1
|
Kong Q, Wang B, Zhong Y, Chen W, Sun J, Liu B, Dong J. Modified Bushen Yiqi Formula mitigates pulmonary inflammation and airway remodeling by inhibiting neutrophils chemotaxis and IL17 signaling pathway in rats with COPD. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117497. [PMID: 38048893 DOI: 10.1016/j.jep.2023.117497] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chronic obstructive pulmonary disease (COPD) is a major global health concern characterized by pulmonary inflammation and airway remodeling. Traditional Chinese medicine, such as Modified Jiawei Bushen Yiqi Formula (MBYF), has been used as a complementary therapy for COPD in China. AIM OF THE STUDY To investigate the therapeutic potential of MBYF in a rat model of COPD induced by cigarette smoke (CS) exposure and explore the underlying mechanism. MATERIALS AND METHODS The COPD rat model was established through 24 weeks of CS exposure, with MBYF administration starting in the 9th week. Pulmonary function, histological analysis, inflammatory cell count and molecular assays were employed to assess the effects of MBYF on airway remodeling, pulmonary inflammation, neutrophils chemotaxis and the IL17 signaling pathway. RESULTS MBYF treatment effectively delayed airway remodeling, as evidenced by improved pulmonary function parameters. Histological examination and bronchoalveolar lavage fluid analysis revealed that MBYF mitigated CS-induced pulmonary inflammation by reducing inflammatory cell infiltration. Pharmacological network analysis suggested that MBYF may act through the IL17 signaling pathway to regulate inflammatory responses. RNA-sequencing and molecular assays indicated that MBYF inhibited neutrophils chemotaxis through downregulating the CXCL1/CXCL5/CXCL8-CXCR2 axis, and suppressed IL17A, IL17F and its downstream cytokines, including IL6, TNFα, IL1β, and COX2. Furthermore, MBYF inhibited the activation of NF-κB and MAPKs in the IL17 signaling pathway. CONCLUSION MBYF exhibits potential as an adjunct or alternative treatment for COPD, effectively mitigating CS-induced pulmonary inflammation and airway remodeling through the inhibition of neutrophil chemotaxis and IL17 signaling pathway.
Collapse
Affiliation(s)
- Qing Kong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China; Department of Dermatology, Huashan Hospital, Fudan University, China.
| | - Bin Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Yuanyuan Zhong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jing Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Baojun Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, China; Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Plaza Moral V, Alobid I, Álvarez Rodríguez C, Blanco Aparicio M, Ferreira J, García G, Gómez-Outes A, Garín Escrivá N, Gómez Ruiz F, Hidalgo Requena A, Korta Murua J, Molina París J, Pellegrini Belinchón FJ, Plaza Zamora J, Praena Crespo M, Quirce Gancedo S, Sanz Ortega J, Soto Campos JG. GEMA 5.3. Spanish Guideline on the Management of Asthma. OPEN RESPIRATORY ARCHIVES 2023; 5:100277. [PMID: 37886027 PMCID: PMC10598226 DOI: 10.1016/j.opresp.2023.100277] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
The Spanish Guideline on the Management of Asthma, better known by its acronym in Spanish GEMA, has been available for more than 20 years. Twenty-one scientific societies or related groups both from Spain and internationally have participated in the preparation and development of the updated edition of GEMA, which in fact has been currently positioned as the reference guide on asthma in the Spanish language worldwide. Its objective is to prevent and improve the clinical situation of people with asthma by increasing the knowledge of healthcare professionals involved in their care. Its purpose is to convert scientific evidence into simple and easy-to-follow practical recommendations. Therefore, it is not a monograph that brings together all the scientific knowledge about the disease, but rather a brief document with the essentials, designed to be applied quickly in routine clinical practice. The guidelines are necessarily multidisciplinary, developed to be useful and an indispensable tool for physicians of different specialties, as well as nurses and pharmacists. Probably the most outstanding aspects of the guide are the recommendations to: establish the diagnosis of asthma using a sequential algorithm based on objective diagnostic tests; the follow-up of patients, preferably based on the strategy of achieving and maintaining control of the disease; treatment according to the level of severity of asthma, using six steps from least to greatest need of pharmaceutical drugs, and the treatment algorithm for the indication of biologics in patients with severe uncontrolled asthma based on phenotypes. And now, in addition to that, there is a novelty for easy use and follow-up through a computer application based on the chatbot-type conversational artificial intelligence (ia-GEMA).
Collapse
Affiliation(s)
| | - Isam Alobid
- Otorrinolaringología, Hospital Clinic de Barcelona, España
| | | | | | - Jorge Ferreira
- Hospital de São Sebastião – CHEDV, Santa Maria da Feira, Portugal
| | | | - Antonio Gómez-Outes
- Farmacología clínica, Agencia Española de Medicamentos y Productos Sanitarios (AEMPS), Madrid, España
| | - Noé Garín Escrivá
- Farmacia Hospitalaria, Hospital de la Santa Creu i Sant Pau, Barcelona, España
| | | | | | - Javier Korta Murua
- Neumología Pediátrica, Hospital Universitario Donostia, Donostia-San, Sebastián, España
| | - Jesús Molina París
- Medicina de familia, semFYC, Centro de Salud Francia, Fuenlabrada, Dirección Asistencial Oeste, Madrid, España
| | | | - Javier Plaza Zamora
- Farmacia comunitaria, Farmacia Dr, Javier Plaza Zamora, Mazarrón, Murcia, España
| | | | | | - José Sanz Ortega
- Alergología Pediátrica, Hospital Católico Universitario Casa de Salud, Valencia, España
| | | |
Collapse
|
3
|
Ghiciuc CM, Vicovan AG, Stafie CS, Antoniu SA, Postolache P. Marine-Derived Compounds for the Potential Treatment of Glucocorticoid Resistance in Severe Asthma. Mar Drugs 2021; 19:586. [PMID: 34822457 PMCID: PMC8620935 DOI: 10.3390/md19110586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 02/07/2023] Open
Abstract
One of the challenges to the management of severe asthma is the poor therapeutic response to treatment with glucocorticosteroids. Compounds derived from marine sources have received increasing interest in recent years due to their prominent biologically active properties for biomedical applications, as well as their sustainability and safety for drug development. Based on the pathobiological features associated with glucocorticoid resistance in severe asthma, many studies have already described many glucocorticoid resistance mechanisms as potential therapeutic targets. On the other hand, in the last decade, many studies described the potentially anti-inflammatory effects of marine-derived biologically active compounds. Analyzing the underlying anti-inflammatory mechanisms of action for these marine-derived biologically active compounds, we observed some of the targeted pathogenic molecular mechanisms similar to those described in glucocorticoid (GC) resistant asthma. This article gathers the marine-derived compounds targeting pathogenic molecular mechanism involved in GC resistant asthma and provides a basis for the development of effective marine-derived drugs.
Collapse
Affiliation(s)
- Cristina Mihaela Ghiciuc
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
| | - Andrei Gheorghe Vicovan
- Department of Morpho-Functional Sciences II—Pharmacology and Clinical Pharmacology, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iași, 16 Universitatii Street, 700115 Iasi, Romania
| | - Celina Silvia Stafie
- Department of Preventive Medicine and Interdisciplinarity—Family Medicine Discipline, Faculty of Medicine, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Sabina Antonela Antoniu
- Department of Medicine II—Palliative Care Nursing, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| | - Paraschiva Postolache
- Department of Medicine I—Pulmonary Rehabilitation Clinic, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 16 Universitatii Street, 700115 Iasi, Romania;
| |
Collapse
|
4
|
Xu S, Ilyas I, Little PJ, Li H, Kamato D, Zheng X, Luo S, Li Z, Liu P, Han J, Harding IC, Ebong EE, Cameron SJ, Stewart AG, Weng J. Endothelial Dysfunction in Atherosclerotic Cardiovascular Diseases and Beyond: From Mechanism to Pharmacotherapies. Pharmacol Rev 2021; 73:924-967. [PMID: 34088867 DOI: 10.1124/pharmrev.120.000096] [Citation(s) in RCA: 553] [Impact Index Per Article: 138.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1β monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.
Collapse
Affiliation(s)
- Suowen Xu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Iqra Ilyas
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peter J Little
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Hong Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Danielle Kamato
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Xueying Zheng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Sihui Luo
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Zhuoming Li
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Peiqing Liu
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jihong Han
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Ian C Harding
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Eno E Ebong
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Scott J Cameron
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Alastair G Stewart
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| | - Jianping Weng
- Department of Endocrinology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China (S.X., I.I., X.Z., S.L., J.W.); Sunshine Coast Health Institute, University of the Sunshine Coast, Birtinya, Australia (P.J.L.); School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, Queensland, Australia (P.J.L., D.K.); Department of Medical Biotechnology, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); The Research Center of Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China (H.L.); Department of Pharmacology and Toxicology, School of Pharmaceutical Sciences, National and Local United Engineering Laboratory of Druggability and New Drugs Evaluation, Guangzhou, China (Z.L., P.L.); College of Life Sciences, Key Laboratory of Bioactive Materials of Ministry of Education, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China (J.H.); Department of Bioengineering, Northeastern University, Boston, Massachusetts (I.C.H., E.E.E.); Department of Chemical Engineering, Northeastern University, Boston, Massachusetts (E.E.E.); Department of Neuroscience, Albert Einstein College of Medicine, New York, New York (E.E.E.); Department of Cardiovascular and Metabolic Sciences, Cleveland Clinic Lerner College of Medicine, Cleveland, Ohio (S.J.C.); and ARC Centre for Personalised Therapeutics Technologies, Department of Biochemistry and Pharmacology, School of Biomedical Science, University of Melbourne, Parkville, Victoria, Australia (A.G.S.)
| |
Collapse
|
5
|
Debeljak J, Korošec P, Lopert A, Fležar M, Košnik M, Rijavec M. Asthma treatment response to inhaled corticosteroids is associated with variants in VEGFA gene. Gene 2021; 783:145573. [PMID: 33737125 DOI: 10.1016/j.gene.2021.145573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 01/26/2021] [Accepted: 03/08/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Jerneja Debeljak
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Peter Korošec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Anton Lopert
- Outpatient Practice for Pulmonary Diseases and Allergy, Murska Sobota, Slovenia
| | - Matjaž Fležar
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia
| | - Mitja Košnik
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Medical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Matija Rijavec
- University Clinic of Respiratory and Allergic Diseases Golnik, Golnik, Slovenia; Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
| |
Collapse
|
6
|
Leukocyte glucocorticoid receptor expression and related transcriptomic gene signatures during early sepsis. Clin Immunol 2020; 223:108660. [PMID: 33352295 DOI: 10.1016/j.clim.2020.108660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/04/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022]
Abstract
PURPOSE The study aimed to understand the molecular mechanisms that might lead to differences in the glucocorticoid response during sepsis. METHODS Patients diagnosed with sepsis (n = 198) and 40 healthy controls were enrolled. Glucocorticoid receptor (GR) expression in circulating leukocytes and plasma levels of adrenocorticotropic hormone and cortisol on days 1 and 7 were measured in all participants. Expression profiling of 16 genes associated with GR expression in peripheral blood mononuclear cells (PBMCs) in 12 healthy controls and 26 patients with sepsis was performed by PCR. RESULTS Cortisol levels were higher in patients with sepsis than in healthy controls on day 1 after admission and recovered to normal levels by day 7. GR expression was gradually downregulated in leukocyte subsets. Non-survivors showed lower GR and higher cortisol levels than survivors. GRα expression was lower in patients with sepsis than in controls, whereas GRβ showed the opposite trend. MicroRNAs related to GR resistance and suppression were altered in PBMCs during sepsis. CONCLUSION Patients with sepsis showed upregulated plasma cortisol levels along with downregulated GR expression on various leukocyte subtypes, portending poor cortisol response and outcome. Changes in GR-regulatory miRNAs may be responsible for GR low expression.
Collapse
|
7
|
Perez-Garcia J, Espuela-Ortiz A, Lorenzo-Diaz F, Pino-Yanes M. Pharmacogenetics of Pediatric Asthma: Current Perspectives. PHARMACOGENOMICS & PERSONALIZED MEDICINE 2020; 13:89-103. [PMID: 32256100 PMCID: PMC7090194 DOI: 10.2147/pgpm.s201276] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Asthma is a chronic respiratory disease that affects 339 million people worldwide and has a considerable impact on the pediatric population. Asthma symptoms can be controlled by pharmacological treatment. However, some patients do not respond to therapy and continue suffering from symptoms, which impair the quality of life of patients and limit their daily activity. Genetic variation has been shown to have a role in treatment response. The aim of this review is to update the main findings described in pharmacogenetic studies of pediatric asthma published from January 1, 2018 to December 31, 2019. During this period, the response to short-acting beta-agonists and inhaled corticosteroids in childhood asthma has been evaluated by eleven candidate-gene studies, one meta-analysis of a candidate gene, and six pharmacogenomic studies. The findings have allowed validating the association of genes previously related to asthma treatment response (ADRB2, GSDMB, FCER2, VEGFA, SPAT2SL, ASB3, and COL2A1), and identifying novel associations (PRKG1, DNAH5, IL1RL1, CRISPLD2, MMP9, APOBEC3B-APOBEC3C, EDDM3B, and BBS9). However, some results are not consistent across studies, highlighting the need to conduct larger studies in diverse populations with more homogeneous definitions of treatment response. Once stronger evidence was established, genetic variants will have the potential to be applied in clinical practice as biomarkers of treatment response enhancing asthma management and improving the quality of life of asthma patients.
Collapse
Affiliation(s)
- Javier Perez-Garcia
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Antonio Espuela-Ortiz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Fabian Lorenzo-Diaz
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.,Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias (IUETSPC), Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| | - Maria Pino-Yanes
- Genomics and Health Group, Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Comunidad de Madrid, Spain.,Instituto de Tecnologías Biomédicas (ITB), Universidad de La Laguna, San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain
| |
Collapse
|
8
|
Liu X, Cui H, Niu H, Wang L, Li X, Sun J, Wei Q, Dong J, Liu L, Xian CJ. Hydrocortisone Suppresses Early Paraneoplastic Inflammation And Angiogenesis To Attenuate Early Hepatocellular Carcinoma Progression In Rats. Onco Targets Ther 2019; 12:9481-9493. [PMID: 31807025 PMCID: PMC6850701 DOI: 10.2147/ott.s224618] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/28/2019] [Indexed: 12/12/2022] Open
Abstract
Background Inflammation is implicated in both hepatic cirrhosis development and hepatocellular carcinogenesis, and treatment with long-acting glucocorticoid dexamethasone prevented liver carcinogenesis in mice. However, it is unclear whether glucocorticoids have anti-inflammatory effect on hepatocellular carcinoma (HCC) and if short-acting glucocorticoids (with fewer adverse effects) inhibit paraneoplastic inflammation and HCC progression. Methods To investigate whether different types of anti-inflammatory agents attenuate HCC progression, the current study compared effects of treatments with hydrocortisone (a short-acting glucocorticoid) or aspirin on HCC progression. HCC was induced in diethylnitrosamine-treated rats which were randomly divided into 4 groups (n=8), respectively receiving orally once daily vehicle, glucuronolactone, glucuronolactone+hydrocortisone, and glucuronolactone+aspirin. Diethylnitrosamine (DEN) was given to rats in drinking water (100mg/L) to induce HCC. At weeks 12 and 16 post-induction, effects were compared on HCC nodule formation, microvessel density, and macrophage infiltration, and levels of paraneoplastic protein expression of tumor necrosis factor (TNF)-α, p38 mitogen-activated protein kinase (p38), phosphorylated p38 (p-p38), nuclear factor (NF)-κB, interleukin (IL)-10, hepatocyte growth factor (HGF), transforming growth factor (TGF)-β1 and vascular endothelial growth factor (VEGF). Results Compared to the model and glucuronolactone alone groups, HCC nodule number and microvessel density in the glucuronolactone+hydrocortisone group were significantly lower at week 12. At week 12 but not week 16, significantly lower levels of macrophages, TNF-α, p-p38, NF-κB, IL-10, HGF, TGF-β1 and VEGF were observed in the paraneoplastic tissue of the glucuronolactone+hydrocortisone group when compared with the control and glucuronolactone groups. Conclusion The results suggest that hydrocortisone treatment reduces macrophage polarization, expression of inflammatory and anti-inflammatory cytokines, and angiogenesis in paraneoplastic tissue, and attenuates early HCC progression. Although hydrocortisone did not have attenuation effect on advanced solid tumor, the current study shows the potential benefits and supports potential clinical use of hydrocortisone in attenuating early progression of HCC, which is through suppressing paraneoplastic inflammation and angiogenesis.
Collapse
Affiliation(s)
- Xiaolong Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Haiyan Cui
- Department of Internal Medicine, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Hongling Niu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Liping Wang
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Xiangzhi Li
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Jingbo Sun
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Qingzhu Wei
- Department of Pathology, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Jianghui Dong
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| | - Lixin Liu
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong 510630, People's Republic of China
| | - Cory J Xian
- School of Pharmacy and Medical Sciences, and UniSA Cancer Research Institute, University of South Australia, Adelaide, SA 5001, Australia
| |
Collapse
|
9
|
Rosiglitazone Improves Glucocorticoid Resistance in a Sudden Sensorineural Hearing Loss by Promoting MAP Kinase Phosphatase-1 Expression. Mediators Inflamm 2019; 2019:7915730. [PMID: 31217747 PMCID: PMC6537012 DOI: 10.1155/2019/7915730] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
In this study, we investigated the role of MAP kinase phosphatase-1 (MKP-1) and rosiglitazone (RSG) in glucocorticoid resistance and glucocorticoid sensitivity, respectively, using a guinea pig model of lipopolysaccharide- (LPS-) induced sudden sensorineural hearing loss (SSHL). The pigs were divided into control, LPS, LPS+dexamethasone (DEX), LPS+RSG, and LPS+DEX+RSG groups. Their hearing was screened by auditory brainstem response measurement. Immunofluorescence staining was used to identify the location of MKP-1 in the inner ear. The expression levels of MKP-1 and the related proteins in the inner ear were detected using western blotting. The morphological changes in the cochlea were observed via hematoxylin-eosin staining. Severe hearing loss was observed in the LPS group, as opposed to the protection from hearing loss observed in the LPS+DEX+RSG group. A positive correlation was observed between MKP-1 expression levels and protection from hearing loss. RSG and DEX synergistically influenced inner ear inflammation. In conclusion, resistance of LPS-induced SSHL guinea pig models to glucocorticoids may result from impaired MKP-1 function in inner ear tissues, induced by glucocorticoids, impairing the inhibition of inflammation. Our findings present novel targets to develop potential therapeutics to treat inflammatory diseases of the inner ear.
Collapse
|
10
|
Gorelenkova Miller O, Mieyal JJ. Critical Roles of Glutaredoxin in Brain Cells-Implications for Parkinson's Disease. Antioxid Redox Signal 2019; 30:1352-1368. [PMID: 29183158 PMCID: PMC6391617 DOI: 10.1089/ars.2017.7411] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
SIGNIFICANCE Glutaredoxin (Grx)1, an evolutionarily conserved and ubiquitous enzyme, regulates redox signal transduction and protein redox homeostasis by catalyzing reversible S-glutathionylation. Grx1 plays different roles in different cell types. In Parkinson's disease (PD), Grx1 regulates apoptosis signaling in dopaminergic neurons, so that loss of Grx1 leads to increased cell death; in microglial cells, Grx1 regulates proinflammatory signaling, so that upregulation of Grx1 promotes cytokine production. Here we examine the regulatory roles of Grx1 in PD with a view toward therapeutic innovation. Recent Advances: In postmortem midbrain PD samples, Grx1 was decreased relative to controls, specifically within dopaminergic neurons. In Caenorhabditis elegans models of PD, loss of the Grx1 homologue led to exacerbation of the neurodegenerative phenotype. This effect was partially relieved by overexpression of neuroprotective DJ-1, consistent with regulation of DJ-1 content by Grx1. Increased GLRX copy number in PD patients was associated with earlier PD onset; and Grx1 levels correlated with levels of proinflammatory tumor necrosis factor-α in mouse and human brain samples. In vitro studies showed Grx1 to be upregulated on proinflammatory activation of microglia. Direct overexpression of Grx1 increased microglial activation; silencing Grx1 diminished activation. Grx1 upregulation in microglia corresponded to increased neuronal cell death in coculture. Overall, these studies identify competing roles of Grx1 in PD etiology. CRITICAL ISSUES The dilemma regarding Grx1 as a PD therapeutic target is whether to stimulate its upregulation for neuroprotection or inhibit its proinflammatory activity. FUTURE DIRECTIONS Further investigation is needed to understand the preponderant role of Grx1 regarding dopaminergic neuronal survival.
Collapse
Affiliation(s)
- Olga Gorelenkova Miller
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - John J Mieyal
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
11
|
Li M, Keenan CR, Lopez-Campos G, Mangum JE, Chen Q, Prodanovic D, Xia YC, Langenbach SY, Harris T, Hofferek V, Reid GE, Stewart AG. A Non-canonical Pathway with Potential for Safer Modulation of Transforming Growth Factor-β1 in Steroid-Resistant Airway Diseases. iScience 2019; 12:232-246. [PMID: 30711747 PMCID: PMC6360516 DOI: 10.1016/j.isci.2019.01.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 03/27/2018] [Accepted: 01/15/2019] [Indexed: 12/15/2022] Open
Abstract
Impaired therapeutic responses to anti-inflammatory glucocorticoids (GC) in chronic respiratory diseases are partly attributable to interleukins and transforming growth factor β1 (TGF-β1). However, previous efforts to prevent induction of GC insensitivity by targeting established canonical and non-canonical TGF-β1 pathways have been unsuccessful. Here we elucidate a TGF-β1 signaling pathway modulating GC activity that involves LIM domain kinase 2-mediated phosphorylation of cofilin1. Severe, steroid-resistant asthmatic airway epithelium showed increased levels of immunoreactive phospho-cofilin1. Phospho-cofilin1 was implicated in the activation of phospholipase D (PLD) to generate the effector(s) (lyso)phosphatidic acid, which mimics the TGF-β1-induced GC insensitivity. TGF-β1 induction of the nuclear hormone receptor corepressor, SMRT (NCOR2), was dependent on cofilin1 and PLD activities. Depletion of SMRT prevented GC insensitivity. This pathway for GC insensitivity offers several promising drug targets that potentially enable a safer approach to the modulation of TGF-β1 in chronic inflammatory diseases than is afforded by global TGF-β1 inhibition. TGF-β1 extensively impairs GC activity Phospho-cofilin1 is a key link in TGF-β1 signaling cascade subserving GC insensitivity Phospho-cofilin1-activated phospholipase D (PLD) reduces GC activity SMRT induction downstream of PLD mediates TGF-β1 impairment of GC activity
Collapse
Affiliation(s)
- Meina Li
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Christine R Keenan
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Guillermo Lopez-Campos
- Health and Biomedical Informatics Centre, Melbourne Medical School, University of Melbourne, Parkville, VIC 3010, Australia; Centre for Experimental Medicine, Queen's University of Belfast, Belfast BT9 7BL, UK
| | - Jonathan E Mangum
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Qianyu Chen
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Danica Prodanovic
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yuxiu C Xia
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Shenna Y Langenbach
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Trudi Harris
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia
| | - Vinzenz Hofferek
- Max Plank Institute of Molecular Plant Physiology, Potsdam, Germany; School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3010, Australia; Bio21 Molecular Science and Biotechnology Institute. University of Melbourne, Parkville, VIC 3010, Australia
| | - Alastair G Stewart
- Department of Pharmacology & Therapeutics, School of Biomedical Science, University of Melbourne, Parkville, VIC 3010, Australia; ARC Centre for Personalised Therapeutics Technologies, Parkville, VIC, Australia.
| |
Collapse
|
12
|
Santen RJ, Jewell CM, Yue W, Heitjan DF, Raff H, Katen KS, Cidlowski JA. Glucocorticoid Receptor Mutations and Hypersensitivity to Endogenous and Exogenous Glucocorticoids. J Clin Endocrinol Metab 2018; 103:3630-3639. [PMID: 30020469 PMCID: PMC6179182 DOI: 10.1210/jc.2018-00352] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 07/12/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND The glucocorticoid receptor (GR) consists of two alternatively spliced isoforms: GRα, which activates gene transcription, and GRβ, a dominant-negative receptor. Theoretically, inactivating variants of GRβ could result in glucocorticoid hypersensitivity. DESIGN A 46-year-old woman presented for evaluation of adrenal insufficiency prompted by low plasma cortisol levels and multiple unexplained symptoms but without clinical evidence of glucocorticoid insufficiency. To explain these findings, extensive clinical, genetic, and molecular studies were performed. METHODS Standard clinical methods assessed the patient's hypothalamic-pituitary-adrenal axis. Validated molecular techniques were used for receptor sequencing, stable transfections, stimulation of candidate genes, cDNA arrays, Ingenuity Pathway Analysis, volcano analysis, and isolation and analysis of the patient's mononuclear cells. RESULTS Clinical studies excluded primary or secondary adrenal insufficiency, established consistently low basal cortisol levels, and demonstrated hypersensitivity to ultra-low-dose dexamethasone. Receptor sequencing identified two variants of GR9β (A3669G and G3134T) as well as the known Bcl1 polymorphism. Reductionist studies using stable osteosarcoma cell lines transfected with the GRβ variants demonstrated glucocorticoid hypersensitivity of transcribed genes on cDNA array analysis. The patient's monocytes responded to hydrocortisone with exaggerated stimulation of the candidate genes GILZ and FKBP5. CONCLUSION Two variants of the dominant-negative GRβ, in conjunction with a common Bcl1 intron variant, resulted in hypersensitivity to endogenous and exogenous glucocorticoids and, as a reflection of severity, low circulating cortisol levels without clinical evidence of glucocorticoid insufficiency. This prismatic case exemplifies the unique effects of variants of a dominant-negative receptor.
Collapse
Affiliation(s)
- Richard J Santen
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
- Correspondence and Reprint Requests: Richard J. Santen, MD, Division of Endocrinology and Metabolism, University of Virginia Health System, PO Box 801416, Charlottesville, Virginia 22908. E-mail:
| | - Christine M Jewell
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Wei Yue
- Division of Endocrinology and Metabolism, University of Virginia Health System, Charlottesville, Virginia
| | - Daniel F Heitjan
- Department of Statistical Science, Southern Methodist University, Dallas, Texas
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora Research Institute/Aurora St. Luke’s Medical Center, Milwaukee, Wisconsin
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Kevin S Katen
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - John A Cidlowski
- National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| |
Collapse
|
13
|
Airway Eosinophilopoietic and Autoimmune Mechanisms of Eosinophilia in Severe Asthma. Immunol Allergy Clin North Am 2018; 38:639-654. [PMID: 30342585 DOI: 10.1016/j.iac.2018.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Eosinophils are critical in asthma biology, contributing to symptoms, airflow obstruction, airway hyperresponsiveness, and remodeling. In severe asthma, in addition to local maturation in bone marrow, in situ eosinophilopoiesis plays a key role in the persistence of airway eosinophilia. Local milieu of structural, epithelial and inflammatory cells contribute by generating eosinophilopoietic cytokines in response to epithelial-derived alarmins. Another mechanism of persistent airway eosinophilia is glucocorticosteroid insensitivity, which is linked to recurrent airway infections and presence of local autoantibodies. Novel molecules are being developed to target specific immune pathways as potential steroid-sparing strategies.
Collapse
|
14
|
Dobričić V, Drvenica I, Stančić A, Mihailović M, Čudina O, Bugarski D, Ilić V. Investigation of metabolic properties and effects of 17β-carboxamide glucocorticoids on human peripheral blood leukocytes. Arch Pharm (Weinheim) 2018; 351:e1700371. [PMID: 29660818 DOI: 10.1002/ardp.201700371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 11/09/2022]
Abstract
The biological activity of three previously synthesized 17β-carboxamide glucocorticoids (BG, BEG, and MPEA) was tested in vitro on mitogen stimulated and non-stimulated peripheral blood mononuclear cells (MNCs) and granulocytes from human healthy donors, and the results were compared to the conventional glucocorticoid dexamethasone. The tested 17β-carboxamide glucocorticoids did not induce decreases in MNC viability and proliferation, while modulation of reactive oxygen species (ROS) synthesis in granulocytes was dependent on the cell donor. The obtained results indicate the possibility of avoidance of strong lymphocyte suppression, which is generally recognized during administration of conventional glucocorticoids. Furthermore, the metabolism of the tested derivatives was predicted in silico. The predicted metabolites were synthesized and the in silico results were confirmed by in vitro evaluation of the metabolism of BG, BEG, and MPEA in human serum and in cultures of peripheral blood MNCs. The results of the biological activity and metabolism evaluation and of previous in vivo evaluations of biological activity indicate the soft drug nature of BG, BEG, and MPEA. In order to be fully considered as soft glucocorticoids, further investigations on the toxicity and activity of the formed metabolites are required.
Collapse
Affiliation(s)
- Vladimir Dobričić
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Ivana Drvenica
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Ana Stančić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Marija Mihailović
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Olivera Čudina
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, University of Belgrade, Belgrade, Serbia
| | - Diana Bugarski
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Vesna Ilić
- Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW Glucocorticosteroids (GCSs) remain the cornerstone of therapy for treating the inflammatory component of asthma. Clinical response to GCS is heterogeneous, varying both within asthma 'endotypes', as well as the same individual. Different factors and micro-environment can alter the canonical GCS-induced signalling pathways leading to reduced efficacy, collectively termed as GCS subsensitivity, which includes the entire spectrum of steroid insensitivity and steroid resistance. RECENT FINDINGS In the past, steroid subsensitivity has been associated with dysregulated expression of glucocorticoid-receptor isoforms, neutrophilic inflammation and Th17 cytokines, oxidative stress-inducing factors and their downstream effect on histone deacetylase activities and gene expression. The review highlights recent observations, such as GCS-induced dysregulation of key transcription factors involved in host defence, role of airway infections altering expression of critical regulatory elements like the noncoding microRNAs, and the importance of interleukin (IL)-10 in reinstating steroid response in key immune cells. Further, emerging concepts of autoimmunity triggered because of delayed resolution of eosinophilic inflammation (due to GCS subsensitivity) and observed lymphopenia (plausibly a side-effect of continued GCS use) are discussed. SUMMARY This review bridges concepts that have been known, and those under current investigation, providing both molecular and clinical insights to aid therapeutic strategies for optimal management of asthmatics with varying degree of steroid subsensitivity and disease severity, with particular emphasis on the PI3 kinase pathways.
Collapse
|
16
|
Hansbro PM, Kim RY, Starkey MR, Donovan C, Dua K, Mayall JR, Liu G, Hansbro NG, Simpson JL, Wood LG, Hirota JA, Knight DA, Foster PS, Horvat JC. Mechanisms and treatments for severe, steroid-resistant allergic airway disease and asthma. Immunol Rev 2018; 278:41-62. [PMID: 28658552 DOI: 10.1111/imr.12543] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe, steroid-resistant asthma is clinically and economically important since affected individuals do not respond to mainstay corticosteroid treatments for asthma. Patients with this disease experience more frequent exacerbations of asthma, are more likely to be hospitalized, and have a poorer quality of life. Effective therapies are urgently required, however, their development has been hampered by a lack of understanding of the pathological processes that underpin disease. A major obstacle to understanding the processes that drive severe, steroid-resistant asthma is that the several endotypes of the disease have been described that are characterized by different inflammatory and immunological phenotypes. This heterogeneity makes pinpointing processes that drive disease difficult in humans. Clinical studies strongly associate specific respiratory infections with severe, steroid-resistant asthma. In this review, we discuss key findings from our studies where we describe the development of representative experimental models to improve our understanding of the links between infection and severe, steroid-resistant forms of this disease. We also discuss their use in elucidating the mechanisms, and their potential for developing effective therapeutic strategies, for severe, steroid-resistant asthma. Finally, we highlight how the immune mechanisms and therapeutic targets we have identified may be applicable to obesity-or pollution-associated asthma.
Collapse
Affiliation(s)
- Philip M Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Richard Y Kim
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Malcolm R Starkey
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Chantal Donovan
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Kamal Dua
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jemma R Mayall
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Gang Liu
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Nicole G Hansbro
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jodie L Simpson
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Lisa G Wood
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jeremy A Hirota
- James Hogg Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Darryl A Knight
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Paul S Foster
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| | - Jay C Horvat
- Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute and The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
17
|
Lam M, Royce SG, Samuel CS, Bourke JE. Serelaxin as a novel therapeutic opposing fibrosis and contraction in lung diseases. Pharmacol Ther 2018; 187:61-70. [PMID: 29447958 DOI: 10.1016/j.pharmthera.2018.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The most common therapies for asthma and other chronic lung diseases are anti-inflammatory agents and bronchodilators. While these drugs oppose disease symptoms, they do not reverse established structural changes in the airways and their therapeutic efficacy is reduced with increasing disease severity. The peptide hormone, relaxin, is a Relaxin Family Peptide Receptor 1 (RXFP1) receptor agonist with unique combined effects in the lung that differentiates it from these existing therapies. Relaxin has previously been reported to have cardioprotective effects in acute heart failure as well anti-fibrotic actions in several organs. This review focuses on recent experimental evidence of the beneficial effects of chronic relaxin treatment in animal models of airways disease demonstrating inhibition of airway hyperresponsiveness and reversal of established fibrosis, consistent with potential therapeutic benefit. Of particular interest, accumulating evidence demonstrates that relaxin can also acutely oppose contraction by reducing the release of mast cell-derived bronchoconstrictors and by directly eliciting bronchodilation. When used in combination, chronic and acute treatment with relaxin has been shown to enhance responsiveness to both glucocorticoids and β2-adrenoceptor agonists respectively. While the mechanisms underlying these beneficial actions remain to be fully elucidated, translation of these promising combined preclinical findings is critical in the development of relaxin as a novel alternative or adjunct therapeutic opposing multiple aspects of airway pathology in lung diseases.
Collapse
Affiliation(s)
- Maggie Lam
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Simon G Royce
- Department of Medicine, Central Clinical School, Monash University, Melbourne, Australia
| | - Chrishan S Samuel
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia
| | - Jane E Bourke
- Biomedicine Discovery Institute, Monash University, Melbourne, Australia; Department of Pharmacology, School of Biomedical Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
18
|
Prodanovic D, Keenan CR, Langenbach S, Li M, Chen Q, Lew MJ, Stewart AG. Cortisol limits selected actions of synthetic glucocorticoids in the airway epithelium. FASEB J 2018; 32:1692-1704. [PMID: 29167235 DOI: 10.1096/fj.201700730r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Cortisol, a physiologic glucocorticoid (GC), is essential for growth and differentiation of the airway epithelium. Epithelial function influences inflammation in chronic respiratory diseases. Synthetic GCs, including inhaled corticosteroids, exert anti-inflammatory effects in airway epithelium by transactivation of genes and by inhibition of proinflammatory cytokine release. We examined the effect of cortisol on the actions of synthetic GCs in the airway epithelium, demonstrating that cortisol acts like a partial agonist at the GC receptor (GR), limiting GC-induced GR-dependent transcription in the BEAS-2B human bronchial epithelial cell line. Cortisol also limited the inhibition of granulocyte macrophage colony-stimulating factor release by synthetic GCs in TNF-α-activated BEAS-2B cells. The relevance of these findings is supported by observations on tracheal epithelium obtained from mice treated for 5 d with systemic GC, showing limitations in selected GC effects, including inhibition of IL-6. Moreover, gene transactivation by synthetic GCs was compromised by standard air-liquid interface (ALI) growth medium cortisol concentration (1.4 μM) in the ALI-differentiated organotypic culture of primary human airway epithelial cells. These findings suggest that endogenous corticosteroids may limit certain actions of synthetic pharmacological GCs and contribute to GC insensitivity, particularly when corticosteroid levels are elevated by stress.-Prodanovic, D., Keenan, C. R., Langenbach, S., Li, M., Chen, Q., Lew, M. J., Stewart, A. G. Cortisol limits selected actions of synthetic glucocorticoids in the airway epithelium.
Collapse
Affiliation(s)
- Danica Prodanovic
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne, Parkville, Victoria, Australia; and
| | - Christine R Keenan
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne, Parkville, Victoria, Australia; and
| | - Shenna Langenbach
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne, Parkville, Victoria, Australia; and
| | - Meina Li
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne, Parkville, Victoria, Australia; and
| | - Qianyu Chen
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne, Parkville, Victoria, Australia; and
| | - Michael J Lew
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne, Parkville, Victoria, Australia; and
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, Lung Health Research Centre, The University of Melbourne, Parkville, Victoria, Australia; and.,Australian Research Council (ARC) Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Juergens LJ, Racké K, Tuleta I, Stoeber M, Juergens UR. Anti-inflammatory effects of 1,8-cineole (eucalyptol) improve glucocorticoid effects in vitro: A novel approach of steroid-sparing add-on therapy for COPD and asthma? ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.synres.2017.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Fietz ER, Keenan CR, López-Campos G, Tu Y, Johnstone CN, Harris T, Stewart AG. Glucocorticoid resistance of migration and gene expression in a daughter MDA-MB-231 breast tumour cell line selected for high metastatic potential. Sci Rep 2017; 7:43774. [PMID: 28262792 PMCID: PMC5338339 DOI: 10.1038/srep43774] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/30/2017] [Indexed: 12/15/2022] Open
Abstract
Glucocorticoids are commonly used to prevent chemotherapy-induced nausea and vomiting despite a lack of understanding of their direct effect on cancer progression. Recent studies suggest that glucocorticoids inhibit cancer cell migration. However, this action has not been investigated in estrogen receptor (ER)-negative breast tumour cells, although activation of the glucocorticoid receptor (GR) is associated with a worse prognosis in ER-negative breast cancers. In this study we have explored the effect of glucocorticoids on the migration of the ER-negative MDA-MB-231 human breast tumour cell line and the highly metastatic MDA-MB-231-HM.LNm5 cell line that was generated through in vivo cycling. We show for the first time that glucocorticoids inhibit 2- and 3-dimensional migration of MDA-MB-231 cells. Selection of cells for high metastatic potential resulted in a less migratory cell phenotype that was resistant to regulation by glucocorticoids and showed decreased GR receptor expression. The emergence of glucocorticoid resistance during metastatic selection may partly explain the apparent disparity between the clinical and in vitro evidence regarding the actions of glucocorticoids in cancer. These findings highlight the highly plastic nature of tumour cells, and underscore the need to more fully understand the direct effect of glucocorticoid treatment on different stages of metastatic progression.
Collapse
Affiliation(s)
- Ebony R Fietz
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christine R Keenan
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Guillermo López-Campos
- Health and Biomedical Informatics Centre, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yan Tu
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | | | - Trudi Harris
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
21
|
Penney J, Mendell A, Zeng M, Tran K, Lymer J, Turner PV, Choleris E, MacLusky N, Lu R. LUMAN/CREB3 is a key regulator of glucocorticoid-mediated stress responses. Mol Cell Endocrinol 2017; 439:95-104. [PMID: 27789393 DOI: 10.1016/j.mce.2016.10.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 01/28/2023]
Abstract
Altered glucocorticoid sensitivity is believed to contribute to a number of human diseases, including inflammatory and autoimmune conditions as well as disorders characterized by abnormal hypothalamic-pituitary-adrenal axis (HPA) function. LUMAN (or CREB3), originally identified through its interaction with a cell cycle regulator HCFC1, is an endoplasmic reticulum membrane-bound transcription factor that is involved in the unfolded protein response. Here we demonstrate that LUMAN changes the glucocorticoid response by modulating the expression of the glucocorticoid receptor leading to an overall increase in GR activity. Luman-deficient mice exhibited a blunted stress response characterized by low levels of both anxiety and depressive-like behaviour in addition to low circulating corticosterone levels. These mice also have reduced dendritic branching in the CA3 region of the hippocampus, consistent with increased GR responses. These findings are consistent with the notion that elevated GR activities are the primary cause of the observed phenotype in these LUMAN-deficient mice. We thus postulate that LUMAN is a key regulator of GR-mediated signaling and modulates HPA axis reactivity.
Collapse
Affiliation(s)
- Jenna Penney
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Ari Mendell
- Department of Biomedical Sciences, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Minghua Zeng
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Khoa Tran
- Department of Biomedical Sciences, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Jennifer Lymer
- Department of Psychology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Patricia V Turner
- Department of Pathobiology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Elena Choleris
- Department of Psychology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Neil MacLusky
- Department of Biomedical Sciences, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada
| | - Ray Lu
- Department of Molecular and Cellular Biology, University of Guelph, 488 Gordon Street, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
22
|
Xia YC, Radwan A, Keenan CR, Langenbach SY, Li M, Radojicic D, Londrigan SL, Gualano RC, Stewart AG. Glucocorticoid Insensitivity in Virally Infected Airway Epithelial Cells Is Dependent on Transforming Growth Factor-β Activity. PLoS Pathog 2017; 13:e1006138. [PMID: 28046097 PMCID: PMC5234851 DOI: 10.1371/journal.ppat.1006138] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 01/13/2017] [Accepted: 12/19/2016] [Indexed: 12/15/2022] Open
Abstract
Asthma and chronic obstructive pulmonary disease (COPD) exacerbations are commonly associated with respiratory syncytial virus (RSV), rhinovirus (RV) and influenza A virus (IAV) infection. The ensuing airway inflammation is resistant to the anti-inflammatory actions of glucocorticoids (GCs). Viral infection elicits transforming growth factor-β (TGF-β) activity, a growth factor we have previously shown to impair GC action in human airway epithelial cells through the activation of activin-like kinase 5 (ALK5), the type 1 receptor of TGF-β. In the current study, we examine the contribution of TGF-β activity to the GC-resistance caused by viral infection. We demonstrate that viral infection of human bronchial epithelial cells with RSV, RV or IAV impairs GC anti-inflammatory action. Poly(I:C), a synthetic analog of double-stranded RNA, also impairs GC activity. Both viral infection and poly(I:C) increase TGF-β expression and activity. Importantly, the GC impairment was attenuated by the selective ALK5 (TGFβRI) inhibitor, SB431542 and prevented by the therapeutic agent, tranilast, which reduced TGF-β activity associated with viral infection. This study shows for the first time that viral-induced glucocorticoid-insensitivity is partially mediated by activation of endogenous TGF-β. In this study, we investigate how respiratory viral infection interferes with the anti-inflammatory actions of glucocorticoid (GC) drugs, which are a highly effective group of anti-inflammatory agents widely used in the treatment of chronic inflammatory airway diseases, including asthma and chronic obstructive pulmonary disease (COPD). Exacerbations of both asthma (“asthma attacks”) and COPD are often caused by viral infection, which does not respond well to GC therapy. Patients are often hospitalized placing a large burden on healthcare systems around the world, with the young, elderly, and those with a poor immune system particularly at risk. We show that viral infection of airway epithelial cells causes increased expression and activity of transforming growth factor-beta (TGF-β), which interferes with GC drug action. Importantly, we have shown for the first time that inhibiting TGF-β activity in the airways could serve as a new strategy to prevent and/or treat viral exacerbations of chronic airway diseases.
Collapse
Affiliation(s)
- Yuxiu C. Xia
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Asmaa Radwan
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Christine R. Keenan
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Shenna Y. Langenbach
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Meina Li
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Danica Radojicic
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Sarah L. Londrigan
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Rosa C. Gualano
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
| | - Alastair G. Stewart
- Lung Health Research Centre, Department of Pharmacology & Therapeutics, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
23
|
Song Y, Yu P, Lu JJ, Lu HZ, Zhu L, Yu ZH, Chen HZ, Cui YY. A mucoactive drug carbocisteine ameliorates steroid resistance in rat COPD model. Pulm Pharmacol Ther 2016; 39:38-47. [DOI: 10.1016/j.pupt.2016.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 05/18/2016] [Accepted: 06/17/2016] [Indexed: 01/16/2023]
|
24
|
Qiao Y, Tam JKC, Tan SSL, Tai YK, Chin CY, Stewart AG, Ashman L, Sekiguchi K, Langenbach SY, Stelmack G, Halayko AJ, Tran T. CD151, a laminin receptor showing increased expression in asthmatic patients, contributes to airway hyperresponsiveness through calcium signaling. J Allergy Clin Immunol 2016; 139:82-92.e5. [PMID: 27233153 DOI: 10.1016/j.jaci.2016.03.029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 02/22/2016] [Accepted: 03/15/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Airway smooth muscle (ASM) contraction underpins airway constriction; however, underlying mechanisms for airway hyperresponsiveness (AHR) remain incompletely defined. CD151, a 4-transmembrane glycoprotein that associates with laminin-binding integrins, is highly expressed in the human lung. The role of CD151 in ASM function and its relationship to asthma have yet to be elucidated. OBJECTIVE We sought to ascertain whether CD151 expression is clinically relevant to asthma and whether CD151 expression affects AHR. METHODS Using immunohistochemical analysis, we determined the expression of CD151 in human bronchial biopsy specimens from patients with varying asthma severities and studied the mechanism of action of CD151 in the regulation of ASM contraction and bronchial caliber in vitro, ex vivo, and in vivo. RESULTS The number of CD151+ ASM cells is significantly greater in patients with moderate asthma compared with those in healthy nonasthmatic subjects. From loss- and gain-of-function studies, we reveal that CD151 is required for and enhances G protein-coupled receptor (GPCR)-induced peak intracellular calcium release, the primary determinant of excitation-contraction coupling. We show that the localization of CD151 can also be perinuclear/cytoplasmic and offer an explanation for a novel functional role for CD151 in supporting protein kinase C (PKC) translocation to the cell membrane in GPCR-mediated ASM contraction at this site. Importantly, CD151-/- mice are refractory to airway hyperreactivity in response to allergen challenge. CONCLUSIONS We identify a role for CD151 in human ASM contraction. We implicate CD151 as a determinant of AHR in vivo, likely through regulation of GPCR-induced calcium and PKC signaling. These observations have significant implications in understanding the mechanism for AHR and the efficacy of new and emerging therapeutics.
Collapse
Affiliation(s)
- Yongkang Qiao
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - John Kit Chung Tam
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Sheryl S L Tan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yee Kit Tai
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chin Yein Chin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, and Lung Health Research Centre, University of Melbourne, Melbourne, Australia
| | - Leonie Ashman
- School of Biomedical Sciences, University of Newcastle, Newcastle, Australia
| | | | - Shenna Y Langenbach
- Department of Pharmacology and Therapeutics, and Lung Health Research Centre, University of Melbourne, Melbourne, Australia
| | - Gerald Stelmack
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Andrew J Halayko
- Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, Manitoba, Canada; Biology of Breathing Theme, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Thai Tran
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | | |
Collapse
|
25
|
Keenan CR, Lew MJ, Stewart AG. Biased signalling from the glucocorticoid receptor: Renewed opportunity for tailoring glucocorticoid activity. Biochem Pharmacol 2016; 112:6-12. [PMID: 26898958 DOI: 10.1016/j.bcp.2016.02.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 02/16/2016] [Indexed: 12/13/2022]
Abstract
Recent landmark studies applying analytical pharmacology approaches to the glucocorticoid receptor (GR) have demonstrated that different ligands can cause differential activation of distinct GR-regulated genes. Drawing on concepts of signalling bias from the field of G protein-coupled receptor (GPCR) biology, we speculate that ligand-dependent differences in GR signalling can be considered analogous to GPCR biased signalling, and thus can be quantitatively analysed in a similar way. This type of approach opens up the possibility of using rational structure-based drug optimisation strategies to improve the therapeutic selectivity of glucocorticoid drugs to maximise their efficacy and minimise adverse effects.
Collapse
Affiliation(s)
- Christine R Keenan
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Michael J Lew
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alastair G Stewart
- Department of Pharmacology and Therapeutics, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
26
|
Abstract
Corticosteroids are the most effective treatment for asthma, but the therapeutic response varies markedly between individuals, with up to one third of patients showing evidence of insensitivity to corticosteroids. This article summarizes information on genetic, environmental and asthma-related factors as well as demographic and pharmacokinetic variables associated with corticosteroid insensitivity in asthma. Molecular mechanisms proposed to explain corticosteroid insensitivity are reviewed including alterations in glucocorticoid receptor subtype, binding and nuclear translocation, increased proinflammatory transcription factors and defective histone acetylation. Current therapies and future interventions that may restore corticosteroid sensitivity in asthma are discussed, including small molecule drugs and biological agents. In the future, biomarkers may be used in the clinic to predict corticosteroid sensitivity in patients with poorly controlled asthma.
Collapse
Affiliation(s)
- Neil C Thomson
- a Institute of Infection, Immunity & Inflammation , University of Glasgow , Glasgow , UK
| |
Collapse
|
27
|
Krishnan R, Park JA, Seow CY, Lee PVS, Stewart AG. Cellular Biomechanics in Drug Screening and Evaluation: Mechanopharmacology. Trends Pharmacol Sci 2015; 37:87-100. [PMID: 26651416 DOI: 10.1016/j.tips.2015.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 10/12/2015] [Accepted: 10/23/2015] [Indexed: 12/14/2022]
Abstract
The study of mechanobiology is now widespread. The impact of cell and tissue mechanics on cellular responses is well appreciated. However, knowledge of the impact of cell and tissue mechanics on pharmacological responsiveness, and its application to drug screening and mechanistic investigations, have been very limited in scope. We emphasize the need for a heightened awareness of the important bidirectional influence of drugs and biomechanics in all living systems. We propose that the term 'mechanopharmacology' be applied to approaches that employ in vitro systems, biomechanically appropriate to the relevant (patho)physiology, to identify new drugs and drug targets. This article describes the models and techniques that are being developed to transform drug screening and evaluation, ranging from a 2D environment to the dynamic 3D environment of the target expressed in the disease of interest.
Collapse
Affiliation(s)
- Ramaswamy Krishnan
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Chun Y Seow
- Center for Heart Lung Innovation, St Pauls Hospital, University of British Columbia, Vancouver, Canada
| | - Peter V-S Lee
- Department of Mechanical Engineering, University of Melbourne, Melbourne, Australia
| | - Alastair G Stewart
- Lung Health Research Centre, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia.
| |
Collapse
|