1
|
Jeong J, Gasparyan M, Choi J. Advancing the quantitative understanding of adverse outcome pathways: current status, methodologies, and future directions. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2025; 44:614-623. [PMID: 39864436 DOI: 10.1093/etojnl/vgae063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/28/2025]
Abstract
An adverse outcome pathway (AOP) framework maps the sequence of events leading to adverse outcomes from chemical exposures, providing a mechanistic understanding often absent in traditional methods. The quantitative AOP (qAOP) advances AOP by integrating quantitative data and mathematical modeling, thereby providing a more precise comprehension of relationships between molecular initiating events, key events, and adverse outcomes. This review critically examines three primary methodologies: systems toxicology, regression modeling, and Bayesian network modeling, highlighting their strengths, limitations, and specific data requirements within toxicology. Through an analysis of current methodologies and challenges, this review emphasizes the integration of experimental and computational approaches to elucidate key event relationships and proposes strategies for overcoming limitations through standardized protocols and advanced computational tools. By outlining future research directions and the potential of qAOPs to transform chemical risk assessment, this review aims to contribute to the advancement of regulatory science and the protection of public health and the environment.
Collapse
Affiliation(s)
- Jaeseong Jeong
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| | - Manvel Gasparyan
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| | - Jinhee Choi
- School of Environmental Engineering, University of Seoul, Seoul, Korea
| |
Collapse
|
2
|
Wang R, Liu Y, Fan L, Ma N, Yan Q, Chen C, Wang W, Ren Z, Ning X, Ku T, Sang N. Ultrafine Particulate Matter Exacerbates the Risk of Delayed Neural Differentiation: Modulation Role of METTL3-Mediated m 6A Modification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:2974-2986. [PMID: 39903687 DOI: 10.1021/acs.est.4c09310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Air pollution, especially from ultrafine particles (PM0.1, ≤0.1 μm), is increasingly recognized for its detrimental effects on health. The influence of PM0.1 on neurodevelopmental disorders and its underlying mechanisms remain incompletely understood but are of significant concern. Through an investigation using mouse embryonic stem cells (mESCs), our study has uncovered disruptions in cell cycle dynamics, reduced neural precursor formation, and impaired neurogenesis during mESC neural differentiation as a result of PM0.1-induced neurodevelopmental toxicity. By employing N6-methyladenosine (m6A) methylated RNA immunoprecipitation sequencing and bioinformatics, we identified Zic1 as a key target of PM0.1-induced developmental disturbances. Our mechanistic findings indicate that PM0.1 enhances m6A methylation of Zic1 by upregulating Mettl3, leading to decreased mRNA stability and expression of this gene. Furthermore, the efficacy of the METTL3 inhibitor in alleviating nerve differentiation impairments emphasizes the significance of this pathway. In addition, source analysis, molecular docking, and toxicity analyses show that PAHs with higher ring structures in PM0.1 from combustion sources competitively bind to METTL3, potentially exacerbating neurodevelopmental toxicity. This study not only underscores the severe impact of PM0.1 on neurodevelopment but also reveals the pivotal role of m6A modification in mediating these effects, providing valuable insights and potential therapeutic targets for mitigating PM0.1-related health risks.
Collapse
Affiliation(s)
- Rui Wang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Yutong Liu
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Lifan Fan
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nanxin Ma
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Qiqi Yan
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Chen Chen
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Wenhao Wang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Zhihua Ren
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xia Ning
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Tingting Ku
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Nan Sang
- Shanxi Key Laboratory of Coal-Based Emerging Pollutant Identification and Risk Control, Research Center of Environment and Health, College of Environment and Resource, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
3
|
Park JJ, Faustman EM. Silver nanoparticle (AgNP), neurotoxicity, and putative adverse outcome pathway (AOP): A review. Neurotoxicology 2025; 108:11-27. [PMID: 39929369 DOI: 10.1016/j.neuro.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 01/13/2025] [Accepted: 02/06/2025] [Indexed: 02/23/2025]
Abstract
Various silver nanoparticles (AgNPs) exist with different sizes, coatings, and shapes. AgNPs have unique physical and chemical properties, such as high surface-to-volume ratio and antimicrobial properties, which allow them to be used in a wide array of applications in consumer products and medical applications, including clothing, cosmetics, food packaging, medical devices, and wound dressings. They are also one of the most studied engineered nanomaterials (ENMs). Though the liver and lung have been identified as the primary targets of AgNP exposures, an increasing number of studies have reported accumulations of AgNPs in the brains of AgNP-exposed animals. These findings have raised concerns because the brain plays a critical function in our body and may have difficulty clearing AgNPs, unlike the liver and lung. Studies have been conducted to investigate potential neurotoxicity effects of AgNP exposures, but they use various types of AgNPs and routes of administration, which makes it difficult to compare across studies. Therefore, the goal of this review was to (1) assess factors that may affect AgNP-induced neurotoxicity, (2) identify potential mechanisms of neurotoxicity exerted by AgNPs, (3) review existing in vitro dose-response and in vivo exposure-response AgNP-induced neurotoxicity studies, and (4) provide an example application of benchmark doses (BMDs) in comparing across different studies. A combination of aggregate exposure pathway (AEP) and adverse outcome pathway (AOP) framework was utilized to link AgNP exposure sources and routes to molecular initiating events (MIEs) and then to adverse neurotoxicity outcomes at the cellular, organ, organism, and population levels. This review is the first to propose an AEP/AOP specific to AgNP-induced neurotoxicity, which may contribute toward identifying plausible key event relationships between MIEs and adverse neurotoxicity outcomes and improving the current risk assessment of AgNPs.
Collapse
Affiliation(s)
- Julie Juyoung Park
- Center for Drug Evaluation and Research, Food and Drug Administration, White Oak, MD, USA
| | - Elaine M Faustman
- Institute for Risk Analysis and Risk Communication, University of Washington, Seattle, WA, USA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
4
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
5
|
Hughes S, Hessel EVS. Zebrafish and nematodes as whole organism models to measure developmental neurotoxicity. Crit Rev Toxicol 2024; 54:330-343. [PMID: 38832580 DOI: 10.1080/10408444.2024.2342448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/05/2024] [Indexed: 06/05/2024]
Abstract
Despite the growing epidemiological evidence of an association between toxin exposure and developmental neurotoxicity (DNT), systematic testing of DNT is not mandatory in international regulations for admission of pharmaceuticals or industrial chemicals. However, to date around 200 compounds, ranging from pesticides, pharmaceuticals and industrial chemicals, have been tested for DNT in the current OECD test guidelines (TG-443 or TG-426). There are calls for the development of new approach methodologies (NAMs) for DNT, which has resulted in a DNT testing battery using in vitro human cell-based assays. These assays provide a means to elucidate the molecular mechanisms of toxicity in humans which is lacking in animal-based toxicity tests. However, cell-based assays do not represent all steps of the complex process leading to DNT. Validated models with a multi-organ network of pathways that interact at the molecular, cellular and tissue level at very specific timepoints in a life cycle are currently missing. Consequently, whole model organisms are being developed to screen for, and causally link, new molecular targets of DNT compounds and how they affect whole brain development and neurobehavioral endpoints. Given the practical and ethical restraints associated with vertebrate testing, lower animal models that qualify as 3 R (reduce, refine and replace) models, including the nematode (Caenorhabditis elegans) and the zebrafish (Danio rerio) will prove particularly valuable for unravelling toxicity pathways leading to DNT. Although not as complex as the human brain, these 3 R-models develop a complete functioning brain with numerous neurodevelopmental processes overlapping with human brain development. Importantly, the main signalling pathways relating to (neuro)development, metabolism and growth are highly conserved in these models. We propose the use of whole model organisms specifically zebrafish and C. elegans for DNT relevant endpoints.
Collapse
Affiliation(s)
- Samantha Hughes
- Department of Environmental Health and Toxicology, A-LIFE, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Ellen V S Hessel
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
6
|
Zhang J, Zhang J, Huang X, Xie F, Dai B, Ma T, Zeng J. Combined toxicity and adverse outcome pathways of common pesticides on Chlorella pyrenoidosa. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:611-621. [PMID: 38329146 DOI: 10.1039/d3em00525a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Pesticides due to their extensive use have entered the soil and water environment through various pathways, causing great harm to the environment. Herbicides and insecticides are common pesticides with long-term biological toxicity and bioaccumulation, which can harm the human body. The concept of the adverse outcome pathway (AOP) involves systematically analyzing the response levels of chemical mixtures to health-related indicators at the molecular and cellular levels. The AOP correlates the structures of chemical pollutants, toxic molecular initiation events and adverse outcomes of biological toxicity, providing a new model for toxicity testing, prediction, and evaluation of pollutants. Therefore, typical pesticides including diquat (DIQ), cyanazine (CYA), dipterex (DIP), propoxur (PRO), and oxamyl (OXA) were selected as research objects to explore the combined toxicity of typical pesticides on Chlorella pyrenoidosa (C. pyrenoidosa) and their adverse outcome pathways (AOPs). The mixture systems of pesticides were designed by the direct equipartition ray (EquRay) method and uniform design ray (UD-Ray) method. The toxic effects of single pesticides and their mixtures were systematically investigated by the time-dependent microplate toxicity analysis (t-MTA) method. The interactions of their mixtures were analyzed by the concentration addition model (CA) and the deviation from the CA model (dCA). The toxicity data showed a good concentration-effect relationship; the toxicities of five pesticides were different and the order was CYA > DIQ > OXA > PRO > DIP. Binary, ternary and quaternary mixture systems exhibited antagonism, while quinary mixture systems exhibited an additive effect. The AOP of pesticides showed that an excessive accumulation of peroxide in green algae cells led to a decline in stress resistance, inhibition of the synthesis of chlorophyll and protein in algal cells, destruction of the cellular structure, and eventually led to algal cell death.
Collapse
Affiliation(s)
- Jing Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Jin Zhang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Xianhuai Huang
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Fazhi Xie
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Biya Dai
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Tianyi Ma
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| | - Jianping Zeng
- Key Laboratory of Water Pollution Control and Wastewater Resource of Anhui Province, College of Environment and Energy Engineering, Anhui Jianzhu University, Hefei 230601, PR China.
| |
Collapse
|
7
|
Jaylet T, Coustillet T, Smith NM, Viviani B, Lindeman B, Vergauwen L, Myhre O, Yarar N, Gostner JM, Monfort-Lanzas P, Jornod F, Holbech H, Coumoul X, Sarigiannis DA, Antczak P, Bal-Price A, Fritsche E, Kuchovska E, Stratidakis AK, Barouki R, Kim MJ, Taboureau O, Wojewodzic MW, Knapen D, Audouze K. Comprehensive mapping of the AOP-Wiki database: identifying biological and disease gaps. FRONTIERS IN TOXICOLOGY 2024; 6:1285768. [PMID: 38523647 PMCID: PMC10958381 DOI: 10.3389/ftox.2024.1285768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
Introduction: The Adverse Outcome Pathway (AOP) concept facilitates rapid hazard assessment for human health risks. AOPs are constantly evolving, their number is growing, and they are referenced in the AOP-Wiki database, which is supported by the OECD. Here, we present a study that aims at identifying well-defined biological areas, as well as gaps within the AOP-Wiki for future research needs. It does not intend to provide a systematic and comprehensive summary of the available literature on AOPs but summarizes and maps biological knowledge and diseases represented by the already developed AOPs (with OECD endorsed status or under validation). Methods: Knowledge from the AOP-Wiki database were extracted and prepared for analysis using a multi-step procedure. An automatic mapping of the existing information on AOPs (i.e., genes/proteins and diseases) was performed using bioinformatics tools (i.e., overrepresentation analysis using Gene Ontology and DisGeNET), allowing both the classification of AOPs and the development of AOP networks (AOPN). Results: AOPs related to diseases of the genitourinary system, neoplasms and developmental anomalies are the most frequently investigated on the AOP-Wiki. An evaluation of the three priority cases (i.e., immunotoxicity and non-genotoxic carcinogenesis, endocrine and metabolic disruption, and developmental and adult neurotoxicity) of the EU-funded PARC project (Partnership for the Risk Assessment of Chemicals) are presented. These were used to highlight under- and over-represented adverse outcomes and to identify and prioritize gaps for further research. Discussion: These results contribute to a more comprehensive understanding of the adverse effects associated with the molecular events in AOPs, and aid in refining risk assessment for stressors and mitigation strategies. Moreover, the FAIRness (i.e., data which meets principles of findability, accessibility, interoperability, and reusability (FAIR)) of the AOPs appears to be an important consideration for further development.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | | | - Nicola M. Smith
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Barbara Viviani
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Birgitte Lindeman
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Lucia Vergauwen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Oddvar Myhre
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Nurettin Yarar
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
| | - Johanna M. Gostner
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Medical Biochemistry, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense, Denmark
| | - Xavier Coumoul
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Dimosthenis A. Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
- National Hellenic Research Foundation, Athens, Greece
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Philipp Antczak
- Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ellen Fritsche
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
- Heinrich-Heine-University, Düsseldorf, Germany
- Swiss Centre for Applied Human Toxicology, Basel, Switzerland
- DNTOX GmbH, Düsseldorf, Germany
| | - Eliska Kuchovska
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Antonios K. Stratidakis
- Science, Technology and Society Department, Environmental Health Engineering, University School for Advanced Studies (IUSS), Pavia, Italy
| | - Robert Barouki
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| | - Min Ji Kim
- Inserm UMR-S 1124, Université Sorbonne Paris Nord, Bobigny, Paris, France
| | - Olivier Taboureau
- Université Paris Cité, BFA, Team CMPLI, Inserm U1133, CNRS UMR 8251, Paris, France
| | - Marcin W. Wojewodzic
- Norwegian Institute of Public Health, Division of Climate and Environment, Oslo, Norway
- Cancer Registry of Norway, NIPH, Oslo, Norway
| | - Dries Knapen
- Zebrafishlab, Department of Veterinary Sciences, Veterinary Physiology and Biochemistry, University of Antwerp, Wilrijk, Belgium
| | - Karine Audouze
- Université Paris Cité, Inserm UMR-S 1124 T3S, Paris, France
| |
Collapse
|
8
|
Berridge BR, Bucher JR, Sistare F, Stevens JL, Chappell GA, Clemons M, Snow S, Wignall J, Shipkowski KA. Enabling novel paradigms: a biological questions-based approach to human chemical hazard and drug safety assessment. Toxicol Sci 2024; 198:4-13. [PMID: 38134427 PMCID: PMC10901149 DOI: 10.1093/toxsci/kfad124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Throughput needs, costs of time and resources, and concerns about the use of animals in hazard and safety assessment studies are fueling a growing interest in adopting new approach methodologies for use in product development and risk assessment. However, current efforts to define "next-generation risk assessment" vary considerably across commercial and regulatory sectors, and an a priori definition of the biological scope of data needed to assess hazards is generally lacking. We propose that the absence of clearly defined questions that can be answered during hazard assessment is the primary barrier to the generation of a paradigm flexible enough to be used across varying product development and approval decision contexts. Herein, we propose a biological questions-based approach (BQBA) for hazard and safety assessment to facilitate fit-for-purpose method selection and more efficient evidence-based decision-making. The key pillars of this novel approach are bioavailability, bioactivity, adversity, and susceptibility. This BQBA is compared with current hazard approaches and is applied in scenarios of varying pathobiological understanding and/or regulatory testing requirements. To further define the paradigm and key questions that allow better prediction and characterization of human health hazard, a multidisciplinary collaboration among stakeholder groups should be initiated.
Collapse
Affiliation(s)
- Brian R Berridge
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| | - John R Bucher
- Retired (Division of Translational Toxicology, NIEHS), Hillsborough, North Carolina 27278, USA
| | | | - James L Stevens
- Paradox Found Consulting Services, Apex, North Carolina 27523, USA
| | | | | | | | | | - Kelly A Shipkowski
- Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
9
|
Pitzer EM, Shafer TJ, Herr DW. Identification of neurotoxicology (NT)/developmental neurotoxicology (DNT) adverse outcome pathways and key event linkages with in vitro DNT screening assays. Neurotoxicology 2023; 99:184-194. [PMID: 37866692 DOI: 10.1016/j.neuro.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/14/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
There is a need to assess compounds reliably and quickly for neurotoxicity (NT) and developmental neurotoxicity (DNT). Adverse outcome pathways (AOPs) enable the mapping of molecular events to an apical endpoint in a chemical agnostic manner and have begun to be applied in NT and DNT testing frameworks. We assessed the status of NT/DNT AOPs in the AOP-Wiki (ca. 2/1/23; https://aopwiki.org/), to characterize the state of AOP development, identify strengths and knowledge gaps, elucidate areas for improvement, and describe areas for future focus. AOPs in the Wiki database were assessed for inclusion of NT/DNT molecular events and endpoints, AOP development and endorsement, as well as the linkages of key neurodevelopmental processes with in vitro new approach methods (NAMs). This review found that 41 AOPs have been proposed detailing NT/DNT, of which eight were endorsed by working parties in OECD. Further, this review determined that learning and memory is included as an adverse outcome in eight NT/DNT AOPS, often without distinction regarding the varying forms of learning and memory, regional specification, temporal dynamics, or acquisition mechanisms involved. There is also an overlap with key events (KEs) and in vitro NAMs, which synaptogenesis appeared as a common process. Overall, progress on NT/DNT AOPs could be expanded, adding in modes of action that are missing, improvement in defining apical endpoints, as well as utilizing NAMs further to develop AOPs and identify gaps in current knowledge.
Collapse
Affiliation(s)
- Emily M Pitzer
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Timothy J Shafer
- Center for Computational Toxicology and Exposure, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - David W Herr
- Center for Public Health and Environmental Assessment, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| |
Collapse
|
10
|
Hirano T, Ikenaka Y, Nomiyama K, Honda M, Suzuki N, Hoshi N, Tabuchi Y. An adverse outcome pathway-based approach to assess the neurotoxicity by combined exposure to current-use pesticides. Toxicology 2023; 500:153687. [PMID: 38040083 DOI: 10.1016/j.tox.2023.153687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/03/2023]
Abstract
Exposure to multiple pesticides in daily life has become an important public health concern. However, the combined effects of pesticide mixtures have not been fully elucidated by the conventional toxicological testing used for individual chemicals. Grouping of chemicals by mode of action using common key events (KEs) in the adverse outcome pathway (AOP) as endpoints could be applied for efficient risk assessment of combined exposure to multiple chemicals. The purpose of this study was to investigate whether exposure to multiple pesticides has synergistic neurotoxic effects on mammalian nervous systems. According to the AOP-based approach, we evaluated the effects of 10 current-use pesticides (4 neonicotinoids, 4 pyrethroids and 2 phenylpyrazoles) on the common KEs in AOPs for neurotoxicity, such as KEs involving mitochondrial and proteolytic functions, in a mammalian neuronal cell model. Our data showed that several pyrethroids and phenylpyrazoles partly shared the effects on several common KEs, including decreases in mitochondrial membrane potential and proteasome activity and increases in autophagy activity. Furthermore, we also found that combined exposure to a type-I pyrethroid permethrin or a type-II pyrethroid deltamethrin and the phenylpyrazole fipronil decreased the cell viability and the benchmark doses much more than either single exposure, indicating that the pair exhibited synergistic effects, since the combination indexes were less than 1. These findings revealed that novel pairs of different classes of pesticides with similar effects on common KEs exhibited synergistic neurotoxicity and provide new insights into the risk assessment of combined exposure to multiple chemicals.
Collapse
Affiliation(s)
- Tetsushi Hirano
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan.
| | - Yoshinori Ikenaka
- Translational Research Unit, Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; One Health Research Center, Hokkaido University,Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan; Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma-machi, Ishikawa 920-1192, Japan
| | - Nobuo Suzuki
- Noto Marine Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Ogi, Noto-cho, Ishikawa 927-0553, Japan
| | - Nobuhiko Hoshi
- Department of Animal Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Kobe, Hyogo 657-8501, Japan
| | - Yoshiaki Tabuchi
- Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| |
Collapse
|
11
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
12
|
Ali Daoud Y, Tebby C, Beaudouin R, Brochot C. Development of a physiologically based toxicokinetic model for lead in pregnant women: The role of bone tissue in the maternal and fetal internal exposure. Toxicol Appl Pharmacol 2023; 476:116651. [PMID: 37549741 DOI: 10.1016/j.taap.2023.116651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/09/2023]
Abstract
Epidemiological studies have shown associations between prenatal exposure to lead (Pb) and neurodevelopmental effects in young children. Prenatal exposure is generally characterized by measuring the concentration in the umbilical cord at delivery or in the maternal blood during pregnancy. To assess internal Pb exposure during prenatal life, we developed a pregnancy physiologically based pharmacokinetic (p-PBPK) model that to simulates Pb levels in blood and target tissues in the fetus, especially during critical periods for brain development. An existing Pb PBPK model was adapted to pregnant women and fetuses. Using data from literature, both the additional maternal bone remodeling, that causes Pb release into the blood, and the Pb placental transfers were estimated by Bayesian inference. Additional maternal bone remodeling was estimated to start at 21.6 weeks. Placental transfers were estimated between 4.6 and 283 L.day-1 at delivery with high interindividual variability. Once calibrated, the p-PBPK model was used to simulate fetal exposure to Pb. Internal fetal exposure greatly varies over the pregnancy with two peaks of Pb levels in blood and brain at the end of the 1st and 3rd trimesters. Sensitivity analysis shows that the fetal blood lead levels are affected by the maternal burden of bone Pb via maternal bone remodeling and by fetal bone formation at different pregnancy stages. Coupling the p-PBPK model with an effect model such as an adverse outcome pathway could help to predict the effects on children's neurodevelopment.
Collapse
Affiliation(s)
- Yourdasmine Ali Daoud
- Experimental toxicology and modeling unit (MIV/TEAM), Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Péritox, UMR-I 01, University of Picardie Jules Verne, 80025 Amiens, France
| | - Cleo Tebby
- Experimental toxicology and modeling unit (MIV/TEAM), Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France.
| | - Rémy Beaudouin
- Experimental toxicology and modeling unit (MIV/TEAM), Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Sebio, UMR-I 02, Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France
| | - Céline Brochot
- Experimental toxicology and modeling unit (MIV/TEAM), Institut National de l'Environnement Industriel et des Risques, 60550 Verneuil-en-Halatte, France; Certara UK Ltd, Simcyp Division, Sheffield, UK
| |
Collapse
|
13
|
Cervetto C, Pistollato F, Amato S, Mendoza-de Gyves E, Bal-Price A, Maura G, Marcoli M. Assessment of neurotransmitter release in human iPSC-derived neuronal/glial cells: a missing in vitro assay for regulatory developmental neurotoxicity testing. Reprod Toxicol 2023; 117:108358. [PMID: 36863571 PMCID: PMC10112275 DOI: 10.1016/j.reprotox.2023.108358] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Human induced pluripotent stem cell (hiPSC)-derived neural stem cells (NSCs) and their differentiated neuronal/glial derivatives have been recently considered suitable to assess in vitro developmental neurotoxicity (DNT) triggered by exposure to environmental chemicals. The use of human-relevant test systems combined with in vitro assays specific for different neurodevelopmental events, enables a mechanistic understanding of the possible impact of environmental chemicals on the developing brain, avoiding extrapolation uncertainties associated with in vivo studies. Currently proposed in vitro battery for regulatory DNT testing accounts for several assays suitable to study key neurodevelopmental processes, including NSC proliferation and apoptosis, differentiation into neurons and glia, neuronal migration, synaptogenesis, and neuronal network formation. However, assays suitable to measure interference of compounds with neurotransmitter release or clearance are at present not included, which represents a clear gap of the biological applicability domain of such a testing battery. Here we applied a HPLC-based methodology to measure the release of neurotransmitters in a previously characterized hiPSC-derived NSC model undergoing differentiation towards neurons and glia. Glutamate release was assessed in control cultures and upon depolarization, as well as in cultures repeatedly exposed to some known neurotoxicants (BDE47 and lead) and chemical mixtures. Obtained data indicate that these cells have the ability to release glutamate in a vesicular manner, and that both glutamate clearance and vesicular release concur in the maintenance of extracellular glutamate levels. In conclusion, analysis of neurotransmitter release is a sensitive readout that should be included in the envisioned battery of in vitro assays for DNT testing.
Collapse
Affiliation(s)
- Chiara Cervetto
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Centro 3R, Pisa, Italy.
| | | | - Sarah Amato
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre, JRC, Ispra, Italy.
| | - Guido Maura
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy
| | - Manuela Marcoli
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Italy; Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, Centro 3R, Pisa, Italy.
| |
Collapse
|
14
|
Metruccio F, Battistoni M, Di Renzo F, Moretto A, Menegola E. Moderate alcohol consumption during pregnancy increases potency of two different drugs (the antifungal fluconazole and the antiepileptic valproate) in inducing craniofacial defects: prediction by the in vitro rat whole embryo culture. Arch Toxicol 2023; 97:619-629. [PMID: 36385218 PMCID: PMC9859839 DOI: 10.1007/s00204-022-03410-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/03/2022] [Indexed: 11/17/2022]
Abstract
The prenatal exposure to ethanol (Eth), fluconazole (FLUCO) and sodium valproate (VPA) is related to effects on development, producing characteristic syndromic pictures. Among embryotoxic effects described for the three molecules, the alteration on craniofacial morphogenesis is a common feature in humans and animal models, including rodent embryos developed in vitro. The aim of the present work is to evaluate the developmental effects of low Eth serum concentration (17 mM, corresponding to the legal limit to drive in UK, USA, Canada, and many other countries) in mixture with increasing realistic concentrations of the antifungal drug FLUCO (62.5-500 µM) or with increasing realistic concentrations of the antiepileptic drug VPA (31.25-250 µM). Groups exposed to Eth alone (17-127.5 mM), FLUCO alone (62.5-500 µM) or VPA alone (31.25-750 µM) were also included. The chosen alternative animal model was the post-implantation rat whole embryo culture (WEC). E9.5 embryos were exposed in vitro to the test molecules during the whole test period (48 h, corresponding to the developmental stages characteristics of any vertebrate, for human embryos post-fertilization days 23-31). Data were statistically analyzed and processed for modelling applying the benchmark dose (BMD) and relative potency factor (RPF) approaches. Concentration-related effects on facial outcomes were observed in all experimental groups, with a significant enhancement in the groups co-exposed with Eth in comparison to the single exposures. Data obtained by the present work suggest an additional alert for the assumption of even low levels of alcohol in pregnant women during FLUCO or VPA therapy.
Collapse
Affiliation(s)
| | - Maria Battistoni
- Department of Physics Aldo Pontremoli, Universita` degli Studi di Milano, via Celoria, 16, 20133 Milan, Italy
| | - Francesca Di Renzo
- Department of Environmental Science and Policy, Universita` degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy
| | - Angelo Moretto
- Department of Cardiac Thoracic Vascular and Public Health Science, Università degli Studi di Padova, via Giustiniani 2, 35128 Padua, Italy
| | - Elena Menegola
- Department of Environmental Science and Policy, Universita` degli Studi di Milano, via Celoria, 26, 20133 Milan, Italy
| |
Collapse
|
15
|
Finlayson KA, van de Merwe JP, Leusch FDL. Review of ecologically relevant in vitro bioassays to supplement current in vivo tests for whole effluent toxicity testing - Part 2: Non-apical endpoints. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158094. [PMID: 35987232 DOI: 10.1016/j.scitotenv.2022.158094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 08/03/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
Whole effluent toxicity (WET) testing uses whole animal exposures to assess the toxicity of complex mixtures, like wastewater. These assessments typically include four apical endpoints: mortality, growth, development, and reproduction. In the last decade, there has been a shift to alternative methods that align with the 3Rs to replace, reduce, and refine the use of animals in research. In vitro bioassays can provide a cost-effective, high-throughput, ethical alternative to in vivo assays. In addition, they can potentially include additional, more sensitive, environmentally relevant endpoints than traditional toxicity tests. However, the ecological relevance of these endpoints must be established before they are adopted into regulatory frameworks. This is Part 2 of a two-part review that aims to identify in vitro bioassays that are linked to ecologically relevant endpoints that could be included in WET testing. Part 2 of this review focuses on non-apical endpoints that should be incorporated into WET testing. In addition to the four apical endpoints addressed in Part 1, this review identified seven additional toxic outcomes: endocrine disruption, xenobiotic metabolism, carcinogenicity, oxidative stress, inflammation, immunotoxicity and neurotoxicity. For each, the response at the molecular or cellular level measured in vitro was linked to the response at the organism level through a toxicity pathway. Literature from 2015 to 2020 was used to identify suitable bioassays that could be incorporated into WET testing.
Collapse
Affiliation(s)
| | - Jason P van de Merwe
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| | - Frederic D L Leusch
- Australian Rivers Institute, Griffith University, Australia; School of Environment and Science, Griffith University, Gold Coast, Australia
| |
Collapse
|
16
|
Kühne BA, Teixidó E, Ettcheto M, Puig T, Planas M, Feliu L, Pla L, Campuzano V, Gratacós E, Fritsche E, Illa M, Barenys M. Application of the adverse outcome pathway to identify molecular changes in prenatal brain programming induced by IUGR: Discoveries after EGCG exposure. Food Chem Toxicol 2022; 170:113506. [DOI: 10.1016/j.fct.2022.113506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/27/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022]
|
17
|
Baldassari S, Cervetto C, Amato S, Fruscione F, Balagura G, Pelassa S, Musante I, Iacomino M, Traverso M, Corradi A, Scudieri P, Maura G, Marcoli M, Zara F. Vesicular Glutamate Release from Feeder-FreehiPSC-Derived Neurons. Int J Mol Sci 2022; 23:ijms231810545. [PMID: 36142455 PMCID: PMC9501332 DOI: 10.3390/ijms231810545] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Human-induced pluripotent stem cells (hiPSCs) represent one of the main and powerful tools for the in vitro modeling of neurological diseases. Standard hiPSC-based protocols make use of animal-derived feeder systems to better support the neuronal differentiation process. Despite their efficiency, such protocols may not be appropriate to dissect neuronal specific properties or to avoid interspecies contaminations, hindering their future translation into clinical and drug discovery approaches. In this work, we focused on the optimization of a reproducible protocol in feeder-free conditions able to generate functional glutamatergic neurons. This protocol is based on a generation of neuroprecursor cells differentiated into human neurons with the administration in the culture medium of specific neurotrophins in a Geltrex-coated substrate. We confirmed the efficiency of this protocol through molecular analysis (upregulation of neuronal markers and neurotransmitter receptors assessed by gene expression profiling and expression of the neuronal markers at the protein level), morphological analysis, and immunfluorescence detection of pre-synaptic and post-synaptic markers at synaptic boutons. The hiPSC-derived neurons acquired Ca2+-dependent glutamate release properties as a hallmark of neuronal maturation. In conclusion, our study describes a new methodological approach to achieve feeder-free neuronal differentiation from hiPSC and adds a new tool for functional characterization of hiPSC-derived neurons.
Collapse
Affiliation(s)
- Simona Baldassari
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Chiara Cervetto
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56100 Pisa, Italy
- Correspondence: (C.C.); (M.M.)
| | - Sarah Amato
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Floriana Fruscione
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Ganna Balagura
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Simone Pelassa
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Ilaria Musante
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Michele Iacomino
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Monica Traverso
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
| | - Anna Corradi
- Department of Experimental Medicine, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy
- IRCCS Ospedale Policlinico San Martino Largo Rosanna Benzi 10, 16132 Genova, Italy
| | - Paolo Scudieri
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| | - Guido Maura
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
| | - Manuela Marcoli
- Department of Pharmacy (DIFAR), Section of Pharmacology and Toxicology, University of Genoa, Viale Cembrano 4, 16148 Genova, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research (Centro 3R), 56100 Pisa, Italy
- Center of Excellence for Biomedical Research, Viale Benedetto XV, 16132 Genova, Italy
- Correspondence: (C.C.); (M.M.)
| | - Federico Zara
- Unit of Medical Genetics, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genova, Italy
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Largo Paolo Daneo 3, 16132 Genova, Italy
| |
Collapse
|
18
|
Urionabarrenetxea E, Casás C, Garcia-Velasco N, Santos M, Tarazona JV, Soto M. Predicting environmental concentrations and the potential risk of Plant Protection Products (PPP) on non-target soil organisms accounting for regional and landscape ecological variability in european soils. CHEMOSPHERE 2022; 303:135045. [PMID: 35609662 DOI: 10.1016/j.chemosphere.2022.135045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Plant Protection Products (PPP) raise concerns as their application may cause effects on some soil organisms considered non-target species which could be highly sensitive to some pesticides. The European Food and Safety Authority (EFSA), in collaboration with the Joint Research Centre (JRC) of the European Commission, has developed guidance and a software tool, Persistence in Soil Analytical Model (PERSAM), for conducting soil exposure assessments. EFSA PPR Panel has published recommendations for the risk assessment of non-target soil organisms. We have used PERSAM for calculating PPPs predicted environmental concentrations (PECs); and used the estimated PEC for assessing potential risks using Toxicity Exposure Ratios (TER) for selected soil organisms and good agricultural practices. Soil characteristics and environmental variables change along a latitudinal axis through the European continent, influencing the availability of PPP, their toxicity upon soil biota, and hence, impacting on the risk characterization. Although PERSAM includes as input geographical information, the information is aggregated and not further detailed in the model outputs. Therefore, there is a need to develop landscape based environmental risk assessment methods addressing regional variability. The objective was to integrate spatially explicit exposure (PECs) and effect data (biological endpoints i.e. LC50, NOEC, etc.) to estimate the risk quotient (TER) of four PPP active substances (esfenvalerate, cyclaniliprole, picoxystrobin, fenamidone) on non-target species accounting European landscape and agricultural variability. The study was focused on the effects produced by the above-mentioned pesticides on two soil organisms: E. fetida earthworms and Folsomia sp. collembolans. After running PERSAM assuming a worst case application of PPPs, PECs in total soil and pore water were obtained for different depths in northern, central and southern European soils. With this data, soil variability and climatic differences among soils divided in three large Euroregions along a latitudinal transect (Northern, Central, Southern Europe) were analysed. Summarising, a trend to accumulate higher PECs and TERs in total soil was observed in the north decreasing towards the south. Higher PECs and TERs could be expected in pore water in southern soils, decreasing towards the north. The risk disparity between pollutant concentrations at different soils compartments should be taken into account for regulatory purposes, as well as the potential landscape variabilities among different Euroregions.
Collapse
Affiliation(s)
- Erik Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Carmen Casás
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - Miguel Santos
- European Food Safety Authority (EFSA), Via Carlo Magno 1/A, I-43126, Parma, Italy
| | - Jose V Tarazona
- European Food Safety Authority (EFSA), Via Carlo Magno 1/A, I-43126, Parma, Italy
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain.
| |
Collapse
|
19
|
Cabrita A, Medeiros AM, Pereira T, Rodrigues AS, Kranendonk M, Mendes CS. Motor dysfunction in Drosophila melanogaster as a biomarker for developmental neurotoxicity. iScience 2022; 25:104541. [PMID: 35769875 PMCID: PMC9234254 DOI: 10.1016/j.isci.2022.104541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/30/2021] [Accepted: 06/02/2022] [Indexed: 11/18/2022] Open
Abstract
Adequate alternatives to conventional animal testing are needed to study developmental neurotoxicity (DNT). Here, we used kinematic analysis to assess DNT of known (toluene (TOL) and chlorpyrifos (CPS)) and putative (β-N-methylamino-L-alanine (BMAA)) neurotoxic compounds. Drosophila melanogaster was exposed to these compounds during development and evaluated for survival and adult kinematic parameters using the FlyWalker system, a kinematics evaluation method. At concentrations that do not induce general toxicity, the solvent DMSO had a significant effect on kinematic parameters. Moreover, while TOL did not significantly induce lethality or kinematic dysfunction, CPS not only induced developmental lethality but also significantly impaired coordination in comparison to DMSO. Interestingly, BMAA, which was not lethal during development, induced motor decay in young adult animals, phenotypically resembling aged flies, an effect later attenuated upon aging. Furthermore, BMAA induced abnormal development of leg motor neuron projections. Our results suggest that our kinematic approach can assess potential DNT of chemical compounds. Alternatives to mammalian testing are needed to detect developmental neurotoxicity The pesticide chlorpyrifos causes partial lethality and motor dysfunction Non-lethal levels of BMAA induce motor dysfunction in a dose-dependent manner Kinematic profiling of adult Drosophila can identify developmental neurotoxicity
Collapse
Affiliation(s)
- Ana Cabrita
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Alexandra M. Medeiros
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Telmo Pereira
- NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - António Sebastião Rodrigues
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| | - César S. Mendes
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- Corresponding author
| |
Collapse
|
20
|
Application of the adverse outcome pathway concept for investigating developmental neurotoxicity potential of Chinese herbal medicines by using human neural progenitor cells in vitro. Cell Biol Toxicol 2022; 39:319-343. [PMID: 35701726 PMCID: PMC10042984 DOI: 10.1007/s10565-022-09730-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 05/10/2022] [Indexed: 12/16/2022]
Abstract
Adverse outcome pathways (AOPs) are organized sequences of key events (KEs) that are triggered by a xenobiotic-induced molecular initiating event (MIE) and summit in an adverse outcome (AO) relevant to human or ecological health. The AOP framework causally connects toxicological mechanistic information with apical endpoints for application in regulatory sciences. AOPs are very useful to link endophenotypic, cellular endpoints in vitro to adverse health effects in vivo. In the field of in vitro developmental neurotoxicity (DNT), such cellular endpoints can be assessed using the human "Neurosphere Assay," which depicts different endophenotypes for a broad variety of neurodevelopmental KEs. Combining this model with large-scale transcriptomics, we evaluated DNT hazards of two selected Chinese herbal medicines (CHMs) Lei Gong Teng (LGT) and Tian Ma (TM), and provided further insight into their modes-of-action (MoA). LGT disrupted hNPC migration eliciting an exceptional migration endophenotype. Time-lapse microscopy and intervention studies indicated that LGT disturbs laminin-dependent cell adhesion. TM impaired oligodendrocyte differentiation in human but not rat NPCs and activated a gene expression network related to oxidative stress. The LGT results supported a previously published AOP on radial glia cell adhesion due to interference with integrin-laminin binding, while the results of TM exposure were incorporated into a novel putative, stressor-based AOP. This study demonstrates that the combination of phenotypic and transcriptomic analyses is a powerful tool to elucidate compounds' MoA and incorporate the results into novel or existing AOPs for a better perception of the DNT hazard in a regulatory context.
Collapse
|
21
|
Tsamou M, Roggen EL. Building a Network of Adverse Outcome Pathways (AOPs) Incorporating the Tau-Driven AOP Toward Memory Loss (AOP429). J Alzheimers Dis Rep 2022; 6:271-296. [PMID: 35891639 PMCID: PMC9277675 DOI: 10.3233/adr-220015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/15/2022] [Indexed: 11/15/2022] Open
Abstract
The adverse outcome pathway (AOP) concept was first proposed as a tool for chemical hazard assessment facilitating the regulatory decision-making in toxicology and was more recently recommended during the BioMed21 workshops as a tool for the characterization of crucial endpoints in the human disease development. This AOP framework represents mechanistically based approaches using existing data, more realistic and relevant to human biological systems. In principle, AOPs are described by molecular initiating events (MIEs) which induce key events (KEs) leading to adverse outcomes (AOs). In addition to the individual AOPs, the network of AOPs has been also suggested to beneficially support the understanding and prediction of adverse effects in risk assessment. The AOP-based networks can capture the complexity of biological systems described by different AOPs, in which multiple AOs diverge from a single MIE or multiple MIEs trigger a cascade of KEs that converge to a single AO. Here, an AOP network incorporating a recently proposed tau-driven AOP toward memory loss (AOP429) related to sporadic (late-onset) Alzheimer’s disease is constructed. This proposed AOP network is an attempt to extract useful information for better comprehending the interactions among existing mechanistic data linked to memory loss as an early phase of sporadic Alzheimer’s disease pathology.
Collapse
Affiliation(s)
- Maria Tsamou
- ToxGenSolutions (TGS), Maastricht, The Netherlands
| | | |
Collapse
|
22
|
Crofton KM, Bassan A, Behl M, Chushak YG, Fritsche E, Gearhart JM, Marty MS, Mumtaz M, Pavan M, Ruiz P, Sachana M, Selvam R, Shafer TJ, Stavitskaya L, Szabo DT, Szabo ST, Tice RR, Wilson D, Woolley D, Myatt GJ. Current status and future directions for a neurotoxicity hazard assessment framework that integrates in silico approaches. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 22:100223. [PMID: 35844258 PMCID: PMC9281386 DOI: 10.1016/j.comtox.2022.100223] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Neurotoxicology is the study of adverse effects on the structure or function of the developing or mature adult nervous system following exposure to chemical, biological, or physical agents. The development of more informative alternative methods to assess developmental (DNT) and adult (NT) neurotoxicity induced by xenobiotics is critically needed. The use of such alternative methods including in silico approaches that predict DNT or NT from chemical structure (e.g., statistical-based and expert rule-based systems) is ideally based on a comprehensive understanding of the relevant biological mechanisms. This paper discusses known mechanisms alongside the current state of the art in DNT/NT testing. In silico approaches available today that support the assessment of neurotoxicity based on knowledge of chemical structure are reviewed, and a conceptual framework for the integration of in silico methods with experimental information is presented. Establishing this framework is essential for the development of protocols, namely standardized approaches, to ensure that assessments of NT and DNT based on chemical structures are generated in a transparent, consistent, and defendable manner.
Collapse
Affiliation(s)
| | - Arianna Bassan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Mamta Behl
- Division of the National Toxicology Program, National
Institutes of Environmental Health Sciences, Durham, NC 27709, USA
| | - Yaroslav G. Chushak
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | - Ellen Fritsche
- IUF – Leibniz Research Institute for Environmental
Medicine & Medical Faculty Heinrich-Heine-University, Düsseldorf,
Germany
| | - Jeffery M. Gearhart
- Henry M Jackson Foundation for the Advancement of Military
Medicine, Wright-Patterson AFB, OH 45433, USA
| | | | - Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Manuela Pavan
- Innovatune srl, Via Giulio Zanon 130/D, 35129 Padova,
Italy
| | - Patricia Ruiz
- Agency for Toxic Substances and Disease Registry, US
Department of Health and Human Services, Atlanta, GA, USA
| | - Magdalini Sachana
- Environment Health and Safety Division, Environment
Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775
Paris Cedex 16, France
| | - Rajamani Selvam
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | - Timothy J. Shafer
- Biomolecular and Computational Toxicology Division, Center
for Computational Toxicology and Exposure, US EPA, Research Triangle Park, NC,
USA
| | - Lidiya Stavitskaya
- Office of Clinical Pharmacology, Office of Translational
Sciences, Center for Drug Evaluation and Research (CDER), U.S. Food and Drug
Administration (FDA), Silver Spring, MD 20993, USA
| | | | | | | | - Dan Wilson
- The Dow Chemical Company, Midland, MI 48667, USA
| | | | - Glenn J. Myatt
- Instem, Columbus, OH 43215, USA
- Corresponding author.
(G.J. Myatt)
| |
Collapse
|
23
|
Editorial. Reprod Toxicol 2022; 110:68-69. [PMID: 35339626 DOI: 10.1016/j.reprotox.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
Hoffmann S, Aiassa E, Angrish M, Beausoleil C, Bois FY, Ciccolallo L, Craig PS, de Vries RBM, Dorne JLCM, Druwe IL, Edwards SW, Eskes C, Georgiadis M, Hartung T, Kienzler A, Kristjansson EA, Lam J, Martino L, Meek B, Morgan RL, Munoz-Guajardo I, Noyes PD, Parmelli E, Piersma A, Rooney A, Sena E, Sullivan K, Tarazona J, Terron A, Thayer K, Turner J, Verbeek J, Verloo D, Vinken M, Watford S, Whaley P, Wikoff D, Willett K, Tsaioun K. Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks. ALTEX 2022; 39:499–518. [PMID: 35258090 PMCID: PMC9466297 DOI: 10.14573/altex.2202141] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/23/2022]
Abstract
The workshop titled “Application of evidence-based methods to construct mechanism-driven chemical assessment frameworks” was co-organized by the Evidence-based Toxicology Collaboration and the European Food Safety Authority (EFSA) and hosted by EFSA at its headquarters in Parma, Italy on October 2 and 3, 2019. The goal was to explore integration of systematic review with mechanistic evidence evaluation. Participants were invited to work on concrete products to advance the exploration of how evidence-based approaches can support the development and application of adverse outcome pathways (AOP) in chemical risk assessment. The workshop discussions were centered around three related themes: 1) assessing certainty in AOPs, 2) literature-based AOP development, and 3) integrating certainty in AOPs and non-animal evidence into decision frameworks. Several challenges, mostly related to methodology, were identified and largely determined the workshop recommendations. The workshop recommendations included the comparison and potential alignment of processes used to develop AOP and systematic review methodology, including the translation of vocabulary of evidence-based methods to AOP and vice versa, the development and improvement of evidence mapping and text mining methods and tools, as well as a call for a fundamental change in chemical risk and uncertainty assessment methodology if to be conducted based on AOPs and new approach methodologies (NAM). The usefulness of evidence-based approaches for mechanism-based chemical risk assessments was stressed, particularly the potential contribution of the rigor and transparency inherent to such approaches in building stakeholders’ trust for implementation of NAM evidence and AOPs into chemical risk assessment.
Collapse
Affiliation(s)
- Sebastian Hoffmann
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Elisa Aiassa
- European Food Safety Authority (EFSA), Parma, Italy
| | - Michelle Angrish
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | | | | | | | | | - Rob B. M. de Vries
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Ingrid L. Druwe
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | | | - Chantra Eskes
- SeCAM, Magliaso, Switzerland
- current affiliation: European Food Safety Authority (EFSA), Parma, Italy
| | | | - Thomas Hartung
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- CAAT-Europe, University of Konstanz, Konstanz, Germany
| | - Aude Kienzler
- current affiliation: European Food Safety Authority (EFSA), Parma, Italy
- European Commission, Joint Research Centre, Ispra, Italy
| | | | - Juleen Lam
- California State University, East Bay, CA, USA
| | | | | | - Rebecca L. Morgan
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada
| | | | - Pamela D. Noyes
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | - Elena Parmelli
- European Commission, Joint Research Centre, Ispra, Italy
| | - Aldert Piersma
- Centre for Health Protection (RIVM), Bilthoven, the Netherlands
| | - Andrew Rooney
- Division of the National Toxicology Program, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | | | - Kristie Sullivan
- Physicians Committee for Responsible Medicine, Washington, DC, USA
| | | | | | - Kris Thayer
- United States Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Research Triangle Park, NC, USA
| | | | - Jos Verbeek
- University of Eastern Finland, Kuopio, Finland
| | | | | | | | - Paul Whaley
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | | | - Kate Willett
- Humane Society International, Washington, DC, USA
| | - Katya Tsaioun
- Evidence-based Toxicology Collaboration (EBTC) at Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
25
|
Paini A, Campia I, Cronin MT, Asturiol D, Ceriani L, Exner TE, Gao W, Gomes C, Kruisselbrink J, Martens M, Meek MB, Pamies D, Pletz J, Scholz S, Schüttler A, Spînu N, Villeneuve DL, Wittwehr C, Worth A, Luijten M. Towards a qAOP framework for predictive toxicology - Linking data to decisions. COMPUTATIONAL TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 21:100195. [PMID: 35211660 PMCID: PMC8850654 DOI: 10.1016/j.comtox.2021.100195] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/23/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022]
Abstract
The adverse outcome pathway (AOP) is a conceptual construct that facilitates organisation and interpretation of mechanistic data representing multiple biological levels and deriving from a range of methodological approaches including in silico, in vitro and in vivo assays. AOPs are playing an increasingly important role in the chemical safety assessment paradigm and quantification of AOPs is an important step towards a more reliable prediction of chemically induced adverse effects. Modelling methodologies require the identification, extraction and use of reliable data and information to support the inclusion of quantitative considerations in AOP development. An extensive and growing range of digital resources are available to support the modelling of quantitative AOPs, providing a wide range of information, but also requiring guidance for their practical application. A framework for qAOP development is proposed based on feedback from a group of experts and three qAOP case studies. The proposed framework provides a harmonised approach for both regulators and scientists working in this area.
Collapse
Affiliation(s)
- Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - David Asturiol
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Thomas E. Exner
- Edelweiss Connect GmbH, Technology Park Basel, Basel, Switzerland
| | - Wang Gao
- Institut National de l'Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, France
| | | | | | | | | | - David Pamies
- Department of Physiology, Lausanne and Swiss Centre for Applied Human Toxicology (SCAHT), University of Lausanne, Lausanne, Switzerland
| | - Julia Pletz
- Liverpool John Moores University, Liverpool, United Kingdom
| | - Stefan Scholz
- Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany
| | - Andreas Schüttler
- Helmholtz Centre for Environmental Research GmbH – UFZ, Leipzig, Germany
| | - Nicoleta Spînu
- Liverpool John Moores University, Liverpool, United Kingdom
| | - Daniel L. Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| |
Collapse
|
26
|
Negi CK, Babica P, Bajard L, Bienertova-Vasku J, Tarantino G. Insights into the molecular targets and emerging pharmacotherapeutic interventions for nonalcoholic fatty liver disease. Metabolism 2022; 126:154925. [PMID: 34740573 DOI: 10.1016/j.metabol.2021.154925] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease worldwide. With no Food and Drug Administration approved drugs, current treatment options include dietary restrictions and lifestyle modification. NAFLD is closely associated with metabolic disorders such as obesity, type 2 diabetes, and dyslipidemia. Hence, clinically various pharmacological approaches using existing drugs such as antidiabetic, anti-obesity, antioxidants, and cytoprotective agents have been considered in the management of NAFLD and nonalcoholic steatohepatitis (NASH). However, several pharmacological therapies aiming to alleviate NAFLD-NASH are currently being examined at various phases of clinical trials. Emerging data from these studies with drugs targeting diverse molecular mechanisms show promising outcomes. This review summarizes the current understanding of the pathogenic mechanisms of NAFLD and provides an insight into the pharmacological targets and emerging therapeutics with specific interventional mechanisms. In addition, we also discuss the importance and utility of new approach methodologies and regulatory perspectives for NAFLD-NASH drug development.
Collapse
Affiliation(s)
- Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Pavel Babica
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic.
| | - Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic
| | - Julie Bienertova-Vasku
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, Czech Republic; Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Giovanni Tarantino
- Department of Clinical Medicine and Surgery, Federico II University Medical School of Naples, Naples, Italy
| |
Collapse
|
27
|
Pham N, Miller MD, Marty M. Using High-Throughput Screening to Evaluate Perturbations Potentially Linked to Neurobehavioral Outcomes: A Case Study Using Publicly Available Tools on FDA Batch-Certified Synthetic Food Dyes. Chem Res Toxicol 2021; 34:2319-2330. [PMID: 34705446 DOI: 10.1021/acs.chemrestox.1c00205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
There is growing evidence from human and animal studies indicating an association between exposure to synthetic food dyes and adverse neurobehavioral outcomes in children. However, data gaps persist for potential mechanisms by which the synthetic food dyes could elicit neurobehavioral impacts. We developed an approach to evaluate seven US FDA-batch-certified food dyes using publicly available high-throughput screening (HTS) data from the US EPA's Toxicity Forecaster to assess potential underlying molecular mechanisms that may be linked to neurological pathway perturbations. The dyes were screened through 270 assays identified based on whether they had a neurological-related gene target and/or were mapped to neurodevelopmental processes or neurobehavioral outcomes, and were conducted in brain tissue, targeted specific hormone receptors, or targeted oxidative stress and inflammation. Some results provided support for neurological impacts found in human and animal studies, while other results showed a lack of correlation with in vivo findings. The azo dyes had a range of activity in assays mapped to G-protein-coupled receptors and were active in assays targeting dopaminergic, serotonergic, and opioid receptors. Assays mapped to nuclear receptors (androgen, estrogen, and thyroid hormone) also exhibited activity with the food dyes. Other molecular targets included the aryl hydrocarbon receptor, acetylcholinesterase, and monoamine oxidase. The Toxicological Prioritization Index tool was used to visualize the results of the Novascreen assays. Our results highlight certain limitations of HTS assays but provide insight into potential underlying mechanisms of neurobehavioral effects observed in in vivo animal toxicology studies and human clinical studies.
Collapse
Affiliation(s)
- Nathalie Pham
- California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (OEHHA), Sacramento, California 95814, United States
| | - Mark D Miller
- CalEPA OEHHA, Oakland, California 94612, United States
| | - Melanie Marty
- California Environmental Protection Agency (CalEPA) Office of Environmental Health Hazard Assessment (OEHHA), Sacramento, California 95814, United States
| |
Collapse
|
28
|
Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int J Hyg Environ Health 2021; 238:113855. [PMID: 34655857 DOI: 10.1016/j.ijheh.2021.113855] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Lead (Pb) is a ubiquitous environmental pollutant and a potent toxic compound. Humans are exposed to Pb through inhalation, ingestion, and skin contact via food, water, tobacco smoke, air, dust, and soil. Pb accumulates in bones, brain, liver and kidney. Fetal exposure occurs via transplacental transmission. The most critical health effects are developmental neurotoxicity in infants and cardiovascular effects and nephrotoxicity in adults. Pb exposure has been steadily decreasing over the past decades, but there are few recent exposure data from the general European population; moreover, no safe Pb limit has been set. Sensitive biomarkers of exposure, effect and susceptibility, that reliably and timely indicate Pb-associated toxicity are required to assess human exposure-health relationships in a situation of low to moderate exposure. Therefore, a systematic literature review based on PubMed entries published before July 2019 that addressed Pb exposure and biomarkers of effect and susceptibility, neurodevelopmental toxicity, epigenetic modifications, and transcriptomics was conducted. Finally included were 58 original papers on Pb exposure and 17 studies on biomarkers. The biomarkers that are linked to Pb exposure and neurodevelopment were grouped into effect biomarkers (serum brain-derived neurotrophic factor (BDNF) and serum/saliva cortisol), susceptibility markers (epigenetic markers and gene sequence variants) and other biomarkers (serum high-density lipoprotein (HDL), maternal iron (Fe) and calcium (Ca) status). Serum BDNF and plasma HDL are potential candidates to be further validated as effect markers for routine use in HBM studies of Pb, complemented by markers of Fe and Ca status to also address nutritional interactions related to neurodevelopmental disorders. For several markers, a causal relationship with Pb-induced neurodevelopmental toxicity is likely. Results on BDNF are discussed in relation to Adverse Outcome Pathway (AOP) 13 ("Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities") of the AOP-Wiki. Further studies are needed to validate sensitive, reliable, and timely effect biomarkers, especially for low to moderate Pb exposure scenarios.
Collapse
|
29
|
Osimitz TG, Droege W. Quaternary ammonium compounds: perspectives on benefits, hazards, and risk. TOXICOLOGY RESEARCH AND APPLICATION 2021. [DOI: 10.1177/23978473211049085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Quaternary ammonium compounds are antimicrobial chemicals that provide significant public health benefits by controlling bacteria and viruses that cause infections such as colds, flu, and COVID. The benefits of antimicrobial QACs are seen in increased quality-of-life measures, such as reduced time away from work and school and reduced medical costs. As active antimicrobial agents, QACs and QAC-containing consumer and professional products are highly regulated by authorities such as the US Environmental Protection Agency and the European Chemicals Agency. A complete database of guideline safety studies, covering human and environmental health, is available and has been reviewed by multiple regulatory agencies globally. The conclusions of regulatory agencies from these studies indicate no concerns regarding reproductive effects, genotoxicity, carcinogenicity, or other systemic adverse effects. In contrast, some published academic studies provide mixed findings on lipid synthesis, reproductive effects, and asthma. However, many of these studies have been found not to be robust in design and lacked appropriate controls to support conclusions of a clear and direct association with an adverse effect. The hazard data for the QACs show that their primary critical effects are point-of-contact effects such as irritation, which exhibit a threshold and occur in a dose–response manner. This review compares toxicity information for QACs, examines human exposures, and quantifies the risks estimated from QAC product use. QACs are an important cleaning and hygiene tool, and the abundance of safety data generated for them provides assurance they can be safely used in professional and household products.
Collapse
|
30
|
Tsamou M, Pistollato F, Roggen EL. A Tau-Driven Adverse Outcome Pathway Blueprint Toward Memory Loss in Sporadic (Late-Onset) Alzheimer's Disease with Plausible Molecular Initiating Event Plug-Ins for Environmental Neurotoxicants. J Alzheimers Dis 2021; 81:459-485. [PMID: 33843671 DOI: 10.3233/jad-201418] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The worldwide prevalence of sporadic (late-onset) Alzheimer's disease (sAD) is dramatically increasing. Aging and genetics are important risk factors, but systemic and environmental factors contribute to this risk in a still poorly understood way. Within the frame of BioMed21, the Adverse Outcome Pathway (AOP) concept for toxicology was recommended as a tool for enhancing human disease research and accelerating translation of data into human applications. Its potential to capture biological knowledge and to increase mechanistic understanding about human diseases has been substantiated since. In pursuit of the tau-cascade hypothesis, a tau-driven AOP blueprint toward the adverse outcome of memory loss is proposed. Sequences of key events and plausible key event relationships, triggered by the bidirectional relationship between brain cholesterol and glucose dysmetabolism, and contributing to memory loss are captured. To portray how environmental factors may contribute to sAD progression, information on chemicals and drugs, that experimentally or epidemiologically associate with the risk of AD and mechanistically link to sAD progression, are mapped on this AOP. The evidence suggests that chemicals may accelerate disease progression by plugging into sAD relevant processes. The proposed AOP is a simplified framework of key events and plausible key event relationships representing one specific aspect of sAD pathology, and an attempt to portray chemical interference. Other sAD-related AOPs (e.g., Aβ-driven AOP) and a better understanding of the impact of aging and genetic polymorphism are needed to further expand our mechanistic understanding of early AD pathology and the potential impact of environmental and systemic risk factors.
Collapse
|
31
|
Pistollato F, Carpi D, Mendoza-de Gyves E, Paini A, Bopp SK, Worth A, Bal-Price A. Combining in vitro assays and mathematical modelling to study developmental neurotoxicity induced by chemical mixtures. Reprod Toxicol 2021; 105:101-119. [PMID: 34455033 PMCID: PMC8522961 DOI: 10.1016/j.reprotox.2021.08.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/12/2022]
Abstract
Prenatal and postnatal co-exposure to multiple chemicals at the same time may have deleterious effects on the developing nervous system. We previously showed that chemicals acting through similar mode of action (MoA) and grouped based on perturbation of brain derived neurotrophic factor (BDNF), induced greater neurotoxic effects on human induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes compared to chemicals with dissimilar MoA. Here we assessed the effects of repeated dose (14 days) treatments with mixtures containing the six chemicals tested in our previous study (Bisphenol A, Chlorpyrifos, Lead(II) chloride, Methylmercury chloride, PCB138 and Valproic acid) along with 2,2'4,4'-tetrabromodiphenyl ether (BDE47), Ethanol, Vinclozolin and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)), on hiPSC-derived neural stem cells undergoing differentiation toward mixed neurons/astrocytes up to 21 days. Similar MoA chemicals in mixtures caused an increase of BDNF levels and neurite outgrowth, and a decrease of synapse formation, which led to inhibition of electrical activity. Perturbations of these endpoints are described as common key events in adverse outcome pathways (AOPs) specific for DNT. When compared with mixtures tested in our previous study, adding similarly acting chemicals (BDE47 and EtOH) to the mixture resulted in a stronger downregulation of synapses. A synergistic effect on some synaptogenesis-related features (PSD95 in particular) was hypothesized upon treatment with tested mixtures, as indicated by mathematical modelling. Our findings confirm that the use of human iPSC-derived mixed neuronal/glial models applied to a battery of in vitro assays anchored to key events in DNT AOP networks, combined with mathematical modelling, is a suitable testing strategy to assess in vitro DNT induced by chemical mixtures.
Collapse
Affiliation(s)
| | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Alicia Paini
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
32
|
Sachana M, Willett C, Pistollato F, Bal-Price A. The potential of mechanistic information organised within the AOP framework to increase regulatory uptake of the developmental neurotoxicity (DNT) in vitro battery of assays. Reprod Toxicol 2021; 103:159-170. [PMID: 34147625 PMCID: PMC8279093 DOI: 10.1016/j.reprotox.2021.06.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 05/19/2021] [Accepted: 06/04/2021] [Indexed: 12/24/2022]
Abstract
Current in vivo DNT testing for regulatory purposes is not effective. In vitro assays anchored to key neurodevelopmental processes are available. Development of Adverse Outcome Pathways is required to increase mechanistic understanding of DNT effects. DNT Integrated Approaches to Testing and Assessment for various regulatory purposes should be developed. The OECD Guidance Document on use of in vitro DNT battery of assays is currently under development.
A major challenge in regulatory developmental neurotoxicity (DNT) assessment is lack of toxicological information for many compounds. Therefore, the Test Guidelines programme of the Organisation for Economic Cooperation and Development (OECD) took the initiative to coordinate an international collaboration between diverse stakeholders to consider integration of alternative approaches towards improving the current chemical DNT testing. During the past few years, a series of workshops was organized during which a consensus was reached that incorporation of a DNT testing battery that relies on in vitro assays anchored to key neurodevelopmental processes should be developed. These key developmental processes include neural progenitor cell proliferation, neuronal and oligodendrocyte differentiation, neural cell migration, neurite outgrowth, synaptogenesis and neuronal network formation, as well key events identified in the existing Adverse Outcome Pathways (AOPs). AOPs deliver mechanistic information on the causal links between molecular initiating event, intermediate key events and an adverse outcome of regulatory concern, providing the biological context to facilitate development of Integrated Approaches to Testing and Assessment (IATA) for various regulatory purposes. Developing IATA case studies, using mechanistic information derived from AOPs, is expected to increase scientific confidence for the use of in vitro methods within an IATA, thereby facilitating regulatory uptake. This manuscript summarizes the current state of international efforts to enhance DNT testing by using an in vitro battery of assays focusing on the role of AOPs in informing the development of IATA for different regulatory purposes, aiming to deliver an OECD guidance document on use of in vitro DNT battery of assays that include in vitro data interpretation.
Collapse
Affiliation(s)
- Magdalini Sachana
- Environment Health and Safety Division, Environment Directorate, Organisation for Economic Co-Operation and Development (OECD), 75775, Paris Cedex 16, France
| | - Catherine Willett
- Humane Society International, 1255 23rd Street NW, Washington, DC, 20037, USA
| | | | - Anna Bal-Price
- European Commission Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
33
|
Ventura C, Gomes BC, Oberemm A, Louro H, Huuskonen P, Mustieles V, Fernández MF, Ndaw S, Mengelers M, Luijten M, Gundacker C, Silva MJ. Biomarkers of effect as determined in human biomonitoring studies on hexavalent chromium and cadmium in the period 2008-2020. ENVIRONMENTAL RESEARCH 2021; 197:110998. [PMID: 33713715 DOI: 10.1016/j.envres.2021.110998] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
A number of human biomonitoring (HBM) studies have presented data on exposure to hexavalent chromium [Cr(VI)] and cadmium (Cd), but comparatively few include results on effect biomarkers. The latter are needed to identify associations between exposure and adverse outcomes (AOs) in order to assess public health implications. To support improved derivation of EU regulation and policy making, it is of great importance to identify the most reliable effect biomarkers for these heavy metals that can be used in HBM studies. In the framework of the Human Biomonitoring for Europe (HBM4EU) initiative, our study aim was to identify effect biomarkers linking Cr(VI) and Cd exposure to selected AOs including cancer, immunotoxicity, oxidative stress, and omics/epigenetics. A comprehensive PubMed search identified recent HBM studies, in which effect biomarkers were examined. Validity and applicability of the markers in HBM studies are discussed. The most frequently analysed effect biomarkers regarding Cr(VI) exposure and its association with cancer were those indicating oxidative stress (e.g., 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione (GSH)) and DNA or chromosomal damage (comet and micronucleus assays). With respect to Cd and to some extent Cr, β-2-microglobulin (B2-MG) and N-acetyl-β-D-glucosaminidase (NAG) are well-established, sensitive, and the most common effect biomarkers to relate Cd or Cr exposure to renal tubular dysfunction. Neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule (KIM)-1 could serve as sensitive biomarkers of acute kidney injury in response to both metals, but need further investigation in HBM studies. Omics-based biomarkers, i.e., changes in the (epi-)genome, transcriptome, proteome, and metabolome associated with Cr and/or Cd exposure, are promising effect biomarkers, but more HBM data are needed to confirm their significance. The combination of established effect markers and omics biomarkers may represent the strongest approach, especially if based on knowledge of mechanistic principles. To this aim, also mechanistic data were collected to provide guidance on the use of more sensitive and specific effect biomarkers. This also led to the identification of knowledge gaps relevant to the direction of future research.
Collapse
Affiliation(s)
- Célia Ventura
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Bruno Costa Gomes
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Axel Oberemm
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Henriqueta Louro
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal
| | - Pasi Huuskonen
- Finnish Institute of Occupational Health, PO Box 40, FI-00032 Työterveyslaitos, Finland
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM), University of Granada, Granada, Spain; Biosanitary Research Institute of Granada (ibs.GRANADA), Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health (CIBERESP), Spain
| | - Sophie Ndaw
- French National Research and Safety Institute (INRS), France
| | - Marcel Mengelers
- National Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, Department of Food Safety, Bilthoven, the Netherlands
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Claudia Gundacker
- Institute of Medical Genetics, Medical University of Vienna, Waehringer Strasse 10, A-1090 Vienna, Austria.
| | - Maria João Silva
- National Institute of Health Doutor Ricardo Jorge (INSA), Human Genetics Department, Av. Padre Cruz, 1649-016, Lisbon, Toxicogenomics and Human Health (ToxOmics), NOVA Medical School/FCM, Universidade Nova de Lisboa, Portugal.
| |
Collapse
|
34
|
Treherne JM, Langley GR. Converging global crises are forcing the rapid adoption of disruptive changes in drug discovery. Drug Discov Today 2021; 26:2489-2495. [PMID: 34015541 PMCID: PMC8129828 DOI: 10.1016/j.drudis.2021.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/25/2021] [Accepted: 05/10/2021] [Indexed: 02/07/2023]
Abstract
Spiralling research costs combined with urgent pressures from the Coronavirus 2019 (COVID-19) pandemic and the consequences of climate disruption are forcing changes in drug discovery. Increasing the predictive power of in vitro human assays and using them earlier in discovery would refocus resources on more successful research strategies and reduce animal studies. Increasing laboratory automation enables effective social distancing for researchers, while allowing integrated data capture from remote laboratory networks. Such disruptive changes would not only enable more cost-effective drug discovery, but could also reduce the overall carbon footprint of discovering new drugs.
Collapse
Affiliation(s)
- J Mark Treherne
- Talisman Therapeutics Limited, Babraham Research Campus, Cambridge CB22 3AT, UK.
| | | |
Collapse
|
35
|
Integration of evidence to evaluate the potential for neurobehavioral effects following exposure to USFDA-approved food colors. Food Chem Toxicol 2021; 151:112097. [DOI: 10.1016/j.fct.2021.112097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 01/02/2023]
|
36
|
Halappanavar S, Nymark P, Krug HF, Clift MJD, Rothen-Rutishauser B, Vogel U. Non-Animal Strategies for Toxicity Assessment of Nanoscale Materials: Role of Adverse Outcome Pathways in the Selection of Endpoints. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007628. [PMID: 33559363 DOI: 10.1002/smll.202007628] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Faster, cheaper, sensitive, and mechanisms-based animal alternatives are needed to address the safety assessment needs of the growing number of nanomaterials (NM) and their sophisticated property variants. Specifically, strategies that help identify and prioritize alternative schemes involving individual test models, toxicity endpoints, and assays for the assessment of adverse outcomes, as well as strategies that enable validation and refinement of these schemes for the regulatory acceptance are needed. In this review, two strategies 1) the current nanotoxicology literature review and 2) the adverse outcome pathways (AOPs) framework, a systematic process that allows the assembly of available mechanistic information concerning a toxicological response in a simple modular format, are presented. The review highlights 1) the most frequently assessed and reported ad hoc in vivo and in vitro toxicity measurements in the literature, 2) various AOPs of relevance to inhalation toxicity of NM that are presently under development, and 3) their applicability in identifying key events of toxicity for targeted in vitro assay development. Finally, using an existing AOP for lung fibrosis, the specific combinations of cell types, exposure and test systems, and assays that are experimentally supported and thus, can be used for assessing NM-induced lung fibrosis, are proposed.
Collapse
Affiliation(s)
- Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A0K9, Canada
- Department of Biology, University of Ottawa, Ottawa, K1N6N5, Canada
| | - Penny Nymark
- Institute of Environmental Medicine, Karolinska Institute, Nobels väg 13, Stockholm, 17177, Sweden
| | - Harald F Krug
- NanoCASE GmbH, St. Gallerstr. 58, Engelburg, 9032, Switzerland
| | - Martin J D Clift
- Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, Wales, SA2 8PP, UK
| | | | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, Copenhagen, DK-2100, Denmark
- DTU Health Tech, Technical University of Denmark, Lyngby, DK-2800 Kgs., Denmark
| |
Collapse
|
37
|
Bencsik A, Lestaevel P. The Challenges of 21st Century Neurotoxicology: The Case of Neurotoxicology Applied to Nanomaterials. FRONTIERS IN TOXICOLOGY 2021; 3:629256. [PMID: 35295119 PMCID: PMC8915904 DOI: 10.3389/ftox.2021.629256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
After a short background discussing engineered nanomaterials (ENMs) and their physicochemical properties and applications, the present perspective paper highlights the main specific points that need to be considered when examining the question of neurotoxicity of nanomaterials. It underlines the necessity to integrate parameters, specific tools, and tests from multiple sources that make neurotoxicology when applied to nanomaterials particularly complex. Bringing together the knowledge of multiple disciplines e.g., nanotoxicology to neurotoxicology, is necessary to build integrated neurotoxicology for the third decade of the 21st Century. This article focuses on the greatest challenges and opportunities offered by this specific field. It highlights the scientific, methodological, political, regulatory, and educational issues. Scientific and methodological challenges include the determination of ENMs physicochemical parameters, the lack of information about protein corona modes of action, target organs, and cells and dose– response functions of ENMs. The need of standardization of data collection and harmonization of dedicated neurotoxicological protocols are also addressed. This article highlights how to address those challenges through innovative methods and tools, and our work also ventures to sketch the first list of substances that should be urgently prioritized for human modern neurotoxicology. Finally, political support with dedicated funding at the national and international levels must also be used to engage the communities concerned to set up dedicated educational program on this novel field.
Collapse
Affiliation(s)
- Anna Bencsik
- Anses Laboratoire de Lyon, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Université de Lyon, Lyon, France
- *Correspondence: Anna Bencsik
| | - Philippe Lestaevel
- Pôle Santé-Environnement, Service d'Etudes et d'expertise en Radioprotection, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| |
Collapse
|
38
|
Marx-Stoelting P, Solano MDLM, Aoyama H, Adams RH, Bal-Price A, Buschmann J, Chahoud I, Clark R, Fang T, Fujiwara M, Gelinsky M, Grote K, Horimoto M, Bennekou SH, Kellner R, Kuwagata M, Leist M, Lang A, Li W, Mantovani A, Makris SL, Paumgartten F, Perron M, Sachana M, Schmitt A, Schneider S, Schönfelder G, Schulze F, Shiota K, Solecki R. 25th anniversary of the Berlin workshop on developmental toxicology: DevTox database update, challenges in risk assessment of developmental neurotoxicity and alternative methodologies in bone development and growth. Reprod Toxicol 2020; 100:155-162. [PMID: 33278556 DOI: 10.1016/j.reprotox.2020.11.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/26/2022]
Abstract
25 years after the first Berlin Workshop on Developmental Toxicity this 10th Berlin Workshop aimed to bring together international experts from authorities, academia and industry to consider scientific, methodologic and regulatory aspects in risk assessment of developmental toxicity and to debate alternative strategies in testing developmental effects in the future. Proposals for improvement of the categorization of developmental effects were discussed as well as the update of the DevTox database as valuable tool for harmonization. The development of adverse outcome pathways relevant to developmental neurotoxicity (DNT) was debated as a fundamental improvement to guide the screening and testing for DNT using alternatives to animal methods. A further focus was the implementation of an in vitro mechanism-based battery, which can support various regulatory applications associated with the assessment of chemicals and mixtures. More interdisciplinary and translation research should be initiated to accelerate the development of new technologies to test developmental toxicity. Technologies in the pipeline are (i) high throughput imaging techniques, (ii) models for DNT screening tests, (iii) use of computer tomography for assessment of thoracolumbar supernumerary ribs in animal models, and (iv) 3D biofabrication of bone development and regeneration tissue models. In addition, increased collaboration with the medical community was suggested to improve the relevance of test results to humans and identify more clinically relevant endpoints. Finally, the participants agreed that this conference facilitated better understanding innovative approaches that can be useful for the identification of developmental health risks due to exposure to chemical substances.
Collapse
Affiliation(s)
| | | | | | - Ralf H Adams
- Max Planck Institute for Molecular Biomedicine, Muenster, Germany
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Ibrahim Chahoud
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | - Ruth Clark
- Ruth Clark Associates Ltd., United Kingdom
| | - Tian Fang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | | | | | - Konstanze Grote
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | | | | | - Rupert Kellner
- Fraunhofer Institute for Toxicology and Experimental Medicine, Hannover, Germany
| | | | | | - Annemarie Lang
- Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | - Weihua Li
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Fudan University, China
| | | | - Susan L Makris
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington, D.C., USA
| | | | - Monique Perron
- U.S. Environmental Protection Agency, Office of Pesticides Programs, Washington, D.C, USA
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, Paris, France
| | - Anne Schmitt
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment, Berlin, Germany; Charité - Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität Zu Berlin, and Berlin Institute of Health, Germany
| | - Frank Schulze
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Roland Solecki
- German Federal Institute for Risk Assessment, Berlin, Germany
| |
Collapse
|
39
|
Hu M, Palić D. Micro- and nano-plastics activation of oxidative and inflammatory adverse outcome pathways. Redox Biol 2020; 37:101620. [PMID: 32863185 PMCID: PMC7767742 DOI: 10.1016/j.redox.2020.101620] [Citation(s) in RCA: 300] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 12/21/2022] Open
Abstract
Microplastics (MPs) and nanoplastics (NPs) have attracted considerable attention in the recent years as potential threats to the ecosystem and public health. This review summarizes current knowledge of pathological events triggered by micro- and nano-plastics (MP/NPs) with focus on oxidative damages at different levels of biological complexity (molecular, cellular, tissue, organ, individual and population). Based on published information, we matched the apical toxicity endpoints induced by MP/NPs with key event (KE) or adverse outcomes (AO) and categorized them according to the Adverse Outcome Pathway (AOP) online knowledgebase. We used existing AOPs and applied them to highlight formal mechanistic links between identified KEs and AOs in two possible scenarios: first from ecological, and second from public health perspective. Ecological perspective AOP based literature analysis revealed that MP/NPs share formation of reactive oxygen species as their molecular initiating event, leading to adverse outcomes such as growth inhibition and behavior alteration through oxidative stress cascades and inflammatory responses. Application of AOP on literature data related to public health perspective of MP/NPs showed that oxidative stress and its responding pathways, including inflammatory responses, could play the role of key events. However insufficient information prevented precise definitions of AOPs at this level. To overcome this knowledge gap, further mammalian model and epidemiological studies are necessary to support development and construction of detailed AOPs with public health focus.
Collapse
Affiliation(s)
- Moyan Hu
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Dušan Palić
- Chair for Fish Diseases and Fisheries Biology, Faculty of Veterinary Medicine, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
40
|
Di Consiglio E, Pistollato F, Mendoza-De Gyves E, Bal-Price A, Testai E. Integrating biokinetics and in vitro studies to evaluate developmental neurotoxicity induced by chlorpyrifos in human iPSC-derived neural stem cells undergoing differentiation towards neuronal and glial cells. Reprod Toxicol 2020; 98:174-188. [PMID: 33011216 PMCID: PMC7772889 DOI: 10.1016/j.reprotox.2020.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/19/2022]
Abstract
Human iPSC-derived NSCs undergoing differentiation possess some metabolic competence. CPF entered the cells and was biotrasformed into its two main metabolites (CPFO and TCP). After repeated exposure, very limited bioaccumulation of CPF was observed. Treatment with CPF decreased neurite outgrowth, synapse number and electrical activity. Treatment with CPF increased BDNF levels and the percentage of astrocytes.
For some complex toxicological endpoints, chemical safety assessment has conventionally relied on animal testing. Apart from the ethical issues, also scientific considerations have been raised concerning the traditional approach, highlighting the importance for considering real life exposure scenario. Implementation of flexible testing strategies, integrating multiple sources of information, including in vitro reliable test methods and in vitro biokinetics, would enhance the relevance of the obtained results. Such an approach could be pivotal in the evaluation of developmental neurotoxicity (DNT), especially when applied to human cell-based models, mimicking key neurodevelopmental processes, relevant to human brain development. Here, we integrated the kinetic behaviour with the toxicodynamic alterations of chlorpyrifos (CPF), such as in vitro endpoints specific for DNT evaluation, after repeated exposure during differentiation of human neural stem cells into a mixed culture of neurons and astrocytes. The upregulation of some cytochrome P450 and glutathione S-transferase genes during neuronal differentiation and the formation of the two major CPF metabolites (due to bioactivation and detoxification) supported the metabolic competence of the used in vitro model. The alterations in the number of synapses, neurite outgrowth, brain derived neurotrophic factor, the proportion of neurons and astrocytes, as well as spontaneous electrical activity correlated well with the CPF ability to enter the cells and be bioactivated to CPF-oxon. Overall, our results confirm that combining in vitro biokinetics and assays to evaluate effects on neurodevelopmental endpoints in human cells should be regarded as a key strategy for a quantitative characterization of DNT effects.
Collapse
Affiliation(s)
- Emma Di Consiglio
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| | | | | | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Emanuela Testai
- Istituto Superiore di Sanità, Environment and Health Department, Mechanisms, Biomarkers and Models Unit, Rome, Italy
| |
Collapse
|
41
|
Gustafson E, Debruyne C, De Troyer O, Rogiers V, Vinken M, Vanhaecke T. Screening of repeated dose toxicity data in safety evaluation reports of cosmetic ingredients issued by the Scientific Committee on Consumer Safety between 2009 and 2019. Arch Toxicol 2020; 94:3723-3735. [PMID: 32839844 PMCID: PMC7603458 DOI: 10.1007/s00204-020-02868-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022]
Abstract
A focal point in the safety evaluation of cosmetic ingredients includes oral repeated dose toxicity testing, which is intended to address the most complex human endpoints. Seven years after the full implementation of the animal testing ban for cosmetic ingredients in the EU, there are still no alternative methods available capable of fully replacing oral repeated dose toxicity testing. Until this issue is resolved, the development of new cosmetic ingredients remains seriously hampered. The present paper describes a thorough screening of the oral repeated dose toxicity data included in safety evaluation reports of cosmetic ingredients addressed in the Annexes of the Cosmetics Regulation (EC) No 1223/2009, issued by the Scientific Committee on Consumer Safety between 2009 and 2019. The liver and the haematological system were identified as the potentially most frequently affected organs upon oral administration of cosmetic ingredients to animals. Evaluation of altered biochemical, morphological, and histopathological parameters related to hepatotoxicity indicated that the most recurrent events are liver weight changes, elevated liver enzymes, and alterations in serum cholesterol and bilirubin levels. Combined listing of affected parameters associated with steatosis and cholestasis indicated the possible occurrence of cholestasis, provoked by a limited number of cosmetic ingredients. The most frequently affected parameters related to the haematological system were indicative of anaemia. An in-depth analysis allowed characterisation of both regenerative and non-regenerative anaemia, pointing to direct and indirect haematotoxicity, respectively. The results presented in this study call for prioritisation of research targeted towards the development of new approach methodologies fit for animal-free repeated dose toxicity evaluation of cosmetic ingredients.
Collapse
Affiliation(s)
- Emma Gustafson
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | | | | | - Vera Rogiers
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium
| | - Tamara Vanhaecke
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Brussels, Belgium.
| |
Collapse
|
42
|
Paparella M, Bennekou SH, Bal-Price A. An analysis of the limitations and uncertainties of in vivo developmental neurotoxicity testing and assessment to identify the potential for alternative approaches. Reprod Toxicol 2020; 96:327-336. [PMID: 32781019 DOI: 10.1016/j.reprotox.2020.08.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/27/2020] [Accepted: 08/05/2020] [Indexed: 10/23/2022]
Abstract
Limitations of regulatory in vivo developmental neurotoxicity (DNT) testing and assessment are well known, such as the 3Rs conflict, low throughput, high costs, high specific expertise needed and the lack of deeper mechanistic information. Moreover, the standard in vivo DNT data variability and in the experimental animal to human real life extrapolation is uncertain. Here, knowledge about these limitations and uncertainties is systematically summarized using a tabular OECD format. We also outline a hypothesis how alternative, fit-for-purpose Integrated Approaches to Testing and Assessment (IATAs) for DNT could improve current standard animal testing: Relative gains in 3Rs compliance, reduced costs, higher throughput, improved basic study design, higher standardization of testing and assessment and validation without 3Rs conflict, increasing the availability and reliability of DNT data. This could allow a more reliable comparative toxicity assessment over a larger proportion of chemicals within our global environment. The use of early, mechanistic, sensitive indicators for potential DNT could better support human safety assessment and mixture extrapolation. Using kinetic modelling ideally these could provide - eventually context dependent - at least the same level of human health protection. Such new approaches could also lead to a new mechanistic understanding for chemical safety, permitting determination of a dose that is likely not to trigger defined toxicity traits or pathways, rather than a dose not causing the current apical organism endpoints. The manuscript shall motivate and guide the development of new alternative methods for IATAs with diverse applications and support decision-making for their regulatory acceptance.
Collapse
Affiliation(s)
- Martin Paparella
- Division of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.
| | | | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
43
|
Andronis C, Silva JP, Lekka E, Virvilis V, Carmo H, Bampali K, Ernst M, Hu Y, Loryan I, Richard J, Carvalho F, Savić MM. Molecular basis of mood and cognitive adverse events elucidated via a combination of pharmacovigilance data mining and functional enrichment analysis. Arch Toxicol 2020; 94:2829-2845. [PMID: 32504122 PMCID: PMC7395038 DOI: 10.1007/s00204-020-02788-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/20/2020] [Indexed: 01/04/2023]
Abstract
Drug-induced Mood- and Cognition-related adverse events (MCAEs) are often only detected during the clinical trial phases of drug development, or even after marketing, thus posing a major safety concern and a challenge for both pharmaceutical companies and clinicians. To fill some gaps in the understanding and elucidate potential biological mechanisms of action frequently associated with MCAEs, we present a unique workflow linking observational population data with the available knowledge at molecular, cellular, and psychopharmacology levels. It is based on statistical analysis of pharmacovigilance reports and subsequent signaling pathway analyses, followed by evidence-based expert manual curation of the outcomes. Our analysis: (a) ranked pharmaceuticals with high occurrence of such adverse events (AEs), based on disproportionality analysis of the FDA Adverse Event Reporting System (FAERS) database, and (b) identified 120 associated genes and common pathway nodes possibly underlying MCAEs. Nearly two-thirds of the identified genes were related to immune modulation, which supports the critical involvement of immune cells and their responses in the regulation of the central nervous system function. This finding also means that pharmaceuticals with a negligible central nervous system exposure may induce MCAEs through dysregulation of the peripheral immune system. Knowledge gained through this workflow unravels putative hallmark biological targets and mediators of drug-induced mood and cognitive disorders that need to be further assessed and validated in experimental models. Thereafter, they can be used to substantially improve in silico/in vitro/in vivo tools for predicting these adversities at a preclinical stage.
Collapse
Affiliation(s)
| | - João Pedro Silva
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | | | | | - Helena Carmo
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Konstantina Bampali
- Department of Molecular Neurosciences, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Margot Ernst
- Department of Molecular Neurosciences, Medical University of Vienna, Spitalgasse 4, 1090, Vienna, Austria
| | - Yang Hu
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Associate Member of SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Irena Loryan
- Translational PKPD Group, Department of Pharmaceutical Biosciences, Associate Member of SciLifeLab, Uppsala University, Uppsala, Sweden
| | - Jacques Richard
- Sanofi R&D, 371 avenue Professeur Blayac, 34000, Montpellier, France
| | - Félix Carvalho
- UCIBIO, REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Miroslav M Savić
- Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11000, Belgrade, Serbia.
| |
Collapse
|
44
|
Systematic assessment of mechanistic data for FDA-certified food colors and neurodevelopmental processes. Food Chem Toxicol 2020; 140:111310. [DOI: 10.1016/j.fct.2020.111310] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/23/2020] [Accepted: 03/26/2020] [Indexed: 11/23/2022]
|
45
|
Cendoya X, Quevedo C, Ipiñazar M, Planes FJ. Computational approach for collection and prediction of molecular initiating events in developmental toxicity. Reprod Toxicol 2020; 94:55-64. [PMID: 32344110 DOI: 10.1016/j.reprotox.2020.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 03/04/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
Abstract
Developmental toxicity is defined as the occurrence of adverse effects on the developing organism as a result from exposure to a toxic agent. These alterations can have long-term acute effects. Current in vitro models present important limitations and the evaluation of toxicity is not entirely objective. In silico methods have also shown limited success, in part due to complex and varied mechanisms of action that mediate developmental toxicity, which are sometimes poorly understood. In this article, we compiled a dataset of compounds with developmental toxicity categories and annotated mechanisms of action for both toxic and non-toxic compounds (DVTOX). With it, we selected a panel of protein targets that might be part of putative Molecular Initiating Events (MIEs) of Adverse Outcome Pathways of developmental toxicity. The validity of this list of candidate MIEs was studied through the evaluation of new drug-target relationships that include such proteins, but were not part of the original database. Finally, an orthology analysis of this protein panel was conducted to select an appropriate animal model to assess developmental toxicity. We tested our approach using the zebrafish embryo toxicity test, finding positive results.
Collapse
Affiliation(s)
- Xabier Cendoya
- TECNUN, University of Navarra, San Sebastian, 20018, Spain
| | | | | | | |
Collapse
|
46
|
Metruccio F, Palazzolo L, Di Renzo F, Battistoni M, Menegola E, Eberini I, Moretto A. Development of an adverse outcome pathway for cranio-facial malformations: A contribution from in silico simulations and in vitro data. Food Chem Toxicol 2020; 140:111303. [PMID: 32251704 DOI: 10.1016/j.fct.2020.111303] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/19/2020] [Accepted: 03/21/2020] [Indexed: 12/11/2022]
Abstract
Mixtures of substances sharing the same molecular initiating event (MIE) are supposed to induce additive effects. The proposed MIE for azole fungicides is CYP26 inhibition with retinoic acid (RA) local increase, triggering key events leading to craniofacial defects. Valproic acid (VPA) is supposed to imbalance RA-regulated gene expression trough histone deacetylases (HDACs) inhibition. The aim was to evaluate effects of molecules sharing the same MIE (azoles) and of such having (hypothetically) different MIEs but which are eventually involved in the same adverse outcome pathway (AOP). An in silico approach (molecular docking) investigated the suggested MIEs. Teratogenicity was evaluated in vitro (WEC). Abnormalities were modelled by PROAST software. The common target was the branchial apparatus. In silico results confirmed azole-related CYP26 inhibition and a weak general VPA inhibition on the tested HDACs. Unexpectedly, VPA showed also a weak, but not marginal, capability to enter the CYP 26A1 and CYP 26C1 catalytic sites, suggesting a possible role of VPA in decreasing RA catabolism, acting as an additional MIE. Our findings suggest a new more complex picture. Consequently two different AOPs, leading to the same AO, can be described. VPA MIEs (HDAC and CYP26 inhibition) impinge on the two converging AOPs.
Collapse
Affiliation(s)
| | - Luca Palazzolo
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| | - Francesca Di Renzo
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria 26- 20133, Milan, Italy.
| | - Maria Battistoni
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| | - Elena Menegola
- Università degli Studi di Milano, Department of Environmental Science and Policy, via Celoria 26- 20133, Milan, Italy.
| | - Ivano Eberini
- Università degli Studi di Milano, Department of Pharmacological and Biomolecular Sciences & DSRC, via Balzaretti 9- 20133, Milan, Italy.
| | - Angelo Moretto
- Department of Biomedical and Clinical Sciences "L. Sacco", via GB Grassi 74- 20159, Milan, Italy.
| |
Collapse
|
47
|
Wheeldon RP, Bernacki DT, Dertinger SD, Bryce SM, Bemis JC, Johnson GE. Benchmark Dose Analysis of DNA Damage Biomarker Responses Provides Compound Potency and Adverse Outcome Pathway Information for the Topoisomerase II Inhibitor Class of Compounds. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2020; 61:396-407. [PMID: 31983063 DOI: 10.1002/em.22360] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/11/2020] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Genetic toxicology data have traditionally been utilized for hazard identification to provide a binary call for a compound's risk. Recent advances in the scientific field, especially with the development of high-throughput methods to quantify DNA damage, have influenced a change of approach in genotoxicity assessment. The in vitro MultiFlow® DNA Damage Assay is one such method which multiplexes γH2AX, p53, phospho-histone H3 biomarkers into a single-flow cytometric analysis (Bryce et al., [2016]: Environ Mol Mutagen 57:546-558). This assay was used to study human TK6 cells exposed to each of eight topoisomerase II poisons for 4 and 24 hr. Using PROAST v65.5, the Benchmark Dose approach was applied to the resulting flow cytometric datasets. With "compound" serving as covariate, all eight compounds were combined into a single analysis, per time point and endpoint. The resulting 90% confidence intervals, plotted in Log scale, were considered as the potency rank for the eight compounds. The in vitro MultiFlow data showed a maximum confidence interval span of 1Log, which indicates data of good quality. Patterns observed in the compound potency rank were scrutinized by using the expert rule-based software program Derek Nexus, developed by Lhasa Limited. Compound sub-classification and structural alerts were considered contributory to the potencies observed for the topoisomerase II poisons studied herein. The Topo II poison Adverse Outcome Pathway was evaluated with MultiFlow endpoints serving as Key Events. The step-wise approach described herein can be considered as a foundation for risk assessment of compounds within a specific mode of action of interest. Environ. Mol. Mutagen. 2020. © 2020 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ryan P Wheeldon
- Institute of Life Science, Swansea University Medical School, Swansea University, Wales, United Kingdom
| | | | | | | | | | - George E Johnson
- Institute of Life Science, Swansea University Medical School, Swansea University, Wales, United Kingdom
| |
Collapse
|
48
|
Browne P, Van Der Wal L, Gourmelon A. OECD approaches and considerations for regulatory evaluation of endocrine disruptors. Mol Cell Endocrinol 2020; 504:110675. [PMID: 31830512 DOI: 10.1016/j.mce.2019.110675] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 12/18/2022]
Abstract
Identifying the potential endocrine disruptor hazard of environmental chemicals is a regulatory mandate for many countries. However, due to the adaptive nature of the endocrine system, absence of a single method capable of identifying endocrine disruption, and the latency between exposure to endocrine disrupting chemical during sensitive life stages and the manifestation of adverse responses, satisfying the regulatory requirement needed to identify a chemical as an endocrine disruptor is a challenge. There are now a variety of validated regulatory tests that can be used in combination to provide evidence that a chemical affects the oestrogen, androgen, thyroid, and steroidogenic pathways of vertebrates, but most rely (at least to some extent) on animal testing and require considerable cost and time to produce the necessary data. Emerging research methods are able to evaluate other endocrine pathways, incorporate more sensitive endpoints, and combine multiple alternative methods to predict in vivo outcomes. Some research approaches may also bridge gaps that have been identified in current endocrine regulatory testing. For the near term, considering new endpoints in a regulatory context may require adding them to existing test methods in order to establish relationships between the traditional and the innovative. From the outset, endocrine testing has always required integration of multiple methods that provide data on different levels of biological organisation, thus, the area of endocrine disruption is particularly adaptable to adverse outcome pathway (AOP) frameworks and integrated test methods built around AOPs. Herein, we provide a review of the status of endocrine disruptors in the OECD context, examples where innovation from research is needed to improve or bridge gaps in endocrine testing, and suggestions for regulators and researchers to facilitate uptake of innovate methods for endocrine disruptor regulatory testing. The increase in several human complex human disorders that include an endocrine component and the alarming decrease in wildlife biodiversity are commanding directives to include the best, most informative, innovative approaches to accelerate the rate and throughput of chemical evaluation for endocrine disruption.
Collapse
Affiliation(s)
- Patience Browne
- Organisation for Economic Cooperation and Development, Environment Directorate, Paris, France.
| | - Leon Van Der Wal
- Organisation for Economic Cooperation and Development, Environment Directorate, Paris, France
| | - Anne Gourmelon
- Organisation for Economic Cooperation and Development, Environment Directorate, Paris, France
| |
Collapse
|
49
|
Pistollato F, de Gyves EM, Carpi D, Bopp SK, Nunes C, Worth A, Bal-Price A. Assessment of developmental neurotoxicity induced by chemical mixtures using an adverse outcome pathway concept. Environ Health 2020; 19:23. [PMID: 32093744 PMCID: PMC7038628 DOI: 10.1186/s12940-020-00578-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/11/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND In light of the vulnerability of the developing brain, mixture risk assessment (MRA) for the evaluation of developmental neurotoxicity (DNT) should be implemented, since infants and children are co-exposed to more than one chemical at a time. One possible approach to tackle MRA could be to cluster DNT chemicals in a mixture on the basis of their mode of action (MoA) into 'similar' and 'dissimilar', but still contributing to the same adverse outcome, and anchor DNT assays to common key events (CKEs) identified in DNT-specific adverse outcome pathways (AOPs). Moreover, the use of human in vitro models, such as induced pluripotent stem cell (hiPSC)-derived neuronal and glial cultures would enable mechanistic understanding of chemically-induced adverse effects, avoiding species extrapolation. METHODS HiPSC-derived neural progenitors differentiated into mixed cultures of neurons and astrocytes were used to assess the effects of acute (3 days) and repeated dose (14 days) treatments with single chemicals and in mixtures belonging to different classes (i.e., lead(II) chloride and methylmercury chloride (heavy metals), chlorpyrifos (pesticide), bisphenol A (organic compound and endocrine disrupter), valproic acid (drug), and PCB138 (persistent organic pollutant and endocrine disrupter), which are associated with cognitive deficits, including learning and memory impairment in children. Selected chemicals were grouped based on their mode of action (MoA) into 'similar' and 'dissimilar' MoA compounds and their effects on synaptogenesis, neurite outgrowth, and brain derived neurotrophic factor (BDNF) protein levels, identified as CKEs in currently available AOPs relevant to DNT, were evaluated by immunocytochemistry and high content imaging analysis. RESULTS Chemicals working through similar MoA (i.e., alterations of BDNF levels), at non-cytotoxic (IC20/100), very low toxic (IC5), or moderately toxic (IC20) concentrations, induce DNT effects in mixtures, as shown by increased number of neurons, impairment of neurite outgrowth and synaptogenesis (the most sensitive endpoint as confirmed by mathematical modelling) and increase of BDNF levels, to a certain extent reproducing autism-like cellular changes observed in the brain of autistic children. CONCLUSIONS Our findings suggest that the use of human iPSC-derived mixed neuronal/glial cultures applied to a battery of assays anchored to key events of an AOP network represents a valuable approach to identify mixtures of chemicals with potential to cause learning and memory impairment in children.
Collapse
Affiliation(s)
| | | | - Donatella Carpi
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Carolina Nunes
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Andrew Worth
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Anna Bal-Price
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
50
|
Vinken M, Kramer N, Allen TEH, Hoffmans Y, Thatcher N, Levorato S, Traussnig H, Schulte S, Boobis A, Thiel A, Rietjens IMCM. The use of adverse outcome pathways in the safety evaluation of food additives. Arch Toxicol 2020; 94:959-966. [PMID: 32065296 DOI: 10.1007/s00204-020-02670-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
In the last decade, adverse outcome pathways have been introduced in the fields of toxicology and risk assessment of chemicals as pragmatic tools with broad application potential. While their use in the pharmaceutical and cosmetics sectors has been well documented, their application in the food area remains largely unexplored. In this respect, an expert group of the International Life Sciences Institute Europe has recently explored the use of adverse outcome pathways in the safety evaluation of food additives. A key activity was the organization of a workshop, gathering delegates from the regulatory, industrial and academic areas, to discuss the potentials and challenges related to the application of adverse outcome pathways in the safety assessment of food additives. The present paper describes the outcome of this workshop followed by a number of critical considerations and perspectives defined by the International Life Sciences Institute Europe expert group.
Collapse
Affiliation(s)
- Mathieu Vinken
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090, Brussels, Belgium.
| | - Nynke Kramer
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80177, 3508 TD, Utrecht, The Netherlands
| | - Timothy E H Allen
- Centre for Molecular Informatics, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Yvette Hoffmans
- Wageningen University and Research, Droevendaalsesteeg 4, 6708 PB, Wageningen, The Netherlands
| | - Natalie Thatcher
- Mondelēz International, Bournville Place, Bournville Ln, Birmingham, B30 2LU, UK
| | - Sara Levorato
- Unilever, Safety and Environmental Assurance Centre, Sharnbrook, Bedford, MK441LQ, UK
| | - Heinz Traussnig
- Mayr-Melnhof Karton Gesellschaft m.b.H., Frohnleiten Mill, Wannersdorf 80, 8130, Frohnleiten, Austria
| | - Stefan Schulte
- Department of Product Safety, BASF SE, 67056, Ludwigshafen, Germany
| | - Alan Boobis
- National Heart and Lung Institute, Imperial College London, London, W12 0NN, UK
| | - Anette Thiel
- DSM Nutritional Products Ltd., Wurmisweg 576, 4303, Kaiseraugst, Switzerland
| | - Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, The Netherlands
| |
Collapse
|