1
|
Lin J, Yang X, Wu Z, Lu J, Zhang M. C-reactive protein-to-albumin ratio is associated with increased depression: An exploratory cross-sectional analysis. J Affect Disord 2025; 382:131-138. [PMID: 40262662 DOI: 10.1016/j.jad.2025.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 04/14/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Depression, prevalent globally, significantly impacts psychological and physical health. As a burgeoning biomarker, C-reactive protein-to-albumin ratio (CAR) offers insights into metabolism-immune status and disease diagnosis. This exploratory investigation seeks to elucidate the relationship between CAR and depression. METHODS This cross-sectional investigation utilized data from the National Health and Nutrition Examination Survey (NHANES). Depression was assessed using the PHQ-9 questionnaire. To examine the relationship between CAR and depression risk, we employed a multivariable logistic regression analysis and a restricted cubic spline (RCS) approach. Furthermore, subgroup analyses were performed to validate the consistency of the findings across specific populations. RESULTS This investigation enrolled 13,159 adult participants, comprising 8.15 % with depression. Compared with participants without depression, those diagnosed with depression showed a significantly higher CAR level. Each one - unit increase in log10-transformed CAR (log-CAR) was associated with an 58 % increase in the incidence of depression (Odds Ratio = 1.58, 95 % Confidence Interval: 1.33-1.88). A non-linear dose-response relationship was detected between CAR and depression risk (non-linear p < 0.001). Furthermore, the strength of this association persisted undiminished throughout multiple subgroup analyses. Notably, among individuals with a prior history of metabolic diseases, the observed association remained consistent. CONCLUSIONS A distinct positive correlation was observed between CAR and depression in U.S. adults. Further large-scale, well-controlled studies are needed to validate the reliability and establish the generalizability of these findings.
Collapse
Affiliation(s)
| | - Xiang Yang
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China
| | - Zhiqiang Wu
- The Second People's Hospital of Yingde City, China
| | - Jiecong Lu
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China
| | - Ming Zhang
- The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, China.
| |
Collapse
|
2
|
Huang M, Chen F, Zhou L, Zhang Q, Wang L, Li L, Yang L, Gao M, Li L, Wang Y, Yang J, Yao G, Li Q, Yang X. The antidepressant effects of kaji-ichigoside F1 via activating PPAR-γ/CX3CR1/Nrf2 signaling and suppressing NF-κB/NLRP3 signaling pathways. Front Pharmacol 2025; 16:1569888. [PMID: 40308754 PMCID: PMC12040888 DOI: 10.3389/fphar.2025.1569888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Depression is a mental illness closely associated with neurological damage and is characterised by high rates of suicide and mood changes. As a traditional medicinal plant, Rosa roxburghii Tratt has been widely used since ancient times in the Miao and Dong regions of Southwest China for the relief of sleep disorders, indigestion, anti-inflammation, neurasthenia and neuroprotection. The total triterpenes of R. roxburghii were previously found to have certain neuroprotective effects, and whether Kaji-ichigoside F1 (KF1), as its main ingredient, plays a relevant pharmacological role needs to be further investigated. Methods Establishment of mouse depression model and BV2 microglia inflammation model using intraperitoneal injection of LPS in mice and LPS stimulated-BV2 microglia, respectively. The antidepressant effects of KF1 were evaluated by forced swim test (FST), sucrose preference test (SPT), tail suspension test (TST) and open field test (OFT). The number of Nissl bodies and apoptotic positive cells in the CA1 region of the hippocampus was observed by Nissl and TUNEL staining. Then, the levels of TNFα, PPAR-γ, TGF-β, and IL-6 cytokines were tested by ELISA kits. Finally, the molecular mechanisms were investigated by Western blotting (WB) and immunofluorescence in vivo and in vitro. Results KF1 dramatically ameliorated LPS-induced depressive like behaviors, neuronal damage, apoptosis, and suppressed the levels of pro-inflammatory cytokines in the serum and hippocampus of mice. Our vitro experiment also showed KF1 significantly reduced cell viability and attenuated apoptosis in LPS-induced BV2 microglia, decreased the mean fluorescence intensity of Caspase-1, TNFα, NF-κB, IL-1β, NLRP3, and Keap1. However, the mean fluorescence intensity of GCLC, GCLM, GST, SOD1, HO-1, and Nrf2 were significantly increased. Finally, Western blot analysis showed that KF1 suppressing the expression of NF-κB/NLRP3 signaling pathway and activating PPARγ/CX3CR1/Nrf2 signaling pathway both in vivo and in vitro. Conclusion In conclusion, these results suggest that KF1 is an effective alleviator of LPS-induced depression-like effects in vivo and in vitro. These effects were associated with activating PPARγ/CX3CR1/Nrf2 signaling, and suppressing NF-κB/NLRP3 signaling pathways.
Collapse
Affiliation(s)
- Maoyang Huang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Faju Chen
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Lang Zhou
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Qing Zhang
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Li Wang
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Liangqun Li
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Lishou Yang
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Ming Gao
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Lilang Li
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Yu Wang
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Juan Yang
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Guanping Yao
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Qiji Li
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Xiaosheng Yang
- State Key Laboratory of Discovery and Utilization of Functional Components in Traditional Chinese Medicine, Guizhou Medical University, Guiyang, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| |
Collapse
|
3
|
Lefrère A, Burtey S, Bobot S, Belzeaux R, Bobot M. Depression in chronic kidney disease: Particularities, specific mechanisms and therapeutic considerations, a narrative review. Behav Brain Res 2025; 483:115467. [PMID: 39923943 DOI: 10.1016/j.bbr.2025.115467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/27/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025]
Abstract
INTRODUCTION Depression is highly prevalent during chronic kidney disease (CKD) with studies suggesting prevalence rates ranging from approximately one-quarter to half of CKD patients. CKD and depression have a bidirectional relationship, each disorder aggravating the other, leading to more complex and challenging patient management. Depression during CKD is multifactorial and is associated with increased risk of adverse events and hospitalization. METHODS We conducted a narrative review of experimental and observational studies in animals and humans, as well as meta-analyses, to explore specific mechanisms of depression in CKD and its treatment. RESULTS In depression the gut-brain axis is central. CKD leads to an accumulation of gut-derived uremic toxins. One key factor is the accumulation of tryptophan-derived uremic toxins like kynurenines or indoxyl sulfate, whose serum concentration increases progressively with the stage of CKD (up to 100-fold in stage 5), and which plays an important role in depression mechanisms, by activating aryl hydrocarbon receptor, decreasing brain concentrations of serotonin by approximately 40 %, increasing brain inflammation, via activation of microglia and astrocytes and release of TNFα, IL-6 and NO. Randomized controlled studies found limited or no benefits of antidepressants for depressive symptoms in CKD and hemodialysis patients. CONCLUSION Chronic inflammation, in relation to uremic toxin accumulation during CKD, seems to be a complex but important mechanism for treatment resistance in depression. Future research should consider inhibitors of uremic toxins inhibitors and anti-inflammatory molecules as potential therapeutic agents, to improve the prognosis of depression in CKD patients.
Collapse
Affiliation(s)
- Antoine Lefrère
- Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, Marseille, France; Institut de Neurosciences de la Timone, Aix-Marseille Univ, UMR CNRS, France
| | - Stéphane Burtey
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, AP-HM, Marseille, France; Aix Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France
| | - Stanislas Bobot
- Psychologie de la Santé, Université Toulouse Jean Jaurès, Toulouse, France
| | - Raoul Belzeaux
- IGF, Université de Montpellier, CNRS, INSERM, Montpellier, France; CHU Montpellier, Department of psychiatry, Université∼ de Montpellier, CNRS, INSERM, Montpellier, France; Fondation Fondamental, Créteil F-94010, France
| | - Mickaël Bobot
- Centre de Néphrologie et Transplantation Rénale, Hôpital de la Conception, AP-HM, Marseille, France; Aix Marseille Univ, INSERM 1263, INRAE 1260, C2VN, Marseille, France; CERIMED, Aix-Marseille Univ, Marseille, France.
| |
Collapse
|
4
|
Pei Y, Liu H, Lang J, Chen Y, Zhang F, Hao R, Li J, Gu S, Peng Q, Song J, Zhang Z. rTMS ameliorates CUMS-induced anxiety-depression-like behaviour and cognitive dysfunction in rats by modulating the COX-2/PGE2 signalling pathway. J Psychiatr Res 2025; 186:116-128. [PMID: 40233438 DOI: 10.1016/j.jpsychires.2025.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/30/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
BACKGROUND rTMS is a safe and effective neuromodulation method for treating depression, but the specifics of its antidepressant effects and the underlying mechanisms remain uncertain. METHODS Male SD rats were randomly divided into four groups: control group, CUMS group, CUMS + rTMS (10 Hz) group, and CUMS + celecoxib (25 mg/kg, as a positive control) group. Depression-like behavior was assessed by weight change, SPT, and FST; anxiety by OFT and EPM; and cognitive function by the Y-maze. WB, IF, ELISA, and qPCR were used to observe changes in COX-2/PGE2 signaling pathway-related proteins, inflammatory factors, and the activation of astrocytes and microglia in the hippocampus of rats. RESULTS Compared to the control group, rats in the CUMS group exhibited significant anxiety-depression-like behavior and cognitive dysfunction. Compared to the CUMS group, rTMS and celecoxib interventions improved anxiety-depression-like behavior and cognitive dysfunction, reduced the expression of microglia and astrocytes, reversed the upregulation of pro-inflammatory factors (IL-1β, IL-6, TNF-α), and downregulated the expression of proteins related to the COX-2/PGE2 signaling pathway in CUMS-induced rats. CONCLUSIONS The study demonstrated that rTMS could improve anxiety-depression-like behavior and cognitive dysfunction in rats by modulating the COX-2/PGE2 pathway.
Collapse
Affiliation(s)
- Yanjiao Pei
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Huanhuan Liu
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Jiqing Lang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Yuxin Chen
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China
| | - Fuping Zhang
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Brain Institute, Henan Academy of Innovations in Medical Science, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, the Second Affiliated Hospital of Xinxiang Medical University, China
| | - Ran Hao
- Jinan Mental Health Center, Jinan, Shandong, 250309, China
| | - Jiao Li
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihai, Henan, 453100, China
| | - Shina Gu
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihai, Henan, 453100, China
| | - Qi Peng
- Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - Jinggui Song
- Henan Key Laboratory of Biological Psychiatry, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China; Henan Engineering Research Center of Physical Diagnostics and Treatment Technology for the Mental and Neurological Diseases, The Second Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453002, China.
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Henan Key Laboratory of Neurorestoratology, Weihai, Henan, 453100, China.
| |
Collapse
|
5
|
Zhu Y, Li Y, Yu Z, Chen X, Lan T, Wang M, Yu S. Agomelatine Alleviates Depressive-like Behaviors by Suppressing Hippocampal Oxidative Stress in the Chronic Social Defeat Stress Model. Antioxidants (Basel) 2025; 14:410. [PMID: 40298761 PMCID: PMC12024063 DOI: 10.3390/antiox14040410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/30/2025] Open
Abstract
Major depressive disorder (MDD) is a common psychiatric disorder characterized by significant mood disturbances and cognitive impairments. Chronic stress, particularly social defeat stress, plays a crucial role in the etiology of depression, with oxidative stress being a pivotal factor in its pathophysiology. Consequently, identifying effective strategies to mitigate oxidative stress and prevent the progression of depression is of paramount importance. Agomelatine, an atypical antidepressant with melatonergic and serotonergic properties, has shown promise in treating MDD due to its unique mechanisms of action. In this study, we aimed to investigate whether agomelatine could ameliorate behavioral deficits in a chronic social defeat stress (CSDS) mouse model. CSDS mice were administered agomelatine (50 mg/kg, intraperitoneally) and exhibited significant reductions in both anxiety-like and depressive-like behaviors in behavioral tests. Further analysis revealed that agomelatine treatment effectively reduced oxidative damage in the hippocampus of CSDS mice. Additionally, agomelatine attenuated mitochondrial dysfunction and restored synaptic plasticity, as evidenced by an increased density of excitatory synapses and enhanced neuronal activity. These findings suggest that agomelatine may exert therapeutic effects by reducing oxidative stress, preserving mitochondrial function, and enhancing synaptic plasticity, providing new insights into its potential as a treatment for chronic social defeat stress-induced depression.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Ye Li
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Zhaoying Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Xiao Chen
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Tian Lan
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
| | - Meijian Wang
- Department of Endocrinology, Qilu Hospital, Shandong University, Qingdao, 758 Hefei Road, Qingdao 266035, China;
| | - Shuyan Yu
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; (Y.Z.); (Y.L.); (Z.Y.); (X.C.); (T.L.)
- Shandong Key Laboratory of Mental Disorders and Intelligent Control, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| |
Collapse
|
6
|
Zhang M, Zhao J, Ji H, Tan Y, Zhou S, Sun J, Ding Y, Li X. Multi-omics insight into the molecular networks of mental disorder related genetic pathways in the pathogenesis of inflammatory bowel disease. Transl Psychiatry 2025; 15:91. [PMID: 40118833 PMCID: PMC11928517 DOI: 10.1038/s41398-025-03299-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Mental disorders are associated with inflammatory bowel disease (IBD), but the genetic pathophysiology is not fully understood. We obtained data on mental disorder-related gene methylation, expression, protein levels, and summary statistics of IBD, and performed Summary data-based Mendelian randomization and colocalization analyses to explore the causal associations and shared causal genetic variants between multiple molecular traits and IBD. Integrating multi-omics data, we found QDPR, DBI and MAX are associated with ulcerative colitis (UC) risk, while HP is linked to IBD risk. Inverse associations between gene methylation (cg0880851 and cg26689483) and expression are observed in QDPR, consistent with their detrimental role in UC. Methylation of DBI (cg11066750) protects against UC by enhancing expression. Higher levels of DBI (OR = 0.79, 95%CI = 0.69-0.90) and MAX (OR = 0.74, 95%CI = 0.62-0.90) encoded proteins are inversely associated with UC risk, while higher QDPR (OR = 1.17, 95%CI = 1.07-1.28) and HP (OR = 1.09, 95%CI = 1.04-1.14) levels increase UC and IBD risk. Our findings advance the understanding of IBD's pathogenic mechanisms and gut-brain interaction.
Collapse
Affiliation(s)
- Meng Zhang
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, Zhejiang, China
| | - Jianhui Zhao
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haosen Ji
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuqian Tan
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Siyun Zhou
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jing Sun
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China.
- Center for Medical Research and Innovation in Digestive System Tumors, Ministry of Education, Hangzhou, China.
| | - Xue Li
- Center of Clinical Big Data and Analytics of The Second Affiliated Hospital, School of Public Health, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- National Institute for Data Science in Health and Medicine, Zhejiang University, Hangzhou, 310058, Zhejiang, China.
- Zhejiang Key Laboratory of Intelligent Preventive Medicine, Hangzhou, 310058, Zhejiang, China.
| |
Collapse
|
7
|
Ye T, Fan Y, Zeng X, Wang X, Xiao H. Induction of M1 polarization in BV2 cells by propofol intervention promotes perioperative neurocognitive disorders through the NGF/CREB signaling pathway: an experimental research. Int J Surg 2025; 111:2439-2452. [PMID: 39869375 DOI: 10.1097/js9.0000000000002257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/12/2024] [Indexed: 01/28/2025]
Abstract
Nerve growth factor (NGF) is critical in regulating the homeostasis of microglial cells. It activates various signaling pathways that mediate the phosphorylation of cAMP response element-binding protein (CREB) at key regulatory sites. The decrease in phosphorylated CREB (p-CREB) expression is linked to neuroinflammatory responses. The exact molecular mechanism by which propofol regulates microglial polarization and induces neuroinflammation via the NGF/CREB signaling axis remains unclear. This study aims to investigate the specific mechanisms by which propofol induces perioperative neurocognitive disorders through microglial M1 polarization and neuroinflammation via the NGF/CREB signaling pathway. We demonstrated that propofol impairs neurocognitive function in mice, as evidenced by behavioral deficits. It reduces NGF expression in hippocampal microglia and BV2 cells, where protein-protein interactions between NGF and CREB suggest that NGF primarily regulates neurocognitive function by modulating p-CREB. Propofol intervention and inhibition of the NGF/CREB pathway promote M1 polarization in hippocampal microglia and BV2 cells, leading to reduced cell proliferation, increased apoptosis, elevated oxidative stress, and higher levels of the inflammatory marker TNF-α. Exogenous NGF does not alter the expression of NGF or total CREB but significantly upregulates p-CREB, indicating its regulatory role in signaling pathways associated with microglial activation. Moreover, exogenous NGF mitigates propofol-induced cognitive impairments and M1 polarization, reducing apoptosis and oxidative stress levels. Our findings suggest that propofol downregulates the expression of NGF and CREB, subsequently reducing p-CREB levels. This downregulation induces M1 polarization of microglia, promoting the progression of neuroinflammation and contributing to the development of perioperative neurocognitive disorders.
Collapse
Affiliation(s)
- Ting Ye
- Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China
| | - Yiwei Fan
- Department of Anesthesiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Xiangye Zeng
- Nanchang University Jiangxi Medical College, Nanchang, Jiangxi Province, China
| | - Xiaojing Wang
- Nanchang University Jiangxi Medical College, Nanchang, Jiangxi Province, China
| | - Huaping Xiao
- Department of Anesthesiology, Jiangxi Cancer Hospital & Institute, Jiangxi Clinical Research Center for Cancer, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Key Laboratory of Oncology, Nanchang, Jiangxi Province, China
| |
Collapse
|
8
|
Ge K, Bai Z, Wang J, Li Z, Gao F, Liu S, Zhang L, Gao F, Xie C. Engineering EVs-Mediated mRNA Delivery Regulates Microglia Function and Alleviates Depressive-Like Behaviors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418872. [PMID: 39838773 DOI: 10.1002/adma.202418872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/13/2025] [Indexed: 01/23/2025]
Abstract
The development of new non-neurotransmitter drugs is an important supplement to the clinical treatment of major depressive disorder. The latest development of mRNA therapy provides the possibility for the treatment of some major diseases. The endoplasmic reticulum (ER) and mitochondria constitute a highly interconnected set of fundamental organelles within cells. The interconnection between them forms specific microdomains that play pivotal roles in calcium signaling, mitochondrial dynamics, inflammation, and autophagy. Perturbations in ER-mitochondrial connections may contribute to the progression of neurological disorders and other diseases. Herein, an extracellular vesicles-based delivery system, grounded in mRNA gene therapy and integrated with nanomedicine technology is devised. This system is engineered to traverse the blood-brain barrier and specifically target the central nervous system (CNS), facilitating the simultaneous delivery of mRNA drugs and metallic nanozymes into the brain. This dual-pronged approach, targeting ER and mitochondrial crosstalk, inhibits microglial overactivation, promotes M2 polarization of microglia, and suppresses the NF-κB signaling pathway. Consequently, it significantly alleviates Lipopolysaccharides-induced neuroinflammatory responses and ameliorates anxiety- and depression-like behaviors. This study demonstrates a novel antidepressant therapeutic strategy and establishes a new paradigm for mRNA gene therapy in CNS diseases.
Collapse
Affiliation(s)
- Kezhen Ge
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Zetai Bai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Jiwei Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Fenfang Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Sangni Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Ling Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Jiangsu, 221002, P. R. China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Jiangsu, 210009, P. R. China
| |
Collapse
|
9
|
Jiao W, Lin J, Deng Y, Ji Y, Liang C, Wei S, Jing X, Yan F. The immunological perspective of major depressive disorder: unveiling the interactions between central and peripheral immune mechanisms. J Neuroinflammation 2025; 22:10. [PMID: 39828676 PMCID: PMC11743025 DOI: 10.1186/s12974-024-03312-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025] Open
Abstract
Major depressive disorder is a prevalent mental disorder, yet its pathogenesis remains poorly understood. Accumulating evidence implicates dysregulated immune mechanisms as key contributors to depressive disorders. This review elucidates the complex interplay between peripheral and central immune components underlying depressive disorder pathology. Peripherally, systemic inflammation, gut immune dysregulation, and immune dysfunction in organs including gut, liver, spleen and adipose tissue influence brain function through neural and molecular pathways. Within the central nervous system, aberrant microglial and astrocytes activation, cytokine imbalances, and compromised blood-brain barrier integrity propagate neuroinflammation, disrupting neurotransmission, impairing neuroplasticity, and promoting neuronal injury. The crosstalk between peripheral and central immunity creates a vicious cycle exacerbating depressive neuropathology. Unraveling these multifaceted immune-mediated mechanisms provides insights into major depressive disorder's pathogenic basis and potential biomarkers and targets. Modulating both peripheral and central immune responses represent a promising multidimensional therapeutic strategy.
Collapse
Affiliation(s)
- Wenli Jiao
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Jiayi Lin
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Yanfang Deng
- Department of Psychiatry, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Yelin Ji
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Chuoyi Liang
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Sijia Wei
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China
| | - Xi Jing
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, Guangdong, China.
| | - Fengxia Yan
- School of Nursing, Jinan University, No.601, West Huangpu Avenue, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
10
|
Bi Y, Li M, Wang Y, Yao J, Wang Y, Wang S, Zhuang L, Liu S, Li Z, Hao Z, Guan W, Pan J, Jiang P, Zhang Y, Kuang H, Chen Q, Zhang L, Yang B, Liu Y. Saikosaponins from Bupleurum scorzonerifolium Willd. alleviates microglial pyroptosis in depression by binding and inhibiting P2X7 expression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156240. [PMID: 39637473 DOI: 10.1016/j.phymed.2024.156240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/27/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The major depressive disorder (MDD) is a heterogeneous condition and characterized by a high recurrence rate, with neuroinflammation playing a significant role in its various potential pathologies. In recent years, neuronal pyroptosis induced by neuroinflammation has garnered increasing attention in depression research. Bupleurum scorzonerifolium Willd. is depression research in traditional Chinese medicine prescriptions to treat depression and exhibits notable anti-inflammatory properties. Saikosaponins (SSs) are the primary active components of Bupleurum scorzonerifolium Willd., although their mechanism of action in relation to anti-depressive effects remains unclear. PURPOSE The purpose is to evaluate the efficacy of Chinese herbal medicine in treating depression through the lens of modern pharmacology. Additionally, it aims to explore the potential value of new mechanisms in the treatment of depression. STUDY DESIGN AND METHODS An in vivo model of depression was established by intraperitoneal injection of LPS. HE staining, Nissl staining, and Golgi staining were used to evaluate the effectiveness of depression treatments in each group of mice. The activation of microglia was analyzed using immunofluorescence to evaluate the anti-inflammatory effects of drugs. In vitro models, N9 cells induced by LPS and ATP used CCK-8 assay, and lactate dehydrogenase assay were conducted to explore the therapeutic effect of the SSs. Western blot and immunohistochemical methods were employed to investigate the expression of P2X7 and apoptosis-related proteins. BzATP was introduced as a P2X7 agonist, and CETSA and CHX pulse-chase assay were utilized to verify the combined action and stability of the SSs with P2X7. RESULTS 57 triterpenoid saponin compounds were identified by Unifi in Bupleurum scorzonerifolium Willd. In both in vivo and in vitro models, the SSs has been shown to significantly improve depression-like behavior, reduce central inflammation, and significantly inhibit neuronal pyroptosis in mice. The SSs can significantly decrease the expression of P2X7 in the brains of depressed mice and enhance the stability of P2X7 protein in N9 cells. CONCLUSION SSs in Bupleurum scorzonerifolium Willd. bind and inhibit the P2X7 receptor to alleviate neuronal pyroptosis and improve symptoms of depression.
Collapse
Affiliation(s)
- Yu Bi
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Mengmeng Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Yue Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Junhan Yao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Yuxuan Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Siyi Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Leixin Zhuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Shuang Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Ziwei Li
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Zhichao Hao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Wei Guan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Juan Pan
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Peng Jiang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Yiqiang Zhang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Haixue Kuang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China
| | - Qingshan Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| | - Bingyou Yang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China.
| | - Yan Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Traditional Chinese medicine (TCM) biological genetics (Heilongjiang province double first-class construction interdiscipline), Heilongjiang Touyan Innovation Team Program, 150040, China.
| |
Collapse
|
11
|
Su P, Liu L, Gong Y, Peng S, Yan X, Bai M, Xu E, Li Y. Kaempferol improves depression-like behaviors through shifting microglia polarization and suppressing NLRP3 via tilting the balance of PPARγ and STAT1 signaling. Int Immunopharmacol 2024; 143:113538. [PMID: 39492132 DOI: 10.1016/j.intimp.2024.113538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND The pathogenesis of depression is largely influenced by dyshomeostasis of neuroinflammation regulated by microglia M1/M2 polarization, and NLRP3 inflammasome acts critical roles in shifting microglia polarization. Kaempferol (Kae), a major flavonoid in edible plants, possesses anti-inflammation and anti-depression capacity, but its underlying cellular and molecular mechanisms of antidepressive effect have not yet fully explored. METHODS In vivo studies with lipopolysaccharide (LPS)-induced depressive mice were carried out to evaluate antidepressant effect of Kae. In vitro, BV2 microglia cell line stimulated by LPS along with IFN-γ to detect pharmacological effects of Kae on microglia polarization and NLRP3. Based on two depression-related GEO datasets (GSE54570 and GSE54568) and the potential targets of Kae obtained from GeneCards database, enrichment analysis and protein-protein interaction (PPI) network construction reveal potential therapeutic targets of Kae for depression. Then the precise antidepressant mechanisms of Kae were verified by western blot and immunofluorescent staining in vivo and vitro. RESULTS Our results showed that Kae significantly improves LPS-induced depressive behaviors and alleviates neuroinflammation in prefrontal cortex. Moreover, Kae obviously shifted microglia polarization to M2 phenotype, and also suppressed NLRP3 in prefrontal cortex and BV2. Enrichment analysis and PPI network construction suggested PPARγ and STAT1 signaling are related to regulation of NLRP3 in depression. Furtherly, Kae remarkably enhanced PPARγ activation and inhibited nuclear translocation of p-STAT1 in microglia of prefrontal cortex and BV2. Importantly, pre-incubation with PPARγ antagonist T0070907 or overexpression with CASTAT1 (constitutively active STAT1) both prevented pharmacologic effects of Kae on shifting microglia polarization and suppressing NLRP3 in BV2. Noteworthily, T0070907 significantly blocked the inhibitory effect of Kae on STAT1 while overexpression with CASTAT1 abolished the effect of Kae on PPARγ activation in BV2. Above results suggested that pharmacologic effects of Kae on microglia polarization and NLRP3 are dependent on the balance of counter-regulatory PPARγ and STAT1 signaling. CONCLUSION Our results indicated that the shifting microglia polarization and suppression of NLRP3 via tilting the balance of PPARγ and STAT1 signaling may be the antidepressant mechanism of Kae, which provides a novel perspective for elucidating antidepressive effect of Kae.
Collapse
Affiliation(s)
- Pan Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Henan Province, Zhengzhou 450046, PR China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Liming Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Henan Province, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Yuhang Gong
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Henan Province, Zhengzhou 450046, PR China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Shuaijun Peng
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Henan Province, Zhengzhou 450046, PR China; College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Xiangli Yan
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Henan Province, Zhengzhou 450046, PR China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Ming Bai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Henan Province, Zhengzhou 450046, PR China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Henan Province, Zhengzhou 450046, PR China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan University of Chinese Medicine, Henan Province, Zhengzhou 450046, PR China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
12
|
Guo M, Pei WJ, Liu L, Chen K, Cheng Y, Piao XL. Neuroprotective effects of gypenosides on LPS-induced anxiety and depression-like behaviors. Int Immunopharmacol 2024; 143:113367. [PMID: 39413644 DOI: 10.1016/j.intimp.2024.113367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/25/2024] [Accepted: 10/06/2024] [Indexed: 10/18/2024]
Abstract
AIM Depression, a prevalent mental disorder, significantly impairs the quality of life and social functioning. Targeting neuroinflammation is a promising therapeutic approach, highlighting the need for natural neuroprotective agents. Gypenosides (Gyp) from Gynostemma pentaphyllum exhibit anxiolytic and antidepressant effects, yet the underlying mechanisms remain unclear. We investigated whether Gyp, isolated and purified by our laboratory, can exert neuroprotective effects by modulating neuroinflammation in the hippocampus and prefrontal cortex (PFC) of mice with LPS-induced anxiety and depression, thereby ameliorating behavioral phenotypes. METHODS LPS (1 mg/kg, i.p.) was used to induce anxiety and depression-like behaviors. Gyp was administered at 50, 100, or 200 mg/kg in pretreatment, with fluoxetine hydrochloride (Flu) as a positive control, for 10 consecutive days. RESULTS Gyp, especially at 100 mg/kg, significantly ameliorated LPS-induced anxiety and depression in mice, normalizing cytokine expression in the hippocampus and PFC, with IL-1β showing the most pronounced regulation (Hippocampus: RatioGyp-100/LPS = 30.73 %, PFC: RatioGyp-100/LPS = 55.89 %). Gyp also reversed LPS-induced neuronal loss and necrosis, reduced glial cell activation, and prevented the transition of microglia to the M1 phenotype. Mechanistically, Gyp suppressed the activation of the NLRP3 inflammasome in the PFC, and modulated hippocampal synaptic protein loss, thereby mediating neuroinflammation. CONCLUSIONS Gyp improved anxiety and depression in LPS-induced mice, which may be achieved by balancing systemic inflammatory levels, regulating glial cell activation and phenotypic polarization, regulating hippocampal synaptic plasticity, and suppressing the NLRP3/Caspase-1/ASC signaling pathway in the PFC.
Collapse
Affiliation(s)
- Mei Guo
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China; Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Wen-Jing Pei
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China
| | - Liming Liu
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China; Institute of National Security, Minzu University of China, Beijing 100081, China
| | - Kexuan Chen
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Xiang-Lan Piao
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing 100081, China; School of Pharmacy, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
13
|
Kajumba MM, Kakooza-Mwesige A, Nakasujja N, Koltai D, Canli T. Treatment-resistant depression: molecular mechanisms and management. MOLECULAR BIOMEDICINE 2024; 5:43. [PMID: 39414710 PMCID: PMC11485009 DOI: 10.1186/s43556-024-00205-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/03/2024] [Indexed: 10/18/2024] Open
Abstract
Due to the heterogeneous nature of depression, the underlying etiological mechanisms greatly differ among individuals, and there are no known subtype-specific biomarkers to serve as precise targets for therapeutic efficacy. The extensive research efforts over the past decades have not yielded much success, and the currently used first-line conventional antidepressants are still ineffective for close to 66% of patients. Most clinicians use trial-and-error treatment approaches, which seem beneficial to only a fraction of patients, with some eventually developing treatment resistance. Here, we review evidence from both preclinical and clinical studies on the pathogenesis of depression and antidepressant treatment response. We also discuss the efficacy of the currently used pharmacological and non-pharmacological approaches, as well as the novel emerging therapies. The review reveals that the underlying mechanisms in the pathogenesis of depression and antidepressant response, are not specific, but rather involve an interplay between various neurotransmitter systems, inflammatory mediators, stress, HPA axis dysregulation, genetics, and other psycho-neurophysiological factors. None of the current depression hypotheses sufficiently accounts for the interactional mechanisms involved in both its etiology and treatment response, which could partly explain the limited success in discovering efficacious antidepressant treatment. Effective management of treatment-resistant depression (TRD) requires targeting several interactional mechanisms, using subtype-specific and/or personalized therapeutic modalities, which could, for example, include multi-target pharmacotherapies in augmentation with psychotherapy and/or other non-pharmacological approaches. Future research guided by interaction mechanisms hypotheses could provide more insights into potential etiologies of TRD, precision biomarker targets, and efficacious therapeutic modalities.
Collapse
Affiliation(s)
- Mayanja M Kajumba
- Department of Mental Health and Community Psychology, Makerere University, P. O. Box 7062, Kampala, Uganda.
| | - Angelina Kakooza-Mwesige
- Department of Pediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
- Department of Pediatrics and Child Health, Mulago National Referral Hospital, Kampala, Uganda
| | - Noeline Nakasujja
- Department of Psychiatry, School of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Deborah Koltai
- Duke Division of Global Neurosurgery and Neurology, Department of Neurosurgery, Durham, NC, USA
- Department of Neurology, Duke University School of Medicine, Durham, NC, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, USA
| | - Turhan Canli
- Department of Psychology, Stony Brook University, New York, USA
- Department of Psychiatry, Stony Brook University, New York, USA
| |
Collapse
|
14
|
Moustardas P, Abbasi M, Javidjam D, Asamoah CS, Schweitzer-Chaput A, Cisternino S, Bremond-Gignac D, Aberdam D, Lagali N. Duloxetine enhances PAX6 expression and suppresses innate immune responses in murine LPS-induced corneal inflammation. Ocul Surf 2024; 34:225-234. [PMID: 39127390 DOI: 10.1016/j.jtos.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/15/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND-AIM PAX6 is a key regulator of eye development and epithelial homeostasis in the cornea. When deficient, chronic corneal inflammation, neovascularization and limbal stem cell deficiency can occur. Here we investigated the potential of duloxetine, a generic serotonin reuptake inhibitor that can upregulate PAX6 in vitro, for its in vivo activity in the context of corneal inflammation. METHODS Duloxetine tolerance was tested in a human limbal stem cell line and isogenic CRISPR-knockout PAX6+/- cells. C57BL/6-Wildtype mice were administered duloxetine eye drops at concentrations of 1 μM - 2 mM and tested for toxicity and corneal PAX6 expression. In LPS-induced corneal inflammation in mice, duloxetine's effect on PAX6 expression, corneal opacification and inflammatory responses were evaluated by in vivo corneal imaging, immunostaining, and whole-transcriptome microarray analysis. RESULTS No toxicity was observed in vitro for duloxetine concentrations up to 10μΜ. In vivo, duloxetine drops were well-tolerated up to 50 μM. Duloxetine drops at 10μΜ significantly upregulated PAX6 protein levels in the cornea by 30 % within 2 days. In the LPS model, duloxetine resulted in a sustained 33 % PAX6 protein upregulation in the cornea at 7 days, and in reduced opacity within 2 days, accompanied by a significant dampening of IL-17A signaling, neutrophil degranulation, microglial activation, macrophage markers, and MMP expression, despite non-significant changes in total inflammatory cell infiltration. CONCLUSION Short-term administration of a repurposed generic drug, duloxetine, upregulates PAX6 protein levels in the cornea of mice and exerts an anti-inflammatory activity by dampening innate immune responses.
Collapse
Affiliation(s)
- Petros Moustardas
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Mojdeh Abbasi
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Dina Javidjam
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Cindy Saah Asamoah
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden
| | - Arnaud Schweitzer-Chaput
- Service de Pharmacie, Hôpital Universitaire Necker - Enfants Malades, APHP, 75015, Paris, France
| | - Salvatore Cisternino
- Service de Pharmacie, Hôpital Universitaire Necker - Enfants Malades, APHP, 75015, Paris, France; Université Paris Cité, INSERM UMRS 1144, Faculté de Pharmacie, 75006, Paris, France
| | - Dominique Bremond-Gignac
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, 75270, Paris, France; Ophthalmology Department, Hôpital Universitaire Necker - Enfants Malades, 75015, Paris, France
| | - Daniel Aberdam
- INSERM UMRS 1138, Centre de Recherche des Cordeliers, 75270, Paris, France; Université Paris Cité, 75014, Paris, France
| | - Neil Lagali
- Division of Ophthalmology, Department of Biomedical and Clinical Sciences, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
15
|
Wu S, Yin Y, Du L. The bidirectional relationship of depression and disturbances in B cell homeostasis: Double trouble. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110993. [PMID: 38490433 DOI: 10.1016/j.pnpbp.2024.110993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/08/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
Major depressive disorder (MDD) is a recurrent, persistent, and debilitating neuropsychiatric syndrome with an increasing morbidity and mortality, representing the leading cause of disability worldwide. The dysregulation of immune systems (including innate and adaptive immune systems) has been identified as one of the key contributing factors in the progression of MDD. As the main force of the humoral immunity, B cells have an essential role in the defense against infections, antitumor immunity and autoimmune diseases. Several recent studies have suggested an intriguing connection between disturbances in B cell homeostasis and the pathogenesis of MDD, however, the B-cell-dependent mechanism of MDD remains largely unexplored compared to other immune cells. In this review, we provide an overview of how B cell abnormality regulates the progression of MMD and the potential consequence of the disruption of B cell homeostasis in patients with MDD. Abnormalities of B-cell homeostasis not only promote susceptibility to MDD, but also lead to an increased risk of developing infection, malignancy and autoimmune diseases in patients with MDD. A better understanding of the contribution of B cells underlying MDD would provide opportunities for identification of more targeted treatment approaches and might provide an overall therapeutic benefit to improve the long-term outcomes of patients with MDD.
Collapse
Affiliation(s)
- Shusheng Wu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Yuye Yin
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Longfei Du
- Department of Laboratory Medicine, Affiliated Hospital of Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
16
|
Zhang G, Wang S, Ma P, Li S, Sun X, Zhao Y, Pan J. Increased regional body fat is associated with depressive symptoms: a cross-sectional analysis of NHANES data obtained during 2011-2018. BMC Psychiatry 2024; 24:336. [PMID: 38702637 PMCID: PMC11067210 DOI: 10.1186/s12888-024-05782-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
AIMS The findings from previous epidemiological studies of the association between regional body fat and depressive symptoms have been unclear. We aimed to determine the association between the body fat in different regions and depressive symptoms based on data from the National Health and Nutrition Examination Survey (NHANES). METHODS This study included 3393 participants aged ≥ 20 years from the NHANES performed during 2011-2018. Depressive symptoms were assessed using the Patient Health Questionnaire-9. The fat mass (FM) was measured in different regions using dual-energy X-ray absorptiometry to determine the total FM, trunk FM, arm FM, and leg FM. The FM index (FMI) was obtained by dividing the FM in kilograms by the square of the body height in meters. Weighted data were calculated in accordance with analytical guidelines. Linear logistic regression models were used to quantify the association between regional FMI and depressive symptoms. Univariate and stratified analyses were also performed. RESULTS The participants in this study comprised 2066 males and 1327 females. There were 404 (11.91%) participants with depressive symptoms, who were aged 40.89 ± 11.74 years and had a body mass index of 30.07 ± 7.82 kg/m². A significant association was found between total FMI and depressive symptoms. In the fully adjusted multivariate regression model, a higher total FMI (odds ratio = 2.18, 95% confidence interval [CI] = 1.08-4.39) was related to a higher risk of depressive symptoms, while increased total FMI (β = 1.55, 95% CI = 0.65-2.44, p = 0.001), trunk FMI (β = 0.57, 95% CI = 0.04-1.10, p = 0.036), and arm FMI (β = 0.96, 95% CI = 0.33-1.59, p = 0.004) were significantly associated with PHQ-9 (Patient Health Questionnaire-9) scores, whereas the leg FMI was not (p = 0.102). The weighted association between total FMI and depressive symptoms did not differ significantly between most of the subpopulations (all p values for interaction > 0.05). The risk of having depression was higher in individuals who were non-Hispanic Whites, smokers, drinkers, obese, and had diabetes and thyroid problems (p < 0.05). CONCLUSION These findings suggest that the population with a higher regional FMI is more likely to have depressive symptoms, especially in those who also have an increased total FMI. The association is more pronounced in individuals who are smokers, drinkers, obese, and have diabetes and thyroid problems.
Collapse
Affiliation(s)
- GuiMei Zhang
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Sisi Wang
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Ping Ma
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Shuna Li
- Department of Clinical Research, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China
| | - Xizhe Sun
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Yang Zhao
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China
| | - Jiyang Pan
- Department of Psychiatry, Sleep Medicine Centre, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong Province, 510632, P.R. China.
| |
Collapse
|
17
|
Zhang J, Song Z, Huo Y, Li G, Lu L, Wei C, Zhang S, Gao X, Jiang X, Xu Y. Engeletin alleviates depressive-like behaviours by modulating microglial polarization via the LCN2/CXCL10 signalling pathway. J Cell Mol Med 2024; 28:e18285. [PMID: 38597406 PMCID: PMC11005460 DOI: 10.1111/jcmm.18285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/10/2024] [Accepted: 03/22/2024] [Indexed: 04/11/2024] Open
Abstract
Microglial polarization and associated inflammatory activity are the key mediators of depression pathogenesis. The natural Smilax glabra rhizomilax derivative engeletin has been reported to exhibit robust anti-inflammatory activity, but no studies to date have examined the mechanisms through which it can treat depressive symptoms. We showed that treatment for 21 days with engeletin significantly alleviated depressive-like behaviours in chronic stress social defeat stress (CSDS) model mice. T1-weighted imaging (T1WI), T2-weighted imaging (T2WI) imaging revealed no significant differences between groups, but the bilateral prefrontal cortex of CSDS mice exhibited significant increases in apparent diffusion coefficient and T2 values relative to normal control mice, with a corresponding reduction in fractional anisotropy, while engeletin reversed all of these changes. CSDS resulted in higher levels of IL-1β, IL-6, and TNF-a production, enhanced microglial activation, and greater M1 polarization with a concomitant decrease in M2 polarization in the mPFC, whereas engeletin treatment effectively abrogated these CSDS-related pathological changes. Engeletin was further found to suppress the LCN2/C-X-C motif chemokine ligand 10 (CXCL10) signalling axis such that adeno-associated virus-induced LCN2 overexpression ablated the antidepressant effects of engeletin and reversed its beneficial effects on the M1/M2 polarization of microglia. In conclusion, engeletin can alleviate CSDS-induced depressive-like behaviours by regulating the LCN2/CXCL10 pathway and thereby altering the polarization of microglia. These data suggest that the antidepressant effects of engeletin are correlated with the polarization of microglia, highlighting a potential avenue for future design of antidepressant strategies that specifically target the microglia.
Collapse
Affiliation(s)
- Jie Zhang
- Department of RadiologyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Zheng Song
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Yanchao Huo
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Guangqiang Li
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Liming Lu
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Chuanmei Wei
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Shuping Zhang
- College of Basic MedicineBinzhou Medical UniversityYantaiShandongP.R. China
| | - Xinfu Gao
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Xingyue Jiang
- Department of RadiologyBinzhou Medical University HospitalBinzhouShandongP. R. China
| | - Yangyang Xu
- Department of PharmacyBinzhou Medical University HospitalBinzhouShandongP. R. China
| |
Collapse
|
18
|
Guo X, Qiu W, Li B, Qi Y, Wang S, Zhao R, Cheng B, Han X, Du H, Pan Z, Zhao S, Qiu J, Li G, Xue H. Hypoxia-Induced Neuronal Activity in Glioma Patients Polarizes Microglia by Potentiating RNA m6A Demethylation. Clin Cancer Res 2024; 30:1160-1174. [PMID: 37855702 DOI: 10.1158/1078-0432.ccr-23-0430] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 08/22/2023] [Accepted: 10/17/2023] [Indexed: 10/20/2023]
Abstract
PURPOSE Neuronal activity in the brain has been reported to promote the malignant progression of glioma cells via nonsynaptic paracrine and electrical synaptic integration mechanisms. However, the interaction between neuronal activity and the immune microenvironment in glioblastoma (GBM) remains largely unclear. EXPERIMENTAL DESIGN By applying chemogenetic techniques, we enhanced and inhibited neuronal activity in vitro and in a mouse model to study how neuronal activity regulates microglial polarization and affects GBM progression. RESULTS We demonstrate that hypoxia drove glioma stem cells (GSC) to produce higher levels of glutamate, which activated local neurons. Neuronal activity promoted GBM progression by facilitating microglial M2 polarization through enriching miR-200c-3p in neuron-derived exosomes, which decreased the expression of the m6A writer zinc finger CCCH-type containing 13 (ZC3H13) in microglia, impairing methylation of dual specificity phosphatase 9 (DUSP9) mRNA. Downregulation of DUSP9 promoted ERK pathway activation, which subsequently induced microglial M2 polarization. In the mouse model, cortical neuronal activation promoted microglial M2 polarization whereas cortical neuronal inhibition decreased microglial M2 polarization in GBM xenografts. miR-200c-3p knockdown in cortical neurons impaired microglial M2 polarization and GBM xenograft growth, even when cortical neurons were activated. Treatment with the anti-seizure medication levetiracetam impaired neuronal activation and subsequently reduced neuron-mediated microglial M2 polarization. CONCLUSIONS These findings indicated that hypoxic GSC-induced neuron activation promotes GBM progression by polarizing microglia via the exosomal miR-200c-3p/ZC3H13/DUSP9/p-ERK pathway. Levetiracetam, an antiepileptic drug, blocks the abnormal activation of neurons in GBM and impairs activity-dependent GBM progression. See related commentary by Cui et al., p. 1073.
Collapse
Affiliation(s)
- Xiaofan Guo
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- Department of Neurology, Loma Linda University Health, Loma Linda, California
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Boyan Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Yanhua Qi
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Bo Cheng
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiao Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Jinan Children's Hospital, Jinan, Shandong, China
| | - Hao Du
- Department of Cell Biology, University of Connecticut School of Medicine, Farmington, Connecticut
| | - Ziwen Pan
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Shulin Zhao
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Jiawei Qiu
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
- Shandong Key Laboratory of Brain Function Remodeling, Jinan, Shandong, China
| |
Collapse
|
19
|
Cui X, Wang Q, Liu X, Kang C. Levetiracetam: A Potent Sword against Microglia Polarization in Gliomas. Clin Cancer Res 2024; 30:1073-1075. [PMID: 38170191 DOI: 10.1158/1078-0432.ccr-23-3322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
Crosstalk between tumor cells and peritumoral cells contributes to immunosuppressive microenvironment formation in glioblastomas (GBM). A recent study revealed that glioma stem cells activated neuronal activity to promote microglial M2 polarization, leading to GBM progression, which could be pharmacologically blocked by levetiracetam, providing a practical strategy for GBM immunotherapy. See related article by Guo et al., p. 1160.
Collapse
Affiliation(s)
- Xiaoteng Cui
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, P.R China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, P.R. China
| | - Qixue Wang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, P.R China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, P.R. China
| | - Xiaomin Liu
- Neuro-Oncology Center, Tianjin Huanhu Hospital, Nankai University, Tianjin, P.R. China
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, P.R China
- Key Laboratory of Post-Neuro Injury Neuro-repair and Regeneration in Central Nervous System, Ministry of Education and Tianjin City, Tianjin, P.R. China
| |
Collapse
|
20
|
Qian Y, Chu G, Zhang L, Wu Z, Wang Q, Guo JJ, Zhou F. M2 macrophage-derived exosomal miR-26b-5p regulates macrophage polarization and chondrocyte hypertrophy by targeting TLR3 and COL10A1 to alleviate osteoarthritis. J Nanobiotechnology 2024; 22:72. [PMID: 38374072 PMCID: PMC10877765 DOI: 10.1186/s12951-024-02336-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent chronic musculoskeletal diseases among the elderly population. In this study, macrophage-derived exosomes were isolated and identified. Exosomes were subjected to microRNA (miRNA) sequencing and bioinformatic analysis, and differentially expressed miRNAs were verified. miR-26b-5p target genes were confirmed through target-site mutation combined with a dual-luciferase reporter assay. The effects of miR-26b-5p on macrophage polarization and chondrocyte hypertrophy were assessed in vitro. miR-26b-5p agomir was applied to mice with OA induced by anterior cruciate ligament transection (ACLT). The therapeutic effects of miR-26b-5p were evaluated via pain behavior experiments and histological observations. In vitro, miR-26b-5p repolarized M1 macrophages to an anti-inflammatory M2 type by targeting the TLR3 signaling pathway. miR-26b-5p could target COL10A1, further inhibiting chondrocyte hypertrophy induced by M1 macrophage-conditioned medium (M1-CM). In vivo, miR-26b-5p agomir ameliorated gait abnormalities and mechanical allodynia in OA mice. miR-26b-5p treatment attenuated synovitis and cartilage degeneration, thereby delaying OA progression. In conclusion, M2 macrophage-derived exosomal miR-26b-5p could protect articular cartilage and ameliorate gait abnormalities in OA mice by targeting TLR3 and COL10A1. miR-26b-5p further affected macrophage polarization and chondrocyte hypertrophy. Thus, this exosomal miR-26b-5p-based strategy might be a potential method for OA treatment.
Collapse
Affiliation(s)
- Yufan Qian
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Genglei Chu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Lei Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Zhikai Wu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Qiuyuan Wang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China
| | - Jiong Jiong Guo
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
| | - Feng Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, No. 899 Ping Hai Road, Suzhou, Jiangsu, China.
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.
| |
Collapse
|
21
|
Kong H, Xu T, Wang S, Zhang Z, Li M, Qu S, Li Q, Gao P, Cong Z. The molecular mechanism of polysaccharides in combating major depressive disorder: A comprehensive review. Int J Biol Macromol 2024; 259:129067. [PMID: 38163510 DOI: 10.1016/j.ijbiomac.2023.129067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 12/10/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Major depressive disorder (MDD) is a complex psychiatric condition with diverse etiological factors. Typical pathological features include decreased cerebral cortex, subcortical structures, and grey matter volumes, as well as monoamine transmitter dysregulation. Although medications exist to treat MDD, unmet needs persist due to limited efficacy, induced side effects, and relapse upon drug withdrawal. Polysaccharides offer promising new therapies for MDD, demonstrating antidepressant effects with minimal side effects and multiple targets. These include neurotransmitter, neurotrophin, neuroinflammation, hypothalamic-pituitary-adrenal axis, mitochondrial function, oxidative stress, and intestinal flora regulation. This review explores the latest advancements in understanding the pharmacological actions and mechanisms of polysaccharides in treating major depression. We discuss the impact of polysaccharides' diverse structures and properties on their pharmacological actions, aiming to inspire new research directions and facilitate the discovery of novel anti-depressive drugs.
Collapse
Affiliation(s)
- Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zhiyuan Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Min Li
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Suyan Qu
- Tai 'an Taishan District People's Hospital, China
| | - Qinqing Li
- Shanxi University of Chinese Medicine, China
| | - Peng Gao
- Institute of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Affiliated Cancer Hospital of Shandong First Medical University, China.
| |
Collapse
|
22
|
Dadkhah M, Baziar M, Rezaei N. The regulatory role of BDNF in neuroimmune axis function and neuroinflammation induced by chronic stress: A new therapeutic strategies for neurodegenerative disorders. Cytokine 2024; 174:156477. [PMID: 38147741 DOI: 10.1016/j.cyto.2023.156477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/14/2023] [Accepted: 12/10/2023] [Indexed: 12/28/2023]
Abstract
Neurodegenerative disorders account for a high proportion of neurological diseases that significantly threaten public health worldwide. Various factors are involved in the pathophysiology of such diseases which can lead to neurodegeneration and neural damage. Furthermore, neuroinflammation is a well-known factor in predisposing factors of neurological and especially neurodegenerative disorders which can be strongly suppressed by "anti-inflammatory" actions of brain-derived neurotrophic factor (BDNF). Stress has has also been identified as a risk factor in developing neurodegenerative disorders potentially leading to increased neuroinflammation in the brain and progressive loss in neuronal structures and impaired functions in the CNS. Recently, more studies have increasingly been focused on the role of neuroimmune system in regulating the neurobiology of stress. Emerging evidence indicate that exposure to chronic stress might alter the susceptibility to neurodegeneration via influencing the microglia function. Microglia is considered as the first responding group of cells in suppressing neuroinflammation, leading to an increased inflammatory cytokine signaling that promote the synaptic plasticity deficiencies, impairment in neurogenesis, and development of neurodegenerative disorders. In this review we discuss how exposure to chronic stress might alter the neuroimmune response potentially leading to progress of neurodegenerative disorders. We also emphasize on the role of BDNF in regulating the neuroimmune axis function and microglia modulation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Masoomeh Dadkhah
- Pharmaceutical Sciences Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Milad Baziar
- Student Research Committee, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran 1419733151, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran
| |
Collapse
|
23
|
Deng S, Guo A, Huang Z, Guan K, Zhu Y, Chan C, Gui J, Song C, Li X. The exploration of neuroinflammatory mechanism by which CRHR2 deficiency induced anxiety disorder. Prog Neuropsychopharmacol Biol Psychiatry 2024; 128:110844. [PMID: 37640149 DOI: 10.1016/j.pnpbp.2023.110844] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/07/2023] [Accepted: 08/19/2023] [Indexed: 08/31/2023]
Abstract
Inflammation stimulates the hypothalamic-pituitary adrenal (HPA) axis and triggers glial neuroinflammatory phenotypes, which reduces monoamine neurotransmitters by activating indoleamine 2,3-dioxygenase enzyme. These changes can induce psychiatric diseases, including anxiety. Corticotropin releasing hormone receptor 2 (CRHR2) in the HPA axis is involved in the etiology of anxiety. Omega(n)-3 polyunsaturated fatty acids (PUFAs) can attenuate anxiety through anti-inflammation and HPA axis modulation. However, the underlying molecular mechanism by CRHR2 modulates anxiety and its correlation with neuroinflammation remain unclear. Here, we first constructed a crhr2 zebrafish mutant line, and evaluated anxiety-like behaviors, gene expression associated with the HPA axis, neuroinflammatory response, neurotransmitters, and PUFAs profile in crhr2+/+ and crhr2-/- zebrafish. The crhr2 deficiency decreased cortisol levels and up-regulated crhr1 and down-regulated crhb, crhbp, ucn3l and proopiomelanocortin a (pomc a) in zebrafish. Interestingly, a significant increase in the neuroinflammatory markers, translocator protein (TSPO) and the activation of microglia M1 phenotype (CD11b) were found in crhr2-/- zebrafish. As a consequence, the expression of granulocyte-macrophage colony-stimulating factor, pro-inflammatory cytokines vascular endothelial growth factor, and astrocyte A1 phenotype c3 were up-regulated. While microglia anti-inflammatory phenotype (CD206), central anti-inflammatory cytokine interleukin-4, arginase-1, and transforming growth factor-β were downregulated. In parallel, crhr2-deficient zebrafish showed an upregulation of vdac1 protein, a TSPO ligand, and its downstream caspase-3. Furthermore, 5-HT/5-HIAA ratio was decreased and n-3 PUFAs deficiency was identified in crhr2-/- zebrafish. In conclusion, anxiety-like behavior displayed by crhr2-deficient zebrafish may be caused by the HPA axis dysfunction and enhanced neuroinflammation, which resulted in n-3 PUFAs and monoamine neurotransmitter reductions.
Collapse
Affiliation(s)
- Shuyi Deng
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | - Anqi Guo
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China
| | - Zhengwei Huang
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China
| | - Kaiyu Guan
- Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325000, China
| | - Ya Zhu
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cheekai Chan
- College of Science and Technology, Wenzhou-Kean University, Zhejiang 325000, China
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Hubei Hongshan Laboratory, The Innovation Academy of Seed Design, University of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Cai Song
- Research Institute for Marine Drugs and Nutrition, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Xi Li
- The Affiliated Kangning Hospital of Wenzhou Medical University, Zhejiang Provincial Clinical Research Center for Mental Disorders, Wenzhou, Zhejiang 325000, China.
| |
Collapse
|
24
|
Ma F, Wang J, Jiang W, Luo J, Yang R, Zhang L, Han C. Ganoderic Acid A: A Potential Natural Neuroprotective Agent for Neurological Disorders: A Review. Int J Med Mushrooms 2024; 26:11-23. [PMID: 38421693 DOI: 10.1615/intjmedmushrooms.2023051918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ganoderic acid A (GAA) is one of the major triterpenoids in Ganoderma lucidum (GL). Accumulating evidence has indicated that GAA demonstrates multiple pharmacological effects and exhibits treatment potential for various neurological disorders. Here, the effects and mechanisms of GAA in the treatment of neurological disorders were evaluated and discussed through previous research results. By summarizing previous research results, we found that GAA may play a neuroprotective role through various mechanisms: anti-inflammatory, anti-oxidative stress, anti-apoptosis, protection of nerve cells, and regulation of nerve growth factor. Therefore, GAA is a promising natural neuroprotective agent and this review would contribute to the future development of GAA as a novel clinical candidate drug for treating neurological diseases.
Collapse
Affiliation(s)
- Feifei Ma
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jing Wang
- Research and Development Center, Shandong Phoenix Biotechnology Co. Ltd., Taian, Shandong, 271000, P.R. China
| | - Wenming Jiang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Jiahao Luo
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Rui Yang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, People's Republic of China
| | - Liying Zhang
- Pharmacy Intravenous Admixture Services, Jinan Zhangqiu District Hospital of TCM, Jinan, 250299, People's Republic of China
| | - Chunchao Han
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, People's Republic of China; Shandong Provincial Collaborative Innovation Center for Quality Control and Construction of the Whole Industrial Chain of Traditional Chinese Medicine, Jinan, Shandong, 250355, People's Republic of China
| |
Collapse
|
25
|
Shi J, Wang X, Kang C, Liu J, Ma C, Yang L, Hu J, Zhao N. TREM2 regulates BV2 microglia activation and influences corticosterone-induced neuroinflammation in depressive disorders. Brain Res 2024; 1822:148664. [PMID: 37923002 DOI: 10.1016/j.brainres.2023.148664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/14/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Depressive disorders is a serious mental illness, and its underlying pathological mechanisms remain unclear. The overactivation of microglia and neuroinflammation are thought to play an essential role in the occurrence and development of depressive disorders. TREM2, an immune protein mainly expressed in microglia, is an important part of nerve cells involved in inflammatory response. Corticosterone (CORT) is often referred to as a stress hormone and plays a role in the immune system and stress response. Therefore, this study investigated the role of TREM2 in CORT-induced BV2 cell damage and preliminarily analyzed the effects of TREM2 on JAK2/STAT3 signaling pathway and microglia polarization. The cell model of CORT-induced depression in vitro was established, and the effect of CORT on the activity of BV2 microglia was detected by CCK8. Plasmid transfection was used to overexpress and interfere with TREM2 in BV2 cells cultured by CORT. Western blotting, PCR, and ELISA analyzed the expression of related proteins and inflammatory factors. The results showed that CORT could affect BV2 cell proliferation and TREM2 levels. In the presence of CORT, overexpression of TREM2 decreased the levels of TNF-α, IL-1β, and IL-6 and increased the levels of IL-10. Interference with TREM2 increased the levels of TNF-α, IL-1β, and IL-6 and decreased the levels of IL-10. TREM2 can affect the release of inflammatory factors through the JAK2/STAT3 signaling pathway and regulate the M1/M2 phenotypic transformation of microglia. TREM2 plays a role in regulating CORT-induced inflammatory responses, revealing the influence of TREM2 on the neuroinflammatory pathogenesis of depressive disorders and suggesting that TREM2 may be a new target for the prevention and treatment of depressive disorders.
Collapse
Affiliation(s)
- Jingjing Shi
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Xiaohong Wang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Chuanyi Kang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Jiacheng Liu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Caina Ma
- Harbin First Specialized Hospital, Heilongjiang Province, China
| | - Liying Yang
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China
| | - Jian Hu
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China.
| | - Na Zhao
- Department of Psychiatry, The First Affiliated Hospital of Harbin Medical University, 23 Youzheng Street, Nangang District, Harbin, Heilongjiang Province 150001, China.
| |
Collapse
|
26
|
Huang Y, Dong S, Li X, Shi J, Zhang Y, Liu S, Zhang Y, Yu J. VNS-mediated α7nAChR signaling promotes SPM synthesis via regulation of netrin-1 expression during LPS-induced ALI. FASEB J 2024; 38:e9664. [PMID: 38038805 DOI: 10.1096/fj.202301623r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/02/2023]
Abstract
The α7 nicotinic acetylcholine receptor (α7nAChR) plays a crucial role in the cholinergic anti-inflammatory pathway (CAP) during sepsis-associated acute lung injury (ALI). Increasing evidence suggests that specialized pro-resolving mediators (SPMs) are important in resolving α7nAChR-mediated ALI resolution. Our study aims to elucidate the pivotal role of α7nAChR in the CAP during LPS-associated acute lung injury (ALI). By employing vagus nerve stimulation (VNS), we identified α7nAChR as the key CAP subunit in ALI mice, effectively reducing lung permeability and the release of inflammatory cytokines. We further investigated the alterations in SPMs regulated by α7nAChR, revealing a predominant synthesis of lipoxin A4 (LXA4). The significance of α7nAChR-netrin-1 pathway in governing SPM synthesis was confirmed through the use of netrin-1 knockout mice and siRNA-transfected macrophages. Additionally, our evaluation identified a synchronous alteration of LXA4 synthesis in the α7nAChR-netrin-1 pathway accompanied by 5-lipoxygenase (5-LOX), thereby confirming an ameliorative effect of LXA4 on lung injury and macrophage inflammatory response. Concurrently, inhibiting the function of LXA4 annulled the lung-protective effect of VNS. As a result, our findings reveal a novel anti-inflammatory pathway wherein VNS modulates netrin-1 expression via α7nAChR, ultimately leading to LXA4 synthesis and subsequent lung protection.
Collapse
Affiliation(s)
- Yan Huang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Shasha Liu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Ye Zhang
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
27
|
Chao C, Li Y, Li Q, Wu G. Inhibitory effect and mechanism of Rosiglitazone on M1 type polarization of central microglia in intracerebral hemorrhage mice based on JNK/STAT3 signaling pathway. Brain Behav 2023; 13:e3275. [PMID: 37837628 PMCID: PMC10726784 DOI: 10.1002/brb3.3275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Intracerebral hemorrhage (ICH) seriously threatens the health of people. In addition, microglia M1 polarization was confirmed to be involved in the progression of ICH. Rosiglitazone was able to be used as an antidiabetic agent, which could activate PPAR-γ, and PPAR-γ was reported to inhibit inflammation in microglia. However, the detailed function of Rosiglitazone in ICH remains unclear. METHODS In vivo and in vitro experiments were used to test the function of Rosiglitazone in ICH. In addition, RT-qPCR and western blot were performed to evaluate the mRNA and protein level of PPAR-γ, respectively. Immunofluorescence staining was performed to detect the levels of CD206 and CD86, and ELISA was used to measure the levels of pro-inflammatory cytokines. RESULTS PPAR-γ was downregulated in ICH mice, whereas p-JNK and p-STAT3 were upregulated. Thrombin notably downregulated the level of PPAR-γ in BV2 cells, whereas Rosiglitazone partially reversed this phenomenon. In addition, Rosiglitazone markedly reversed thrombin-induced microglia M1 polarization. Consistently, thrombin-induced inflammatory response in BV2 cells was abolished in the presence of Rosiglitazone. SP600125 (JNK/STAT3 inhibitor) greatly reversed thrombin-induced M1 polarization in microglia, and GW9662 abolished the effect of SP600125. Meanwhile, Rosiglitazone could inactivate JNK/STAT3 pathway through the upregulation of PPAR-γ. Furthermore, Rosiglitazone notably alleviated the symptom of ICH in vivo through inhibiting the apoptosis and mediating PPAR-γ/JNK/STAT3 axis. CONCLUSION Rosiglitazone could attenuate the inflammation in ICH through inhibiting microglia M1 polarization. Thus, our research would shed now lights on exploring new therapeutic strategies against ICH.
Collapse
Affiliation(s)
- Chenglei Chao
- The Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceP. R. China
- Department of Critical Care MedicineChangzhou Fourth People's HospitalChangzhouJiangsu ProvinceP. R. China
| | - Yinghui Li
- Department of EmergencyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhou ProvinceP. R. China
| | - Quan Li
- Department of EmergencyJinLing HospitalMedical School of Nanjing UniversityNanjingJiangsu ProvinceP. R. China
| | - Guofeng Wu
- The Second Affiliated Hospital of Soochow UniversitySuzhouJiangsu ProvinceP. R. China
- Department of EmergencyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhou ProvinceP. R. China
| |
Collapse
|
28
|
Mancuso E, Sampogna G, Boiano A, Della Rocca B, Di Vincenzo M, Lapadula MV, Martinelli F, Lucci F, Luciano M. Biological correlates of treatment resistant depression: a review of peripheral biomarkers. Front Psychiatry 2023; 14:1291176. [PMID: 37941970 PMCID: PMC10628469 DOI: 10.3389/fpsyt.2023.1291176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023] Open
Abstract
Introduction Many patients fail to respond to multiple antidepressant interventions, being defined as "treatment-resistant depression" (TRD) patients. TRD is usually associated with increased severity and chronicity of symptoms, increased risk of comorbidity, and higher suicide rates, which make the clinical management challenging. Efforts to distinguish between TRD patients and those who will respond to treatment have been unfruitful so far. Several studies have tried to identify the biological, psychopathological, and psychosocial correlates of depression, with particular attention to the inflammatory system. In this paper we aim to review available studies assessing the full range of biomarkers in TRD patients in order to reshape TRD definition and improve its diagnosis, treatment, and prognosis. Methods We searched the most relevant medical databases and included studies reporting original data on possible biomarkers of TRD. The keywords "treatment resistant depression" or "TRD" matched with "biomarker," "inflammation," "hormone," "cytokine" or "biological marker" were entered in PubMed, ISI Web of Knowledge and SCOPUS databases. Articles were included if they included a comparison with healthy controls (HC). Results Of the 1878 papers identified, 35 were included in the present study. Higher plasma levels of IL-6 and TNF-α were detected in TRD patients compared to HC. While only a few studies on cortisol have been found, four papers showed elevated levels of C-reactive protein among these patients and four articles focused on immunological cells. Altered kynurenine metabolism in TRD patients was reported in two studies, while contrasting results were found with regard to BDNF. Conclusion Only a few biological alterations correlate with TRD. TNF-α seems to be the most relevant biomarker to discriminate TRD patients from both HC and treatment-responsive MDD patients. Moreover, several discrepancies among studies have been found, due to methodological differences and the lack of a standardized diagnostic definition of TRD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Mario Luciano
- Department of Psychiatry, University of Campania “L. Vanvitelli”, Caserta, Italy
| |
Collapse
|
29
|
Pérez-Fernández V, Thananjeyan AL, Ullah F, Münch G, Cameron M, Gyengesi E. The effects of a highly bioavailable curcumin Phytosome TM preparation on the retinal architecture and glial reactivity in the GFAP-IL6 mice. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1205542. [PMID: 38983084 PMCID: PMC11182199 DOI: 10.3389/fopht.2023.1205542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 09/08/2023] [Indexed: 07/11/2024]
Abstract
Uncontrolled, chronic inflammation in the retina can disturb retinal structure and function leading to impaired visual function. For the first time, in a mouse model of chronic neuroinflammation (GFAP-IL6), we investigated the impact of chronic glial activation on the retinal microglia population and structure. In addition, we tested a curcumin PhytosomeTM preparation with enhanced bioavailability to investigate the effects of a cytokine-suppressing anti-inflammatory drug on retinal architecture. Curcumin PhytosomeTM was fed to 3-month old GFAP-IL6 mice for 4 weeks and compared to their untreated GFAP-IL6 counterparts as well as wild type mice on control diet. Microglial numbers and morphology together with neuronal numbers were characterized using immunohistochemistry and cell reconstruction in the retina, using retinal wholemount and slices. GFAP-IL6 mice showed a significant increase in Iba1-labelled mononuclear phagocytes, including microglia, and displayed altered glial morphology. This resulted in a reduction in cone density and a thinning of the retinal layers compared to wild type mice. Curcumin PhytosomeTM treatment contributed to decreased microglial density, significantly decreasing both soma and cell size compared to control diet, as well as preventing the thinning of the retinal layers. This study is the first to characterize the impact of chronic retinal inflammation in the GFAP-IL6 mouse and the therapeutic benefit of enhanced bioavailable curcumin PhytosomeTM to significantly reduce microglia density and prevent neuronal loss. These data suggest that curcumin could be used as a complementary therapy alongside traditional treatments to reduce associated retinal inflammation in a variety of retinal diseases.
Collapse
Affiliation(s)
- Víctor Pérez-Fernández
- Department of Anatomy and Cell Biology, Western Sydney University, Campbelltown, NSW, Australia
| | | | - Faheem Ullah
- Department of Pharmacology, Western Sydney University, Campbelltown, NSW, Australia
- Neurosurgery, Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ, United States
| | - Gerald Münch
- Department of Pharmacology, Western Sydney University, Campbelltown, NSW, Australia
| | - Morven Cameron
- Department of Anatomy and Cell Biology, Western Sydney University, Campbelltown, NSW, Australia
| | - Erika Gyengesi
- Department of Pharmacology, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
30
|
Wu Q, Zheng Y, Yu J, Ying X, Gu X, Tan Q, Tu W, Lou X, Yang G, Li M, Jiang S. Electroacupuncture alleviates neuropathic pain caused by SNL by promoting M2 microglia polarization through PD-L1. Int Immunopharmacol 2023; 123:110764. [PMID: 37573685 DOI: 10.1016/j.intimp.2023.110764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/15/2023]
Abstract
As a common clinical disease, neuropathic pain is difficult to be cured with drugs. The occurrence and progression of pain is closely related to the response of spinal microglia. Aspartof the regulation of microglialactivity,PD-L1 playsacriticalrole. Loss of PD-L1 promoted the polarization of M1-like microglia. Increased expression of PD-L1 promoted M2-like polarization. Electroacupuncture has a significant analgesic effect in clinical practice, but its specific mechanism remains to be further explored. In this study, we verified the role of PD-L1 in EA analgesia and the underlying molecular mechanism through spinal nerve ligation (SNL) in rats and lipopolysaccharide (LPS)-treated BV2 microglial cells. Forbehavioralstudiesofrats,mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL) were measured, and spinal cord neuros were examined under transmission electron microscopyto determine changes to their myelin structure. The expression levels of PD-L1 and M1/M2-specific markers in rat spinal cord and BV2 microglial cells were measured by enzyme-linked immunosorbent assay, flow cytometry, immunofluorescence staining and Western blot analysis. Our study showed that EA increased the pain threshold, reduced the destruction of myelin structure, promoted the expression of PD-L1 and PD-1, inhibited the MAPK signaling pathway, and promoted the conversion of microglial polarization from the M1 phenotype to the M2 phenotype in SNL rats. PD-L1 knockdown reversed these effects of EA. In addition, PD-L1 knockdown activated the MAPK signaling pathway, promoted microglial polarization to the M1 phenotype, decreased the expression of anti-inflammatory mediators and increased the expression of proinflammatory factors in LPS-stimulated BV2 microglial cells. Our results showed that EA may regulate the excitability of primary afferent neurons through PD-L1 and then inhibit the MAPK signaling pathway to promote the transformation of activated M1 microglia into M2 microglia, reduce inflammatory reactions, and finally achieve analgesic effects. A therapy targeting PD-L1 may be an effective strategy for treating neuropathic pain.
Collapse
Affiliation(s)
- Qiaoyun Wu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, China
| | - Yujun Zheng
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, China
| | - Jiaying Yu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, China
| | - Xinwang Ying
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, China
| | - Xiaoxue Gu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, China
| | - Qianqian Tan
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, China
| | - Wenzhan Tu
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, China
| | - Xinfa Lou
- Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Guanhu Yang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, China
| | - Ming Li
- School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Songhe Jiang
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research Center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; The Wenzhou Key Laboratory for Rehabilitation Research, The Provincial Key Laboratory for Acupuncture and Rehabilitation in Zhejiang Province, China.
| |
Collapse
|
31
|
Kalkman HO. Activation of σ1-Receptors by R-Ketamine May Enhance the Antidepressant Effect of S-Ketamine. Biomedicines 2023; 11:2664. [PMID: 37893038 PMCID: PMC10604479 DOI: 10.3390/biomedicines11102664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ketamine is a racemic mixture composed of two enantiomers, S-ketamine and R-ketamine. In preclinical studies, both enantiomers have exhibited antidepressant effects, but these effects are attributed to distinct pharmacological activities. The S-enantiomer acts as an NMDA-channel blocker and as an opioid μ-receptor agonist, whereas the R-enantiomer binds to σ1-receptors and is believed to act as an agonist. As racemate, ketamine potentially triggers four biochemical pathways involving the AGC-kinases, PKA, Akt (PKB), PKC and RSK that ultimately lead to inhibitory phosphorylation of GSK3β in microglia. In patients with major depressive disorder, S-ketamine administered as a nasal spray has shown clear antidepressant activity. However, when compared to intravenously infused racemic ketamine, the response rate, duration of action and anti-suicidal activity of S-ketamine appear to be less pronounced. The σ1-protein interacts with μ-opioid and TrkB-receptors, whereas in preclinical experiments σ1-agonists reduce μ-receptor desensitization and improve TrkB signal transduction. TrkB activation occurs as a response to NMDA blockade. So, the σ1-activity of R-ketamine may not only enhance two pathways via which S-ketamine produces an antidepressant response, but it furthermore provides an antidepressant activity in its own right. These two factors could explain the apparently superior antidepressant effect observed with racemic ketamine compared to S-ketamine alone.
Collapse
Affiliation(s)
- Hans O Kalkman
- Retired Pharmacologist, Gänsbühlgartenweg 7, 4132 Muttenz, Switzerland
| |
Collapse
|
32
|
Zhou B, Jiang X, Zhou X, Tan W, Luo H, Lei S, Yang Y. GelMA-based bioactive hydrogel scaffolds with multiple bone defect repair functions: therapeutic strategies and recent advances. Biomater Res 2023; 27:86. [PMID: 37715230 PMCID: PMC10504735 DOI: 10.1186/s40824-023-00422-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/22/2023] [Indexed: 09/17/2023] Open
Abstract
Currently, the clinical treatment of critical bone defects attributed to various causes remains a great challenge, and repairing these defects with synthetic bone substitutes is the most common strategy. In general, tissue engineering materials that mimic the structural, mechanical and biological properties of natural bone have been extensively applied to fill bone defects and promote in situ bone regeneration. Hydrogels with extracellular matrix (ECM)-like properties are common tissue engineering materials, among which methacrylate-based gelatin (GelMA) hydrogels are widely used because of their tunable mechanical properties, excellent photocrosslinking capability and good biocompatibility. Owing to their lack of osteogenic activity, however, GelMA hydrogels are combined with other types of materials with osteogenic activities to improve the osteogenic capability of the current composites. There are three main aspects to consider when enhancing the bone regenerative performance of composite materials: osteoconductivity, vascularization and osteoinduction. Bioceramics, bioglass, biomimetic scaffolds, inorganic ions, bionic periosteum, growth factors and two-dimensional (2D) nanomaterials have been applied in various combinations to achieve enhanced osteogenic and bone regeneration activities. Three-dimensional (3D)-bioprinted scaffolds are a popular research topic in bone tissue engineering (BTE), and printed and customized scaffolds are suitable for restoring large irregular bone defects due to their shape and structural tunability, enhanced mechanical properties, and good biocompatibility. Herein, the recent progress in research on GelMA-based composite hydrogel scaffolds as multifunctional platforms for restoring critical bone defects in plastic or orthopedic clinics is systematically reviewed and summarized. These strategies pave the way for the design of biomimetic bone substitutes for effective bone reconstruction with good biosafety. This review provides novel insights into the development and current trends of research on GelMA-based hydrogels as effective bone tissue engineering (BTE) scaffolds for correcting bone defects, and these contents are summarized and emphasized from various perspectives (osteoconductivity, vascularization, osteoinduction and 3D-bioprinting). In addition, advantages and deficiencies of GelMA-based bone substitutes used for bone regeneration are put forward, and corresponding improvement measures are presented prior to their clinical application in near future (created with BioRender.com).
Collapse
Affiliation(s)
- Bixia Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xulei Jiang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Xinxin Zhou
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Wuyuan Tan
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China
| | - Hang Luo
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China
| | - Shaorong Lei
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
| | - Ying Yang
- Department of Plastic Surgery, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, PR China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, PR China.
- State Key Laboratory of Powder Metallurgy, Central South University, Changsha, 410083, PR China.
| |
Collapse
|
33
|
Osores PI, Vivacqua MN, Vazquez C, Marciano S, Giunta DH, Faccioli JL. Association Between Selective Serotonin Reuptake Inhibitors Prevalent Use and COVID-19-Related Mortality: A Retrospective Cohort Study. J Clin Psychopharmacol 2023; 43:411-416. [PMID: 37683229 DOI: 10.1097/jcp.0000000000001721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
PURPOSE/BACKGROUND Since the emergence of the coronavirus disease 2019 (COVID-19), many efforts have been made to prevent and to treat the disease. In this line, the anti-inflammatory effect of selective serotonin reuptake inhibitors (SSRI) as alternatives for treating chronic inflammatory diseases has been studied. There is previous evidence of the usefulness of these drugs for reducing COVID-19 impact. METHODS/PROCEDURES We conducted a retrospective single-center cohort study of adult patients with a positive reverse transcriptase-polymerase chain reaction for COVID-19, evaluating the association between SSRI use and in-hospital mortality. FINDINGS/RESULTS Of 1689 included patients, 182 (10.8%) were exposed to SSRI. A total of 291 patients died during the hospitalization, representing an in-hospital mortality of 17.2% (95% confidence interval [CI], 15.4%-19.0%): 44 (24.2%) of the exposed to SSRIs versus 247 (16.4%) of those not exposed to SSRIs (crude odds ratio [OR], 1.62; 95% CI, 1.12-2.34; P = 0.009). No independent effect of SSRIs on in-hospital mortality was found when applying either the inverse probability of treatment weighting (OR, 1.15; 95% CI, 0.71-1.89; P = 0.56) or with conventional multivariable analysis 0.81 (95 % CI: 0.28-2.31, P = 0.69). IMPLICATIONS/CONCLUSIONS In the present retrospective study of patients hospitalized for COVID-19, prior use of SSRIs did not reduce mortality.
Collapse
Affiliation(s)
| | | | | | - Sebastián Marciano
- Department or Research, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Diego Hernán Giunta
- Department or Research, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | |
Collapse
|
34
|
Huang H, Li S, Zhang Y, He C, Hua Z. Microglial Priming in Bilirubin-Induced Neurotoxicity. Neurotox Res 2023; 41:338-348. [PMID: 37058197 DOI: 10.1007/s12640-023-00643-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/05/2023] [Accepted: 04/02/2023] [Indexed: 04/15/2023]
Abstract
Neuroinflammation is a major contributor to bilirubin-induced neurotoxicity, which results in severe neurological deficits. Microglia are the primary immune cells in the brain, with M1 microglia promoting inflammatory injury and M2 microglia inhibiting neuroinflammation. Controlling microglial inflammation could be a promising therapeutic strategy for reducing bilirubin-induced neurotoxicity. Primary microglial cultures were prepared from 1-3-day-old rats. In the early stages of bilirubin treatment, pro-/anti-inflammatory (M1/M2) microglia mixed polarization was observed. In the late stages, bilirubin persistence induced dominant proinflammatory microglia, forming an inflammatory microenvironment and inducing iNOS expression as well as the release of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β. Simultaneously, nuclear factor-kappa B (NF-κB) was activated and translocated into the nucleus, upregulating inflammatory target genes. As well known, neuroinflammation can have an effect on N-methyl-D-aspartate receptor (NMDAR) expression or function, which is linked to cognition. Treatment with bilirubin-treated microglia-conditioned medium did affect the expression of IL-1β, NMDA receptor subunit 2A (NR2A), and NMDA receptor subunit 2B (NR2B) in neurons. However, VX-765 effectively reduces the levels of proinflammatory cytokines TNF-α, IL-6, and IL-1β, as well as the expressions of CD86, and increases the expressions of anti-inflammatory related Arg-1. A timely reduction in proinflammatory microglia could protect against bilirubin-induced neurotoxicity.
Collapse
Affiliation(s)
- Hongmei Huang
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Siyu Li
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Yan Zhang
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Chunmei He
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Ziyu Hua
- Department of Neonatology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.
- China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
- Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China.
| |
Collapse
|
35
|
Wang H, Li J, Zhang H, Wang M, Xiao L, Wang Y, Cheng Q. Regulation of microglia polarization after cerebral ischemia. Front Cell Neurosci 2023; 17:1182621. [PMID: 37361996 PMCID: PMC10285223 DOI: 10.3389/fncel.2023.1182621] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Stroke ranks second as a leading cause of death and permanent disability globally. Microglia, innate immune cells in the brain, respond rapidly to ischemic injury, triggering a robust and persistent neuroinflammatory reaction throughout the disease's progression. Neuroinflammation plays a critical role in the mechanism of secondary injury in ischemic stroke and is a significant controllable factor. Microglia activation takes on two general phenotypes: the pro-inflammatory M1 type and the anti-inflammatory M2 type, although the reality is more complex. The regulation of microglia phenotype is crucial to controlling the neuroinflammatory response. This review summarized the key molecules and mechanisms of microglia polarization, function, and phenotypic transformation following cerebral ischemia, with a focus on the influence of autophagy on microglia polarization. The goal is to provide a reference for the development of new targets for the treatment for ischemic stroke treatment based on the regulation of microglia polarization.
Collapse
Affiliation(s)
- Hao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jingjing Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Han Zhang
- School of Medicine, Nantong University, Nantong, China
| | - Mengyao Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Lifang Xiao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yitong Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Qiong Cheng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Jiangsu Province Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| |
Collapse
|
36
|
Thu VTA, Hoang TX, Kim JY. 1,25-Dihydroxy Vitamin D 3 Facilitates the M2 Polarization and β-Amyloid Uptake by Human Microglia in a TREM2-Dependent Manner. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3483411. [PMID: 37274074 PMCID: PMC10239306 DOI: 10.1155/2023/3483411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/23/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by dementia as the primary clinical symptom. The production and accumulation of aggregated β-amyloid (Aβ) in patient brain tissues is one of the hallmarks of AD pathogenesis. Microglia, brain-resident macrophages, produce inflammatory cytokines in response to Aβ oligomers or fibrils exacerbating Aβ pathology in AD. HMO6 cells were treated with Aβ42 in the presence or absence of 1,25-dihydroxy vitamin D3 (1,25(OH)2D3) to determine its potential immunomodulatory effects, and the expression of pro-/anti-inflammatory cytokines, M1/M2-associated markers, Toll-like receptors (TLRs), and triggering receptor expressed on myeloid cells 2 (TREM2) was examined. 1,25(OH)2D3 was found to suppress Aβ-induced expression of proinflammatory cytokines (TNF-α, IL-1β, and IL-6), M1 markers (CD86 and iNOS), and TLR2/4, whilst increasing the expression of anti-inflammatory cytokines (IL-4, IL-10, and CCL17) and M2 markers (CD206 and Arg-1). Furthermore, 1,25(OH)2D3 promoted TREM2 expression and Aβ uptake by HMO6 cells, and the enhancement of Aβ uptake and M2 polarization was revealed to be TREM2-dependent. The findings of this study suggest that 1,25(OH)2D3 facilitates M2 polarization and Aβ uptake in a TREM2-dependent manner.
Collapse
Affiliation(s)
- Vo Thuy Anh Thu
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| | - Jae Young Kim
- Department of Life Science, Gachon University, Seongnam, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
37
|
Yin J, Gong R, Zhang M, Ding L, Shen T, Cai Y, He S, Peng D. Associations between sleep disturbance, inflammatory markers and depressive symptoms: Mediation analyses in a large NHANES community sample. Prog Neuropsychopharmacol Biol Psychiatry 2023; 126:110786. [PMID: 37178815 DOI: 10.1016/j.pnpbp.2023.110786] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/16/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Both depression and sleep disturbance have been linked to inflammation. However, the role that inflammation plays in the relationship between sleep disturbance and depression remains unclear. We examined pairwise associations between inflammatory markers (neutrophil-to-lymphocyte ratio [NLR] and C-reactive protein level [CRP]), sleep disturbance, and depressive symptoms in a robust, ethnically diverse sample (n = 32,749) from the National Health and Nutrition Examination Survey (NHANES). We found higher levels of inflammatory markers in participants with depression and/or sleep disturbance compared to those without depression or sleep disturbance. Sleep disturbance was positively associated with inflammatory markers and depressive symptoms even after considering a wide range of potential confounders (e.g., age, sex, body mass index). Inflammatory marker levels were nonlinearly associated with depressive symptoms and were positively associated with depressive symptoms after reaching the inflection point (NLR, 1.67; CRP, 0.22 mg/dL). Inflammatory markers mediated a marginal portion (NLR, 0.0362%, p = 0.026; CRP, 0.0678%; p = 0.018) of the potential effects of sleep disturbance on depressive symptoms. Our research showed that inflammatory markers, sleep disturbance, and depression are pairwise correlated. Increased inflammatory markers levels slightly mediate the association between sleep disturbance and depression.
Collapse
Affiliation(s)
- Jiahui Yin
- College of traditional Chinese medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Rongpeng Gong
- Medical College of Qinghai University, Xining, China
| | - Min Zhang
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Ding
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Shen
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyun Cai
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shen He
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Daihui Peng
- Division of Mood Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
38
|
Atta AA, Ibrahim WW, Mohamed AF, Abdelkader NF. Microglia polarization in nociplastic pain: mechanisms and perspectives. Inflammopharmacology 2023; 31:1053-1067. [PMID: 37069462 DOI: 10.1007/s10787-023-01216-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 04/19/2023]
Abstract
Nociplastic pain is the third classification of pain as described by the International Association for the Study of Pain (IASP), in addition to the neuropathic and nociceptive pain classes. The main pathophysiological mechanism for developing nociplastic pain is central sensitization (CS) in which pain amplification and hypersensitivity occur. Fibromyalgia is the prototypical nociplastic pain disorder, characterized by allodynia and hyperalgesia. Much scientific data suggest that classical activation of microglia in the spinal cord mediates neuroinflammation which plays an essential role in developing CS. In this review article, we discuss the impact of microglia activation and M1/M2 polarization on developing neuroinflammation and nociplastic pain, besides the molecular mechanisms engaged in this process. In addition, we mention the impact of microglial modulators on M1/M2 microglial polarization that offers a novel therapeutic alternative for the management of nociplastic pain disorders. Illustrating the mechanisms underlying microglia activation in central sensitization and nociplastic pain. LPS lipopolysaccharide, TNF-α tumor necrosis factor-α, INF-γ Interferon gamma, ATP adenosine triphosphate, 49 P2Y12/13R purinergic P2Y 12/13 receptor, P2X4/7R purinergic P2X 4/7 receptor, SP Substance P, NK-1R Neurokinin 1 receptor, CCL2 CC motif ligand 2, CCR2 CC motif ligand 2 receptor, CSF-1 colony-stimulating factor 1, CSF-1R colony-stimulating factor 1 receptor, CX3CL1 CX3C motif ligand 1, CX3XR1 CX3C motif ligand 1 receptor, TLR toll-like receptor, MAPK mitogen-activated protein kinases, JNK jun N-terminal kinase, ERK extracellular signal-regulated kinase, iNOS Inducible nitric oxide synthase, IL-1β interleukin-1β, IL-6 interleukin-6, BDNF brain-derived neurotrophic factor, GABA γ-Aminobutyric acid, GABAR γ-Aminobutyric acid receptor, NMDAR N-methyl-D-aspartate receptor, AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropi-onic acid receptor, IL-4 interleukin-4, IL-13 interleukin-13, IL-10 interleukin-10, Arg-1 Arginase 1, FGF fibroblast growth factor, GDNF glial cell-derived neurotrophic factor, IGF-1 insulin-like growth factor-1, NGF nerve growth factor, CD Cluster of differentiation.
Collapse
Affiliation(s)
- Ahd A Atta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt.
| | - Weam W Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Ahmed F Mohamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| | - Noha F Abdelkader
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Kasr El-Aini St., Cairo, 11562, Egypt
| |
Collapse
|
39
|
Lu L, Hu X, Jin X. IL-4 as a potential biomarker for differentiating major depressive disorder from bipolar depression. Medicine (Baltimore) 2023; 102:e33439. [PMID: 37058046 PMCID: PMC10101271 DOI: 10.1097/md.0000000000033439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 04/15/2023] Open
Abstract
We aimed to investigate the differential diagnosis of depressive episodes in patients with major depressive disorder (MDD) and bipolar disorder (BD) using peripheral blood cytokine expression levels. The levels of interleukin (IL)-2, IL-6, IL-10, IL-17, IL4, and IL-12; interferon (IFN)-γ; and tumor necrosis factor (TNF)-α were measured in patients with MDD and BD presenting acute episodes in an inpatient psychiatric setting. The expression levels of IL-6, IL-10, IL-17, and IFN-γ in the MDD and BD groups were higher than those in the control group (P < .05), but there was no significant difference between the patient groups and control group. Only the expression levels of TNF-α and IL-4 were higher in both groups than in the control group, and the BD group had higher levels than the MDD group (P < .05). The expression levels of IL-17, IFN-γ, IL-10, and IL-4 were significantly higher in BD-related manic episodes than in BD-related depressive episodes (P < .05). IL-6, IFN-γ, TNF-α, IL-10, and IL-4 levels were higher in BD-related depressive episodes than in MDD-related depressive episodes (P < .05). The receiver operating characteristic curve test for MDD and BD and the area under the curve for IL-4 revealed good clinical predictability. Patients with MDD and BD exhibited different cytokine profiles when experiencing acute episodes; patients with BD exhibited a more severe immune-inflammatory response system-compensatory immunoregulatory response system (CIRS) imbalance. IL-4 was found to have diagnostic value in differentiating between active depressive episodes in MDD and BD.
Collapse
Affiliation(s)
- Lingna Lu
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| | - Xiwen Hu
- Department of Psychiatry, Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, P.R. China
| | - Xin Jin
- Department of Clinical Laboratory, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
40
|
Liu YL, Huang HJ, Sheu SY, Liu YC, Lee IJ, Chiang SC, Lin AMY. Oral ellagic acid attenuated LPS-induced neuroinflammation in rat brain: MEK1 interaction and M2 microglial polarization. Exp Biol Med (Maywood) 2023; 248:656-664. [PMID: 37340785 PMCID: PMC10350794 DOI: 10.1177/15353702231182230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 03/20/2023] [Indexed: 06/22/2023] Open
Abstract
Ellagic acid, the marker component of peels of Punica granatum L., is known traditionally to treat traumatic hemorrhage. In this study, the cellular mechanism underlying ellagic acid-induced anti-inflammation was investigated using lipopolysaccharides (LPSs) as a neuroinflammation inducer. Our in vitro data showed that LPS (1 μg/mL) consistently phosphorylated ERK and induced neuroinflammation, such as elevation in tumor necrosis factor-α (TNF-α) and nitric oxide production in treated BV-2 cells. Incubation of ellagic acid significantly inhibited LPS-induced ERK phosphorylation and subsequent neuroinflammation in treated BV-2 cells. Furthermore, our in vivo study of neuroinflammation employed an intranigral infusion of LPS that resulted in a time-dependent elevation in phosphorylated ERK levels in the infused substantia nigra (SN). Oral administration of ellagic acid (100 mg/kg) significantly attenuated LPS-induced ERK phosphorylation. A four-day treatment of ellagic acid did not alter LPS-induced ED-1 elevation but ameliorated LPS-induced reduction in CD206 and arginase-1 (two biomarkers of M2 microglia). A seven-day treatment of ellagic acid abolished LPS-induced increases in heme-oxygenase-1, cyclo-oxygenase 2, and α-synuclein trimer levels (a pathological hallmark) in the infused SN. At the same time, ellagic acid attenuated LPS-induced increases in active caspase 3 and receptor-interacting protein kinase-3 levels (respective biomarkers of apoptosis and necroptosis) as well as reduction in tyrosine hydroxylase-positive cells in the infused SN. In silico analysis showed that ellagic acid binds to the catalytic site of MEK1. Our data suggest that ellagic acid is capable of inhibiting MEK1-ERK signaling and then attenuated LPS-induced neuroinflammation, protein aggregation, and programmed cell deaths. Moreover, M2 microglial polarization is suggested as a novel antineuroinflammatory mechanism in the ellagic acid-induced neuroprotection.
Collapse
Affiliation(s)
- Yu-Ling Liu
- Department of Pharmacology, National Yang Ming Chiao Tung University, Taipei 112
| | - Hui-Ju Huang
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112
| | - Sheh-Yi Sheu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112
- Department of Life Sciences and Institute of Genome Sciences, National Yang Ming Chiao Tung University, Taipei 112
| | - Yu-Cheng Liu
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei 112
| | - I-Jung Lee
- Pharmaceutical Botany Research Laboratory, Yokohama University of Pharmacy, Yokohama 245-0066, Japan
| | - Shao-Chin Chiang
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112
- Department of Pharmacy, Koo Foundation Sun Yat-Sen Cancer center, Taipei, Taiwan
| | - Anya Maan-Yuh Lin
- Department of Medical Research, Taipei Veterans General Hospital, Taipei 112
- Department of Pharmacy, National Yang Ming Chiao Tung University, Taipei 112
| |
Collapse
|
41
|
Yu H, Kan J, Tang M, Zhu Y, Hu B. Lipopolysaccharide Preconditioning Restricts Microglial Overactivation and Alleviates Inflammation-Induced Depressive-like Behavior in Mice. Brain Sci 2023; 13:brainsci13040549. [PMID: 37190515 DOI: 10.3390/brainsci13040549] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Overactive microglia and severe neuroinflammation play crucial roles in the development of major depressive disorder. Preconditioning with lipopolysaccharide (LPS) provides protection against severe neuroinflammation. However, administering high doses of LPS to mice triggers depressive symptoms. Therefore, the optimal dose of LPS preconditioning needs to be determined by further experiments. LPS preconditioning is an effective agent in anti-inflammation and neuroprotection, but the mechanism by which LPS preconditioning acts in depression remain unclear. This study finds that the anti-inflammation mechanism of low-dose LPS preconditioning is mainly dependent on G-protein-coupled receptor 84 (GPR84). We use low-dose LPS for preconditioning and re-challenged mice or BV2 microglia with high-dose LPS. In addition, RNA-seq is used to explore underlying changes with LPS preconditioning. Low-dose LPS preconditioning reduces the expression of pro-inflammatory mediators and inhibits microglial activation, as well as suppresses the depressive-like behavior when the mice are re-challenged with high-dose LPS. Further investigation reveals that the tolerance-like response in microglia is dependent on the GPR84. Here, we show that low-dose LPS preconditioning can exert anti-inflammation effects and alleviates inflammation-induced depressive-like behavior in mice. As a potential therapeutic target for depression, LPS preconditioning needs to be given further attention regarding its effectiveness and safety.
Collapse
|
42
|
Radford-Smith DE, Anthony DC. Mechanisms of Maternal Diet-Induced Obesity Affecting the Offspring Brain and Development of Affective Disorders. Metabolites 2023; 13:455. [PMID: 36984895 PMCID: PMC10053489 DOI: 10.3390/metabo13030455] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 03/30/2023] Open
Abstract
Depression and metabolic disease are common disorders that share a bidirectional relationship and continue to increase in prevalence. Maternal diet and maternal behaviour both profoundly influence the developmental trajectory of offspring during the perinatal period. At an epidemiological level, both maternal depression and obesity during pregnancy have been shown to increase the risk of neuropsychiatric disease in the subsequent generation. Considerable progress has been made to understand the mechanisms by which maternal obesity disrupts the developing offspring gut-brain axis, priming offspring for the development of affective disorders. This review outlines such mechanisms in detail, including altered maternal care, the maternal microbiome, inflammation, breast milk composition, and maternal and placental metabolites. Subsequently, offspring may be prone to developing gut-brain interaction disorders with concomitant changes to brain energy metabolism, neurotransmission, and behaviour, alongside gut dysbiosis. The gut microbiome may act as a key modifiable, and therefore treatable, feature of the relationship between maternal obesity and the offspring brain function. Further studies examining the relationship between maternal nutrition, the maternal microbiome and metabolites, and offspring neurodevelopment are warranted to identify novel therapeutic targets.
Collapse
Affiliation(s)
- Daniel E. Radford-Smith
- Department of Psychiatry, University of Oxford, Warneford Hospital, Warneford Lane, Oxford OX37JX, UK
- Department of Chemistry, University of Oxford, Mansfield Road, Oxford OX13TA, UK
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| | - Daniel C. Anthony
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX13QT, UK
| |
Collapse
|
43
|
Shin YJ, Lee DY, Kim JY, Heo K, Shim JJ, Lee JL, Kim DH. Effect of fermented red ginseng on gut microbiota dysbiosis- or immobilization stress-induced anxiety, depression, and colitis in mice. J Ginseng Res 2023; 47:255-264. [PMID: 36926604 PMCID: PMC10014181 DOI: 10.1016/j.jgr.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/06/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022] Open
Abstract
Background Red ginseng (RG) alleviates psychiatric disorders. Fermented red ginseng (fRG) alleviates stress-induced gut inflammation. Gut dysbiosis causes psychiatric disorders with gut inflammation. To understand the gut microbiota-mediated action mechanism of RG and fRG against anxiety/depression (AD), we investigated the effects of RG, fRG, ginsenoside Rd, and 20(S)-β-D-glucopyranosyl protopanaxadiol (CK) on gut microbiota dysbiosis-induced AD and colitis in mice. Methods Mice with AD and colitis were prepared by exposing to immobilization stress (IS) or transplanting the feces of patients with ulcerative colitis and depression (UCDF). AD-like behaviors were measured in the elevated plus maze, light/dark transition, forced swimming, and tail suspension tests. Results Oral gavage of UCDF increased AD-like behaviors and induced neuroinflammation, gastrointestinal inflammation, and gut microbiota fluctuation in mice. Oral administration of fRG or RG treatment reduced UCDF-induced AD-like behaviors, hippocampal and hypothalamic IL-6 expression, and blood corticosterone level, whereas UCDF-suppressed hippocampal BDNF+NeuN+ cell population and dopamine and hypothalamic serotonin levels increased. Furthermore, their treatments suppressed UCDF-induced colonic inflammation and partially restored UCDF-induced gut microbiota fluctuation. Oral administration of fRG, RG, Rd, or CK also decreased IS-induced AD-like behaviors, blood IL-6 and corticosterone and colonic IL-6 and TNF-α levels, and gut dysbiosis, while IS-suppressed hypothalamic dopamine and serotonin levels increased. Conclusion Oral gavage of UCDF caused AD, neuroinflammation, and gastrointestinal inflammation in mice. fRG mitigated AD and colitis in UCDF-exposed mice by the regulation of the microbiota-gut-brain axis and IS-exposed mice by the regulation of the hypothalamic-pituitary-adrenal axis.
Collapse
Key Words
- AD, anxiety/depression
- BDNF, brain-derived neurotropic factor
- CK, 20(S)-β-D-glucopyranosyl protopanaxadiol
- ELISA, enzyme-linked immunoassay
- EPMT, elevated plus maze task
- FMT, fecal microbiota transplantation
- FST, forced swimming test
- HPA, hypothalamic–pituitary–adrenal
- IL, interleukin
- IS, immobilization stress
- LDTT, light/dark transition task
- RG, red ginseng
- TNBS, 2,4,6-trinitrobenzenesulfonic acid
- TNF, tumor necrosis factor
- TST, tail suspension test
- UCD, ulcerative colitis and depression
- UCDF, the feces of patients with ulcerative colitis and depression
- depression
- fRG, fermented red ginseng
- fermentation
- ginsenoside Rd
- gut microbiota
- red ginseng
Collapse
Affiliation(s)
- Yoon-Jung Shin
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Yun Lee
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Joo Yun Kim
- R&BD Center, hy Co.Ltd., Yongin, Republic of Korea
| | - Keon Heo
- R&BD Center, hy Co.Ltd., Yongin, Republic of Korea
| | | | | | - Dong-Hyun Kim
- Neurobiota Research Center, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Curcumin promotes microglial M2 polarization and suppresses chronic constriction: Injury-induced neuropathic pain in a rat model of peripheral neuropathy. Nutrition 2023; 109:112004. [PMID: 36931068 DOI: 10.1016/j.nut.2023.112004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023]
Abstract
OBJECTIVES Glia (i.e., astrocyte and microglia) activation in the central nervous system plays a critical role in developing neuropathic pain. Microglia can be activated into proinflammatory (M1) and anti-inflammatory (M2) phenotypes. Switching microglial polarization from M1 to M2 phenotypes represents a novel therapeutic strategy for neuropathic pain. Curcumin has been widely used for its anti-inflammatory and immunomodulatory effects. This study investigated effects of curcumin on astrocyte activation and microglia polarization in the cuneate nucleus (CN) and development of neuropathic pain behavior after chronic constriction injury (CCI) of the median nerve. METHODS Rats were fed with curcumin once daily at a dose of 40, 80, or 120 mg/kg 30 min before and until 7 d after median nerve CCI. Subsequently, mechanical allodynia and thermal hyperalgesia were evaluated using von Frey filaments and plantar tests, respectively. The levels of astrocyte marker, monoclonal glial fibrillary acidic protein; microglia marker, ionized calcium-binding adapter molecule 1; M1 marker, CD86; and M2 marker, CD206 in the cuneate nucleus were determined. Enzyme-linked immunosorbent assay was applied to measure cytokine concentrations. RESULTS Curcumin administration dose-dependently reduced mechanical allodynia and thermal hyperalgesia and decreased monoclonal glial fibrillary acidic protein and ionized calcium-binding adapter molecule 1 immunoreactivity in the ipsilateral cuneate nucleus after CCI. On ultrastructural observation, curcumin treatment was associated with fewer features of activated astrocytes and microglia. Furthermore, CCI rats given curcumin exhibited a decline in CD86 immunoreactivity and proinflammatory cytokine levels but an increase in CD206 immunoreactivity and release of anti-inflammatory cytokines. CONCLUSIONS In our findings, curcumin switches microglial phenotypes from M1 to M2 by suppressing astrocytic activation, reducing proinflammatory cytokine release, promoting anti-inflammatory cytokine production, and contributing to relief of neuropathic pain.
Collapse
|
45
|
Zhu TT, Wang H, Gu HW, Ju LS, Wu XM, Pan WT, Zhao MM, Yang JJ, Liu PM. Melanin-like polydopamine nanoparticles mediating anti-inflammatory and rescuing synaptic loss for inflammatory depression therapy. J Nanobiotechnology 2023; 21:52. [PMID: 36765377 PMCID: PMC9913011 DOI: 10.1186/s12951-023-01807-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Inflammatory depression is closely related to neuroinflammation. However, current anti-inflammatory drugs have low permeability to cross blood-brain barrier with difficulties reaching the central nervous system to provide therapeutic effectiveness. To overcome this limitation, the nano-based drug delivery technology was used to synthesize melanin-like polydopamine nanoparticles (PDA NPs) (~ 250 nm) which can cross the blood-brain barrier. Importantly, PDA NPs with abundant phenolic hydroxyl groups function as excellent free radical scavengers to attenuate cell damage caused by reactive oxygen species or acute inflammation. In vitro experiments revealed that PDA NPs exhibited excellent antioxidative properties. Next, we aimed to investigate the therapeutic effect of PDA NPs on inflammatory depression through intraperitoneal injection to the lipopolysaccharide-induced inflammatory depression model in mice. PDA NPs significantly reversed the depression-like behavior. PDA NPs was also found to reduce the peripheral and central inflammation induced by LPS, showing that alleviated splenomegaly, reduced serum inflammatory cytokines, inhibited microglial activation and restored synaptic loss. Various experiments also showed that PDA NPs had good biocompatibility both in vivo and in vitro. Our work suggested that PDA NPs may be biocompatible nano-drugs in treating inflammatory depression but their clinical application requires further study.
Collapse
Affiliation(s)
- Ting-Ting Zhu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - He Wang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Han-Wen Gu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ling-Sha Ju
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Xin-Miao Wu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Wei-Tong Pan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Ming-Ming Zhao
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| | - Pan-Miao Liu
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
- Neuroscience Research InstituteZhengzhou University Academy of Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
46
|
Zhang Y, Jiang W, Sun W, Guo W, Xia B, Shen X, Fu M, Wan T, Yuan M. Neuroprotective Roles of Apelin-13 in Neurological Diseases. Neurochem Res 2023; 48:1648-1662. [PMID: 36745269 DOI: 10.1007/s11064-023-03869-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/24/2022] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Apelin is a natural ligand for the G protein-coupled receptor APJ, and the apelin/APJ system is widely distributed in vivo. Among the apelin family, apelin-13 is the major apelin isoform in the central nervous system and cardiovascular system, and is involved in the regulation of various physiopathological mechanisms such as apoptosis, neuroinflammation, angiogenesis, and oxidative stress. Apelin is currently being extensively studied in the nervous system, and apelin-13 has been shown to be associated with the onset and progression of a variety of neurological disorders, including stroke, neurodegenerative diseases, epilepsy, spinal cord injury (SCI), and psychiatric diseases. This study summarizes the pathophysiological roles of apelin-13 in the development and progression of neurological related diseases.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiwei Jiang
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Wenjie Sun
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Weiming Guo
- Department of Sports Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Beibei Xia
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China
| | - Teng Wan
- Department of Neurology, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China. .,Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| | - Mei Yuan
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
47
|
Cavaleri D, Bartoli F, Capogrosso CA, Guzzi P, Moretti F, Riboldi I, Misiak B, Kishi T, Rubin RT, Fuchs D, Crocamo C, Carrà G. Blood concentrations of neopterin and biopterin in subjects with depression: A systematic review and meta-analysis. Prog Neuropsychopharmacol Biol Psychiatry 2023; 120:110633. [PMID: 36089162 DOI: 10.1016/j.pnpbp.2022.110633] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 10/14/2022]
Abstract
INTRODUCTION Pteridines, such as neopterin, biopterin, and tetrahydrobiopterin (BH4), may be involved in depression pathophysiology owing to their links to immune-inflammatory response, oxidative and nitrosative stress, and monoaminergic transmission. Nonetheless, studies assessing pteridines in depression are inconsistent. We conducted a systematic review and meta-analysis of observational studies comparing blood pteridine concentrations between subjects with depression and healthy controls (HCs). METHODS We searched Embase, MEDLINE, and PsycInfo for articles indexed through November 2021. Study quality was appraised, evaluating age and gender comparability between groups, sample representativeness, and methods to assess depression. Random-effects meta-analyses were carried out, generating pooled standardized mean differences (SMDs). Heterogeneity across studies was estimated using the I2 statistic. RESULTS Twenty-four studies, involving 3075 subjects, were included. Individuals with depression showed blood neopterin concentrations higher than HCs (k = 19; SMD = 0.36; p < 0.001) with moderate heterogeneity across studies (I2 = 58.2%). No moderating role of age, gender, or type of blood sample was found. Sensitivity analyses showed no impact of inconsistency and quality of studies on findings. Neopterin concentrations were higher among individuals with major depressive disorder compared to HCs (SMD = 0.44; p < 0.001). This held true also when considering only drug-free subjects (SMD = 0.68; p = 0.003). No differences in biopterin concentrations were found between subjects with depression and HCs (k = 5; SMD = -0.35; p = 0.086), though this result was limited by inconsistency of findings (I2 = 77.9%) and quality of studies. Finally, no sufficient data were available for a meta-analysis on BH4. CONCLUSIONS As a whole, our work partly supports the hypothesis of an imbalance of pteridine metabolism in depression.
Collapse
Affiliation(s)
- Daniele Cavaleri
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Francesco Bartoli
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy.
| | - Chiara A Capogrosso
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Pierluca Guzzi
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Federico Moretti
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Ilaria Riboldi
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Błażej Misiak
- Department of Psychiatry, Division of Consultation Psychiatry and Neuroscience, Wroclaw Medical University, Pasteura 10 Street, 50-367 Wroclaw, Poland
| | - Taro Kishi
- Department of Psychiatry, Fujita Health University School of Medicine, Toyoake, Aichi 470-1192, Japan
| | - Robert T Rubin
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, United States; Community Memorial Health System, Ventura County Medical Center, 147 N Brent St, Ventura, CA 93003, United States
| | - Dietmar Fuchs
- Institute of Biological Chemistry, Biocentre, Medical University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Cristina Crocamo
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Giuseppe Carrà
- Department of Medicine and Surgery, University of Milano-Bicocca, via Cadore 48, 20900 Monza, Italy; Division of Psychiatry, University College London, Maple House 149, London W1T 7BN, United Kingdom
| |
Collapse
|
48
|
Wang S, Ji T, Wang L, Qu Y, Wang X, Wang W, Lv M, Wang Y, Li X, Jiang P. Exploration of the mechanism by which Huangqi Guizhi Wuwu decoction inhibits Lps-induced inflammation by regulating macrophage polarization based on network pharmacology. BMC Complement Med Ther 2023; 23:8. [PMID: 36624435 PMCID: PMC9830836 DOI: 10.1186/s12906-022-03826-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/22/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Huangqi Guizhi Wuwu decoction (HQGZWWD) is a traditional Chinese herbal medicine formulation with significant anti-inflammatory activity. However, its underlying mechanism remains unknown. Through network pharmacology and experimental validation, this study aimed to examine the potential mechanism of HQGZWWD in regulating macrophage polarization and inflammation. METHODS The active components were obtained from the Traditional Chinese Medicine Systems Pharmacology database and Analysis Platform (TCMSP), whereas the corresponding targets were obtained from the TCMSP and Swiss Target Prediction database. The GeneCards database identified targets associated with macrophage polarization and inflammation. Multiple networks were developed to identify the key compounds, principal biological processes, and pathways of HQGZWWD that regulate macrophage polarization and inflammation. Autodock Vina is utilized to assess the binding ability between targets and active compounds. Finally, confirm the experiment's central hypothesis. Human histiocytic lymphoma (U-937) cells were transformed into M1 macrophages following stimulation with Lipopolysaccharide (LPS) to evaluate the effect of HQGZWWD drug-containing mouse serum (HQGZWWD serum) on regulating macrophage polarization and inflammation. RESULTS A total of 54 active components and 859 HQGZWWD targets were obtained. There were 9972 targets associated with macrophage polarization and 11,109 targets associated with inflammation. After screening, 34 overlapping targets were identified, of which 5 were identified as central targets confirmed by experiments, including the α7 nicotinic acetylcholine receptor (α7 nAchR), interleukin 6 (IL-6), Interleukin-1 beta (IL-1β), interleukin 10 (IL-10) and growth factor beta (TGF-β1). Pathway enrichment analysis revealed that 34 overlapping targets were enriched in multiple pathways associated with macrophage polarization and inflammation, including the TGF beta signaling pathway, NF-kappa B signaling pathway, JAK-STAT signaling pathway, and TNF signaling pathway. Molecular docking confirmed that the majority of HQGZWWD's compounds can bind to the target. In vitro experiments, HQGZWWD serum was shown to up-regulate the expression of α7 nAchR, reduce the number of M1 macrophages, stimulate the production of M2 macrophages, inhibit the expression of pro-inflammatory cytokines IL-6 and IL1-β, and increase the expression of anti-inflammatory cytokines IL-10 and TGF-β1. CONCLUSION HQGZWWD can regulate the number of M1/M2 macrophages and the level of inflammatory cytokines, and the underlying mechanism may be related to the up-regulation of α7 nAchR expression.
Collapse
Affiliation(s)
- Sutong Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Tianshu Ji
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Lin Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yiwei Qu
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Xinhui Wang
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Wenting Wang
- grid.464481.b0000 0004 4687 044XNational Clincial Research Center for Cardiovascular Diseases of Traditional Chinese Medicine, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091 China
| | - Mujie Lv
- grid.464402.00000 0000 9459 9325Shandong University of Traditional Chinese Medicine, Jinan, 250014 Shandong China
| | - Yongcheng Wang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Xiao Li
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| | - Ping Jiang
- grid.479672.9Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011 China
| |
Collapse
|
49
|
Liang Z, Lou Y, Hao Y, Li H, Feng J, Liu S. The Relationship of Astrocytes and Microglia with Different Stages of Ischemic Stroke. Curr Neuropharmacol 2023; 21:2465-2480. [PMID: 37464832 PMCID: PMC10616922 DOI: 10.2174/1570159x21666230718104634] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 07/20/2023] Open
Abstract
Ischemic stroke is the predominant cause of severe morbidity and mortality worldwide. Post-stroke neuroinflammation has recently received increasing attention with the aim of providing a new effective treatment strategy for ischemic stroke. Microglia and astrocytes are major components of the innate immune system of the central nervous system. They can be involved in all phases of ischemic stroke, from the early stage, contributing to the first wave of neuronal cell death, to the late stage involving phagocytosis and repair. In the early stage of ischemic stroke, a vicious cycle exists between the activation of microglia and astrocytes (through astrocytic connexin 43 hemichannels), aggravating neuroinflammatory injury post-stroke. However, in the late stage of ischemic stroke, repeatedly activated microglia can induce the formation of glial scars by triggering reactive astrogliosis in the peri-infarct regions, which may limit the movement of activated microglia in reverse and restrict the diffusion of inflammation to healthy brain tissues, alleviating the neuroinflammatory injury poststroke. In this review, we elucidated the various roles of astrocytes and microglia and summarized their relationship with neuroinflammation. We also examined how astrocytes and microglia influence each other at different stages of ischemic stroke. Several potential therapeutic approaches targeting astrocytes and microglia in ischemic stroke have been reviewed. Understanding the details of astrocytemicroglia interaction processes will contribute to a better understanding of the mechanisms underlying ischemic stroke, contributing to the identification of new therapeutic interventions.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
50
|
Yang H, Zhang Y, Duan Q, Ni K, Jiao Y, Zhu J, Sun J, Zhang W, Ma Z. Dehydrocorydaline alleviates sleep deprivation-induced persistent postoperative pain in adolescent mice through inhibiting microglial P2Y 12 receptor expression in the spinal cord. Mol Pain 2023; 19:17448069231216234. [PMID: 37940138 DOI: 10.1177/17448069231216234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023] Open
Abstract
During adolescence, a second period of central nervous system (CNS) plasticity that follows the fetal period, which involves sleep deprivation (SD), becomes apparent. SD during adolescence may result in abnormal development of neural circuits, causing imbalance in neuronal excitation and inhibition, which not only results in pain, but increases the chances of developing emotion disorders in adulthood, such as anxiety and depression. The quantity of surgeries during adolescence is also consistently on the rise, yet the impact and underlying mechanism of preoperative SD on postoperative pain remain unexplored. This study demonstrates that preoperative SD induces upregulation of the P2Y12 receptor, which is exclusively expressed on spinal microglia, and phosphorylation of its downstream signaling pathway p38Mitogen-activated protein/Nuclear transcription factor-κB (p38MAPK/NF-κB)in spinal microglia, thereby promoting microglia activation and microglial transformation into the proinflammatory M1 phenotype, resulting in increased expression of proinflammatory cytokines that exacerbate persisting postoperative incisional pain in adolescent mice. Both intrathecal minocycline (a microglia activation inhibitor) and MRS2395 (a P2Y12 receptor blocker) effectively suppressed microglial activation and proinflammatory cytokine expression. Interestingly, supplementation with dehydrocorydaline (DHC), an extract of Rhizoma Corydalis, inhibited the P2Y12/p38MAPK/NF-κB signaling pathway, microglia activation, and expression of pro-inflammatory cytokines in the model mice. Taken together, the results indicate that the P2Y12 receptor and microglial activation are important factors in persistent postoperative pain caused by preoperative SD in adolescent mice and that DHC has analgesic effects by acting on these targets.
Collapse
Affiliation(s)
- Haikou Yang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Anesthesiology, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Yufeng Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
- Department of Anesthesiology, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Qingling Duan
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Kun Ni
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Jiao
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jixiang Zhu
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jian Sun
- Department of Anesthesiology, Affiliated Hospital of Yang Zhou University Medical College, Huai'an Maternal and Child Health Care Center, Huai'an, China
| | - Wei Zhang
- Department of Anesthesiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhengliang Ma
- Department of Anesthesiology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|