1
|
Englisch CN, Diebolt CM, Kirstein E, Wahl V, Wartenberg P, Schaudien D, Beckmann A, Laschke MW, Krasteva-Christ G, Gudermann T, Chubanov V, Boehm U, Tschernig T. TRPM6 in murine kidneys-of targets and antibodies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03951-0. [PMID: 40025338 DOI: 10.1007/s00210-025-03951-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025]
Abstract
Magnesium is the fourth most abundant cation in the human organism. As a key-player in many enzymatic reactions, magnesium homeostasis disbalance can cause severe disorders. In the early 2000s, the transient receptor potential melastatin channel 6 (TRPM6) was identified as a critical protein in renal Mg2+-reabsorption in the distal convoluted tubule (DCT). As the key-interface responsible for salt/water adaptation to environmental changes, the kidney is a highly dynamic system. Therefore, renal TRPM6 expression and Mg2+-reabsorption might not be restricted to the DCT, as previously indicated. To address this, protein targeting is mandatory since genomic detection is insufficient to conclude on functional expression. For this purpose, we used a polyclonal TRPM6 antibody from an established manufacturer and detected immunostaining in murine proximal and distal tubules. As a matter of fact, the specificity of most commercially available TRPM6 antibodies is insufficiently validated which relies on the lack of constitutive trpm6 knockouts. Therefore, conditional trpm6 knockout mice were used for control experiments. Similar signals were observed in the knockout tissue when compared to wildtype using the TRPM6 antibody. Overlaps with TRPM7 epitopes or other peptides are conceivable. Thus, TRPM6 immunohistochemistry and immunofluorescence results are difficult to interpret, and the spectrum of renal TRPM6 expression is not yet elucidated.
Collapse
Affiliation(s)
- Colya N Englisch
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Coline M Diebolt
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Emilie Kirstein
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Vanessa Wahl
- Institute of Pharmacology, Saarland University, 66421, Homburg/Saar, Germany
| | - Philipp Wartenberg
- Institute of Pharmacology, Saarland University, 66421, Homburg/Saar, Germany
| | - Dirk Schaudien
- Fraunhofer Institute for Toxicology and Experimental Medicine, 30625, Hannover, Germany
| | - Anja Beckmann
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical and Experimental Surgery, Saarland University, 66421, Homburg/Saar, Germany
| | - Gabriela Krasteva-Christ
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, Ludwig Maximilian University Munich, Munich, Germany
| | - Ulrich Boehm
- Institute of Pharmacology, Saarland University, 66421, Homburg/Saar, Germany
| | - Thomas Tschernig
- Institute of Anatomy and Cell Biology, Saarland University, Kirrberger Strasse 100, 66421, Homburg/Saar, Germany.
| |
Collapse
|
2
|
Chen Z, Xie H, Liu J, Zhao J, Huang R, Xiang Y, Wu H, Tian D, Bian E, Xiong Z. Roles of TRPM channels in glioma. Cancer Biol Ther 2024; 25:2338955. [PMID: 38680092 PMCID: PMC11062369 DOI: 10.1080/15384047.2024.2338955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/01/2024] [Indexed: 05/01/2024] Open
Abstract
Gliomas are the most common type of primary brain tumor. Despite advances in treatment, it remains one of the most aggressive and deadly tumor of the central nervous system (CNS). Gliomas are characterized by high malignancy, heterogeneity, invasiveness, and high resistance to radiotherapy and chemotherapy. It is urgent to find potential new molecular targets for glioma. The TRPM channels consist of TRPM1-TPRM8 and play a role in many cellular functions, including proliferation, migration, invasion, angiogenesis, etc. More and more studies have shown that TRPM channels can be used as new therapeutic targets for glioma. In this review, we first introduce the structure, activation patterns, and physiological functions of TRPM channels. Additionally, the pathological mechanism of glioma mediated by TRPM2, 3, 7, and 8 and the related signaling pathways are described. Finally, we discuss the therapeutic potential of targeting TRPM for glioma.
Collapse
Affiliation(s)
- Zhigang Chen
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - JiaJia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Ruixiang Huang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Yufei Xiang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Dasheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Erbao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhang Xiong
- Department of Neurosurgery, The Translational Research Institute for Neurological Disorders, The First Affiliated Hospital (Yijishan Hospital), Wannan Medical College, Wuhu, P. R. China
| |
Collapse
|
3
|
Bosman W, Butler KM, Chang CA, Ganapathi M, Guzman E, Latta F, Chung WK, Claverie-Martin F, Davis JM, Hoenderop JGJ, de Baaij JHF. Pathogenic heterozygous TRPM7 variants and hypomagnesemia with developmental delay. Clin Kidney J 2024; 17:sfae211. [PMID: 39099563 PMCID: PMC11295107 DOI: 10.1093/ckj/sfae211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Indexed: 08/06/2024] Open
Abstract
Background Heterozygous variants in Transient receptor potential melastatin type 7 (TRPM7), encoding an essential and ubiquitously expressed cation channel, may cause hypomagnesemia, but current evidence is insufficient to draw definite conclusions and it is unclear whether any other phenotypes can occur. Methods Individuals with unexplained hypomagnesemia underwent whole-exome sequencing which identified TRPM7 variants. Pathogenicity of the identified variants was assessed by combining phenotypic, functional and in silico analyses. Results We report three new heterozygous missense variants in TRPM7 (p.Met1000Thr, p.Gly1046Arg, p.Leu1081Arg) in individuals with hypomagnesemia. Strikingly, autism spectrum disorder and developmental delay, mainly affecting speech and motor skills, was observed in all three individuals, while two out of three also presented with seizures. The three variants are predicted to be severely damaging by in silico prediction tools and structural modeling. Furthermore, these variants result in a clear loss-of-function of TRPM7-mediated magnesium uptake in vitro, while not affecting TRPM7 expression or insertion into the plasma membrane. Conclusions This study provides additional evidence for the association between heterozygous TRPM7 variants and hypomagnesemia and adds developmental delay to the phenotypic spectrum of TRPM7-related disorders. Considering that the TRPM7 gene is relatively tolerant to loss-of-function variants, future research should aim to unravel by what mechanisms specific heterozygous TRPM7 variants can cause disease.
Collapse
Affiliation(s)
- Willem Bosman
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | | | - Caitlin A Chang
- Department of Medical Genetics, BC Women and Children's Hospital, Vancouver, British Columbia, Canada
| | - Mythily Ganapathi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Edwin Guzman
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA
| | - Femke Latta
- Department of Medical BioSciences, Radboudumc, Nijmegen, The Netherlands
| | - Wendy K Chung
- Department of Pediatrics, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Felix Claverie-Martin
- Unidad de Investigación, RenalTube Group, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | | | | | |
Collapse
|
4
|
Holderby KG, Kozak JA. Use of tetraethylammonium (TEA) and Tris loading for blocking TRPM7 channels in intact cells. Front Pharmacol 2024; 15:1341799. [PMID: 38659572 PMCID: PMC11039802 DOI: 10.3389/fphar.2024.1341799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Tetraethylammonium (TEA), a quaternary ammonium compound, is a well-known blocker of potassium channels belonging to various subfamilies, such as KV1-3, KCa1, 2 and prokaryotic KcsA. In many cases, TEA acts from the extracellular side by open pore blockade. TEA can also block transient receptor potential (TRP) cation channels, such as TRPM7, in a voltage-dependent manner. In human T lymphocytes, intracellular (cytosolic) TEA and its analog TMA (tetramethylammonium) inhibit TRPM7 channel currents in the outward but not inward direction. By contrast, intracellular Mg2+, protons and polyamines inhibit both outward and inward current components equally. Likewise, the majority of available pharmacological tools inhibit TRPM7 channels in a voltage-independent manner. Since TRPM7 is a steeply outwardly rectifying conductance, voltage-dependent blockers can be useful for studying the cellular functions of this channel. TRPM7 protein is endogenously expressed in diverse cell lines, including HEK, HeLa, CHO, RBL and Jurkat. Using patch-clamp electrophysiology, we found that incubating HEK293 and Jurkat T cells overnight in the presence of 20 mM TEA-Cl, resulted in the nearly complete blockade of whole-cell TRPM7 outward current, measured at break-in. By contrast, the inward current was unchanged in TEA-loaded cells. The blockade was fully reversible after washout of intracellular solution in whole-cell but not in perforated-patch recording configurations. Overnight incubation with 20 mM TMA-Cl resulted in a more modest blockade of the outward TRPM7 current. Internal 129 mM TMA and TEA eliminated most of the outward current. TEA uptake in transfected HEK293 cells led to blockade of recombinant murine TRPM7 and the Mg2+ and pH insensitive Ser1107Arg variant. Unexpectedly, Tris-HCl, a widely used pH buffer, could similarly be loaded into Jurkat and HEK cells, and preferentially blocked outward TRPM7 currents. 20 mM and 129 mM Tris in the internal solution blocked TRPM7 current in outward but not inward direction. Voltage-dependent channel blockade by TEA, TMA and Tris loading will be useful for studying the properties and functions of TRPM7-mediated ion transport in intact cells.
Collapse
Affiliation(s)
- Katherine G. Holderby
- Undergraduate Program in Physiology and Neuroscience, Dayton, OH, United States
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - J. Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, United States
| |
Collapse
|
5
|
Rios FJ, Sarafian RD, Camargo LL, Montezano AC, Touyz RM. Recent Advances in Understanding the Mechanistic Role of Transient Receptor Potential Ion Channels in Patients With Hypertension. Can J Cardiol 2023; 39:1859-1873. [PMID: 37865227 DOI: 10.1016/j.cjca.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/17/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023] Open
Abstract
The transient receptor potential (TRP) channel superfamily is a group of nonselective cation channels that function as cellular sensors for a wide range of physical, chemical, and environmental stimuli. According to sequence homology, TRP channels are categorized into 6 subfamilies: TRP canonical, TRP vanilloid, TRP melastatin, TRP ankyrin, TRP mucolipin, and TRP polycystin. They are widely expressed in different cell types and tissues and have essential roles in various physiological and pathological processes by regulating the concentration of ions (Ca2+, Mg2+, Na+, and K+) and influencing intracellular signalling pathways. Human data and experimental models indicate the importance of TRP channels in vascular homeostasis and hypertension. Furthermore, TRP channels have emerged as key players in oxidative stress and inflammation, important in the pathophysiology of cardiovascular diseases, including hypertension. In this review, we present an overview of the TRP channels with a focus on their role in hypertension. In particular, we highlight mechanisms activated by TRP channels in vascular smooth muscle and endothelial cells and discuss their contribution to processes underlying vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Francisco J Rios
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada.
| | - Raquel D Sarafian
- Institute of Biosciences, Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo, Brazil
| | - Livia L Camargo
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Augusto C Montezano
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Rhian M Touyz
- Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada; Department of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
6
|
Liu M, Dudley SC. Beyond Ion Homeostasis: Hypomagnesemia, Transient Receptor Potential Melastatin Channel 7, Mitochondrial Function, and Inflammation. Nutrients 2023; 15:3920. [PMID: 37764704 PMCID: PMC10536927 DOI: 10.3390/nu15183920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/02/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
As the second most abundant intracellular divalent cation, magnesium (Mg2+) is essential for cell functions, such as ATP production, protein/DNA synthesis, protein activity, and mitochondrial function. Mg2+ plays a critical role in heart rhythm, muscle contraction, and blood pressure. A significant decline in Mg2+ intake has been reported in developed countries because of the increased consumption of processed food and filtered/deionized water, which can lead to hypomagnesemia (HypoMg). HypoMg is commonly observed in cardiovascular diseases, such as heart failure, hypertension, arrhythmias, and diabetic cardiomyopathy, and HypoMg is a predictor for cardiovascular and all-cause mortality. On the other hand, Mg2+ supplementation has shown significant therapeutic effects in cardiovascular diseases. Some of the effects of HypoMg have been ascribed to changes in Mg2+ participation in enzyme activity, ATP stabilization, enzyme kinetics, and alterations in Ca2+, Na+, and other cations. In this manuscript, we discuss new insights into the pathogenic mechanisms of HypoMg that surpass previously described effects. HypoMg causes mitochondrial dysfunction, oxidative stress, and inflammation. Many of these effects can be attributed to the HypoMg-induced upregulation of a Mg2+ transporter transient receptor potential melastatin 7 channel (TRMP7) that is also a kinase. An increase in kinase signaling mediated by HypoMg-induced TRPM7 transcriptional upregulation, independently of any change in Mg2+ transport function, likely seems responsible for many of the effects of HypoMg. Therefore, Mg2+ supplementation and TRPM7 kinase inhibition may work to treat the sequelae of HypoMg by preventing increased TRPM7 kinase activity rather than just altering ion homeostasis. Since many diseases are characterized by oxidative stress or inflammation, Mg2+ supplementation and TRPM7 kinase inhibition may have wider implications for other diseases by acting to reduce oxidative stress and inflammation.
Collapse
Affiliation(s)
- Man Liu
- Cardiovascular Division, Department of Medicine, The Lillehei Heart Institute, University of Minnesota at Twin Cities, Minneapolis, MN 55455, USA;
| | | |
Collapse
|
7
|
Hardy S, Zolotarov Y, Coleman J, Roitman S, Khursheed H, Aubry I, Uetani N, Tremblay M. PRL-1/2 phosphatases control TRPM7 magnesium-dependent function to regulate cellular bioenergetics. Proc Natl Acad Sci U S A 2023; 120:e2221083120. [PMID: 36972446 PMCID: PMC10083557 DOI: 10.1073/pnas.2221083120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, PRL-3; also known as PTP4A1, PTP4A2, PTP4A3, respectively) control intracellular magnesium levels by interacting with the CNNM magnesium transport regulators. Still, the exact mechanism governing magnesium transport by this protein complex is not well understood. Herein, we have developed a genetically encoded intracellular magnesium-specific reporter and demonstrate that the CNNM family inhibits the function of the TRPM7 magnesium channel. We show that the small GTPase ARL15 increases CNNM3/TRPM7 protein complex formation to reduce TRPM7 activity. Conversely, PRL-2 overexpression counteracts ARL15 binding to CNNM3 and enhances the function of TRPM7 by preventing the interaction between CNNM3 and TRPM7. Moreover, while TRPM7-induced cell signaling is promoted by PRL-1/2, it is reduced when CNNM3 is overexpressed. Lowering cellular magnesium levels reduces the interaction of CNNM3 with TRPM7 in a PRL-dependent manner, whereby knockdown of PRL-1/2 restores the protein complex formation. Cotargeting of TRPM7 and PRL-1/2 alters mitochondrial function and sensitizes cells to metabolic stress induced by magnesium depletion. These findings reveal the dynamic regulation of TRPM7 function in response to PRL-1/2 levels, to coordinate magnesium transport and reprogram cellular metabolism.
Collapse
Affiliation(s)
- Serge Hardy
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Yevgen Zolotarov
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Jacob Coleman
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Simon Roitman
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Hira Khursheed
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Isabelle Aubry
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Noriko Uetani
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| | - Michel L. Tremblay
- Goodman Cancer Institute, McGill University, Montreal, QCH3A1A3, Canada
- Department of Biochemistry, McGill University, Montreal, QCH3A1A3, Canada
| |
Collapse
|
8
|
Ciaglia T, Vestuto V, Bertamino A, González-Muñiz R, Gómez-Monterrey I. On the modulation of TRPM channels: Current perspectives and anticancer therapeutic implications. Front Oncol 2023; 12:1065935. [PMID: 36844925 PMCID: PMC9948629 DOI: 10.3389/fonc.2022.1065935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023] Open
Abstract
The transient melastatin receptor potential (TRPM) ion channel subfamily functions as cellular sensors and transducers of critical biological signal pathways by regulating ion homeostasis. Some members of TRPM have been cloned from cancerous tissues, and their abnormal expressions in various solid malignancies have been correlated with cancer cell growth, survival, or death. Recent evidence also highlights the mechanisms underlying the role of TRPMs in tumor epithelial-mesenchymal transition (EMT), autophagy, and cancer metabolic reprogramming. These implications support TRPM channels as potential molecular targets and their modulation as an innovative therapeutic approach against cancer. Here, we discuss the general characteristics of the different TRPMs, focusing on current knowledge about the connection between TRPM channels and critical features of cancer. We also cover TRPM modulators used as pharmaceutical tools in biological trials and an indication of the only clinical trial with a TRPM modulator about cancer. To conclude, the authors describe the prospects for TRPM channels in oncology.
Collapse
Affiliation(s)
- Tania Ciaglia
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Vincenzo Vestuto
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | - Alessia Bertamino
- Dipartimento di Farmacia (DIFARMA), Università degli Studi di Salerno, Fisciano, Italy
| | | | | |
Collapse
|
9
|
Khajavi N, Beck A, Riçku K, Beyerle P, Jacob K, Syamsul SF, Belkacemi A, Reinach PS, Schreier PC, Salah H, Popp T, Novikoff A, Breit A, Chubanov V, Müller TD, Zierler S, Gudermann T. TRPM7 kinase is required for insulin production and compensatory islet responses during obesity. JCI Insight 2023; 8:163397. [PMID: 36574297 PMCID: PMC9977431 DOI: 10.1172/jci.insight.163397] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Most overweight individuals do not develop diabetes due to compensatory islet responses to restore glucose homeostasis. Therefore, regulatory pathways that promote β cell compensation are potential targets for treatment of diabetes. The transient receptor potential cation channel subfamily M member 7 protein (TRPM7), harboring a cation channel and a serine/threonine kinase, has been implicated in controlling cell growth and proliferation. Here, we report that selective deletion of Trpm7 in β cells disrupted insulin secretion and led to progressive glucose intolerance. We indicate that the diminished insulinotropic response in β cell-specific Trpm7-knockout mice was caused by decreased insulin production because of impaired enzymatic activity of this protein. Accordingly, high-fat-fed mice with a genetic loss of TRPM7 kinase activity displayed a marked glucose intolerance accompanied by hyperglycemia. These detrimental glucoregulatory effects were engendered by reduced compensatory β cell responses because of mitigated protein kinase B (AKT)/ERK signaling. Collectively, our data identify TRPM7 kinase as a potentially novel regulator of insulin synthesis, β cell dynamics, and glucose homeostasis under obesogenic diet.
Collapse
Affiliation(s)
- Noushafarin Khajavi
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Andreas Beck
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Klea Riçku
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Philipp Beyerle
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Katharina Jacob
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Sabrina F. Syamsul
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anouar Belkacemi
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Peter S. Reinach
- Wenzhou Medical University, Ophthalmology Department, Wenzhou, China
| | - Pascale C.F. Schreier
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Houssein Salah
- Institute of Experimental and Clinical Pharmacology and Toxicology, Saarland University, Homburg, Germany
| | - Tanja Popp
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Aaron Novikoff
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Andreas Breit
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Timo D. Müller
- Institute of Diabetes and Obesity, Helmholtz Center Munich, Neuherberg, Germany.,German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Susanna Zierler
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Medical Faculty, Johannes Kepler University Linz, Linz, Austria
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,German Center for Lung Research, Munich, Germany
| |
Collapse
|
10
|
Andriulė I, Pangonytė D, Gwanyanya A, Karčiauskas D, Mubagwa K, Mačianskienė R. Detection of TRPM6 and TRPM7 Proteins in Normal and Diseased Cardiac Atrial Tissue and Isolated Cardiomyocytes. Int J Mol Sci 2022; 23:ijms232314860. [PMID: 36499188 PMCID: PMC9736228 DOI: 10.3390/ijms232314860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
Magnesium-sensitive transient receptor potential melastatin (TRPM) ion channels, TRPM6 and TRPM7, are present in several organs, but their roles in the heart remain unclear. Therefore, here, we studied the expression patterns of TRPM6 and TRPM7 in normal and diseased myocardium. Cardiac atrial tissue and cardiomyocytes were obtained from healthy pigs and undiseased human hearts as well as from hearts of patients with ischemic heart disease (IHD) or atrial fibrillation (AF). Immunofluorescence and ELISA were used to detect TRP proteins. TRPM6 and TRPM7 immunofluorescence signals, localized at/near the cell surface or intracellularly, were detected in pig and human atrial tissues. The TRP channel modulators carvacrol (CAR, 100 µM) or 2-aminoethoxydiphenyl borate (2-APB, 500 µM) decreased the TRPM7 signal, but enhanced that of TRPM6. At a higher concentration (2 mM), 2-APB enhanced the signals of both proteins. TRPM6 and TRPM7 immunofluorescence signals and protein concentrations were increased in atrial cells and tissues from IHD or AF patients. TRPM6 and TRPM7 proteins were both detected in cardiac atrial tissue, with relatively similar subcellular localization, but distinctive drug sensitivity profiles. Their upregulated expression in IHD and AF suggests a possible role of the channels in cardiac atrial disease.
Collapse
Affiliation(s)
- Inga Andriulė
- Institute of Cardiology, Lithuanian University of Health Sciences, 50103 Kaunas, Lithuania
| | - Dalia Pangonytė
- Institute of Cardiology, Lithuanian University of Health Sciences, 50103 Kaunas, Lithuania
| | - Asfree Gwanyanya
- Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Cape Town 7700, South Africa
| | - Dainius Karčiauskas
- Institute of Cardiology, Lithuanian University of Health Sciences, 50103 Kaunas, Lithuania
- Department of Cardiac, Thoracic and Vascular Surgery, Hospital of Lithuanian University of Health Sciences Kauno Klinikos, 50161 Kaunas, Lithuania
| | - Kanigula Mubagwa
- Department of Cardiovascular Sciences, Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
- Department of Basic Sciences, Faculty of Medicine, Université Catholique de Bukavu, Bukavu, Congo
| | - Regina Mačianskienė
- Institute of Cardiology, Lithuanian University of Health Sciences, 50103 Kaunas, Lithuania
- Correspondence:
| |
Collapse
|
11
|
Gualdani R, Gailly P, Yuan JH, Yerna X, Di Stefano G, Truini A, Cruccu G, Dib-Hajj SD, Waxman SG. A TRPM7 mutation linked to familial trigeminal neuralgia: Omega current and hyperexcitability of trigeminal ganglion neurons. Proc Natl Acad Sci U S A 2022; 119:e2119630119. [PMID: 36095216 PMCID: PMC9499596 DOI: 10.1073/pnas.2119630119] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Trigeminal neuralgia (TN) is a unique pain disorder characterized by intense paroxysmal facial pain within areas innervated by the trigeminal nerve. Although most cases of TN are sporadic, familial clusters of TN suggest that genetic factors may contribute to this disorder. Whole-exome sequencing in patients with TN reporting positive family history demonstrated a spectrum of variants of ion channels including TRP channels. Here, we used patch-clamp analysis and Ca2+ and Na+ imaging to assess a rare variant in the TRPM7 channel, p.Ala931Thr, within transmembrane domain 3, identified in a man suffering from unilateral TN. We showed that A931T produced an abnormal inward current carried by Na+ and insensitive to the pore blocker Gd3+. Hypothesizing that replacement of the hydrophobic alanine at position 931 with the more polar threonine destabilizes a hydrophobic ring, near the voltage sensor domain, we performed alanine substitutions of F971 and W972 and obtained results suggesting a role of A931-W972 hydrophobic interaction in S3-S4 hydrophobic cleft stability. Finally, we transfected trigeminal ganglion neurons with A931T channels and observed that expression of this TRPM7 variant lowers current threshold and resting membrane potential, and increases evoked firing activity in TG neurons. Our results support the notion that the TRPM7-A931T mutation located in the S3 segment at the interface with the transmembrane region S4, generates an omega current that carries Na+ influx in physiological conditions. A931T produces hyperexcitability and a sustained Na+ influx in trigeminal ganglion neurons that may underlie pain in this kindred with trigeminal neuralgia.
Collapse
Affiliation(s)
- Roberta Gualdani
- aInstitute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Philippe Gailly
- aInstitute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Jun-Hui Yuan
- bDepartment of Neurology, Yale School of Medicine, New Haven, CT 06520
- cCenter for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare, West Haven, CT 06515
| | - Xavier Yerna
- aInstitute of Neuroscience, Université catholique de Louvain, B-1200 Brussels, Belgium
| | - Giulia Di Stefano
- dDepartment of Human Neuroscience, Sapienza University, 00185 Rome, Italy
| | - Andrea Truini
- dDepartment of Human Neuroscience, Sapienza University, 00185 Rome, Italy
| | - Giorgio Cruccu
- dDepartment of Human Neuroscience, Sapienza University, 00185 Rome, Italy
| | - Sulayman D. Dib-Hajj
- bDepartment of Neurology, Yale School of Medicine, New Haven, CT 06520
- cCenter for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare, West Haven, CT 06515
| | - Stephen G. Waxman
- bDepartment of Neurology, Yale School of Medicine, New Haven, CT 06520
- cCenter for Neuroscience and Regeneration Research, Veterans Affairs Connecticut Healthcare, West Haven, CT 06515
- 2To whom correspondence may be addressed.
| |
Collapse
|
12
|
Kazandzhieva K, Mammadova-Bach E, Dietrich A, Gudermann T, Braun A. TRP channel function in platelets and megakaryocytes: basic mechanisms and pathophysiological impact. Pharmacol Ther 2022; 237:108164. [PMID: 35247518 DOI: 10.1016/j.pharmthera.2022.108164] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/29/2022] [Accepted: 02/28/2022] [Indexed: 12/30/2022]
Abstract
Transient receptor potential (TRP) proteins form a superfamily of cation channels that are expressed in a wide range of tissues and cell types. During the last years, great progress has been made in understanding the molecular complexity and the functions of TRP channels in diverse cellular processes, including cell proliferation, migration, adhesion and activation. The diversity of functions depends on multiple regulatory mechanisms by which TRP channels regulate Ca2+ entry mechanisms and intracellular Ca2+ dynamics, either through membrane depolarization involving cation influx or store- and receptor-operated mechanisms. Abnormal function or expression of TRP channels results in vascular pathologies, including hypertension, ischemic stroke and inflammatory disorders through effects on vascular cells, including the components of blood vessels and platelets. Moreover, some TRP family members also regulate megakaryopoiesis and platelet production, indicating a complex role of TRP channels in pathophysiological conditions. In this review, we describe potential roles of TRP channels in megakaryocytes and platelets, as well as their contribution to diseases such as thrombocytopenia, thrombosis and stroke. We also critically discuss the potential of TRP channels as possible targets for disease prevention and treatment.
Collapse
Affiliation(s)
- Kalina Kazandzhieva
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Alexander Dietrich
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany; German Center for Lung Research (DZL), Munich, Germany.
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
13
|
Rössig A, Hill K, Nörenberg W, Weidenbach S, Zierler S, Schaefer M, Gudermann T, Chubanov V. Pharmacological agents selectively acting on the channel moieties of TRPM6 and TRPM7. Cell Calcium 2022; 106:102640. [PMID: 36030694 DOI: 10.1016/j.ceca.2022.102640] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 11/18/2022]
Abstract
The transient receptor potential cation channel, subfamily M, members 6 and 7 (TRPM6 and TRPM7) are homologous membrane proteins encompassing cation channel units fused to cytosolic serine/threonine-protein kinase domains. Clinical studies and experiments with animal disease models suggested that selective inhibition of TRPM6 and TRPM7 currents might be beneficial for subjects with immune and cardiovascular disorders, tumours and other pathologies, but the suitable pharmacological toolkit remains underdeveloped. The present study identified small synthetic molecules acting specifically on the channel moieties of TRPM6 and TRPM7. Using electrophysiological analysis in conjunction with Ca2+ imaging, we show that iloperidone and ifenprodil inhibit the channel activity of recombinant TRPM6 with IC50 values of 0.73 and 3.33 µM, respectively, without an impact on the TRPM7 channel. We also found that VER155008 suppresses the TRPM7 channel with an IC50 value of 0.11 µM but does not affect TRPM6. Finally, the effects of iloperidone and VER155008 were found to be suitable for blocking native endogenous TRPM6 and TRPM7 in a collection of mouse and human cell models. Hence, the identification of iloperidone, ifenprodil, and VER155008 allows for the first time to selectively manipulate TRPM6 and TRPM7 currents.
Collapse
Affiliation(s)
- Anna Rössig
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Kerstin Hill
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Wolfgang Nörenberg
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Sebastian Weidenbach
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany; Institute of Pharmacology, Johannes Kepler University Linz, Linz, Austria
| | - Michael Schaefer
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany; Comprehensive Pneumology Center, a member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
14
|
TRPM7 deficiency exacerbates cardiovascular and renal damage induced by aldosterone-salt. Commun Biol 2022; 5:746. [PMID: 35882956 PMCID: PMC9325869 DOI: 10.1038/s42003-022-03715-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 07/14/2022] [Indexed: 12/04/2022] Open
Abstract
Hyperaldosteronism causes cardiovascular disease as well as hypomagnesemia. Mechanisms are ill-defined but dysregulation of TRPM7, a Mg2+-permeable channel/α-kinase, may be important. We examined the role of TRPM7 in aldosterone-dependent cardiovascular and renal injury by studying aldosterone-salt treated TRPM7-deficient (TRPM7+/Δkinase) mice. Plasma/tissue [Mg2+] and TRPM7 phosphorylation were reduced in vehicle-treated TRPM7+/Δkinase mice, effects recapitulated in aldosterone-salt-treated wild-type mice. Aldosterone-salt treatment exaggerated vascular dysfunction and amplified cardiovascular and renal fibrosis, with associated increased blood pressure in TRPM7+/Δkinase mice. Tissue expression of Mg2+-regulated phosphatases (PPM1A, PTEN) was downregulated and phosphorylation of Smad3, ERK1/2, and Stat1 was upregulated in aldosterone-salt TRPM7-deficient mice. Aldosterone-induced phosphorylation of pro-fibrotic signaling was increased in TRPM7+/Δkinase fibroblasts, effects ameliorated by Mg2+ supplementation. TRPM7 deficiency amplifies aldosterone-salt-induced cardiovascular remodeling and damage. We identify TRPM7 downregulation and associated hypomagnesemia as putative molecular mechanisms underlying deleterious cardiovascular and renal effects of hyperaldosteronism. Deficiency of the Mg2+-permeable channel/α-kinase TRPM7 in mice increases susceptibility to cardiovascular and renal fibrosis induced by aldosterone and salt.
Collapse
|
15
|
Jin F, Huang Y, Hattori M. Recent Advances in the Structural Biology of Mg 2+ Channels and Transporters. J Mol Biol 2022; 434:167729. [PMID: 35841930 DOI: 10.1016/j.jmb.2022.167729] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Magnesium ions (Mg2+) are the most abundant divalent cations in living organisms and are essential for various physiological processes, including ATP utilization and the catalytic activity of numerous enzymes. Therefore, the homeostatic mechanisms associated with cellular Mg2+ are crucial for both eukaryotic and prokaryotic organisms and are thus strictly controlled by Mg2+ channels and transporters. Technological advances in structural biology, such as the expression screening of membrane proteins, in meso phase crystallization, and recent cryo-EM techniques, have enabled the structure determination of numerous Mg2+ channels and transporters. In this review article, we provide an overview of the families of Mg2+ channels and transporters (MgtE/SLC41, TRPM6/7, CorA/Mrs2, CorC/CNNM), and discuss the structural biology prospects based on the known structures of MgtE, TRPM7, CorA and CorC.
Collapse
Affiliation(s)
- Fei Jin
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Yichen Huang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Motoyuki Hattori
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Bioactive Small Molecules, Collaborative Innovation Center of Genetics and Development, Department of Physiology and Neurobiology, School of Life Sciences, Fudan University, Shanghai 200438, China.
| |
Collapse
|
16
|
Chen TM, Huang CM, Hsieh MS, Lin CS, Lee WH, Yeh CT, Liu SC. TRPM7 via calcineurin/NFAT pathway mediates metastasis and chemotherapeutic resistance in head and neck squamous cell carcinoma. Aging (Albany NY) 2022; 14:5250-5270. [PMID: 35771152 PMCID: PMC9271301 DOI: 10.18632/aging.204154] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 06/23/2022] [Indexed: 12/18/2022]
Abstract
The exact mechanisms of Head and neck squamous carcinoma (HNSCC) chemoresistance and metastatic transformation remain unclear. In recent decades, members of the transient receptor potential (TRP) channel family have been proposed as potential biomarkers and/or drug targets in cancer treatment. First, in a TCGA cohort of HNSCC, TRPM7 is highly expressed in cancer tissues, especially the expression in invasive cancer tissues is statistically significant (p>0.001). In GEO and TCGA cohort, patients with high expression of TRPM7 and NFATC2 have poor overall survival rates. The expression of TRPM7 and NFATC2 showed a positive correlation. Compared to human normal oral keratinocytes (hNOK), TRPM7 is overexpressed in FaDU, SAS, and TW2.6 cell lines. Similarly, patients with HNSCC exhibited higher TRPM7 expression than non-HNSCC subjects, and this high TRPM7 expression was associated with worse 5-year overall survival. Furthermore, TRPM7 inversely correlated with E-cadherin, but positively correlated with Vimentin, NANOG, and BMI-1 mRNA levels. Consistent with this, we demonstrated the overexpression of TRPM7 in cisplatin-resistant subjects, compared to the cisplatin-sensitive counterparts. Moreover, shRNA-mediated silencing of TRPM7 significantly suppressed the migration, invasion, colony formation, and tumorsphere formation of SAS cells, with associated downregulation of Snail, c-Myc, cyclin D1, SOX2, OCT4, and NANOG proteins expression. Finally, compared with the untreated wild-type SAS cells or cisplatin-treated cells, shTRPM7 alone or in combination with cisplatin significantly inhibited tumorsphere and colony formation. These findings serving as the basis for development of novel therapeutic strategies against metastasis and chemoresistance, while providing new insights into TRPM7 biology and activity in HNSCC.
Collapse
Affiliation(s)
- Tsung-Ming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan.,Department of Otolaryngology, School of Medicine, College of Medicine, Taipei Medical University, Taipei City 11031, Taiwan
| | - Chih-Ming Huang
- Department of Otolaryngology, Taitung Mackay Memorial Hospital, Taitung City 950408, Taiwan.,Department of Nursing, Tajen University, Yanpu 90741, Pingtung County, Taiwan
| | - Ming-Shou Hsieh
- Department of Medical Research and Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chun-Shu Lin
- Department of Radiation Oncology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| | - Wei-Hwa Lee
- Department of Pathology, Taipei Medical University-Shuang Ho Hospital, New Taipei City 235, Taiwan
| | - Chi-Tai Yeh
- Department of Medical Research and Education, Taipei Medical University - Shuang Ho Hospital, New Taipei City 235, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Yuanpei University of Medical Technology, Hsinchu City 30015, Taiwan
| | - Shao-Cheng Liu
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan
| |
Collapse
|
17
|
Identification of novel off targets of baricitinib and tofacitinib by machine learning with a focus on thrombosis and viral infection. Sci Rep 2022; 12:7843. [PMID: 35551258 PMCID: PMC9096754 DOI: 10.1038/s41598-022-11879-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/22/2022] [Indexed: 12/03/2022] Open
Abstract
As there are no clear on-target mechanisms that explain the increased risk for thrombosis and viral infection or reactivation associated with JAK inhibitors, the observed elevated risk may be a result of an off-target effect. Computational approaches combined with in vitro studies can be used to predict and validate the potential for an approved drug to interact with additional (often unwanted) targets and identify potential safety-related concerns. Potential off-targets of the JAK inhibitors baricitinib and tofacitinib were identified using two established machine learning approaches based on ligand similarity. The identified targets related to thrombosis or viral infection/reactivation were subsequently validated using in vitro assays. Inhibitory activity was identified for four drug-target pairs (PDE10A [baricitinib], TRPM6 [tofacitinib], PKN2 [baricitinib, tofacitinib]). Previously unknown off-target interactions of the two JAK inhibitors were identified. As the proposed pharmacological effects of these interactions include attenuation of pulmonary vascular remodeling, modulation of HCV response, and hypomagnesemia, the newly identified off-target interactions cannot explain an increased risk of thrombosis or viral infection/reactivation. While further evidence is required to explain both the elevated thrombosis and viral infection/reactivation risk, our results add to the evidence that these JAK inhibitors are promiscuous binders and highlight the potential for repurposing.
Collapse
|
18
|
Schmidt E, Narangoda C, Nörenberg W, Egawa M, Rössig A, Leonhardt M, Schaefer M, Zierler S, Kurnikova MG, Gudermann T, Chubanov V. Structural mechanism of TRPM7 channel regulation by intracellular magnesium. Cell Mol Life Sci 2022; 79:225. [PMID: 35389104 PMCID: PMC8989868 DOI: 10.1007/s00018-022-04192-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/26/2022] [Accepted: 02/02/2022] [Indexed: 01/03/2023]
Abstract
Zn2+, Mg2+ and Ca2+ are essential divalent cations implicated in many metabolic processes and signalling pathways. An emerging new paradigm is that the organismal balance of these cations predominantly depends on a common gatekeeper, the channel-kinase TRPM7. Despite extensive electrophysiological studies and recent cryo-EM analysis, an open question is how the channel activity of TRPM7 is activated. Here, we performed site-directed mutagenesis of mouse TRPM7 in conjunction with patch-clamp assessment of whole-cell and single-channel activity and molecular dynamics (MD) simulations to show that the side chains of conserved N1097 form an inter-subunit Mg2+ regulatory site located in the lower channel gate of TRPM7. Our results suggest that intracellular Mg2+ binds to this site and stabilizes the TRPM7 channel in the closed state, whereas the removal of Mg2+ favours the opening of TRPM7. Hence, our study identifies the structural underpinnings through which the TRPM7 channel is controlled by cytosolic Mg2+, representing a new structure–function relationship not yet explored among TRPM channels.
Collapse
Affiliation(s)
- Eva Schmidt
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Chamali Narangoda
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Wolfgang Nörenberg
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Miyuki Egawa
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anna Rössig
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Marion Leonhardt
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Michael Schaefer
- Rudolf-Boehm Institute of Pharmacology and Toxicology, Leipzig University, Leipzig, Germany
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Johannes Kepler University Linz, Linz, Austria
| | - Maria G Kurnikova
- Chemistry Department, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany. .,Comprehensive Pneumology Center, a member of the German Center for Lung Research (DZL), Munich, Germany.
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.
| |
Collapse
|
19
|
Gehring K, Kozlov G, Yang M, Fakih R. The double lives of phosphatases of regenerating liver: A structural view of their catalytic and noncatalytic activities. J Biol Chem 2021; 298:101471. [PMID: 34890645 PMCID: PMC8728433 DOI: 10.1016/j.jbc.2021.101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/18/2022] Open
Abstract
Phosphatases of regenerating liver (PRLs) are protein phosphatases involved in the control of cell growth and migration. They are known to promote cancer metastasis but, despite over 20 years of study, there is still no consensus about their mechanism of action. Recent work has revealed that PRLs lead double lives, acting both as catalytically active enzymes and as pseudophosphatases. The three known PRLs belong to the large family of cysteine phosphatases that form a phosphocysteine intermediate during catalysis. Uniquely to PRLs, this intermediate is stable, with a lifetime measured in hours. As a consequence, PRLs have very little phosphatase activity. Independently, PRLs also act as pseudophosphatases by binding CNNM membrane proteins to regulate magnesium homeostasis. In this function, an aspartic acid from CNNM inserts into the phosphatase catalytic site of PRLs, mimicking a substrate–enzyme interaction. The delineation of PRL pseudophosphatase and phosphatase activities in vivo was impossible until the recent identification of PRL mutants defective in one activity or the other. These mutants showed that CNNM binding was sufficient for PRL oncogenicity in one model of metastasis, but left unresolved its role in other contexts. As the presence of phosphocysteine prevents CNNM binding and CNNM-binding blocks catalytic activity, these two activities are inherently linked. Additional studies are needed to untangle the intertwined catalytic and noncatalytic functions of PRLs. Here, we review the current understanding of the structure and biophysical properties of PRL phosphatases.
Collapse
Affiliation(s)
- Kalle Gehring
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada.
| | - Guennadi Kozlov
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Meng Yang
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| | - Rayan Fakih
- Department of Biochemistry and Centre de Recherche en Biologie Structurale, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
20
|
Kollewe A, Chubanov V, Tseung FT, Correia L, Schmidt E, Rössig A, Zierler S, Haupt A, Müller CS, Bildl W, Schulte U, Nicke A, Fakler B, Gudermann T. The molecular appearance of native TRPM7 channel complexes identified by high-resolution proteomics. eLife 2021; 10:68544. [PMID: 34766907 PMCID: PMC8616561 DOI: 10.7554/elife.68544] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
The transient receptor potential melastatin-subfamily member 7 (TRPM7) is a ubiquitously expressed membrane protein consisting of ion channel and protein kinase domains. TRPM7 plays a fundamental role in the cellular uptake of divalent cations such as Zn2+, Mg2+, and Ca2+, and thus shapes cellular excitability, plasticity, and metabolic activity. The molecular appearance and operation of TRPM7 channels in native tissues have remained unresolved. Here, we investigated the subunit composition of endogenous TRPM7 channels in rodent brain by multi-epitope affinity purification and high-resolution quantitative mass spectrometry (MS) analysis. We found that native TRPM7 channels are high-molecular-weight multi-protein complexes that contain the putative metal transporter proteins CNNM1-4 and a small G-protein ADP-ribosylation factor-like protein 15 (ARL15). Heterologous reconstitution experiments confirmed the formation of TRPM7/CNNM/ARL15 ternary complexes and indicated that complex formation effectively and specifically impacts TRPM7 activity. These results open up new avenues towards a mechanistic understanding of the cellular regulation and function of TRPM7 channels.
Collapse
Affiliation(s)
- Astrid Kollewe
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vladimir Chubanov
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Fong Tsuen Tseung
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Leonor Correia
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Eva Schmidt
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Anna Rössig
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Susanna Zierler
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,Institute of Pharmacology, Johannes Kepler University Linz, Linz, Austria
| | - Alexander Haupt
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Catrin Swantje Müller
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wolfgang Bildl
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Uwe Schulte
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Annette Nicke
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany
| | - Bernd Fakler
- Institute of Physiology II, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, Freiburg, Germany
| | - Thomas Gudermann
- Walther-Straub Institute of Pharmacology and Toxicology, LMU Munich, Munich, Germany.,German Center for Lung Research, Munich, Germany
| |
Collapse
|
21
|
Chokshi R, Bennett O, Zhelay T, Kozak JA. NSAIDs Naproxen, Ibuprofen, Salicylate, and Aspirin Inhibit TRPM7 Channels by Cytosolic Acidification. Front Physiol 2021; 12:727549. [PMID: 34733174 PMCID: PMC8558630 DOI: 10.3389/fphys.2021.727549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/10/2021] [Indexed: 01/23/2023] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are used for relieving pain and inflammation accompanying numerous disease states. The primary therapeutic mechanism of these widely used drugs is the inhibition of cyclooxygenase 1 and 2 (COX1, 2) enzymes that catalyze the conversion of arachidonic acid into prostaglandins. At higher doses, NSAIDs are used for prevention of certain types of cancer and as experimental treatments for Alzheimer’s disease. In the immune system, various NSAIDs have been reported to influence neutrophil function and lymphocyte proliferation, and affect ion channels and cellular calcium homeostasis. Transient receptor potential melastatin 7 (TRPM7) cation channels are highly expressed in T lymphocytes and are inhibited by Mg2+, acidic pH, and polyamines. Here, we report a novel effect of naproxen, ibuprofen, salicylate, and acetylsalicylate on TRPM7. At concentrations of 3–30mM, they reversibly inhibited TRPM7 channel currents. By measuring intracellular pH with the ratiometric indicator BCECF, we found that at 300μM to 30mM, these NSAIDs reversibly acidified the cytoplasm in a concentration-dependent manner, and propose that TRPM7 channel inhibition is a consequence of cytosolic acidification, rather than direct. NSAID inhibition of TRPM7 channels was slow, voltage-independent, and displayed use-dependence, increasing in potency upon repeated drug applications. The extent of channel inhibition by salicylate strongly depended on cellular PI(4,5)P2 levels, as revealed when this phospholipid was depleted with voltage-sensitive lipid phosphatase (VSP). Salicylate inhibited heterologously expressed wildtype TRPM7 channels but not the S1107R variant, which is insensitive to cytosolic pH, Mg2+, and PI(4,5)P2 depletion. NSAID-induced acidification was also observed in Schneider 2 cells from Drosophila, an organism that lacks orthologous COX genes, suggesting that this effect is unrelated to COX enzyme activity. A 24-h exposure to 300μM–10mM naproxen resulted in a concentration-dependent reduction in cell viability. In addition to TRPM7, the described NSAID effect would be expected to apply to other ion channels and transporters sensitive to intracellular pH.
Collapse
Affiliation(s)
- Rikki Chokshi
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - Orville Bennett
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine, College of Science and Mathematics, Wright State University, Dayton, OH, United States
| |
Collapse
|
22
|
Trophectoderm cell failure leads to peri-implantation lethality in Trpm7-deficient mouse embryos. Cell Rep 2021; 37:109851. [PMID: 34686339 DOI: 10.1016/j.celrep.2021.109851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/28/2021] [Accepted: 09/28/2021] [Indexed: 11/24/2022] Open
Abstract
Early embryogenesis depends on proper control of intracellular homeostasis of ions including Ca2+ and Mg2+. Deletion of the Ca2+ and Mg2+ conducting the TRPM7 channel is embryonically lethal in mice but leaves compaction, blastomere polarization, blastocoel formation, and correct specification of the lineages of the trophectoderm and inner cell mass unaltered despite that free cytoplasmic Ca2+ and Mg2+ is reduced at the two-cell stage. Although Trpm7-/- embryos are able to hatch from the zona pellucida, no expansion of Trpm7-/- trophoblast cells can be observed, and Trpm7-/- embryos are not identifiable in utero at E6.5 or later. Given the proliferation and adhesion defect of Trpm7-/- trophoblast stem cells and the ability of Trpm7-/- ESCs to develop to embryos in tetraploid embryo complementation assays, we postulate a critical role of TRPM7 in trophectoderm cells and their failure during implantation as the most likely explanation of the developmental arrest of Trpm7-deficient mouse embryos.
Collapse
|
23
|
Abstract
The transient receptor potential (TRP) channel superfamily consists of a large group of non-selective cation channels that serve as cellular sensors for a wide spectrum of physical and environmental stimuli. The 28 mammalian TRPs, categorized into six subfamilies, including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin) and TRPP (polycystin), are widely expressed in different cells and tissues. TRPs exhibit a variety of unique features that not only distinguish them from other superfamilies of ion channels, but also confer diverse physiological functions. Located at the plasma membrane or in the membranes of intracellular organelles, TRPs are the cellular safeguards that sense various cell stresses and environmental stimuli and translate this information into responses at the organismal level. Loss- or gain-of-function mutations of TRPs cause inherited diseases and pathologies in different physiological systems, whereas up- or down-regulation of TRPs is associated with acquired human disorders. In this Cell Science at a Glance article and the accompanying poster, we briefly summarize the history of the discovery of TRPs, their unique features, recent advances in the understanding of TRP activation mechanisms, the structural basis of TRP Ca2+ selectivity and ligand binding, as well as potential roles in mammalian physiology and pathology.
Collapse
Affiliation(s)
- Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Inoue H, Murayama T, Kobayashi T, Konishi M, Yokoyama U. The zinc-binding motif of TRPM7 acts as an oxidative stress sensor to regulate its channel activity. J Gen Physiol 2021; 153:212116. [PMID: 33999118 PMCID: PMC8129778 DOI: 10.1085/jgp.202012708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 02/02/2021] [Accepted: 04/27/2021] [Indexed: 01/03/2023] Open
Abstract
The activity of the TRPM7 channel is negatively regulated by intracellular Mg2+. We previously reported that oxidative stress enhances the inhibition of TRPM7 by intracellular Mg2+. Here, we aimed to clarify the mechanism underlying TRPM7 inhibition by hydrogen peroxide (H2O2). Site-directed mutagenesis of full-length TRPM7 revealed that none of the cysteines other than C1809 and C1813 within the zinc-binding motif of the TRPM7 kinase domain were involved in the H2O2-induced TRPM7 inhibition. Mutation of C1809 or C1813 prevented expression of full-length TRPM7 on the plasma membrane. We therefore developed an assay to functionally reconstitute full-length TRPM7 by coexpressing the TRPM7 channel domain (M7cd) and the TRPM7 kinase domain (M7kd) as separate proteins in HEK293 cells. When M7cd was expressed alone, the current was inhibited by intracellular Mg2+ more strongly than that of full-length TRPM7 and was insensitive to oxidative stress. Coexpression of M7cd and M7kd attenuated the inhibition by intracellular Mg2+ and restored sensitivity to oxidative stress, indicating successful reconstitution of a full-length TRPM7-like current. We observed a similar effect when M7cd was coexpressed with the kinase-inactive mutant M7kd-K1645R, suggesting that the kinase activity is not essential for the reconstitution. However, coexpression of M7cd and M7kd carrying a mutation at either C1809 or C1813 failed to restore the full-length TRPM7-like current. No reconstitution was observed when using M7kd carrying a mutation at H1750 and H1807, which are involved in the zinc-binding motif formation with C1809 and C1813. These data suggest that the zinc-binding motif is essential for the intracellular Mg2+-dependent regulation of the TRPM7 channel activity by its kinase domain and that the cysteines in the zinc-binding motif play a role in the oxidative stress response of TRPM7.
Collapse
Affiliation(s)
- Hana Inoue
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Takashi Murayama
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takuya Kobayashi
- Department of Cellular and Molecular Pharmacology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masato Konishi
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Utako Yokoyama
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
25
|
Beesetty P, Rockwood J, Kaitsuka T, Zhelay T, Hourani S, Matsushita M, Kozak JA. Phagocytic activity of splenic macrophages is enhanced and accompanied by cytosolic alkalinization in TRPM7 kinase-dead mice. FEBS J 2021; 288:3585-3601. [PMID: 33354894 DOI: 10.1111/febs.15683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 10/29/2020] [Accepted: 12/21/2020] [Indexed: 12/31/2022]
Abstract
Transient receptor potential melastatin 7 (TRPM7) is a unique protein functioning as a cation channel as well as a serine/threonine kinase and is highly expressed in immune cells such as lymphocytes and macrophages. TRPM7 kinase-dead (KD) mouse model has been used to investigate the role of this protein in immune cells; these animals display moderate splenomegaly and ectopic hemopoiesis. The basal TRPM7 current magnitudes in peritoneal macrophages isolated from KD mice were higher; however, the maximum currents, achieved after cytoplasmic Mg2+ washout, were not different. In the present study, we investigated the consequences of TRPM7 kinase inactivation in splenic and peritoneal macrophages. We measured the basal phagocytic activity of splenic macrophages using fluorescent latex beads, pHrodo zymosan bioparticles, and opsonized red blood cells. KD macrophages phagocytized more efficiently and had slightly higher baseline calcium levels compared to WT cells. We found no obvious differences in store-operated Ca2+ entry between WT and KD macrophages. By contrast, the resting cytosolic pH in KD macrophages was significantly more alkaline than in WT. Pharmacological blockade of sodium hydrogen exchanger 1 (NHE1) reversed the cytosolic alkalinization and reduced phagocytosis in KD macrophages. Basal TRPM7 channel activity in KD macrophages was also reduced after NHE1 blockade. Cytosolic Mg2+ sensitivity of TRPM7 channels measured in peritoneal macrophages was similar in WT and KD mice. The higher basal TRPM7 channel activity in KD macrophages is likely due to alkalinization. Our results identify a novel role for TRPM7 kinase as a suppressor of basal phagocytosis and a regulator of cellular pH.
Collapse
Affiliation(s)
- Pavani Beesetty
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Taku Kaitsuka
- Department of Molecular Physiology, Faculty of Life Sciences, Kumamoto University, Japan
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Siham Hourani
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| | - Masayuki Matsushita
- Department of Molecular and Cellular Physiology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, USA
| |
Collapse
|
26
|
Zöphel D, Hof C, Lis A. Altered Ca 2+ Homeostasis in Immune Cells during Aging: Role of Ion Channels. Int J Mol Sci 2020; 22:ijms22010110. [PMID: 33374304 PMCID: PMC7794837 DOI: 10.3390/ijms22010110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
Aging is an unstoppable process and begins shortly after birth. Each cell of the organism is affected by the irreversible process, not only with equal density but also at varying ages and with different speed. Therefore, aging can also be understood as an adaptation to a continually changing cellular environment. One of these very prominent changes in age affects Ca2+ signaling. Especially immune cells highly rely on Ca2+-dependent processes and a strictly regulated Ca2+ homeostasis. The intricate patterns of impaired immune cell function may represent a deficit or compensatory mechanisms. Besides, altered immune function through Ca2+ signaling can profoundly affect the development of age-related disease. This review attempts to summarize changes in Ca2+ signaling due to channels and receptors in T cells and beyond in the context of aging.
Collapse
Affiliation(s)
| | | | - Annette Lis
- Correspondence: ; Tel.: +49-(0)-06841-1616318; Fax: +49-(0)-6841-1616302
| |
Collapse
|
27
|
Wan J, Guo AA, King P, Guo S, Saafir T, Jiang Y, Liu M. TRPM7 Induces Tumorigenesis and Stemness Through Notch Activation in Glioma. Front Pharmacol 2020; 11:590723. [PMID: 33381038 PMCID: PMC7768084 DOI: 10.3389/fphar.2020.590723] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 10/19/2020] [Indexed: 01/29/2023] Open
Abstract
We have reported that transient receptor potential melastatin-related 7 (TRPM7) regulates glioma stem cells (GSC) growth and proliferation through Notch, STAT3-ALDH1, and CD133 signaling pathways. In this study, we determined the major contributor(s) to TRPM7 mediated glioma stemness by further deciphering each individual Notch signaling. We first determined whether TRPM7 is an oncotarget in glioblastoma multiforme (GBM) using the Oncomine database. Next, we determined whether TRPM7 silencing by siRNA TRPM7 (siTRPM7) induces cell growth arrest or apoptosis to reduce glioma cell proliferation using cell cycle analysis and annexin V staining assay. We then examined the correlations between the expression of TRPM7 and Notch signaling activity as well as the expression of GSC markers CD133 and ALDH1 in GBM by downregulating TRPM7 through siTRPM7 or upregulating TRPM7 through overexpression of human TRPM7 (M7-wt). To distinguish the different function of channel and kinase domain of TRPM7, we further determined how the α-kinase-dead mutants of TRPM7 (α-kinase domain deleted/M7-DK and K1648R point mutation/M7-KR) affect Notch activities and CD133 and ALDH1 expression. Lastly, we determined the changes in TRPM7-mediated regulation of glioma cell growth/proliferation, cell cycle, and apoptosis by targeting Notch1. The Oncomine data revealed a significant increase in TRPM7 mRNA expression in anaplastic astrocytoma, diffuse astrocytoma, and GBM patients compared to that in normal brain tissues. TRPM7 silencing reduced glioma cell growth by inhibiting cell entry into S and G2/M phases and promoting cell apoptosis. TRPM7 expression in GBM cells was found to be positively correlated with Notch1 signaling activity and CD133 and ALDH1 expression; briefly, downregulation of TRPM7 by siTRPM7 decreased Notch1 signaling whereas upregulation of TRPM7 increased Notch1 signaling. Interestingly, kinase-inactive mutants (M7-DK and M7-KR) resulted in reduced activation of Notch1 signaling and decreased expression of CD133 and ALDH1 compared to that of wtTRPM7. Finally, targeting Notch1 effectively suppressed TRPM7-induced growth and proliferation of glioma cells through cell G1/S arrest and apoptotic induction. TRPM7 is responsible for sustained Notch1 signaling activation, enhanced expression of GSC markers CD133 and ALDH1, and regulation of glioma stemness, which contributes to malignant glioma cell growth and invasion.
Collapse
Affiliation(s)
- Jingwei Wan
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Alyssa Aihui Guo
- University of South Carolina SOM Greenville, Greenville, SC, United States
| | - Pendelton King
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Shanchun Guo
- Department of Chemistry, Xavier University, New Orleans, LA, United States
| | - Talib Saafir
- Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA, United States
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingli Liu
- Department of Microbiology, Biochemistry and Immunology, Morehouse School of Medicine, Atlanta, GA, United States,*Correspondence: Mingli Liu,
| |
Collapse
|
28
|
Chubanov V, Gudermann T. Lactate as a new second messenger shaping intracellular Mg 2+ dynamics and bioenergetics. Cell Calcium 2020; 93:102329. [PMID: 33340852 DOI: 10.1016/j.ceca.2020.102329] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/04/2020] [Accepted: 12/04/2020] [Indexed: 10/22/2022]
Abstract
Mg2+ is an essential cation controlling many biochemical reactions. Recently, Daw et al. [1] have shown that l-lactate acts as a second messenger triggering a dynamic exchange of Mg2+ between the endoplasmic reticulum and mitochondria to shape energy metabolism. This discovery changes our view on the cellular role of Mg2+.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany.
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany; German Center for Lung Research, Munich, Germany.
| |
Collapse
|
29
|
Jimenez I, Prado Y, Marchant F, Otero C, Eltit F, Cabello-Verrugio C, Cerda O, Simon F. TRPM Channels in Human Diseases. Cells 2020; 9:E2604. [PMID: 33291725 PMCID: PMC7761947 DOI: 10.3390/cells9122604] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
The transient receptor potential melastatin (TRPM) subfamily belongs to the TRP cation channels family. Since the first cloning of TRPM1 in 1989, tremendous progress has been made in identifying novel members of the TRPM subfamily and their functions. The TRPM subfamily is composed of eight members consisting of four six-transmembrane domain subunits, resulting in homomeric or heteromeric channels. From a structural point of view, based on the homology sequence of the coiled-coil in the C-terminus, the eight TRPM members are clustered into four groups: TRPM1/M3, M2/M8, M4/M5 and M6/M7. TRPM subfamily members have been involved in several physiological functions. However, they are also linked to diverse pathophysiological human processes. Alterations in the expression and function of TRPM subfamily ion channels might generate several human diseases including cardiovascular and neurodegenerative alterations, organ dysfunction, cancer and many other channelopathies. These effects position them as remarkable putative targets for novel diagnostic strategies, drug design and therapeutic approaches. Here, we review the current knowledge about the main characteristics of all members of the TRPM family, focusing on their actions in human diseases.
Collapse
Affiliation(s)
- Ivanka Jimenez
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Yolanda Prado
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Felipe Marchant
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
| | - Carolina Otero
- Faculty of Medicine, School of Chemistry and Pharmacy, Universidad Andrés Bello, Santiago 8370186, Chile;
| | - Felipe Eltit
- Vancouver Prostate Centre, Vancouver, BC V6Z 1Y6, Canada;
- Department of Urological Sciences, University of British Columbia, Vancouver, BC V6Z 1Y6, Canada
| | - Claudio Cabello-Verrugio
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago 7560484, Chile
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| | - Oscar Cerda
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago 8380453, Chile
| | - Felipe Simon
- Faculty of Life Science, Universidad Andrés Bello, Santiago 8370186, Chile; (I.J.); (Y.P.); (F.M.); (C.C.-V.)
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Universidad de Chile, Santiago 8380453, Chile;
- Millennium Institute on Immunology and Immunotherapy, Santiago 8370146, Chile
| |
Collapse
|
30
|
Abstract
Transient receptor potential (TRP) channels comprise a diverse family of ion channels, the majority of which are calcium permeable and show sophisticated regulatory patterns in response to various environmental cues. Early studies led to the recognition of TRP channels as environmental and chemical sensors. Later studies revealed that TRP channels mediated the regulation of intracellular calcium. Mutations in TRP channel genes result in abnormal regulation of TRP channel function or expression, and interfere with normal spatial and temporal patterns of intracellular local Ca2+ distribution. The resulting dysregulation of multiple downstream effectors, depending on Ca2+ homeostasis, is associated with hallmarks of cancer pathophysiology, including enhanced proliferation, survival and invasion of cancer cells. These findings indicate that TRP channels affect multiple events that control cellular fate and play a key role in cancer progression. This review discusses the accumulating evidence supporting the role of TRP channels in tumorigenesis, with emphasis on prostate cancer. [BMB Reports 2020; 53(3): 125-132].
Collapse
Affiliation(s)
- Dongki Yang
- Departments of Physiology, College of Medicine, Gachon University, Incheon 21999, Korea
| | - Jaehong Kim
- Departments of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Korea
| |
Collapse
|
31
|
Pugliese D, Armuzzi A, Castri F, Benvenuto R, Mangoni A, Guidi L, Gasbarrini A, Rapaccini GL, Wolf FI, Trapani V. TRPM7 is overexpressed in human IBD-related and sporadic colorectal cancer and correlates with tumor grade. Dig Liver Dis 2020; 52:1188-1194. [PMID: 32505565 DOI: 10.1016/j.dld.2020.05.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) predisposes to colorectal cancer (CRC) with some specific features that distinguish it from sporadic CRC. Magnesium (Mg) homeostasis is severely compromised in IBD patients, which may affect both inflammation and tumor development. Efficient transcellular Mg transport in intestinal cells depends on the transient receptor potential melastatin (TRPM) channels type 6 and 7, but their expression has never been investigated in the context of IBD-related CRC. AIMS We sought to study the expression pattern of TRPM6 and TRPM7 in CRC, and to compare IBD-related cases to sporadic cases. METHODS TRPM6 and TRPM7 protein expression was evaluated by immunohistochemistry in surgical specimens from 16 IBD and 13 NON-IBD CRC patients. RESULTS TRPM7 expression was higher in tumor tissue than in the adjacent non-neoplastic tissue in both IBD and NON-IBD patients. Overall, adenocarcinomas showed a higher TRPM7 expression than adenomas. TRPM7 expression also positively correlated with tumor grade. Conversely, TRPM6 expression was higher in tumor tissues in both IBD and NON-IBD CRC, but it did not correlate with tumor stage or grade. CONCLUSIONS We report a possible participation of TRPM6 and 7 in both IBD-related and sporadic CRC and suggest that TRPM7 might serve as a marker of malignant transformation and lack of differentiation.
Collapse
Affiliation(s)
- Daniela Pugliese
- UOC Medicina Interna e Gastroenterologia Columbus, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Alessandro Armuzzi
- UOC Medicina Interna e Gastroenterologia Columbus, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica Castri
- UOC Anatomia Patologica, Dipartimento di Scienze della vita e Sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Roberta Benvenuto
- UOC Anatomia Patologica, Dipartimento di Scienze della vita e Sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonella Mangoni
- UOC Anatomia Patologica, Dipartimento di Scienze della vita e Sanità pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Luisa Guidi
- UOC Medicina Interna e Gastroenterologia Columbus, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Gasbarrini
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Lodovico Rapaccini
- UOC Medicina Interna e Gastroenterologia Columbus, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Rome, Italy
| | - Federica I Wolf
- Istituto di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| | - Valentina Trapani
- Istituto di Patologia Generale, Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario A. Gemelli IRCCS - Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.
| |
Collapse
|
32
|
Mapping TRPM7 Function by NS8593. Int J Mol Sci 2020; 21:ijms21197017. [PMID: 32977698 PMCID: PMC7582524 DOI: 10.3390/ijms21197017] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/16/2020] [Accepted: 09/21/2020] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a ubiquitously expressed membrane protein, which forms a channel linked to a cytosolic protein kinase. Genetic inactivation of TRPM7 in animal models uncovered the critical role of TRPM7 in early embryonic development, immune responses, and the organismal balance of Zn2+, Mg2+, and Ca2+. TRPM7 emerged as a new therapeutic target because malfunctions of TRPM7 have been associated with anoxic neuronal death, tissue fibrosis, tumour progression, and giant platelet disorder. Recently, several laboratories have identified pharmacological compounds allowing to modulate either channel or kinase activity of TRPM7. Among other small molecules, NS8593 has been defined as a potent negative gating regulator of the TRPM7 channel. Consequently, several groups applied NS8593 to investigate cellular pathways regulated by TRPM7. Here, we summarize the progress in this research area. In particular, two notable milestones have been reached in the assessment of TRPM7 druggability. Firstly, several laboratories demonstrated that NS8593 treatment reliably mirrors prominent phenotypes of cells manipulated by genetic inactivation of TRPM7. Secondly, it has been shown that NS8593 allows us to probe the therapeutic potential of TRPM7 in animal models of human diseases. Collectively, these studies employing NS8593 may serve as a blueprint for the preclinical assessment of TRPM7-targeting drugs.
Collapse
|
33
|
Mellott A, Rockwood J, Zhelay T, Luu CT, Kaitsuka T, Kozak JA. TRPM7 channel activity in Jurkat T lymphocytes during magnesium depletion and loading: implications for divalent metal entry and cytotoxicity. Pflugers Arch 2020; 472:1589-1606. [PMID: 32964285 DOI: 10.1007/s00424-020-02457-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
TRPM7 is a cation channel-protein kinase highly expressed in T lymphocytes and other immune cells. It has been proposed to constitute a cellular entry pathway for Mg2+ and divalent metal cations such as Ca2+, Zn2+, Cd2+, Mn2+, and Ni2+. TRPM7 channels are inhibited by cytosolic Mg2+, rendering them largely inactive in intact cells. The dependence of channel activity on extracellular Mg2+ is less well studied. Here, we measured native TRPM7 channel activity in Jurkat T cells maintained in external Mg2+ concentrations varying between 400 nM and 1.4 mM for 1-3 days, obtaining an IC50 value of 54 μM. Maintaining the cells in 400 nM or 8 μM [Mg2+]o resulted in almost complete activation of TRPM7 in intact cells, due to cytosolic Mg2+ depletion. A total of 1.4 mM [Mg2+]o was sufficient to fully eliminate the basal current. Submillimolar concentrations of amiloride prevented cellular Mg2+ depletion but not loading. We investigated whether the cytotoxicity of TRPM7 permeant metal ions Ni2+, Zn2+, Cd2+, Co2+, Mn2+, Sr2+, and Ba2+ requires TRPM7 channel activity. Mg2+ loading modestly reduced cytotoxicity of Zn2+, Co2+, Ni2+, and Mn2+ but not of Cd2+. Channel blocker NS8593 reduced Co2+ and Mn2+ but not Cd2+ or Zn2+ cytotoxicity and interfered with Mg2+ loading as evaluated by TRPM7 channel basal activity. Ba2+ and Sr2+ were neither detectably toxic nor permeant through the plasma membrane. These results indicate that in Jurkat T cells, entry of toxic divalent metal cations primarily occurs through pathways distinct from TRPM7. By contrast, we found evidence that Mg2+ entry requires TRPM7 channels.
Collapse
Affiliation(s)
- Alayna Mellott
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Jananie Rockwood
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Tetyana Zhelay
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Charles Tuan Luu
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA
| | - Taku Kaitsuka
- School of Pharmacy in Fukuoka, International University of Health and Welfare, Enokizu 137-1, Okawa, Fukuoka, Japan
| | - J Ashot Kozak
- Department of Neuroscience, Cell Biology and Physiology, Boonshoft School of Medicine and College of Science and Mathematics, Wright State University, Dayton, OH, 45435, USA.
| |
Collapse
|
34
|
Rios FJ, Zou ZG, Harvey AP, Harvey KY, Nosalski R, Anyfanti P, Camargo LL, Lacchini S, Ryazanov AG, Ryazanova L, McGrath S, Guzik TJ, Goodyear CS, Montezano AC, Touyz RM. Chanzyme TRPM7 protects against cardiovascular inflammation and fibrosis. Cardiovasc Res 2020; 116:721-735. [PMID: 31250885 PMCID: PMC7252442 DOI: 10.1093/cvr/cvz164] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 05/07/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
AIMS Transient Receptor Potential Melastatin 7 (TRPM7) cation channel is a chanzyme (channel + kinase) that influences cellular Mg2+ homeostasis and vascular signalling. However, the pathophysiological significance of TRPM7 in the cardiovascular system is unclear. The aim of this study was to investigate the role of this chanzyme in the cardiovascular system focusing on inflammation and fibrosis. METHODS AND RESULTS TRPM7-deficient mice with deletion of the kinase domain (TRPM7+/Δkinase) were studied and molecular mechanisms investigated in TRPM7+/Δkinase bone marrow-derived macrophages (BMDM) and co-culture systems with cardiac fibroblasts. TRPM7-deficient mice had significant cardiac hypertrophy, fibrosis, and inflammation. Cardiac collagen and fibronectin content, expression of pro-inflammatory mediators (SMAD3, TGFβ) and cytokines [interleukin (IL)-6, IL-10, IL-12, tumour necrosis factor-α] and phosphorylation of the pro-inflammatory signalling molecule Stat1, were increased in TRPM7+/Δkinase mice. These processes were associated with infiltration of inflammatory cells (F4/80+CD206+ cardiac macrophages) and increased galectin-3 expression. Cardiac [Mg2+]i, but not [Ca2+]i, was reduced in TRPM7+/Δkinase mice. Calpain, a downstream TRPM7 target, was upregulated (increased expression and activation) in TRPM7+/Δkinase hearts. Vascular functional and inflammatory responses, assessed in vivo by intra-vital microscopy, demonstrated impaired neutrophil rolling, increased neutrophil: endothelial attachment and transmigration of leucocytes in TRPM7+/Δkinase mice. TRPM7+/Δkinase BMDMs had increased levels of galectin-3, IL-10, and IL-6. In co-culture systems, TRPM7+/Δkinase macrophages increased expression of fibronectin, proliferating cell nuclear antigen, and TGFβ in cardiac fibroblasts from wild-type mice, effects ameliorated by MgCl2 treatment. CONCLUSIONS We identify a novel anti-inflammatory and anti-fibrotic role for TRPM7 and suggest that its protective effects are mediated, in part, through Mg2+-sensitive processes.
Collapse
Affiliation(s)
- Francisco J Rios
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Zhi-Guo Zou
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Adam P Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Katie Y Harvey
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Ryszard Nosalski
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Panagiota Anyfanti
- 3rd Department of Internal Medicine, Papageorgiou Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Livia L Camargo
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Silvia Lacchini
- Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alexey G Ryazanov
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Lillia Ryazanova
- Lewis Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Sarah McGrath
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tomasz J Guzik
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Carl S Goodyear
- Centre of Immunobiology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, BHF Glasgow Cardiovascular Research Centre, University of Glasgow, 126 University Place, Glasgow G12 8TA, UK
| |
Collapse
|
35
|
Affiliation(s)
- Valentina Trapani
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| | - Federica I Wolf
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore-Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Largo Francesco Vito 1, 00168 Rome, Italy
| |
Collapse
|
36
|
Souza Bomfim GH, Costiniti V, Li Y, Idaghdour Y, Lacruz RS. TRPM7 activation potentiates SOCE in enamel cells but requires ORAI. Cell Calcium 2020; 87:102187. [PMID: 32146159 DOI: 10.1016/j.ceca.2020.102187] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/21/2022]
Abstract
Calcium (Ca2+) release-activated Ca2+ (CRAC) channels mediated by STIM1/2 and ORAI (ORAI1-3) proteins form the dominant store-operated Ca2+ entry (SOCE) pathway in a wide variety of cells. Among these, the enamel-forming cells known as ameloblasts rely on CRAC channel function to enable Ca2+ influx, which is important for enamel mineralization. This key role of the CRAC channel is supported by human mutations and animal models lacking STIM1 and ORAI1, which results in enamel defects and hypomineralization. A number of recent reports have highlighted the role of the chanzyme TRPM7 (transient receptor potential melastanin 7), a transmembrane protein containing an ion channel permeable to divalent cations (Mg2+, Ca2+), as a modulator of SOCE. This raises the question as to whether TRPM7 should be considered an alternative route for Ca2+ influx, or if TRPM7 modifies CRAC channel activity in enamel cells. To address these questions, we monitored Ca2+ influx mediated by SOCE using the pharmacological TRPM7 activator naltriben and the inhibitor NS8593 in rat primary enamel cells and in the murine ameloblast cell line LS8 cells stimulated with thapsigargin. We also measured Ca2+ dynamics in ORAI1/2-deficient (shOrai1/2) LS8 cells and in cells with siRNA knock-down of Trpm7. We found that primary enamel cells stimulated with the TRPM7 activator potentiated Ca2+ influx via SOCE compared to control cells. However, blockade of TRPM7 with NS8593 did not decrease the SOCE peak. Furthermore, activation of TRPM7 in shOrai1/2 LS8 cells lacking SOCE failed to elicit Ca2+ influx, and Trpm7 knock-down had no effect on SOCE. Taken together, our data suggest that TRPM7 is a positive modulator of SOCE potentiating Ca2+ influx in enamel cells, but its function is fully dependent on the prior activation of the ORAI channels.
Collapse
Affiliation(s)
- Guilherme H Souza Bomfim
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Veronica Costiniti
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Yi Li
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA
| | - Youssef Idaghdour
- Biology Program, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Rodrigo S Lacruz
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, 10010, USA.
| |
Collapse
|
37
|
TRPM7 mediates kidney injury, endothelial hyperpermeability and mortality during endotoxemia. J Transl Med 2020; 100:234-249. [PMID: 31444399 DOI: 10.1038/s41374-019-0304-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 06/24/2019] [Accepted: 07/19/2019] [Indexed: 12/17/2022] Open
Abstract
Sepsis is the main cause of mortality in patients admitted to intensive care units. During sepsis, endothelial permeability is severely augmented, contributing to renal dysfunction and patient mortality. Ca2+ influx and the subsequent increase in intracellular [Ca2+]i in endothelial cells (ECs) are key steps in the establishment of endothelial hyperpermeability. Transient receptor potential melastatin 7 (TRPM7) ion channels are permeable to Ca2+ and are expressed in a broad range of cell types and tissues, including ECs and kidneys. However, the role of TRPM7 on endothelial hyperpermeability during sepsis has remained elusive. Therefore, we investigated the participation of TRPM7 in renal vascular hyperpermeability, renal dysfunction, and enhanced mortality induced by endotoxemia. Our results showed that endotoxin increases endothelial hyperpermeability and Ca2+ overload through the TLR4/NOX-2/ROS/NF-κB pathway. Moreover, endotoxin exposure was shown to downregulate the expression of VE-cadherin, compromising monolayer integrity and enhancing vascular hyperpermeability. Notably, endotoxin-induced endothelial hyperpermeability was substantially inhibited by pharmacological inhibition and specific suppression of TRPM7 expression. The endotoxin was shown to upregulate the expression of TRPM7 via the TLR4/NOX-2/ROS/NF-κB pathway and induce a TRPM7-dependent EC Ca2+ overload. Remarkably, in vivo experiments performed in endotoxemic animals showed that pharmacological inhibition and specific suppression of TRPM7 expression inhibits renal vascular hyperpermeability, prevents kidney dysfunction, and improves survival in endotoxemic animals. Therefore, our results showed that TRPM7 mediates endotoxemia-induced endothelial hyperpermeability, renal dysfunction, and enhanced mortality, revealing a novel molecular target for treating renal vascular hyperpermeability and kidney dysfunction during endotoxemia, sepsis, and other inflammatory diseases.
Collapse
|
38
|
Trapani V, Wolf FI. Dysregulation of Mg2+ homeostasis contributes to acquisition of cancer hallmarks. Cell Calcium 2019; 83:102078. [DOI: 10.1016/j.ceca.2019.102078] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/26/2019] [Accepted: 08/23/2019] [Indexed: 02/06/2023]
|
39
|
Wong KK, Banham AH, Yaacob NS, Nur Husna SM. The oncogenic roles of TRPM ion channels in cancer. J Cell Physiol 2019; 234:14556-14573. [PMID: 30710353 DOI: 10.1002/jcp.28168] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 01/10/2019] [Indexed: 01/24/2023]
Abstract
Transient receptor potential (TRP) proteins are a diverse family of ion channels present in multiple types of tissues. They function as gatekeepers for responses to sensory stimuli including temperature, vision, taste, and pain through their activities in conducting ion fluxes. The TRPM (melastatin) subfamily consists of eight members (i.e., TRPM1-8), which collectively regulate fluxes of various types of cations such as K+ , Na+ , Ca2+ , and Mg2+ . Growing evidence in the past two decades indicates that TRPM ion channels, their isoforms, or long noncoding RNAs encoded within the locus may be oncogenes involved in the regulation of cancer cell growth, proliferation, autophagy, invasion, and epithelial-mesenchymal transition, and their significant association with poor clinical outcomes of cancer patients. In this review, we describe and discuss recent findings implicating TRPM channels in different malignancies, their functions, mechanisms, and signaling pathways involved in cancers, as well as summarizing their normal physiological functions and the availability of ion channel pharmacological inhibitors.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| | - Alison H Banham
- Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Nik Soriani Yaacob
- Department of Chemical Pathology, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Siti Muhamad Nur Husna
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia
| |
Collapse
|
40
|
Yu S, Huang S, Ding Y, Wang W, Wang A, Lu Y. Transient receptor potential ion-channel subfamily V member 4: a potential target for cancer treatment. Cell Death Dis 2019; 10:497. [PMID: 31235786 PMCID: PMC6591233 DOI: 10.1038/s41419-019-1708-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 05/13/2019] [Accepted: 05/28/2019] [Indexed: 12/29/2022]
Abstract
The transient receptor potential ion-channel superfamily consists of nonselective cation channels located mostly on the plasma membranes of numerous animal cell types, which are closely related to sensory information transmission (e.g., vision, pain, and temperature perception), as well as regulation of intracellular Ca2+ balance and physiological activities of growth and development. Transient receptor potential ion channel subfamily V (TRPV) is one of the largest and most diverse subfamilies, including TRPV1-TRPV6 involved in the regulation of a variety of cellular functions. TRPV4 can be activated by various physical and chemical stimuli, such as heat, mechanical force, and phorbol ester derivatives participating in the maintenance of normal cellular functions. In recent years, the roles of TRPV4 in cell proliferation, differentiation, apoptosis, and migration have been extensively studied. Its abnormal expression has also been closely related to the onset and progression of multiple tumors, so TRPV4 may be a target for cancer diagnosis and treatment. In this review, we focused on the latest studies concerning the role of TRPV4 in tumorigenesis and the therapeutic potential. As evidenced by the effects on cancerogenesis, TRPV4 is a potential target for anticancer therapy.
Collapse
Affiliation(s)
- Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuai Huang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yushi Ding
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Wei Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing, P. R. China.
| |
Collapse
|
41
|
TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. Proc Natl Acad Sci U S A 2019; 116:4706-4715. [PMID: 30770447 PMCID: PMC6410795 DOI: 10.1073/pnas.1810633116] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Zn2+, Mg2+, and Ca2+ are the most abundant divalent metals in mammals. Different categories of cation-selective channels and transporters are thought to control the levels of individual metals in a cell-specific manner. However, the mechanisms responsible for the organismal balance of these minerals are poorly understood. Using genetic mouse models together with biophysical and biochemical analysis, we show that the channel-kinase TRPM7 is a master regulator of the organismal balance of divalent cations. TRPM7 activity is primarily required in the intestine, while TRPM7 function in the kidney—commonly thought to be essential—is expendable. Hence, against current thinking, organismal balance of multiple divalent cations predominantly relies on a common gatekeeper, TRPM7, rather than on individual specialized channels/transporters. Zn2+, Mg2+, and Ca2+ are essential minerals required for a plethora of metabolic processes and signaling pathways. Different categories of cation-selective channels and transporters are therefore required to tightly control the cellular levels of individual metals in a cell-specific manner. However, the mechanisms responsible for the organismal balance of these essential minerals are poorly understood. Herein, we identify a central and indispensable role of the channel-kinase TRPM7 for organismal mineral homeostasis. The function of TRPM7 was assessed by single-channel analysis of TRPM7, phenotyping of TRPM7-deficient cells in conjunction with metabolic profiling of mice carrying kidney- and intestine-restricted null mutations in Trpm7 and animals with a global “kinase-dead” point mutation in the gene. The TRPM7 channel reconstituted in lipid bilayers displayed a similar permeability to Zn2+ and Mg2+. Consistently, we found that endogenous TRPM7 regulates the total content of Zn2+ and Mg2+ in cultured cells. Unexpectedly, genetic inactivation of intestinal rather than kidney TRPM7 caused profound deficiencies specifically of Zn2+, Mg2+, and Ca2+ at the organismal level, a scenario incompatible with early postnatal growth and survival. In contrast, global ablation of TRPM7 kinase activity did not affect mineral homeostasis, reinforcing the importance of the channel activity of TRPM7. Finally, dietary Zn2+ and Mg2+ fortifications significantly extended the survival of offspring lacking intestinal TRPM7. Hence, the organismal balance of divalent cations critically relies on one common gatekeeper, the intestinal TRPM7 channel.
Collapse
|
42
|
Magnesium-sensitive upstream ORF controls PRL phosphatase expression to mediate energy metabolism. Proc Natl Acad Sci U S A 2019; 116:2925-2934. [PMID: 30718434 DOI: 10.1073/pnas.1815361116] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Phosphatases of regenerating liver (PRL-1, PRL-2, and PRL-3, also known as PTP4A1, PTP4A2, and PTP4A3) control magnesium homeostasis through an association with the CNNM magnesium transport regulators. Although high PRL levels have been linked to cancer progression, regulation of their expression is poorly understood. Here we show that modulating intracellular magnesium levels correlates with a rapid change of PRL expression by a mechanism involving its 5'UTR mRNA region. Mutations or CRISPR-Cas9 targeting of the conserved upstream ORF present in the mRNA leader derepress PRL protein synthesis and attenuate the translational response to magnesium levels. Mechanistically, magnesium depletion reduces intracellular ATP but up-regulates PRL protein expression via activation of the AMPK/mTORC2 pathway, which controls cellular energy status. Hence, altered PRL-2 expression leads to metabolic reprogramming of the cells. These findings uncover a magnesium-sensitive mechanism controlling PRL expression, which plays a role in cellular bioenergetics.
Collapse
|
43
|
Chubanov V, Mittermeier L, Gudermann T. TRPM7 reflected in Cryo-EMirror. Cell Calcium 2018; 76:129-131. [PMID: 30470536 DOI: 10.1016/j.ceca.2018.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 11/13/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
Abstract
TRPM7 is an atypical type of ion channel because its pore-forming moiety is covalently linked to a protein kinase domain. The channel-kinase TRPM7 controls a wide range of biological processes such as mineral homeostasis, immune responses, cell motility, proliferation and differentiation. Earlier this year, Duan J & co-workers [1] published three TRPM7 structures resolved by cryo-electron microscopy (cryo-EM). This study tremendously advances our mechanistic understanding of TRPM7 channel function and forms the basis for informed structure-function assessment of this extraordinary protein.
Collapse
Affiliation(s)
- Vladimir Chubanov
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany.
| | - Lorenz Mittermeier
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany
| | - Thomas Gudermann
- Walther Straub Institute of Pharmacology and Toxicology, LMU Munich, Germany; German Center for Lung Research, Munich, Germany; German Centre for Cardiovascular Research, Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
44
|
Steinritz D, Stenger B, Dietrich A, Gudermann T, Popp T. TRPs in Tox: Involvement of Transient Receptor Potential-Channels in Chemical-Induced Organ Toxicity-A Structured Review. Cells 2018; 7:cells7080098. [PMID: 30087301 PMCID: PMC6115949 DOI: 10.3390/cells7080098] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/24/2018] [Accepted: 07/31/2018] [Indexed: 12/28/2022] Open
Abstract
Chemicals can exhibit significant toxic properties. While for most compounds, unspecific cell damaging processes are assumed, a plethora of chemicals exhibit characteristic odors, suggesting a more specific interaction with the human body. During the last few years, G-protein-coupled receptors and especially chemosensory ion channels of the transient receptor potential family (TRP channels) were identified as defined targets for several chemicals. In some cases, TRP channels were suggested as being causal for toxicity. Therefore, these channels have moved into the spotlight of toxicological research. In this review, we screened available literature in PubMed that deals with the role of chemical-sensing TRP channels in specific organ systems. TRPA1, TRPM and TRPV channels were identified as essential chemosensors in the nervous system, the upper and lower airways, colon, pancreas, bladder, skin, the cardiovascular system, and the eyes. Regarding TRP channel subtypes, A1, M8, and V1 were found most frequently associated with toxicity. They are followed by V4, while other TRP channels (C1, C4, M5) are only less abundantly expressed in this context. Moreover, TRPA1, M8, V1 are co-expressed in most organs. This review summarizes organ-specific toxicological roles of TRP channels.
Collapse
Affiliation(s)
- Dirk Steinritz
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Bernhard Stenger
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
| | - Alexander Dietrich
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Thomas Gudermann
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| | - Tanja Popp
- Bundeswehr Institute of Pharmacology and Toxicology, 80937 Munich, Germany.
- Walther-Straub-Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität Munich, 80336 Munich, Germany.
| |
Collapse
|
45
|
TRPM6 is Essential for Magnesium Uptake and Epithelial Cell Function in the Colon. Nutrients 2018; 10:nu10060784. [PMID: 29912157 PMCID: PMC6024373 DOI: 10.3390/nu10060784] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 06/12/2018] [Accepted: 06/13/2018] [Indexed: 11/24/2022] Open
Abstract
Intestinal magnesium (Mg) uptake is essential for systemic Mg homeostasis. Colon cells express the two highly homologous transient receptor potential melastatin type (TRPM) 6 and 7 Mg2+ channels, but their precise function and the consequences of their mutual interaction are not clear. To explore the functional role of TRPM6 and TRPM7 in the colon, we used human colon cell lines that innately express both channels and analyzed the functional consequences of genetic knocking-down, by RNA interference, or pharmacological inhibition, by NS8593, of either channel. TRPM7 silencing caused an increase in Mg2+ influx, and correspondingly enhanced cell proliferation and migration, while downregulation of TRPM6 did not affect significantly either Mg2+ influx or cell proliferation. Exposure to the specific TRPM6/7 inhibitor NS8593 reduced Mg2+ influx, and consequently cell proliferation and migration, but Mg supplementation rescued the inhibition. We propose a model whereby in colon cells the functional Mg2+ channel at the plasma membrane may consist of both TRPM7 homomers and TRPM6/7 heteromers. A different expression ratio between the two proteins may result in different functional properties. Altogether, our findings confirm that TRPM6 cannot be replaced by TRPM7, and that TRPM6/7 complexes and TRPM6/7-mediated Mg2+ influx are indispensable in human epithelial colon cells.
Collapse
|
46
|
Fels B, Bulk E, Pethő Z, Schwab A. The Role of TRP Channels in the Metastatic Cascade. Pharmaceuticals (Basel) 2018; 11:E48. [PMID: 29772843 PMCID: PMC6027473 DOI: 10.3390/ph11020048] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/16/2022] Open
Abstract
A dysregulated cellular Ca2+ homeostasis is involved in multiple pathologies including cancer. Changes in Ca2+ signaling caused by altered fluxes through ion channels and transporters (the transportome) are involved in all steps of the metastatic cascade. Cancer cells thereby "re-program" and "misuse" the cellular transportome to regulate proliferation, apoptosis, metabolism, growth factor signaling, migration and invasion. Cancer cells use their transportome to cope with diverse environmental challenges during the metastatic cascade, like hypoxic, acidic and mechanical cues. Hence, ion channels and transporters are key modulators of cancer progression. This review focuses on the role of transient receptor potential (TRP) channels in the metastatic cascade. After briefly introducing the role of the transportome in cancer, we discuss TRP channel functions in cancer cell migration. We highlight the role of TRP channels in sensing and transmitting cues from the tumor microenvironment and discuss their role in cancer cell invasion. We identify open questions concerning the role of TRP channels in circulating tumor cells and in the processes of intra- and extravasation of tumor cells. We emphasize the importance of TRP channels in different steps of cancer metastasis and propose cancer-specific TRP channel blockade as a therapeutic option in cancer treatment.
Collapse
Affiliation(s)
- Benedikt Fels
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Etmar Bulk
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Zoltán Pethő
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| | - Albrecht Schwab
- Institut für Physiologie II, Robert-Koch-Str. 27b, 48149 Münster, Germany.
| |
Collapse
|