 gene (ANXA1) has been discovered to be involved in the treatment for MIRI. In this study, the primary focus was on the molecular mechanism of ANXA1 in polymorphonuclear neutrophil (PMN) infiltration and myeloperoxidase (MPO) activity in rats with MIRI. Initially, microarray analysis was carried out in order to identify differentially expressed genes. Moreover, a rat model of MIRI was established for evaluating the expression of ANXA1, signal transducer and activator of transcription 3 (STAT3) and vascular endothelial growth factor (VEGF) in myocardial tissues. Following this, the ANXA1 vector, siRNA-ANXA1, and Stattic (inhibitor of STAT3 signaling pathway) were utilized for analyzing the regulatory role of ANXA1 in physiological indexes, hemodynamic parameters, inflammatory factors, myocardial infarct size, MPO activity, PMN infiltration, and apoptosis of PMNs. Furthermore, the relationship between ANXA1 and STAT3 signaling pathway was analyzed. Initially, a reduction in the expression of ANXA1, STAT3 and VEGF in myocardial tissues of MIRI rats was found. To elaborate, overexpressed ANXA1 inhibited levels of inflammatory factors, the activation of PMN infiltration, reduced the degree of PMN infiltration, and decreased the apoptosis of PMNs. More importantly, down-regulated ANXA1 inhibited the activation of STAT3 signaling pathway, which thereby suppressed VEGF expression. With this all taken into account, the present study presents that up-regulated ANXA1 inhibits PMN infiltration and MPO activity by activation of STAT3 signaling pathway in rats with MIRI.
Collapse
|
41
|
Purvis GSD, Solito E, Thiemermann C. Annexin-A1: Therapeutic Potential in Microvascular Disease. Front Immunol 2019; 10:938. [PMID: 31114582 PMCID: PMC6502989 DOI: 10.3389/fimmu.2019.00938] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/11/2019] [Indexed: 12/17/2022] Open
Abstract
Annexin-A1 (ANXA1) was first discovered in the early 1980's as a protein, which mediates (some of the) anti-inflammatory effects of glucocorticoids. Subsequently, the role of ANXA1 in inflammation has been extensively studied. The biology of ANXA1 is complex and it has many different roles in both health and disease. Its effects as a potent endogenous anti-inflammatory mediator are well-described in both acute and chronic inflammation and its role in activating the pro-resolution phase receptor, FPR2, has been described and is now being exploited for therapeutic benefit. In the present mini review, we will endeavor to give an overview of ANXA1 biology in relation to inflammation and functions that mediate pro-resolution that are independent of glucocorticoid induction. We will focus on the role of ANXA1 in diseases with a large inflammatory component focusing on diabetes and microvascular disease. Finally, we will explore the possibility of exploiting ANXA1 as a novel therapeutic target in diabetes and the treatment of microvascular disease.
Collapse
Affiliation(s)
- Gareth S D Purvis
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom.,Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Egle Solito
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Christoph Thiemermann
- William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
42
|
Shao G, Zhou H, Zhang Q, Jin Y, Fu C. Advancements of Annexin A1 in inflammation and tumorigenesis. Onco Targets Ther 2019; 12:3245-3254. [PMID: 31118675 PMCID: PMC6500875 DOI: 10.2147/ott.s202271] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 04/01/2019] [Indexed: 12/28/2022] Open
Abstract
Annexin A1 is a Ca2+-dependent phospholipid binding protein involved in a variety of pathophysiological processes. Accumulated evidence has indicated that Annexin A1 has important functions in cell proliferation, apoptosis, differentiation, metastasis, and inflammatory response. Moreover, the abnormal expression of Annexin A1 is closely related to the occurrence and development of tumors. In this review article, we focus on the structure and function of Annexin A1 protein, especially the recent evidence of Annexin A1 in the pathophysiological role of inflammatory and cancer. This summary will be very important for further investigation of the pathophysiological role of Annexin A1 and for the development of novel therapeutics of inflammatory and cancer based on targeting Annexin A1 protein.
Collapse
Affiliation(s)
- Gang Shao
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Hanwei Zhou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China.,Institute of Orthopedics, Xiaoshan Traditional Chinese Medical Hospital, Hangzhou 311201, People's Republic of China
| | - Qiyu Zhang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - Yuanting Jin
- College of Life Sciences, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Caiyun Fu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
43
|
Deora GS, Qin CX, Vecchio EA, Debono AJ, Priebbenow DL, Brady RM, Beveridge J, Teguh SC, Deo M, May LT, Krippner G, Ritchie RH, Baell JB. Substituted Pyridazin-3(2H)-ones as Highly Potent and Biased Formyl Peptide Receptor Agonists. J Med Chem 2019; 62:5242-5248. [DOI: 10.1021/acs.jmedchem.8b01912] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Girdhar Singh Deora
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Cheng Xue Qin
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Elizabeth A. Vecchio
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Aaron J. Debono
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Daniel L. Priebbenow
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Ryan M. Brady
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Julia Beveridge
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Silvia C. Teguh
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Minh Deo
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Lauren T. May
- Drug Discovery Biology, Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria 3052, Australia
| | - Guy Krippner
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
| | - Rebecca H. Ritchie
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, Victoria 3004, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria 3004, Australia
| | - Jonathan B. Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People’s Republic of China
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
44
|
Zou L, Wang X, Guo Z, Sun H, Shao C, Yang Y, Sun W. Differential urinary proteomics analysis of myocardial infarction using iTRAQ quantification. Mol Med Rep 2019; 19:3972-3988. [PMID: 30942401 PMCID: PMC6471447 DOI: 10.3892/mmr.2019.10088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 02/06/2019] [Indexed: 11/06/2022] Open
Abstract
Myocardial infarction (MI) is a disease characterized by high morbidity and mortality rates. MI biomarkers are frequently used in clinical diagnosis; however, their specificity and sensitivity remain unsatisfactory. Urinary proteome is an easy, efficient and noninvasive source to examine biomarkers associated with various diseases. The present study, to the best of the authors' knowledge, is the first to examine the urinary proteome using the isobaric tags for relative and absolute quantitation (iTRAQ) technology to identify potential diagnostic biomarkers of MI. The urinary proteome was analyzed within 12 h following the first symptoms of early‑onset MI and at day 7 following percutaneous coronary intervention via iTRAQ labeling and two‑dimensional liquid chromatography‑tandem mass spectrometry. Candidate biomarkers were validated by multiple reaction monitoring (MRM) analysis. A total of 233 urinary proteins were differentially expressed. Gene enrichment analysis identified that the urinary proteome in patients with MI was associated with atherosclerosis, abnormal coagulation and abnormal cell metabolism. In total, 12 differentially expressed urinary proteins were validated by MRM analysis, five of which were associated with MI for the first time in the present study. Binary logistic regression analysis suggested that the combination of five urinary proteins (antithrombin‑III, complement C3, α‑1‑acid glycoprotein 1, serotransferrin and cathepsin Z) may be used to diagnose MI with 94% sensitivity and 93% specificity. In addition, the protein expression levels of three proteins were significantly restored to normal levels following surgical treatment. The verified candidate biomarkers may be used for the diagnosis of MI, and for monitoring the disease status and the effects of treatments for MI. The present results may facilitate future clinical applications of the urinary proteome to diagnose MI.
Collapse
Affiliation(s)
- Lili Zou
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Xubo Wang
- Department of Cardiology, The Fourth Hospital of Jilin University, Changchun, Jilin 130011, P.R. China
| | - Zhengguang Guo
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Haidan Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Chen Shao
- National Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Yehong Yang
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| | - Wei Sun
- Core Instrument Facility, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and School of Basic Medicine, Peking Union Medical College, Beijing 100005, P.R. China
| |
Collapse
|
45
|
Qin CX, Rosli S, Deo M, Cao N, Walsh J, Tate M, Alexander AE, Donner D, Horlock D, Li R, Kiriazis H, Lee MKS, Bourke JE, Yang Y, Murphy AJ, Du XJ, Gao XM, Ritchie RH. Cardioprotective Actions of the Annexin-A1 N-Terminal Peptide, Ac 2-26, Against Myocardial Infarction. Front Pharmacol 2019; 10:269. [PMID: 31001111 PMCID: PMC6457169 DOI: 10.3389/fphar.2019.00269] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
The anti-inflammatory, pro-resolving annexin-A1 protein acts as an endogenous brake against exaggerated cardiac necrosis, inflammation, and fibrosis following myocardial infarction (MI) in vivo. Little is known, however, regarding the cardioprotective actions of the N-terminal-derived peptide of annexin A1, Ac2-26, particularly beyond its anti-necrotic actions in the first few hours after an ischemic insult. In this study, we tested the hypothesis that exogenous Ac2-26 limits cardiac injury in vitro and in vivo. Firstly, we demonstrated that Ac2-26 limits cardiomyocyte death both in vitro and in mice subjected to ischemia-reperfusion (I-R) injury in vivo (Ac2-26, 1 mg/kg, i.v. just prior to post-ischemic reperfusion). Further, Ac2-26 (1 mg/kg i.v.) reduced cardiac inflammation (after 48 h reperfusion), as well as both cardiac fibrosis and apoptosis (after 7-days reperfusion). Lastly, we investigated whether Ac2-26 preserved cardiac function after MI. Ac2-26 (1 mg/kg/day s.c., osmotic pump) delayed early cardiac dysfunction 1 week post MI, but elicited no further improvement 4 weeks after MI. Taken together, our data demonstrate the first evidence that Ac2-26 not only preserves cardiomyocyte survival in vitro, but also offers cardioprotection beyond the first few hours after an ischemic insult in vivo. Annexin-A1 mimetics thus represent a potential new therapy to improve cardiac outcomes after MI.
Collapse
Affiliation(s)
- Cheng Xue Qin
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Sarah Rosli
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Minh Deo
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Nga Cao
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jesse Walsh
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Mitchel Tate
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Amy E Alexander
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Daniel Donner
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Duncan Horlock
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Renming Li
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Helen Kiriazis
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Man K S Lee
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Jane E Bourke
- Department of Pharmacology, Monash University, Clayton, VIC, Australia
| | - Yuan Yang
- Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Andrew J Murphy
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiao-Jun Du
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Xiao Ming Gao
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia
| | - Rebecca H Ritchie
- Baker Heart and Diabetes Institute, Melbourne, VIC, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, VIC, Australia.,Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Pharmacology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
46
|
Lech M, Guess J, Duffner J, Oyamada J, Shimizu C, Hoshino S, Farutin V, Bulik DA, Gutierrez B, Sarvaiya H, Kapoor B, Koppes L, Saldova R, Stockmann H, Albrecht S, McManus C, Rudd PM, Kaundinya GV, Manning AM, Bosques CJ, Kahn AM, Daniels LB, Gordon JB, Tremoulet AH, Capila I, Gunay NS, Ling LE, Burns JC. Circulating Markers of Inflammation Persist in Children and Adults With Giant Aneurysms After Kawasaki Disease. CIRCULATION-GENOMIC AND PRECISION MEDICINE 2019; 12:e002433. [DOI: 10.1161/circgen.118.002433] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background:
The sequelae of Kawasaki disease (KD) vary widely with the greatest risk for future cardiovascular events among those who develop giant coronary artery aneurysms (CAA). We sought to define the molecular signature associated with different outcomes in pediatric and adult KD patients.
Methods:
Molecular profiling was conducted using mass spectrometry–based shotgun proteomics, transcriptomics, and glycomics methods on 8 pediatric KD patients at the acute, subacute, and convalescent time points. Shotgun proteomics was performed on 9 KD adults with giant CAA and matched healthy controls. Plasma calprotectin was measured by ELISA in 28 pediatric KD patients 1 year post-KD, 70 adult KD patients, and 86 healthy adult volunteers.
Results:
A characteristic molecular profile was seen in pediatric patients during the acute disease, which resolved at the subacute and convalescent periods in patients with no coronary artery sequelae but persisted in 2 patients who developed giant CAA. We, therefore, investigated persistence of inflammation in KD adults with giant CAA by shotgun proteomics that revealed a signature of active inflammation, immune regulation, and cell trafficking. Correlating results obtained using shotgun proteomics in the pediatric and adult KD cohorts identified elevated calprotectin levels in the plasma of patients with CAA. Investigation of expanded pediatric and adult KD cohorts revealed elevated levels of calprotectin in pediatric patients with giant CAA 1 year post-KD and in adult KD patients who developed giant CAA in childhood.
Conclusions:
Complex patterns of biomarkers of inflammation and cell trafficking can persist long after the acute phase of KD in patients with giant CAA. Elevated levels of plasma calprotectin months to decades after acute KD and infiltration of cells expressing S100A8 and A9 in vascular tissues suggest ongoing, subclinical inflammation. Calprotectin may serve as a biomarker to inform the management of KD patients following the acute illness.
Collapse
Affiliation(s)
- Miroslaw Lech
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Jamey Guess
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Jay Duffner
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Jun Oyamada
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | - Chisato Shimizu
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | - Shinsuke Hoshino
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | - Victor Farutin
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Dorota A. Bulik
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Bryan Gutierrez
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Hetal Sarvaiya
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Bulbul Kapoor
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Laura Koppes
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Radka Saldova
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Henning Stockmann
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Simone Albrecht
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Ciara McManus
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Pauline M. Rudd
- National Institute for Bioprocessing Research and Training GlycoScience Group, Dublin, Ireland (R.S., H.S., S.A., C.M., P.M.R.)
| | - Ganesh V. Kaundinya
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Anthony M. Manning
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Carlos J. Bosques
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Andrew M. Kahn
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | - Lori B. Daniels
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
| | | | - Adriana H. Tremoulet
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
- Rady Children’s Hospital–San Diego (A.H.T., J.C.B.)
| | - Ishan Capila
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Nur Sibel Gunay
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Leona E. Ling
- Momenta Pharmaceuticals, Inc, Cambridge, MA (M.L., J.G., J.D., V.F., D.A.B., B.G., H.S., B.K., L.K., G.V.K., A.M.M., C.J.B., I.C., N.S.G., L.E.L.)
| | - Jane C. Burns
- University of California San Diego School of Medicine (J.O., C.S., S.H., A.M.K., L.B.D., A.H.T., J.C.B.)
- Rady Children’s Hospital–San Diego (A.H.T., J.C.B.)
| |
Collapse
|
47
|
Jia C, Kong D, Guo Y, Li L, Quan L. Enhanced antitumor effect of combination of annexin A1 knockdown and bortezomib treatment in multiple myeloma in vitro and in vivo. Biochem Biophys Res Commun 2018; 505:720-725. [PMID: 30292410 DOI: 10.1016/j.bbrc.2018.09.140] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 09/20/2018] [Indexed: 12/19/2022]
Abstract
Bortezomib (BTZ) is one of the most frequently used drugs in treatment of multiple myeloma (MM), but drug-resistance often occurs and limits its clinical efficacy. Annexin A1 (ANXA1) is upregulated in MM, and its knockdown enhances chemosensitivity in MM. However, whether ANXA1 inhibition can increase antitumor activity of BTZ in MM cells remains unknown. In the present study, Cell Counting Kit-8 (CCK-8) and colony formation assays showed that ANXA1 silencing combined with BTZ treatment led to a more significant inhibition of MM cell proliferation than each treatment alone. Cell apoptosis was dramatically promoted in MM cells following silencing of ANXA1 and BTZ administration versus that in ANXA1-silenced alone or BTZ-treated alone cells, as evidenced by decreased expression of phosphorylated signal transducers and activators of transcription 3 and BCL2, and increased expression of BAX. Moreover, we demonstrated that the levels of IL-6 and IL-23 were markedly downregulated in ANXA1-silenced and BTZ-treated MM cells. Furthermore, the combination of ANXA1 knockdown and BTZ treatment distinctly suppressed tumor growth in vivo compared with BTZ treatment alone. Taken together, our results show that downregulation of ANXA1 enhances antitumor activity of BTZ in MM in vitro and in vivo, indicating that ANXA1 may be a promising target for enhancing the chemosensitivity of MM to BTZ.
Collapse
Affiliation(s)
- Chuiming Jia
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, 150001, People's Republic of China
| | - Dejuan Kong
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, 150001, People's Republic of China
| | - Yiwei Guo
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, 150001, People's Republic of China
| | - Lianqiao Li
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, 150001, People's Republic of China
| | - Lina Quan
- Department of Hematology, Harbin Medical University Cancer Hospital, Harbin, 150001, People's Republic of China.
| |
Collapse
|
48
|
Grisanti LA, Thomas TP, Carter RL, de Lucia C, Gao E, Koch WJ, Benovic JL, Tilley DG. Pepducin-mediated cardioprotection via β-arrestin-biased β2-adrenergic receptor-specific signaling. Theranostics 2018; 8:4664-4678. [PMID: 30279730 PMCID: PMC6160776 DOI: 10.7150/thno.26619] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/21/2018] [Indexed: 12/20/2022] Open
Abstract
Reperfusion as a therapeutic intervention for acute myocardial infarction-induced cardiac injury itself induces further cardiomyocyte death. β-arrestin (βarr)-biased β-adrenergic receptor (βAR) activation promotes survival signaling responses in vitro; thus, we hypothesize that this pathway can mitigate cardiomyocyte death at the time of reperfusion to better preserve function. However, a lack of efficacious βarr-biased orthosteric small molecules has prevented investigation into whether this pathway relays protection against ischemic injury in vivo. We recently demonstrated that the pepducin ICL1-9, a small lipidated peptide fragment designed from the first intracellular loop of β2AR, allosterically engaged pro-survival signaling cascades in a βarr-dependent manner in vitro. Thus, in this study we tested whether ICL1-9 relays cardioprotection against ischemia/reperfusion (I/R)-induced injury in vivo. Methods: Wild-type (WT) C57BL/6, β2AR knockout (KO), βarr1KO and βarr2KO mice received intracardiac injections of either ICL1-9 or a scrambled control pepducin (Scr) at the time of ischemia (30 min) followed by reperfusion for either 24 h, to assess infarct size and cardiomyocyte death, or 4 weeks, to monitor the impact of ICL1-9 on long-term cardiac structure and function. Neonatal rat ventricular myocytes (NRVM) were used to assess the impact of ICL1-9 versus Scr pepducin on cardiomyocyte survival and mitochondrial superoxide formation in response to either serum deprivation or hypoxia/reoxygenation (H/R) in vitro and to investigate the associated mechanism(s). Results: Intramyocardial injection of ICL1-9 at the time of I/R reduced infarct size, cardiomyocyte death and improved cardiac function in a β2AR- and βarr-dependent manner, which led to improved contractile function early and less fibrotic remodeling over time. Mechanistically, ICL1-9 attenuated mitochondrial superoxide production and promoted cardiomyocyte survival in a RhoA/ROCK-dependent manner. RhoA activation could be detected in cardiomyocytes and whole heart up to 24 h post-treatment, demonstrating the stability of ICL1-9 effects on βarr-dependent β2AR signaling. Conclusion: Pepducin-based allosteric modulation of βarr-dependent β2AR signaling represents a novel therapeutic approach to reduce reperfusion-induced cardiac injury and relay long-term cardiac remodeling benefits.
Collapse
|
49
|
Jelinic M, Marshall SA, Stewart D, Unemori E, Parry LJ, Leo CH. Peptide hormone relaxin: from bench to bedside. Am J Physiol Regul Integr Comp Physiol 2018; 314:R753-R760. [DOI: 10.1152/ajpregu.00276.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The peptide hormone relaxin has numerous roles both within and independent of pregnancy and is often thought of as a “pleiotropic hormone.” Relaxin targets several tissues throughout the body, and has many functions associated with extracellular matrix remodeling and the vasculature. This review considers the potential therapeutic applications of relaxin in cervical ripening, in vitro fertilization, preeclampsia, acute heart failure, ischemia-reperfusion, and cirrhosis. We first outline the animal models used in preclinical studies to progress relaxin into clinical trials and then discuss the findings from these studies. In many cases, the positive outcomes from preclinical animal studies were not replicated in human clinical trials. Therefore, the focus of this review is to evaluate the various animal models used to develop relaxin as a potential therapeutic and consider the limitations that must be addressed in future studies. These include the use of human relaxin in animals, duration of relaxin treatment, and the appropriateness of the clinical conditions being considered for relaxin therapy.
Collapse
Affiliation(s)
- Maria Jelinic
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah A. Marshall
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Dennis Stewart
- Molecular Medicine Research Institute, Sunnyvale, California
| | | | - Laura J. Parry
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Chen Huei Leo
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- Science and Maths Cluster, Singapore University of Technology and Design, Singapore
| |
Collapse
|
50
|
Ansari J, Kaur G, Gavins FNE. Therapeutic Potential of Annexin A1 in Ischemia Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19041211. [PMID: 29659553 PMCID: PMC5979321 DOI: 10.3390/ijms19041211] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death in the world. Increased inflammation and an enhanced thrombotic milieu represent two major complications of CVD, which can culminate into an ischemic event. Treatment for these life-threatening complications remains reperfusion and restoration of blood flow. However, reperfusion strategies may result in ischemia-reperfusion injury (I/RI) secondary to various cardiovascular pathologies, including myocardial infarction and stroke, by furthering the inflammatory and thrombotic responses and delivering inflammatory mediators to the affected tissue. Annexin A1 (AnxA1) and its mimetic peptides are endogenous anti-inflammatory and pro-resolving mediators, known to have significant effects in resolving inflammation in a variety of disease models. Mounting evidence suggests that AnxA1, which interacts with the formyl peptide receptor (FPR) family, may have a significant role in mitigating I/RI associated complications. In this review article, we focus on how AnxA1 plays a protective role in the I/R based vascular pathologies.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Gaganpreet Kaur
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Felicity N E Gavins
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|