1
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
2
|
Kochoian BA, Bure C, Papa SM. Targeting Striatal Glutamate and Phosphodiesterases to Control L-DOPA-Induced Dyskinesia. Cells 2023; 12:2754. [PMID: 38067182 PMCID: PMC10706484 DOI: 10.3390/cells12232754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
A large body of work during the past several decades has been focused on therapeutic strategies to control L-DOPA-induced dyskinesias (LIDs), common motor complications of long-term L-DOPA therapy in Parkinson's disease (PD). Yet, LIDs remain a clinical challenge for the management of patients with advanced disease. Glutamatergic dysregulation of striatal projection neurons (SPNs) appears to be a key contributor to altered motor responses to L-DOPA. Targeting striatal hyperactivity at the glutamatergic neurotransmission level led to significant preclinical and clinical trials of a variety of antiglutamatergic agents. In fact, the only FDA-approved treatment for LIDs is amantadine, a drug with NMDAR antagonistic actions. Still, novel agents with improved pharmacological profiles are needed for LID therapy. Recently other therapeutic targets to reduce dysregulated SPN activity at the signal transduction level have emerged. In particular, mechanisms regulating the levels of cyclic nucleotides play a major role in the transduction of dopamine signals in SPNs. The phosphodiesterases (PDEs), a large family of enzymes that degrade cyclic nucleotides in a specific manner, are of special interest. We will review the research for antiglutamatergic and PDE inhibition strategies in view of the future development of novel LID therapies.
Collapse
Affiliation(s)
- Brik A. Kochoian
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Cassandra Bure
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
| | - Stella M. Papa
- Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; (B.A.K.); (C.B.)
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30329, USA
| |
Collapse
|
3
|
Teixeira Nunes M, Retailleau P, Raoux-Barbot D, Comisso M, Missinou AA, Velours C, Plancqueel S, Ladant D, Mechold U, Renault L. Functional and structural insights into the multi-step activation and catalytic mechanism of bacterial ExoY nucleotidyl cyclase toxins bound to actin-profilin. PLoS Pathog 2023; 19:e1011654. [PMID: 37747912 PMCID: PMC10553838 DOI: 10.1371/journal.ppat.1011654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 10/05/2023] [Accepted: 09/01/2023] [Indexed: 09/27/2023] Open
Abstract
ExoY virulence factors are members of a family of bacterial nucleotidyl cyclases (NCs) that are activated by specific eukaryotic cofactors and overproduce cyclic purine and pyrimidine nucleotides in host cells. ExoYs act as actin-activated NC toxins. Here, we explore the Vibrio nigripulchritudo Multifunctional-Autoprocessing Repeats-in-ToXin (MARTX) ExoY effector domain (Vn-ExoY) as a model for ExoY-type members that interact with monomeric (G-actin) instead of filamentous (F-actin) actin. Vn-ExoY exhibits moderate binding affinity to free or profilin-bound G-actin but can capture the G-actin:profilin complex, preventing its spontaneous or VASP- or formin-mediated assembly at F-actin barbed ends in vitro. This mechanism may prolong the activated cofactor-bound state of Vn-ExoY at sites of active actin cytoskeleton remodelling. We present a series of high-resolution crystal structures of nucleotide-free, 3'-deoxy-ATP- or 3'-deoxy-CTP-bound Vn-ExoY, activated by free or profilin-bound G-actin-ATP/-ADP, revealing that the cofactor only partially stabilises the nucleotide-binding pocket (NBP) of NC toxins. Substrate binding induces a large, previously-unidentified, closure of their NBP, confining catalytically important residues and metal cofactors around the substrate, and facilitating the recruitment of two metal ions to tightly coordinate the triphosphate moiety of purine or pyrimidine nucleotide substrates. We validate critical residues for both the purinyl and pyrimidinyl cyclase activity of NC toxins in Vn-ExoY and its distantly-related ExoY from Pseudomonas aeruginosa, which specifically interacts with F-actin. The data conclusively demonstrate that NC toxins employ a similar two-metal-ion mechanism for catalysing the cyclisation of nucleotides of different sizes. These structural insights into the dynamics of the actin-binding interface of actin-activated ExoYs and the multi-step activation of all NC toxins offer new perspectives for the specific inhibition of class II bacterial NC enzymes.
Collapse
Affiliation(s)
- Magda Teixeira Nunes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Pascal Retailleau
- Université Paris Saclay, CNRS, Institut de Chimie des Substances Naturelles, Gif-sur-Yvette, France
| | - Dorothée Raoux-Barbot
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Biochimie des Interactions macromoléculaires, Département de Biologie Structurale et Chimie, Paris, France
| | - Martine Comisso
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Anani Amegan Missinou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Christophe Velours
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Stéphane Plancqueel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Daniel Ladant
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Biochimie des Interactions macromoléculaires, Département de Biologie Structurale et Chimie, Paris, France
| | - Undine Mechold
- Institut Pasteur, Université Paris Cité, CNRS UMR 3528, Unité de Biochimie des Interactions macromoléculaires, Département de Biologie Structurale et Chimie, Paris, France
| | - Louis Renault
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
4
|
Gutiérrez-Rodelo C, Martínez-Tolibia SE, Morales-Figueroa GE, Velázquez-Moyado JA, Olivares-Reyes JA, Navarrete-Castro A. Modulating cyclic nucleotides pathways by bioactive compounds in combatting anxiety and depression disorders. Mol Biol Rep 2023; 50:7797-7814. [PMID: 37486442 PMCID: PMC10460744 DOI: 10.1007/s11033-023-08650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
Anxiety and depression disorders are highly prevalent neurological disorders (NDs) that impact up to one in three individuals during their lifetime. Addressing these disorders requires reducing their frequency and impact, understanding molecular causes, implementing prevention strategies, and improving treatments. Cyclic nucleotide monophosphates (cNMPs) like cyclic adenosine monophosphate (cAMP), cyclic guanosine monophosphate (cGMP), cyclic uridine monophosphate (cUMP), and cyclic cytidine monophosphate (cCMP) regulate the transcription of genes involved in neurotransmitters and neurological functions. Evidence suggests that cNMP pathways, including cAMP/cGMP, cAMP response element binding protein (CREB), and Protein kinase A (PKA), play a role in the physiopathology of anxiety and depression disorders. Plant and mushroom-based compounds have been used in traditional and modern medicine due to their beneficial properties. Bioactive compound metabolism can activate key pathways and yield pharmacological outcomes. This review focuses on the molecular mechanisms of bioactive compounds from plants and mushrooms in modulating cNMP pathways. Understanding these processes will support current treatments and aid in the development of novel approaches to reduce the prevalence of anxiety and depression disorders, contributing to improved outcomes and the prevention of associated complications.
Collapse
Affiliation(s)
- Citlaly Gutiérrez-Rodelo
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico.
| | | | - Guadalupe Elide Morales-Figueroa
- Department of Physiology, Biophysics, and Neurosciences of the Center for Research, Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, ZIP, 07360, Mexico
| | - Josué Arturo Velázquez-Moyado
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico
| | - J Alberto Olivares-Reyes
- Department of Biochemistry, Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN) Mexico City, Mexico City, ZIP 07360, Mexico
| | - Andrés Navarrete-Castro
- Department of Pharmacy, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, ZIP 04510, Mexico.
| |
Collapse
|
5
|
de Mariz E Miranda LS. The synergy between nucleotide biosynthesis inhibitors and antiviral nucleosides: New opportunities against viral infections? Arch Pharm (Weinheim) 2023; 356:e2200217. [PMID: 36122181 DOI: 10.1002/ardp.202200217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/18/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023]
Abstract
5'-Phosphorylated nucleoside derivatives are molecules that can be found in all living organisms and viruses. Over the last century, the development of structural analogs that could disrupt the transcription and translation of genetic information culminated in the development of clinically relevant anticancer and antiviral drugs. However, clinically effective broad-spectrum antiviral compounds or treatments are lacking. This viewpoint proposes that molecules that inhibit nucleotide biosynthesis may sensitize virus-infected cells toward direct-acting antiviral nucleosides. Such potentially synergistic combinations might allow the repurposing of drugs, leading to the development of new combination therapies.
Collapse
Affiliation(s)
- Leandro S de Mariz E Miranda
- Department of Organic Chemistry, Chemistry Institute, Biocatalysis and Organic Synthesis Group, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Davi M, Sadi M, Pitard I, Chenal A, Ladant D. A Robust and Sensitive Spectrophotometric Assay for the Enzymatic Activity of Bacterial Adenylate Cyclase Toxins. Toxins (Basel) 2022; 14:toxins14100691. [PMID: 36287960 PMCID: PMC9609896 DOI: 10.3390/toxins14100691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
Various bacterial pathogens are producing toxins that target the cyclic Nucleotide Monophosphate (cNMPs) signaling pathways in order to facilitate host colonization. Among them, several are exhibiting potent nucleotidyl cyclase activities that are activated by eukaryotic factors, such as the adenylate cyclase (AC) toxin, CyaA, from Bordetella pertussis or the edema factor, EF, from Bacillus anthracis. The characterization of these toxins frequently requires accurate measurements of their enzymatic activity in vitro, in particular for deciphering their structure-to-function relationships by protein engineering and site-directed mutagenesis. Here we describe a simple and robust in vitro assay for AC activity based on the spectrophotometric detection of cyclic AMP (cAMP) after chromatographic separation on aluminum oxide. This assay can accurately detect down to fmol amounts of B. pertussis CyaA and can even be used in complex media, such as cell extracts. The relative advantages and disadvantages of this assay in comparison with other currently available methods are briefly discussed.
Collapse
Affiliation(s)
- Marilyne Davi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| | - Mirko Sadi
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
- Université Paris Cité, 75014 Paris, France
| | - Irene Pitard
- Structural Bioinformatic Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
- Université Paris Sorbonne, 75231 Paris, France
| | - Alexandre Chenal
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
| | - Daniel Ladant
- Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, Université Paris Cité, CNRS UMR 3528, 75015 Paris, France
- Correspondence: ; Tel.: +33-1-4568-8400
| |
Collapse
|
7
|
Masilamoni GJ, Sinon CG, Kochoian BA, Singh A, McRiner AJ, Leventhal L, Papa SM. Phosphodiesterase 9 inhibition prolongs the antiparkinsonian action of l-DOPA in parkinsonian non-human primates. Neuropharmacology 2022; 212:109060. [PMID: 35461880 PMCID: PMC11698471 DOI: 10.1016/j.neuropharm.2022.109060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/05/2022] [Accepted: 04/09/2022] [Indexed: 10/18/2022]
Abstract
Phosphodiesterase 9 (PDE9) degrades selectively the second messenger cGMP, which is an important molecule of dopamine signaling pathways in striatal projection neurons (SPNs). In this study, we assessed the effects of a selective PDE9 inhibitor (PDE9i) in the primate model of Parkinson's disease (PD). Six macaques with advanced parkinsonism were used in the study. PDE9i was administered as monotherapy and co-administration with l-DOPA at two predetermined doses (suboptimal and threshold s.c. doses of l-Dopa methyl ester plus benserazide) using a controlled blinded protocol to assess motor disability, l-DOPA -induced dyskinesias (LID), and other neurologic drug effects. While PDE9i was ineffective as monotherapy, 2.5 and 5 mg/kg (s.c.) of PDE9i significantly potentiated the antiparkinsonian effects of l-DOPA with a clear prolongation of the "on" state (p < 0.01) induced by either the suboptimal or threshold l-DOPA dose. Co-administration of PDE9i had no interaction with l-DOPA pharmacokinetics. PDE9i did not affect the intensity of LID. These results indicate that cGMP upregulation interacts with dopamine signaling to enhance the l-DOPA reversal of parkinsonian motor disability. Therefore, striatal PDE9 inhibition may be further explored as a strategy to improve motor responses to l-DOPA in PD.
Collapse
Affiliation(s)
| | - Christopher G Sinon
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Brik A Kochoian
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | - Arun Singh
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA
| | | | | | - Stella M Papa
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, 30329, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
8
|
Teixeira-Nunes M, Retailleau P, Comisso M, Deruelle V, Mechold U, Renault L. Bacterial Nucleotidyl Cyclases Activated by Calmodulin or Actin in Host Cells: Enzyme Specificities and Cytotoxicity Mechanisms Identified to Date. Int J Mol Sci 2022; 23:ijms23126743. [PMID: 35743184 PMCID: PMC9223806 DOI: 10.3390/ijms23126743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 02/06/2023] Open
Abstract
Many pathogens manipulate host cell cAMP signaling pathways to promote their survival and proliferation. Bacterial Exoenzyme Y (ExoY) toxins belong to a family of invasive, structurally-related bacterial nucleotidyl cyclases (NC). Inactive in bacteria, they use proteins that are uniquely and abundantly present in eukaryotic cells to become potent, unregulated NC enzymes in host cells. Other well-known members of the family include Bacillus anthracis Edema Factor (EF) and Bordetella pertussis CyaA. Once bound to their eukaryotic protein cofactor, they can catalyze supra-physiological levels of various cyclic nucleotide monophosphates in infected cells. Originally identified in Pseudomonas aeruginosa, ExoY-related NC toxins appear now to be more widely distributed among various γ- and β-proteobacteria. ExoY-like toxins represent atypical, poorly characterized members within the NC toxin family. While the NC catalytic domains of EF and CyaA toxins use both calmodulin as cofactor, their counterparts in ExoY-like members from pathogens of the genus Pseudomonas or Vibrio use actin as a potent cofactor, in either its monomeric or polymerized form. This is an original subversion of actin for cytoskeleton-targeting toxins. Here, we review recent advances on the different members of the NC toxin family to highlight their common and distinct functional characteristics at the molecular, cytotoxic and enzymatic levels, and important aspects that need further characterizations.
Collapse
Affiliation(s)
- Magda Teixeira-Nunes
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Pascal Retailleau
- Institut de Chimie des Substances Naturelles (ICSN), CNRS-UPR2301, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France;
| | - Martine Comisso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
| | - Vincent Deruelle
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Undine Mechold
- Unité de Biochimie des Interactions Macromoléculaires, Département de Biologie Structurale et Chimie, CNRS UMR 3528, Institut Pasteur, 75015 Paris, France; (V.D.); (U.M.)
| | - Louis Renault
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette, France; (M.T.-N.); (M.C.)
- Correspondence:
| |
Collapse
|
9
|
Seifert R, Schirmer B. cCMP and cUMP come into the spotlight, finally. Trends Biochem Sci 2022; 47:461-463. [PMID: 35031198 DOI: 10.1016/j.tibs.2021.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 12/01/2022]
Abstract
cCMP and cUMP have been identified in numerous biological systems and proposed to serve as second messengers. However, this proposal remained controversial because of the base-promiscuity of generators, effectors, phosphodiesterases, and bacterial toxins. With the identification of specific cytidylyl and uridylyl cyclases, cCMP and cUMP research enters a new era.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
10
|
Schneider EH, Hofmeister O, Kälble S, Seifert R. Apoptotic and anti-proliferative effect of guanosine and guanosine derivatives in HuT-78 T lymphoma cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1251-1267. [PMID: 32313990 PMCID: PMC7314729 DOI: 10.1007/s00210-020-01864-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/27/2020] [Indexed: 01/06/2023]
Abstract
The effects of 100 μM of 3',5'-cGMP, cAMP, cCMP, and cUMP as well as of the corresponding membrane-permeant acetoxymethyl esters on anti-CD3-antibody (OKT3)-induced IL-2 production of HuT-78 cutaneous T cell lymphoma (Sézary lymphoma) cells were analyzed. Only 3',5'-cGMP significantly reduced IL-2 production. Flow cytometric analysis of apoptotic (propidium iodide/annexin V staining) and anti-proliferative (CFSE staining) effects revealed that 3',5'-cGMP concentrations > 50 μM strongly inhibited proliferation and promoted apoptosis of HuT-78 cells (cultured in the presence of αCD3 antibody). Similar effects were observed for the positional isomer 2',3'-cGMP and for 2',-GMP, 3'-GMP, 5'-GMP, and guanosine. By contrast, guanosine and guanosine-derived nucleotides had no cytotoxic effect on peripheral blood mononuclear cells (PBMCs) or acute lymphocytic leukemia (ALL) xenograft cells. The anti-proliferative and apoptotic effects of guanosine and guanosine-derived compounds on HuT-78 cells were completely eliminated by the nucleoside transport inhibitor NBMPR (S-(4-Nitrobenzyl)-6-thioinosine). By contrast, the ecto-phosphodiesterase inhibitor DPSPX (1,3-dipropyl-8-sulfophenylxanthine) and the CD73 ecto-5'-nucleotidase inhibitor AMP-CP (adenosine 5'-(α,β-methylene)diphosphate) were not protective. We hypothesize that HuT-78 cells metabolize guanosine-derived nucleotides to guanosine by yet unknown mechanisms. Guanosine then enters the cells by an NBMPR-sensitive nucleoside transporter and exerts cytotoxic effects. This transporter may be ENT1 because NBMPR counteracted guanosine cytotoxicity in HuT-78 cells with nanomolar efficacy (IC50 of 25-30 nM). Future studies should further clarify the mechanism of the observed effects and address the question, whether guanosine or guanosine-derived nucleotides may serve as adjuvants in the therapy of cancers that express appropriate nucleoside transporters and are sensitive to established nucleoside-derived cytostatic drugs.
Collapse
Affiliation(s)
- Erich H Schneider
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Olga Hofmeister
- Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München-German Research Center for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, Germany
| | - Solveig Kälble
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
11
|
Exoenzyme Y Contributes to End-Organ Dysfunction Caused by Pseudomonas aeruginosa Pneumonia in Critically Ill Patients: An Exploratory Study. Toxins (Basel) 2020; 12:toxins12060369. [PMID: 32512716 PMCID: PMC7354586 DOI: 10.3390/toxins12060369] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/19/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes pneumonia in immunocompromised and intensive care unit (ICU) patients. During host infection, P. aeruginosa upregulates the type III secretion system (T3SS), which is used to intoxicate host cells with exoenzyme (Exo) virulence factors. Of the four known Exo virulence factors (U, S, T and Y), ExoU has been shown in prior studies to associate with high mortality rates. Preclinical studies have shown that ExoY is an important edema factor in lung infection caused by P. aeruginosa, although its importance in clinical isolates of P. aeruginosa is unknown. We hypothesized that expression of ExoY would be highly prevalent in clinical isolates and would significantly contribute to patient morbidity secondary to P. aeruginosa pneumonia. A single-center, prospective observational study was conducted at the University of Alabama at Birmingham Hospital. Mechanically ventilated ICU patients with a bronchoalveolar lavage fluid culture positive for P. aeruginosa were included. Enrolled patients were followed from ICU admission to discharge and clinical P. aeruginosa isolates were genotyped for the presence of exoenzyme genes. Ninety-nine patients were enrolled in the study. ExoY was present in 93% of P. aeruginosa clinical isolates. Moreover, ExoY alone (ExoY+/ExoU−) was present in 75% of P. aeruginosa isolates, compared to 2% ExoU alone (ExoY−/ExoU+). We found that bacteria isolated from human samples expressed active ExoY and ExoU, and the presence of ExoY in clinical isolates was associated with end-organ dysfunction. This is the first study we are aware of that demonstrates that ExoY is important in clinical outcomes secondary to nosocomial pneumonia.
Collapse
|
12
|
Wang D, Qi J, Han W, Gao JM, Horsman GP. Kanamycin-induced production of 2',3'-cyclic AMP in Escherichia coli. Biochem Biophys Res Commun 2020; 527:854-860. [PMID: 32430174 DOI: 10.1016/j.bbrc.2020.04.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
Abstract
In contrast to the well-characterized second messenger adenosine 3',5'-cyclic monophosphate (3',5'-cAMP), the biological roles of its isomer 2',3'-cAMP remain largely unknown, especially in bacteria. Recent work reported that RNase I-dependent elevation of 2',3'-cNMP levels in Escherichia coli correlated with reduced biofilm production, and separate studies demonstrated E. coli ribonuclease activation in response to aminoglycoside antibiotics. Here we report that E. coli produced 2',3'-cAMP in response to kanamycin at sub-inhibitory levels. Surprisingly, other aminoglycosides like streptomycin or gentamicin did not generate levels of 2',3'-cAMP detectable by 31P NMR. Interestingly, because 2',3'-cAMP is also produced in E. coli strains expressing a plasmid-encoded kanamycin resistance gene but not by other ribosome-targeting antibiotics, this kanamycin-specific production may not reflect disrupted protein synthesis. Overall, this finding provides a link between aminoglycoside-induced ribonuclease activity and 2',3'-cAMP production in E. coli.
Collapse
Affiliation(s)
- Dacheng Wang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China; Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Jianzhao Qi
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Wenbo Han
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China
| | - Jin-Ming Gao
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, 712100, China.
| | - Geoff P Horsman
- Department of Chemistry & Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
13
|
Farcasanu M, Wang AG, Uchański T, Bailey LJ, Yue J, Chen Z, Wu X, Kossiakoff A, Tang WJ. Rapid Discovery and Characterization of Synthetic Neutralizing Antibodies against Anthrax Edema Toxin. Biochemistry 2019; 58:2996-3004. [PMID: 31243996 DOI: 10.1021/acs.biochem.9b00184] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Anthrax, a lethal, weaponizable disease caused by Bacillus anthracis, acts through exotoxins that are primary mediators of systemic toxicity and also targets for neutralization by passive immunotherapy. The ease of engineering B. anthracis strains resistant to established therapy and the historic use of the microbe in bioterrorism present a compelling test case for platforms that permit the rapid and modular development of neutralizing agents. In vitro antigen-binding fragment (Fab) selection offers the advantages of speed, sequence level molecular control, and engineering flexibility compared to traditional monoclonal antibody pipelines. By screening an unbiased, chemically synthetic phage Fab library and characterizing hits in cell-based assays, we identified two high-affinity neutralizing Fabs, A4 and B7, against anthrax edema factor (EF), a key mediator of anthrax pathogenesis. Engineered homodimers of these Fabs exhibited potency comparable to that of the best reported neutralizing monoclonal antibody against EF at preventing EF-induced cyclic AMP production. Using internalization assays in COS cells, B7 was found to block steps prior to EF internalization. This work demonstrates the efficacy of synthetic alternatives to traditional antibody therapeutics against anthrax while also demonstrating a broadly generalizable, rapid, and modular screening pipeline for neutralizing antibody generation.
Collapse
Affiliation(s)
- Mara Farcasanu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Andrew G Wang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Tomasz Uchański
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Lucas J Bailey
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Jiping Yue
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Zhaochun Chen
- National Institute of Allergy and Infection , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Xiaoyang Wu
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Anthony Kossiakoff
- Department of Biochemistry and Molecular Biology , The University of Chicago , Chicago , Illinois 60637 , United States
| | - Wei-Jen Tang
- The Ben May Department for Cancer Research , The University of Chicago , Chicago , Illinois 60637 , United States
| |
Collapse
|
14
|
Zhou DR, Eid R, Miller KA, Boucher E, Mandato CA, Greenwood MT. Intracellular second messengers mediate stress inducible hormesis and Programmed Cell Death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:773-792. [PMID: 30716408 DOI: 10.1016/j.bbamcr.2019.01.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/11/2022]
|
15
|
Zhou DR, Eid R, Boucher E, Miller KA, Mandato CA, Greenwood MT. Stress is an agonist for the induction of programmed cell death: A review. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:699-712. [DOI: 10.1016/j.bbamcr.2018.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/17/2018] [Accepted: 12/01/2018] [Indexed: 02/07/2023]
|
16
|
Scharrenbroich J, Kaever V, Dove S, Seifert R, Schneider EH. Hydrolysis of the non-canonical cyclic nucleotide cUMP by PDE9A: kinetics and binding mode. Naunyn Schmiedebergs Arch Pharmacol 2018; 392:199-208. [PMID: 30443663 DOI: 10.1007/s00210-018-1582-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/07/2018] [Indexed: 12/11/2022]
Abstract
The non-canonical cyclic nucleotide cUMP and the phosphodiesterase PDE9A both occur in neuronal cells. Using HPLC-coupled tandem mass spectrometry, we characterized the kinetics of PDE9A-mediated cUMP hydrolysis. PDE9A is a low-affinity and high-velocity enzyme for cUMP (Vmax = ~ 6 μmol/min/mg; Km = ~ 401 μM). The PDE9 inhibitor BAY 73-6691 inhibited PDE9A-catalyzed cUMP hydrolysis (Ki = 590 nM). Docking studies indicate two H-bonds between the cUMP uridine moiety and Gln453/Asn405 of PDE9A. By contrast, the guanosine moiety of cGMP forms three H-bonds with Gln453. cCMP is not hydrolyzed at a concentration of 3 μM, but inhibits the PDE9A-catalyzed cUMP hydrolysis at concentrations of 100 μM or more. The probable main reason is that the cytosine moiety cannot act as H-bond acceptor for Gln453. A comparison of PDE9A with PDE7A suggests that the preference of the former for cGMP and cUMP and of the latter for cAMP and cCMP is due to stabilized alternative conformations of the side chain amide of Gln453 and Gln413, respectively. This so-called glutamine switch is known to be involved in the regulation of cAMP/cGMP selectivity of some PDEs.
Collapse
Affiliation(s)
- Jessica Scharrenbroich
- Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Stefan Dove
- Department of Medicinal Chemistry II, Institute of Pharmacy, University of Regensburg, 93040, Regensburg, Germany
| | - Roland Seifert
- Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Erich H Schneider
- Hannover Medical School, Institute of Pharmacology, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
17
|
cUMP hydrolysis by PDE3B. Naunyn Schmiedebergs Arch Pharmacol 2018; 391:891-905. [PMID: 29808231 DOI: 10.1007/s00210-018-1512-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 05/10/2018] [Indexed: 01/04/2023]
Abstract
Previous results indicate that the phosphodiesterase PDE3B hydrolyzes cUMP. Also, almost 50 years ago, cUMP-hydrolytic activity was observed in rat adipose tissue. We intended to characterize the enzyme kinetics of PDE3B-mediated cUMP hydrolysis, to determine the PDE3B binding mode of cUMP, and to analyze cUMP hydrolysis in adipocyte preparations. Educts (cNMPs) and products (NMPs) of the PDE reactions as well as intracellular cNMPs were quantitated by HPLC-coupled tandem mass spectrometry. PDE3B expression was determined by qPCR and Western blot. Docking studies were performed with the PDE3B crystal structure PDB ID 1SO2 (complex with a dihydropyridazine inhibitor). PDE3B hydrolyzed cUMP (Km ~ 550 μM, Vmax ~ 76 μmol/min/mg) and cAMP (Km ~ 0.7 μM, Vmax ~ 4.3 μmol/min/mg) in a milrinone (PDE3-selective inhibitor)-sensitive manner (Ki for inhibition of cUMP hydrolysis: 205 nM). cUMP forms one hydrogen bond with PDE3B (uracil 3-NH with side chain oxygen of Q988). Two hydrogen bonds stabilize cAMP binding. cCMP does not interact with PDE3B. Possibly, the cytosine base cannot form hydrogen bonds with PDE3B, and the 4-NH2 group clashes with L987 of the enzyme. Adipocyte differentiation of 3T3-L1 MBX cells increased mRNA of PDE3B, but not of PDE3A. Significant amounts of cUMP were detected in differentiated and undifferentiated 3T3-L1 MBX cells. 3T3-L1 MBX adipocyte lysates and rat epididymal adipose tissue membranes contained milrinone-sensitive cUMP-hydrolytic activity. PDE3B is a low-affinity and high-velocity phosphodiesterase for cUMP. The cUMP-hydrolyzing activity described almost 50 years ago for rat adipose tissue is caused by PDE3, probably by the isoform PDE3B.
Collapse
|
18
|
Wiggins SV, Steegborn C, Levin LR, Buck J. Pharmacological modulation of the CO 2/HCO 3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase. Pharmacol Ther 2018; 190:173-186. [PMID: 29807057 DOI: 10.1016/j.pharmthera.2018.05.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cyclic AMP (cAMP), the prototypical second messenger, has been implicated in a wide variety of (often opposing) physiological processes. It simultaneously mediates multiple, diverse processes, often within a single cell, by acting locally within independently-regulated and spatially-restricted microdomains. Within each microdomain, the level of cAMP will be dependent upon the balance between its synthesis by adenylyl cyclases and its degradation by phosphodiesterases (PDEs). In mammalian cells, there are many PDE isoforms and two types of adenylyl cyclases; the G protein regulated transmembrane adenylyl cyclases (tmACs) and the CO2/HCO3-/pH-, calcium-, and ATP-sensing soluble adenylyl cyclase (sAC). Discriminating the roles of individual cyclic nucleotide microdomains requires pharmacological modulators selective for the various PDEs and/or adenylyl cyclases. Such tools present an opportunity to develop therapeutics specifically targeted to individual cAMP dependent pathways. The pharmacological modulators of tmACs have recently been reviewed, and in this review, we describe the current status of pharmacological tools available for studying sAC.
Collapse
Affiliation(s)
- Shakarr V Wiggins
- Graduate Program in Neuroscience, Weill Cornell Medicine, New York, NY 10065, United States
| | - Clemens Steegborn
- Department of Biochemistry, University of Bayreuth, 95440 Bayreuth, Germany
| | - Lonny R Levin
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States.
| | - Jochen Buck
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, United States
| |
Collapse
|
19
|
Padovan-Neto FE, West AR. Regulation of Striatal Neuron Activity by Cyclic Nucleotide Signaling and Phosphodiesterase Inhibition: Implications for the Treatment of Parkinson's Disease. ADVANCES IN NEUROBIOLOGY 2018; 17:257-283. [PMID: 28956336 DOI: 10.1007/978-3-319-58811-7_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cyclic nucleotide phosphodiesterase (PDE) enzymes catalyze the hydrolysis and inactivation of cyclic nucleotides (cAMP/cGMP) in the brain. Several classes of PDE enzymes with distinct tissue distributions, cyclic nucleotide selectivity, and regulatory factors are highly expressed in brain regions subserving cognitive and motor processes known to be disrupted in neurodegenerative diseases such as Parkinson's disease (PD). Furthermore, small-molecule inhibitors of several different PDE family members alter cyclic nucleotide levels and favorably enhance motor performance and cognition in animal disease models. This chapter will explore the roles and therapeutic potential of non-selective and selective PDE inhibitors on neural processing in fronto-striatal circuits in normal animals and models of DOPA-induced dyskinesias (LIDs) associated with PD. The impact of selective PDE inhibitors and augmentation of cAMP and cGMP signaling on the membrane excitability of striatal medium-sized spiny projection neurons (MSNs) will be discussed. The effects of cyclic nucleotide signaling and PDE inhibitors on synaptic plasticity of striatonigral and striatopallidal MSNs will be also be reviewed. New data on the efficacy of PDE10A inhibitors for reversing behavioral and electrophysiological correlates of L-DOPA-induced dyskinesias in a rat model of PD will also be presented. Together, these data will highlight the potential of novel PDE inhibitors for treatment of movement disorders such as PD which are associated with abnormal corticostriatal transmission.
Collapse
Affiliation(s)
- Fernando E Padovan-Neto
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| | - Anthony R West
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA.
| |
Collapse
|
20
|
Pavlaki N, Nikolaev VO. Imaging of PDE2- and PDE3-Mediated cGMP-to-cAMP Cross-Talk in Cardiomyocytes. J Cardiovasc Dev Dis 2018; 5:jcdd5010004. [PMID: 29367582 PMCID: PMC5872352 DOI: 10.3390/jcdd5010004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/16/2018] [Accepted: 01/17/2018] [Indexed: 12/13/2022] Open
Abstract
Cyclic nucleotides 3′,5′-cyclic adenosine monophosphate (cAMP) and 3′,5′-cyclic guanosine monophosphate (cGMP) are important second messengers that regulate cardiovascular function and disease by acting in discrete subcellular microdomains. Signaling compartmentation at these locations is often regulated by phosphodiesterases (PDEs). Some PDEs are also involved in the cross-talk between the two second messengers. The purpose of this review is to summarize and highlight recent findings about the role of PDE2 and PDE3 in cardiomyocyte cyclic nucleotide compartmentation and visualization of this process using live cell imaging techniques.
Collapse
Affiliation(s)
- Nikoleta Pavlaki
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| | - Viacheslav O Nikolaev
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
21
|
Abstract
Contemporary investigations regarding the (patho)physiological roles of the non-canonical cyclic nucleoside monophosphates (cNMP) cytidine 3',5'-cyclic monophosphate (cCMP) and uridine 3',5'-cyclic monophosphate (cUMP) have been hampered by the lack of highly specific and sensitive analytic methods for these analytes. In addition, the existence of 2',3'-cNMP besides 3',5'-cNMP has been described recently. HPLC coupled with tandem mass spectrometry (HPLC-MS/MS) is the method of choice for identification and quantification of low-molecular weight endogenous metabolites. In this chapter, recommendations for an HPLC-MS/MS method for 3',5'- and 2',3'-cNMP are summarized.
Collapse
|
22
|
Schneider EH, Seifert R. Inactivation of Non-canonical Cyclic Nucleotides: Hydrolysis and Transport. Handb Exp Pharmacol 2017; 238:169-205. [PMID: 28204955 DOI: 10.1007/164_2016_5004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
This chapter addresses cNMP hydrolysis by phosphodiesterases (PDEs) and export by multidrug resistance associated proteins (MRPs). Both mechanisms are well-established for the canonical cNMPs, cAMP, and cGMP. Increasing evidence shows that non-canonical cNMPs (specifically cCMP, cUMP) are also PDE and MRP substrates. Hydrolysis of cUMP is achieved by PDE 3A, 3B, and 9A, which possibly explains the cUMP-degrading activities previously reported for heart, adipose tissue, and brain. Regarding cCMP, the only known "conventional" (class I) PDE that hydrolyzes cCMP is PDE7A. Older reports describe cCMP-degrading PDE-like activities in mammalian tissues, bacteria, and plants, but the molecular identity of these enzymes is not clear. High K M and V max values, insensitivity to common inhibitors, and unusually broad substrate specificities indicate that these activities probably do not represent class I PDEs. Moreover, the older results have to be interpreted with caution, since the historical analytical methods were not as reliable as modern highly sensitive and specific techniques like HPLC-MS/MS. Besides PDEs, the transporters MRP4 and 5 are of major importance for cAMP and cGMP disposal. Additionally, both MRPs also export cUMP, while cCMP is only exported by MRP5. Much less data are available for the non-canonical cNMPs, cIMP, cXMP, and cTMP. None of these cNMPs has been examined as MRP substrate. It was shown, however, that they are hydrolyzed by several conventional class I PDEs. Finally, this chapter reveals that there are still large gaps in our knowledge about PDE and MRP activities for canonical and non-canonical cNMPs. Future research should perform a comprehensive characterization of the known PDEs and MRPs with the physiologically most important cNMP substrates.
Collapse
Affiliation(s)
- Erich H Schneider
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Medical School of Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| |
Collapse
|
23
|
Schlossmann J, Wolfertstetter S. Identification of cCMP and cUMP Substrate Proteins and Cross Talk Between cNMPs. Handb Exp Pharmacol 2017; 238:149-167. [PMID: 26721673 DOI: 10.1007/164_2015_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
cCMP and cUMP are pyrimidine cyclic nucleotides which are present in several types of cells. These molecules could exert diverse cellular functions and might act as second messengers. In the last years, diverse approaches were performed to analyze possible cellular substrates and signaling pathways of cCMP and cUMP. In this review these approaches are summarized, and probable cross talk of these signaling molecules is described. These analyses might lead to the (patho)physiological and pharmacological relevance of these noncanonical cyclic nucleotides.
Collapse
Affiliation(s)
- Jens Schlossmann
- Pharmacology and Toxicology, Institute of Pharmacy, University Regensburg, Universitätsstr. 31, D-93040, Regensburg, Germany.
| | - Stefanie Wolfertstetter
- Pharmacology and Toxicology, Institute of Pharmacy, University Regensburg, Universitätsstr. 31, D-93040, Regensburg, Germany
| |
Collapse
|
24
|
Abstract
Traditionally, only the 3',5'-cyclic monophosphates of adenosine and guanosine (produced by adenylyl cyclase and guanylyl cyclase, respectively) are regarded as true "second messengers" in the vascular wall, despite the presence of other cyclic nucleotides in different tissues. Among these noncanonical cyclic nucleotides, inosine 3',5'-cyclic monophosphate (cIMP) is synthesized by soluble guanylyl cyclase in porcine coronary arteries in response to hypoxia, when the enzyme is activated by endothelium-derived nitric oxide. Its production is associated with augmentation of vascular contraction mediated by stimulation of Rho kinase. Based on these findings, cIMP appears to meet most, if not all, of the criteria required for it to be accepted as a "second messenger," at least in the vascular wall.
Collapse
|
25
|
Lorenz R, Bertinetti D, Herberg FW. cAMP-Dependent Protein Kinase and cGMP-Dependent Protein Kinase as Cyclic Nucleotide Effectors. Handb Exp Pharmacol 2017; 238:105-122. [PMID: 27885524 DOI: 10.1007/164_2015_36] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The cAMP-dependent protein kinase (PKA) and the cGMP-dependent protein kinase (PKG) are homologous enzymes with different binding and activation specificities for cyclic nucleotides. Both enzymes harbor conserved cyclic nucleotide-binding (CNB) domains. Differences in amino acid composition of these CNB domains mediate cyclic nucleotide selectivity in PKA and PKG, respectively. Recently, the presence of the noncanonical cyclic nucleotides cCMP and cUMP in eukaryotic cells has been proven, while the existence of cellular cIMP and cXMP remains unclear. It was shown that the main effectors of cyclic nucleotide signaling, PKA and PKG, can be activated by each of these noncanonical cyclic nucleotides. With unique effector proteins still missing, such cross-activation effects might have physiological relevance. Therefore, we approach PKA and PKG as cyclic nucleotide effectors in this chapter. The focus of this chapter is the general cyclic nucleotide-binding properties of both kinases as well as the selectivity for cAMP or cGMP, respectively. Furthermore, we discuss the binding affinities and activation potencies of noncanonical cyclic nucleotides.
Collapse
Affiliation(s)
- Robin Lorenz
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Daniela Bertinetti
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany
| | - Friedrich W Herberg
- Department of Biochemistry, University of Kassel, Heinrich-Plett-Str. 40, 34132, Kassel, Germany.
| |
Collapse
|
26
|
VanSchouwen B, Melacini G. Regulation of HCN Ion Channels by Non-canonical Cyclic Nucleotides. Handb Exp Pharmacol 2017; 238:123-133. [PMID: 28181007 DOI: 10.1007/164_2016_5006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The hyperpolarization-activated cyclic-nucleotide-modulated (HCN) proteins are cAMP-regulated ion channels that play a key role in nerve impulse transmission and heart rate modulation in neuronal and cardiac cells, respectively. Although they are regulated primarily by cAMP, other cyclic nucleotides such as cGMP, cCMP, and cUMP serve as partial agonists for the HCN2 and HCN4 isoforms. By competing with cAMP for binding, these non-canonical ligands alter ion channel gating, and in turn, modulate the cAMP-dependent activation profiles. The partial activation of non-canonical cyclic nucleotides can be rationalized by either a partial reversal of a two-state inactive/active conformational equilibrium, or by sampling of a third conformational state with partial activity. Furthermore, different mechanisms and degrees of activation have been observed upon binding of non-canonical cyclic nucleotides to HCN2 versus HCN4, suggesting that these ligands control HCN ion channels in an isoform-specific manner. While more work remains to be done to achieve a complete understanding of ion channel modulation by non-canonical cyclic nucleotides, it is already clear that such knowledge will ultimately prove invaluable in achieving a more complete understanding of ion channel signaling in vivo, as well as in the development of therapeutics designed to selectively modulate ion channel gating.
Collapse
Affiliation(s)
- Bryan VanSchouwen
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1. .,Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, Canada, L8S 4M1.
| |
Collapse
|
27
|
cCMP and cUMP Across the Tree of Life: From cCMP and cUMP Generators to cCMP- and cUMP-Regulated Cell Functions. Handb Exp Pharmacol 2017; 238:3-23. [PMID: 28181008 DOI: 10.1007/164_2016_5005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The cyclic purine nucleotides cAMP and cGMP are well-established second messenger molecules that are generated by distinct nucleotidyl cyclases (NCs) and regulate numerous cell functions via specific effector molecules. In contrast, the existence of the cyclic pyrimidine nucleotides cCMP and cUMP has been controversial for many years. The development of highly specific and sensitive mass spectrometry methods has enabled the unequivocal detection and quantitation of cCMP and cUMP in biological systems. These cNMPs occur broadly in numerous mammalian cell lines and primary cells. cCMP has also been detected in mouse organs, and both cCMP and cUMP occur in various developmental stages of the zebrafish Danio rerio. So far, the soluble guanylyl cyclase (sGC) and soluble adenylyl cyclase (sAC) have been identified as cCMP and cUMP generators. Dissociations in the expression patterns of sAC and sGC relative to cCMP and cUMP abundance may point to the existence of hitherto unidentified cCMP- and cUMP-generating NCs. The broad occurrence of cCMP and cUMP in vertebrates and the distinct cNMP patterns suggest specific roles of these cNMPs in the regulation of numerous cell functions.
Collapse
|
28
|
Marondedze C, Wong A, Thomas L, Irving H, Gehring C. Cyclic Nucleotide Monophosphates in Plants and Plant Signaling. Handb Exp Pharmacol 2017; 238:87-103. [PMID: 26721677 DOI: 10.1007/164_2015_35] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cyclic nucleotide monophosphates (cNMPs) and the enzymes that can generate them are of increasing interest in the plant sciences. Arguably, the major recent advance came with the release of the complete Arabidopsis thaliana genome that has enabled the systematic search for adenylate (ACs) or guanylate cyclases (GCs) and did eventually lead to the discovery of a number of GCs in higher plants. Many of these proteins have complex domain architectures with AC or GC centers moonlighting within cytosolic kinase domains. Recent reports indicated the presence of not just the canonical cNMPs (i.e., cAMP and cGMP), but also the noncanonical cCMP, cUMP, cIMP, and cdTMP in plant tissues, and this raises several questions. Firstly, what are the functions of these cNMPs, and, secondly, which enzymes can convert the substrate triphosphates into the respective noncanonical cNMPs? The first question is addressed here by comparing the reactive oxygen species (ROS) response of cAMP and cGMP to that elicited by the noncanonical cCMP or cIMP. The results show that particularly cIMP can induce significant ROS production. To answer, at least in part, the second question, we have evaluated homology models of experimentally confirmed plant GCs probing the substrate specificity by molecular docking simulations to determine if they can conceivably catalytically convert substrates other than ATP or GTP. In summary, molecular modeling and substrate docking simulations can contribute to the evaluation of cyclases for noncanonical cyclic mononucleotides and thereby further our understanding of the molecular mechanism that underlie cNMP-dependent signaling in planta.
Collapse
Affiliation(s)
- Claudius Marondedze
- Department of Biochemistry, Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Aloysius Wong
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Ludivine Thomas
- Proteomics Core Laboratory, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Helen Irving
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - Chris Gehring
- Division of Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| |
Collapse
|
29
|
Abstract
Soluble guanylyl cyclase (sGC) is the principal enzyme in mediating the biological actions of nitric oxide. On activation, sGC converts guanosine triphosphate to guanosine 3',5'-cyclic monophosphate (cGMP), which mediates diverse physiological processes including vasodilation, platelet aggregation, and myocardial functions predominantly by acting on cGMP-dependent protein kinases. Cyclic GMP has long been considered as the sole second messenger for sGC action. However, emerging evidence suggests that, in addition to cGMP, other nucleoside 3',5'-cyclic monophosphates (cNMPs) are synthesized by sGC in response to nitric oxide stimulation, and some of these nucleoside 3',5'-cyclic monophosphates are involved in various physiological activities. For example, inosine 3',5'-cyclic monophosphate synthesized by sGC may play a critical role in hypoxic augmentation of vasoconstriction. The involvement of cytidine 3',5'-cyclic monophosphate and uridine 3',5'-cyclic monophosphate in certain cardiovascular activities is also implicated.
Collapse
|
30
|
Bacterial Nucleotidyl Cyclase Inhibits the Host Innate Immune Response by Suppressing TAK1 Activation. Infect Immun 2017; 85:IAI.00239-17. [PMID: 28652310 DOI: 10.1128/iai.00239-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 06/13/2017] [Indexed: 12/22/2022] Open
Abstract
Exoenzyme Y (ExoY) is a type III secretion system effector found in 90% of the Pseudomonas aeruginosa isolates. Although it is known that ExoY is a soluble nucleotidyl cyclase that increases the cytoplasmic levels of nucleoside 3',5'-cyclic monophosphates (cNMPs) to mediate endothelial Tau phosphorylation and permeability, its functional role in the innate immune response is still poorly understood. Transforming growth factor β-activated kinase 1 (TAK1) is critical for mediating Toll-like receptor (TLR) signaling and subsequent activation of NF-κB and AP-1, which are transcriptional activators of innate immunity. Here, we report that ExoY inhibits proinflammatory cytokine production through suppressing the activation of TAK1 as well as downstream NF-κB and mitogen-activated protein (MAP) kinases. Mice infected with ExoY-deficient P. aeruginosa had higher levels of tumor necrosis factor (TNF) and interleukin-6 (IL-6), more neutrophil recruitment, and a lower bacterial load in lung tissue than mice infected with wild-type P. aeruginosa Taken together, our findings identify a previously unknown mechanism by which P. aeruginosa ExoY inhibits the host innate immune response.
Collapse
|
31
|
Abstract
The cyclic purine nucleotide cIMP and the cyclic pyrimidine nucleotides cCMP and cUMP are emerging second messengers. These cNMPs show different biological effects, but the molecular mechanisms remain elusive. In this issue of Structure, Ng et al. (2016) provide structural evidence for distinct interactions of cIMP, cCMP, and cUMP with ion channels.
Collapse
Affiliation(s)
- Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
32
|
Mutations of PKA cyclic nucleotide-binding domains reveal novel aspects of cyclic nucleotide selectivity. Biochem J 2017; 474:2389-2403. [PMID: 28583991 DOI: 10.1042/bcj20160969] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 11/17/2022]
Abstract
Cyclic AMP and cyclic GMP are ubiquitous second messengers that regulate the activity of effector proteins in all forms of life. The main effector proteins, the 3',5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) and the 3',5'-cyclic guanosine monophosphate (cGMP)-dependent protein kinase (PKG), are preferentially activated by cAMP and cGMP, respectively. However, the molecular basis of this cyclic nucleotide selectivity is still not fully understood. Analysis of isolated cyclic nucleotide-binding (CNB) domains of PKA regulatory subunit type Iα (RIα) reveals that the C-terminal CNB-B has a higher cAMP affinity and selectivity than the N-terminal CNB-A. Here, we show that introducing cGMP-specific residues using site-directed mutagenesis reduces the selectivity of CNB-B, while the combination of two mutations (G316R/A336T) results in a cGMP-selective binding domain. Furthermore, introducing the corresponding mutations (T192R/A212T) into the PKA RIα CNB-A turns this domain into a highly cGMP-selective domain, underlining the importance of these contacts for achieving cGMP specificity. Binding data with the generic purine nucleotide 3',5'-cyclic inosine monophosphate (cIMP) reveal that introduced arginine residues interact with the position 6 oxygen of the nucleobase. Co-crystal structures of an isolated CNB-B G316R/A336T double mutant with either cAMP or cGMP reveal that the introduced threonine and arginine residues maintain their conserved contacts as seen in PKG I CNB-B. These results improve our understanding of cyclic nucleotide binding and the molecular basis of cyclic nucleotide specificity.
Collapse
|
33
|
Dessauer CW, Watts VJ, Ostrom RS, Conti M, Dove S, Seifert R. International Union of Basic and Clinical Pharmacology. CI. Structures and Small Molecule Modulators of Mammalian Adenylyl Cyclases. Pharmacol Rev 2017; 69:93-139. [PMID: 28255005 PMCID: PMC5394921 DOI: 10.1124/pr.116.013078] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Adenylyl cyclases (ACs) generate the second messenger cAMP from ATP. Mammalian cells express nine transmembrane AC (mAC) isoforms (AC1-9) and a soluble AC (sAC, also referred to as AC10). This review will largely focus on mACs. mACs are activated by the G-protein Gαs and regulated by multiple mechanisms. mACs are differentially expressed in tissues and regulate numerous and diverse cell functions. mACs localize in distinct membrane compartments and form signaling complexes. sAC is activated by bicarbonate with physiologic roles first described in testis. Crystal structures of the catalytic core of a hybrid mAC and sAC are available. These structures provide detailed insights into the catalytic mechanism and constitute the basis for the development of isoform-selective activators and inhibitors. Although potent competitive and noncompetitive mAC inhibitors are available, it is challenging to obtain compounds with high isoform selectivity due to the conservation of the catalytic core. Accordingly, caution must be exerted with the interpretation of intact-cell studies. The development of isoform-selective activators, the plant diterpene forskolin being the starting compound, has been equally challenging. There is no known endogenous ligand for the forskolin binding site. Recently, development of selective sAC inhibitors was reported. An emerging field is the association of AC gene polymorphisms with human diseases. For example, mutations in the AC5 gene (ADCY5) cause hyperkinetic extrapyramidal motor disorders. Overall, in contrast to the guanylyl cyclase field, our understanding of the (patho)physiology of AC isoforms and the development of clinically useful drugs targeting ACs is still in its infancy.
Collapse
Affiliation(s)
- Carmen W Dessauer
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Val J Watts
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Rennolds S Ostrom
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Marco Conti
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Stefan Dove
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| | - Roland Seifert
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Sciences Center at Houston, Houston, Texas (C.W.D.); Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, Indiana (V.J.W.); Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California (R.S.O.); Center for Reproductive Sciences, University of California San Francisco, San Francisco, California (M.C.); Institute of Pharmacy, University of Regensburg, Regensburg, Germany (S.D.); and Institute of Pharmacology, Hannover Medical School, Hannover, Germany (R.S.)
| |
Collapse
|
34
|
Berrisch S, Ostermeyer J, Kaever V, Kälble S, Hilfiker-Kleiner D, Seifert R, Schneider EH. cUMP hydrolysis by PDE3A. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:269-280. [PMID: 27975297 DOI: 10.1007/s00210-016-1328-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 11/30/2016] [Indexed: 11/25/2022]
Abstract
As previously reported, the cardiac phosphodiesterase PDE3A hydrolyzes cUMP. Moreover, cUMP-degrading activity was detected in cow and dog hearts several decades ago. Our aim was to characterize the enzyme kinetic parameters of PDE3A-mediated cUMP hydrolysis and to investigate whether cUMP and cUMP-hydrolyzing PDEs are present in cardiomyocytes. PDE3A-mediated cUMP hydrolysis was characterized in time course, inhibitor, and Michaelis-Menten kinetics experiments. Intracellular cyclic nucleotide (cNMP) concentrations and the mRNAs of cUMP-degrading PDEs were quantitated in neonatal rat cardiomyocytes (NRCMs) and murine HL-1 cardiomyogenic cells. Moreover, we investigated cUMP degradation in HL-1 cell homogenates and intact cells. Educts (cNMPs) and products (NMPs) of the PDE reactions were detected by HPLC-coupled tandem mass spectrometry. PDE3A degraded cUMP (measurement of UMP formation) with a K M value of ~143 μM and a V max value of ~42 μmol/min/mg. PDE3A hydrolyzed cAMP with a K M value of ~0.7 μM and a V max of ~1.2 μmol/min/mg (determination of AMP formation). The PDE3 inhibitor milrinone inhibited cUMP hydrolysis (determination of UMP formation) by PDE3A (K i = 57 nM). Significant amounts of cUMP as well as of PDE3A mRNA (in addition to PDE3B and PDE9A transcripts) were detected in HL-1 cells and NRCMs. Although HL-1 cell homogenates contain a milrinone-sensitive cUMP-hydrolyzing activity, intact HL-1 cells may use additional PDE3-independent mechanisms for cUMP disposal. PDE3A is a low-affinity and high-velocity PDE for cUMP. Future studies should investigate biological effects of cUMP in cardiomyocytes and the role of PDE3A in detoxifying high intracellular cUMP concentrations under pathophysiological conditions.
Collapse
Affiliation(s)
- Stefan Berrisch
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Jessica Ostermeyer
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Solveig Kälble
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Denise Hilfiker-Kleiner
- Molecular Cardiology Research Group, Department of Cardiology and Angiology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany
| | - Erich H Schneider
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625, Hannover, Germany.
| |
Collapse
|
35
|
Brescia M, Zaccolo M. Modulation of Compartmentalised Cyclic Nucleotide Signalling via Local Inhibition of Phosphodiesterase Activity. Int J Mol Sci 2016; 17:E1672. [PMID: 27706091 PMCID: PMC5085705 DOI: 10.3390/ijms17101672] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/20/2016] [Accepted: 09/23/2016] [Indexed: 12/20/2022] Open
Abstract
Cyclic nucleotide phosphodiesterases (PDEs) are the only enzymes that degrade the cyclic nucleotides cAMP and cGMP, and play a key role in modulating the amplitude and duration of the signal delivered by these two key intracellular second messengers. Defects in cyclic nucleotide signalling are known to be involved in several pathologies. As a consequence, PDEs have long been recognized as potential drug targets, and they have been the focus of intense research for the development of therapeutic agents. A number of PDE inhibitors are currently available for the treatment of disease, including obstructive pulmonary disease, erectile dysfunction, and heart failure. However, the performance of these drugs is not always satisfactory, due to a lack of PDE-isoform specificity and their consequent adverse side effects. Recent advances in our understanding of compartmentalised cyclic nucleotide signalling and the role of PDEs in local regulation of cAMP and cGMP signals offers the opportunity for the development of novel strategies for therapeutic intervention that may overcome the current limitation of conventional PDE inhibitors.
Collapse
Affiliation(s)
- Marcella Brescia
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3TP, UK.
| | - Manuela Zaccolo
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3TP, UK.
| |
Collapse
|
36
|
Ronchetti SA, Machiavelli LI, Quinteros FA, Duvilanski BH, Cabilla JP. Nitric Oxide Plays a Key Role in Ovariectomy-Induced Apoptosis in Anterior Pituitary: Interplay between Nitric Oxide Pathway and Estrogen. PLoS One 2016; 11:e0162455. [PMID: 27611913 PMCID: PMC5017659 DOI: 10.1371/journal.pone.0162455] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 08/23/2016] [Indexed: 01/01/2023] Open
Abstract
Changes in the estrogenic status produce deep changes in pituitary physiology, mainly because estrogens (E2) are one of the main regulators of pituitary cell population. Also, E2 negatively regulate pituitary neuronal nitric oxide synthase (nNOS) activity and expression and may thereby modulate the production of nitric oxide (NO), an important regulator of cell death and survival. Little is known about how ovary ablation affects anterior pituitary cell remodelling and molecular mechanisms that regulate this process have not yet been elucidated. In this work we used freshly dispersed anterior pituitaries as well as cell cultures from ovariectomized female rats in order to study whether E2 deficiency induces apoptosis in the anterior pituitary cells, the role of NO in this process and effects of E2 on the NO pathway. Our results showed that cell activity gradually decreases after ovariectomy (OVX) as a consequence of cell death, which is completely prevented by a pan-caspase inhibitor. Furthermore, there is an increase of fragmented nuclei and DNA cleavage thereby presenting the first direct evidence of the existence of apoptosis in the anterior pituitary gland after OVX. NO production and soluble guanylyl cyclase (sGC) expression in anterior pituitary cells increased concomitantly to the apoptosis. Inhibition of both, NO synthase (NOS) and sGC activities prevented the drop of cell viability after OVX, showing for the first time that increased NO levels and sGC activity observed post-OVX play a key role in the induction of apoptosis. Conversely, E2 and prolactin treatments decreased nNOS expression and activity in pituitary cells from OVX rats in a time- and E2 receptor-dependent manner, thus suggesting interplay between NO and E2 pathways in anterior pituitary.
Collapse
Affiliation(s)
- Sonia A. Ronchetti
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Leticia I. Machiavelli
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Fernanda A. Quinteros
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Beatriz H. Duvilanski
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena P. Cabilla
- Departamento de Química Biológica, IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Investigaciones Biomédicas (INBIOMED) UBA-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
37
|
Recent progress in the field of cIMP research. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:1045-7. [PMID: 27534403 DOI: 10.1007/s00210-016-1287-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 01/09/2023]
|
38
|
Abstract
Focusing on the recent literature (since 2000), this review outlines the main synthetic approaches for the preparation of 5'-mono-, 5'-di-, and 5'-triphosphorylated nucleosides, also known as nucleotides, as well as several derivatives, namely, cyclic nucleotides and dinucleotides, dinucleoside 5',5'-polyphosphates, sugar nucleotides, and nucleolipids. Endogenous nucleotides and their analogues can be obtained enzymatically, which is often restricted to natural substrates, or chemically. In chemical synthesis, protected or unprotected nucleosides can be used as the starting material, depending on the nature of the reagents selected from P(III) or P(V) species. Both solution-phase and solid-support syntheses have been developed and are reported here. Although a considerable amount of research has been conducted in this field, further work is required because chemists are still faced with the challenge of developing a universal methodology that is compatible with a large variety of nucleoside analogues.
Collapse
Affiliation(s)
- Béatrice Roy
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc 1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Anaïs Depaix
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc 1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Christian Périgaud
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc 1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| | - Suzanne Peyrottes
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM , Campus Triolet, cc 1705, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
| |
Collapse
|
39
|
Dittmar F, Wolter S, Seifert R. Regulation of apoptosis by cyclic nucleotides in human erythroleukemia (HEL) cells and human myelogenous leukemia (K-562) cells. Biochem Pharmacol 2016; 112:13-23. [PMID: 27157412 DOI: 10.1016/j.bcp.2016.04.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
Abstract
The cyclic pyrimidine nucleotides cCMP and cUMP have been recently identified in numerous mammalian cell lines, in primary cells and in intact organs, but very little is still known about their biological function. A recent study of our group revealed that the membrane-permeable cCMP analog cCMP-acetoxymethylester (cCMP-AM) induces apoptosis in mouse lymphoma cells independent of protein kinase A via an intrinsic and mitochondria-dependent pathway. In our present study, we examined the effects of various cNMP-AMs in human tumor cell lines. In HEL cells, a human erythroleukemia cell line, cCMP-AM effectively reduced the number of viable cells, effectively induced apoptosis by altering the mitochondrial membrane potential and thereby caused changes in the cell cycle. cCMP itself was biologically inactive, indicating that membrane penetration is required to trigger intracellular effects. cCMP-AM did not induce apoptosis in K-562 cells, a human chronic myelogenous leukemia cell line, due to rapid export via multidrug resistance-associated proteins. The biological effects of cCMP-AM differed from those of other cNMP-AMs. In conclusion, cCMP effectively induces apoptosis in HEL cells, cCMP export prevents apoptosis of K-562 cells and cNMPs differentially regulate various aspects of apoptosis, cell growth and mitochondrial function. In a broader perspective, our data support the concept of distinct second messenger roles of cAMP, cGMP, cCMP and cUMP.
Collapse
Affiliation(s)
- Fanni Dittmar
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Sabine Wolter
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany.
| |
Collapse
|
40
|
Isono A, Tate S, Nakamura-Mori K, Noda T, Ishikawa S, Harayama H. Involvement of cAMP-dependent unique signaling cascades in the decrease of serine/threonine-phosphorylated proteins in boar sperm head. Theriogenology 2015; 85:1152-60. [PMID: 26747578 DOI: 10.1016/j.theriogenology.2015.11.031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/20/2015] [Accepted: 11/28/2015] [Indexed: 12/12/2022]
Abstract
We previously suggested that protein phosphatase-dependent decrease of postacrosomal phosphorylated proteins may be necessary for the occurrence of acrosome reaction in livestock spermatozoa (Adachi et al., J Reprod Dev 54, 171-176, 2008; Mizuno et al., Mol Reprod Dev 82, 232-250, 2015). The aim of this study was to examine the involvement of the intracellular cAMP signaling cascades in the regulation of the decrease of postacrosomal phosphorylated proteins in boar spermatozoa. Boar ejaculated spermatozoa were incubated with cAMP analogs and then used for the immunodetection of serine/threonine-phosphorylated proteins and assessment of acrosome morphology. The protein phosphatase-dependent decrease of postacrosomal phosphorylated proteins was greatly promoted by the incubation with a cAMP analog Sp-5,6-dichloro-1-β-D-ribofuranosyl-benzimidazole-3',5'-monophosphorothioate (cBiMPS). This decrease was induced before the initiation of acrosome reaction and did not require the millimolar concentration of extracellular Ca(2+) which was necessary for the initiation of acrosome reaction. Moreover, suppression of protein kinase A activity with an inhibitor (H89) had almost no influence on both decrease of phosphorylated proteins and occurrence of acrosome reaction in the spermatozoa incubated with cBiMPS. In addition, the prolonged incubation with a potentially exchange protein directly activated by cAMP-selective cAMP analog (8pM) could only partially mimic effects of cBiMPS on these events. These results indicate that the cAMP-dependent signaling cascades which are less dependent on protein kinase A may regulate the decrease of postacrosomal phosphorylated proteins in boar spermatozoa before the extracellular Ca(2+)-triggered initiation of acrosome reaction.
Collapse
Affiliation(s)
- Ayane Isono
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Shunsuke Tate
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Kazumi Nakamura-Mori
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Taichi Noda
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan
| | - Sho Ishikawa
- General Technological Center of Hyogo Prefecture for Agriculture, Forest and Fishery, Awaji, Hyogo, Japan
| | - Hiroshi Harayama
- Laboratory of Reproductive Biology, Division of Animal Science, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Kobe, Hyogo, Japan.
| |
Collapse
|
41
|
Schneider E, Wolter S, Dittmar F, Fernández G, Seifert R. Differentiation between first and second messenger effects of cGMP. BMC Pharmacol Toxicol 2015. [PMCID: PMC4565094 DOI: 10.1186/2050-6511-16-s1-a84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Temporal and organ-specific detection of cNMPs including cUMP in the zebrafish. Biochem Biophys Res Commun 2015; 468:708-12. [PMID: 26551461 DOI: 10.1016/j.bbrc.2015.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 11/24/2022]
Abstract
The cyclic pyrimidine nucleotides cCMP and cUMP occur in mammalian cell lines. Recently, cCMP was also identified in mouse organs. Due to technical difficulties, it has not been possible to detect cUMP in organs or tissues yet. Here, we have generated a temporal profile of the occurrence of nucleoside 3',5'-cyclic monophosphates during different developmental stages of embryogenesis and in different organs of the adult zebrafish Danio rerio. Cyclic nucleotides were quantified by high performance liquid chromatography quadrupole tandem mass spectrometry. The identity of cCMP and cUMP in the zebrafish was confirmed by high performance liquid chromatography quadrupole time-of-flight mass spectrometry. We show for the first time that cUMP can be detected during embryogenesis and in adult organs of this vertebrate model system.
Collapse
|
43
|
Dittmar F, Seyfried S, Kaever V, Seifert R. Zebrafish as model organism for cNMP research. BMC Pharmacol Toxicol 2015. [PMCID: PMC4565592 DOI: 10.1186/2050-6511-16-s1-a45] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
44
|
Bähre H, Hartwig C, Munder A, Wolter S, Stelzer T, Schirmer B, Beckert U, Frank DW, Tümmler B, Kaever V, Seifert R. cCMP and cUMP occur in vivo. Biochem Biophys Res Commun 2015; 460:909-14. [PMID: 25838203 DOI: 10.1016/j.bbrc.2015.03.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 03/22/2015] [Indexed: 10/23/2022]
Abstract
Mammalian cells contain the cyclic pyrimidine nucleotides cCMP and cUMP. It is unknown whether these tentative new second messenger molecules occur in vivo. We used high performance liquid chromatography quadrupole tandem mass spectrometry to quantitate nucleoside 3',5'-cyclic monophosphates. cCMP was detected in all organs studied, most notably pancreas, spleen and the female reproductive system. cUMP was not detected in organs, probably due to the intrinsically low sensitivity of mass spectrometry to detect this molecule and organ matrix effects. Intratracheal infection of mice with recombinant Pseudomonas aeruginosa harboring the nucleotidyl cyclase toxin ExoY massively increased cUMP in lung. The identity of cCMP and cUMP in organs was confirmed by high performance liquid chromatography quadrupole time of flight mass spectrometry. cUMP also appeared in serum, urine and faeces following infection. Taken together, this report unequivocally shows for the first time that cCMP and cUMP occur in vivo.
Collapse
Affiliation(s)
- Heike Bähre
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany; Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany.
| | - Christina Hartwig
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Antje Munder
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Sabine Wolter
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Tane Stelzer
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Bastian Schirmer
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Ulrike Beckert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Dara W Frank
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Burkhard Tümmler
- Clinic for Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany.
| | - Volkhard Kaever
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany; Research Core Unit Metabolomics, Hannover Medical School, D-30625 Hannover, Germany.
| | - Roland Seifert
- Institute of Pharmacology, Hannover Medical School, D-30625 Hannover, Germany.
| |
Collapse
|