1
|
Yin P, Jiang Z, Wang X, Gong S, Zhang C, Fan Z. Fasudil protects spiral ganglion neurons and hair cells against cisplatin-induced apoptosis by inhibiting reactive oxygen species accumulation and regulating the ROCK/PTEN/AKT signaling pathway. Toxicol Res (Camb) 2025; 14:tfaf030. [PMID: 40052021 PMCID: PMC11881692 DOI: 10.1093/toxres/tfaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/26/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Cisplatin causes hearing loss in at least 60% of chemotherapy patients, leading to impairments in the patient's life quality. Spiral ganglion neurons (SGNs) and hair cells (HCs) are the main cell types affected by cisplatin accumulation in the inner ear. Fasudil is an FDA-approved drug and has been reported to exert neuroprotective effects in previous research. However, whether fasudil possesses protective effects in cisplatin-induced SGN and HC damage and the potential mechanisms remain unknown. In this study, we investigated whether fasudil has a protective effect on cisplatin-induced damage to inner ear SGNs and HCs. We first observed the effect of different concentrations of fasudil on cisplatin-induced cell loss of SGNs and HCs. We also studied the effects of fasudil on cisplatin-induced apoptosis of SGNs and HCs and detected the mitochondrial reactive oxygen species (ROS) level. Furthermore, we investigated the mechanisms of fasudil in protecting the SGNs and HCs from cisplatin- induced cells apoptosis. We found that fasudil treatment significantly ameliorated SGNs and HCs loss and attenuated cell apoptosis after cisplatin exposure. Moreover, fasudil attenuated the cisplatin-induced ROS generation in SGN- and HC-explants culture. Further mechanistic studies revealed that fasudil regulated the ROCK/PTEN/AKT signaling pathway in SGN- and HC-explants after cisplatin exposure. This study indicates that fasudil might be a novel therapeutic target for preventing cisplatin-induced SGNs and HCs damage.
Collapse
Affiliation(s)
- Peng Yin
- Department of Otolaryngology Head and Neck Surgery, Shengli Oilfield Central Hospital, No. 38 Jinan Road, Dongying District, Dongying 257034, China
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
- Shandong Institute of Otorhinolaryngology, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
| | - Zhenhua Jiang
- Department of Otolaryngology Head and Neck Surgery, Shengli Oilfield Central Hospital, No. 38 Jinan Road, Dongying District, Dongying 257034, China
| | - Xue Wang
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
- Shandong Institute of Otorhinolaryngology, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing 10050, China
| | - Cui Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengli Oilfield Central Hospital, No. 38 Jinan Road, Dongying District, Dongying 257034, China
| | - Zhaomin Fan
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
- Shandong Institute of Otorhinolaryngology, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
| |
Collapse
|
2
|
Zheng C, Xia W, Zhang J. Rock inhibitors in Alzheimer's disease. FRONTIERS IN AGING 2025; 6:1547883. [PMID: 40182055 PMCID: PMC11965611 DOI: 10.3389/fragi.2025.1547883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disease and cause of dementia. AD pathology primarily involves the formation of amyloid β (Aβ) plaques and neurofibrillary tangles containing hyperphosphorylated tau (p-tau). While Aβ targeted treatments have shown clinical promise, other aspects of AD pathology such as microgliosis, astrocytosis, synaptic loss, and hypometabolism may be viable targets for treatment. Among notable novel therapeutic approaches, the Ras homolog (Rho)-associated kinases (ROCKs) are being investigated as targets for AD treatment, based on the observations that ROCK1/2 levels are elevated in AD, and activation or inhibition of ROCKs changes dendritic/synaptic structures, protein aggregate accumulation, inflammation, and gliosis. This review will highlight key findings on the effects of ROCK inhibition in Aβ and ptau pathologies, as well as its effects on neuroinflammation, synaptic density, and potentially metabolism and bioenergetics.
Collapse
Affiliation(s)
- Chao Zheng
- Azrieli Centre for Neuro-Radiochemistry, Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Departments of Psychiatry, Chemistry, Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Weiming Xia
- Geriatric Research Education and Clinical Center, Bedford VA Healthcare System, Bedford, MA, United States
- Department of Pharmacology, Physiology and Biophysics, Boston University Chobanian and Avedisian School of Medicine, Boston, MA, United States
- Department of Biological Sciences, University of Massachusetts Kennedy College of Science, Lowell, MA, United States
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
3
|
Ayyadurai VAS, Deonikar P, Kamm RD. A molecular systems architecture of neuromuscular junction in amyotrophic lateral sclerosis. NPJ Syst Biol Appl 2025; 11:27. [PMID: 40097438 PMCID: PMC11914587 DOI: 10.1038/s41540-025-00501-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
A molecular systems architecture is presented for the neuromuscular junction (NMJ) in order to provide a framework for organizing complexity of biomolecular interactions in amyotrophic lateral sclerosis (ALS) using a systematic literature review process. ALS is a fatal motor neuron disease characterized by progressive degeneration of the upper and lower motor neurons that supply voluntary muscles. The neuromuscular junction contains cells such as upper and lower motor neurons, skeletal muscle cells, astrocytes, microglia, Schwann cells, and endothelial cells, which are implicated in pathogenesis of ALS. This molecular systems architecture provides a multi-layered understanding of the intra- and inter-cellular interactions in the ALS neuromuscular junction microenvironment, and may be utilized for target identification, discovery of single and combination therapeutics, and clinical strategies to treat ALS.
Collapse
Affiliation(s)
- V A Shiva Ayyadurai
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, UK.
- Open Science Institute, International Center for Integrative Systems, Cambridge, MA, UK.
| | - Prabhakar Deonikar
- Systems Biology Group, CytoSolve Research Division, CytoSolve, Inc., Cambridge, MA, UK
- Open Science Institute, International Center for Integrative Systems, Cambridge, MA, UK
| | - Roger D Kamm
- Departments of Biological Engineering and Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, UK
| |
Collapse
|
4
|
Carbajal C, Rodriguez M, Owens F, Stone N, Veeragoni D, Fan RZ, Tieu K, El-Hage N. Therapeutic Efficacy of Small Extracellular Vesicles Loaded with ROCK Inhibitor in Parkinson's Disease. Pharmaceutics 2025; 17:365. [PMID: 40143028 PMCID: PMC11944340 DOI: 10.3390/pharmaceutics17030365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 02/28/2025] [Accepted: 03/06/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Parkinson's disease (PD) is a rapidly growing neurological disorder in the developed world, affecting millions over the age of 60. The decline in motor functions occurs due to a progressive loss of midbrain dopaminergic neurons, resulting in lowered dopamine levels and impaired muscle function. Studies show defective mitochondrial autophagy (or "mitophagy") links to PD. Rho-associated coiled-coil containing protein kinases (ROCK) 1 and ROCK2 are serine/threonine kinases, and their inhibition can enhance neuroprotection in PD by promoting mitophagy. Methods: We examine the effects of ROCK inhibitor SR3677, delivered via macrophage-derived small extracellular vesicles (sEVs) to Parkin Q311X(A) PD mouse models. sEVs with SR3677, administered intranasally, increased mitophagy gene expression, reduced inflammatory factors, and elevated dopamine levels in brain tissues. Results: ROCK2 expression decreased, showing the drug's inhibitory effect. sEV-SR3677 treatment was more effective than treatment with the drug alone, although sham EVs showed lower effects. This suggests that EV-SR3677 not only activates mitochondrial processes but also promotes the degradation of damaged mitochondria through autophagy. Mitochondrial functional assays and oxygen consumption in ex vivo glial cultures revealed that sEV-SR3677 significantly improved mitochondrial respiration compared to that in untreated or SR3677-only treated cells. Conclusion: We demonstrated the efficacy of ROCK2 inhibition on mitochondrial function via sEV-SR3677 in the PD mouse model, necessitating further studies to explore design challenges and mechanisms of sEV-SR3677 as mitochondria-targeted therapy for PD.
Collapse
Affiliation(s)
- Candy Carbajal
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Myosotys Rodriguez
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Florida Owens
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Nicole Stone
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Dileepkumar Veeragoni
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| | - Rebecca Z. Fan
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Kim Tieu
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL 33199, USA; (R.Z.F.); (K.T.)
| | - Nazira El-Hage
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA; (C.C.); (M.R.); (F.O.); (N.S.); (D.V.)
| |
Collapse
|
5
|
Lage L, Rodriguez-Perez AI, Labandeira-Garcia JL, Dominguez-Meijide A. Fasudil inhibits α-synuclein aggregation through ROCK-inhibition-mediated mechanisms. Neurotherapeutics 2025; 22:e00544. [PMID: 39915220 PMCID: PMC12014416 DOI: 10.1016/j.neurot.2025.e00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
ROCK inhibitors such as fasudil protected against dopaminergic degeneration and other neurodegenerative processes in several experimental models through inhibition of neuroinflammation and activation of survival signaling pathways, and clinical trials have been initiated. More recently, fasudil has been suggested to inhibit α-synuclein aggregation. However, this is controversial, particularly if it is a consequence of direct binding of the fasudil molecule to α-synuclein. We studied the mechanisms involved in the effects of fasudil on α-synuclein aggregation using the α-synuclein-T/V5-synphilin-1 model. Molecule-molecule interactions were studied using real time quaking inducing conversion (RT-QuiC). Fasudil decreased the number of cells with inclusions and the size of inclusions in dopaminergic neurons and glial cells, and inhibited α-synuclein aggregation and microglial endocytosis of aggregates. These changes were not due to changes in α-synuclein protein expression or phosphorylation and were related to ROCK inhibition rather than direct interaction with α-synuclein, as confirmed with a second ROCK inhibitor (Y27632) and ROCK gene silencing. We observed that ROCK inhibition downregulates several factors that are known to promote α-synuclein aggregation such as NADPH-oxidase-derived oxidative stress, intracellular calcium increase, and α-synuclein endocytosis, and promotes autophagy. The present results support that fasudil is a useful drug against Parkinson's disease progression. In addition to other reported neuroprotective properties, fasudil inhibits α-synuclein aggregation and microglial endocytosis of aggregates, which enhances the microglial inflammatory response. The effects of fasudil are mostly related to ROCK inhibition, which we have shown using two structurally different ROCK inhibitors and knockdown data, and further supported by using RT-QuiC.
Collapse
Affiliation(s)
- Lucia Lage
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana I Rodriguez-Perez
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain
| | - Jose Luis Labandeira-Garcia
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| | - Antonio Dominguez-Meijide
- Cellular and Molecular Neurobiology of Parkinson's Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), IDIS, University of Santiago de Compostela, Santiago de Compostela, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Spain.
| |
Collapse
|
6
|
Hwang JS, Vo TTL, Kim M, Cha EH, Mun KC, Ha E, Seo JH. Involvement of RhoA/ROCK Signaling Pathway in Methamphetamine-Induced Blood-Brain Barrier Disruption. Biomolecules 2025; 15:340. [PMID: 40149876 PMCID: PMC11940822 DOI: 10.3390/biom15030340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/27/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Methamphetamine (METH) is a powerful addictive psychostimulant that gives rise to severe abusers worldwide. While many studies have reported on the neurotoxicity of METH, blood-brain barrier (BBB) dysfunction has recently attracted attention as an essential target in METH-induced pathological changes in the brain. However, its mechanism has not been fully understood. We found that METH increased paracellular permeability and decreased vascular integrity through FITC-dextran and trans-endothelial electrical resistance (TEER) assay in primary human brain endothelial cells (HBMECs). Also, redistribution of tight junction proteins (zonula occluden-1 and claudin-5) and reorganization of F-actin cytoskeleton were observed in METH-exposed HBMECs. To determine the mechanism of METH-induced BBB disruption, the RhoA/ROCK signaling pathway was examined in METH-treated HBMECs. METH-activated RhoA, followed by an increase in the phosphorylation of downstream effectors, myosin light chain (MLC) and cofilin, occurs in HBMECs. Pretreatment with ROCK inhibitors Y-27632 and fasudil reduced the METH-induced increase in phosphorylation of MLC and cofilin, preventing METH-induced redistribution of junction proteins and F-actin cytoskeletal reorganization. Moreover, METH-induced BBB leakage was alleviated by ROCK inhibitors in vitro and in vivo. Taken together, these results suggest that METH induces BBB dysfunction by activating the RhoA/ROCK signaling pathway, which results in the redistribution of junction proteins via F-actin cytoskeletal reorganization.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ji Hae Seo
- Department of Biochemistry, School of Medicine, Keimyung University, Daegu 42601, Republic of Korea; (J.S.H.); (T.T.L.V.); (M.K.); (E.H.C.); (K.C.M.); (E.H.)
| |
Collapse
|
7
|
Medd MM, Yon JE, Dong H. RhoA/ROCK/GSK3β Signaling: A Keystone in Understanding Alzheimer's Disease. Curr Issues Mol Biol 2025; 47:124. [PMID: 39996845 PMCID: PMC11854763 DOI: 10.3390/cimb47020124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/10/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive cognitive decline and loss of neuronal integrity. Emerging evidence suggests that RhoA, Rho-associated coiled-coil kinase (ROCK), and their downstream effector molecule glycogen synthase 3β (GSK3β) interact within a complex signaling pathway (RhoA/ROCK/GSK3β) that plays a crucial role in the pathogenesis of AD. RhoA, a small GTPase, along with its downstream effector, ROCK, regulates various cellular processes, including actin cytoskeleton dynamics, apoptosis, and synaptic plasticity. GSK3β, a serine/threonine kinase, plays a key role in neuronal function and AD pathology, including the regulation of tau phosphorylation and amyloid-beta cleavage. Overactive GSK3β has been closely linked to tau hyperphosphorylation, neurodegeneration, and the progression of AD. Thus, GSK3β has been considered as a promising therapeutic target for treating AD and mitigating cognitive impairment. However, clinical trials of GSK3β in AD have faced considerable challenges due to the complexity of the specific neuronal inhibition of GSK3β. In this review, we summarize the literature regarding the relationship of RhoA/ROCK and GSK3β signaling pathways in AD pathogenesis. We further discuss recent findings of the sTREM2-transgelin-2 (TG2) axis as a potential mediator of this complex pathway and provide our review on a novel targeting strategy for AD.
Collapse
Affiliation(s)
- Milan M. Medd
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Jayden E. Yon
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (M.M.M.); (J.E.Y.)
| | - Hongxin Dong
- Stephen M. Stahl Center for Psychiatric Neuroscience, Departments of Psychiatry & Behavioral Sciences and Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
8
|
Li J, Mao N, Wang Y, Deng S, Chen K. Novel insights into the ROCK-JAK-STAT signaling pathway in upper respiratory tract infections and neurodegenerative diseases. Mol Ther 2025; 33:32-50. [PMID: 39511889 PMCID: PMC11764622 DOI: 10.1016/j.ymthe.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/23/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024] Open
Abstract
Acute upper respiratory tract infections are a major public health issue, with uncontrolled inflammation triggered by upper respiratory viruses being a significant cause of patient deterioration or death. This study focuses on the Janus kinase-signal transducer and activator of transcription Rho-associated coiled-coil containing protein kinase (JAK-STAT-ROCK) signaling pathway, providing an in-depth analysis of the interplay between uncontrolled inflammation after upper respiratory tract infections and the development of neurodegenerative diseases. It offers a conceptual framework for understanding the lung-brain-related immune responses and potential interactions. The relationship between the ROCK-JAK-STAT signaling pathway and inflammatory immunity is a complex and multi-layered research area and exploring potential common targets could open new avenues for the prevention and treatment of related inflammation.
Collapse
Affiliation(s)
- Jiaxuan Li
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China
| | - Naihui Mao
- Department of Cardiac Surgery, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Shuli Deng
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou 310000, China.
| | - Keda Chen
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, P.R. China.
| |
Collapse
|
9
|
Ravichandran N, Iyer M, Uvarajan D, Kirola L, Kumra SM, Babu HWS, HariKrishnaReddy D, Vellingiri B, Narayanasamy A. New insights on the regulators and inhibitors of RhoA-ROCK signalling in Parkinson's disease. Metab Brain Dis 2025; 40:90. [PMID: 39775342 DOI: 10.1007/s11011-024-01500-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
A multifaceted and widely prevalent neurodegenerative disease, Parkinson's disease (PD) is typified by the loss of dopaminergic neurons in the midbrain. The discovery of novel treatment(s) that can reverse or halt the course of the disease progression along with identifying the most reliable biomarker(s) in PD remains the crucial concern. RhoA in its active state has been demonstrated to interact with three distinct domains located in the central coiled-coil region of ROCK. RhoA appears to activate effectors most frequently by breaking the intramolecular autoinhibitory connections, which releases functional domains from the effector protein. Additionally, RhoA is highly expressed in the nervous system and it acts as a central molecule for its several downstream effector proteins in multiple signalling pathways both in neurons and glial cells. Mitochondrial dysfunction, vesicle transport malfunction and aggregation of α-Synuclein, a presynaptic neuronal protein genetically and neuropathologically associated with PD. While the RhoA-ROCK signalling pathway appears to have a significant role in PD symptoms, suggesting it could be a promising target for therapeutic interventions. Thus, this review article addresses the potential involvement of the RhoA-ROCK signalling system in the pathophysiology of neurodegenerative illnesses, with an emphasis on its biology and function. We also provide an overview of the state of research on RhoA regulation and its downstream biological activities, focusing on the role of RhoA signalling in neurodegenerative illnesses and the potential benefits of RhoA inhibition as a treatment for neurodegeneration.
Collapse
Affiliation(s)
- Nandita Ravichandran
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India
| | - Mahalaxmi Iyer
- Department of Microbiology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Deenathayalan Uvarajan
- Department of Biochemistry, PSG College of Arts & Science, Coimbatore, Tamil Nadu, India
| | - Laxmi Kirola
- Department of Biotechnology, School of Health Sciences & Technology (SoHST), UPES Dehradun, Dehradun, India
| | - Sindduja Muthu Kumra
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Harysh Winster Suresh Babu
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Balachandar Vellingiri
- Human Cytogenetics and Stem Cell Laboratory, Department of Zoology, Central University of Punjab, Bathinda, 151401, Punjab, India.
| | - Arul Narayanasamy
- Disease Proteomics Laboratory, Department of Zoology, Bharathiar University, Coimbatore, 641046, Tamil Nadu, India.
| |
Collapse
|
10
|
Chen X, Lv S, Liu J, Guan Y, Xu C, Ma X, Li M, Bai X, Liu K, Zhang H, Yan Q, Zhou F, Chen Y. Exploring the Role of Axons in ALS from Multiple Perspectives. Cells 2024; 13:2076. [PMID: 39768167 PMCID: PMC11674045 DOI: 10.3390/cells13242076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS), commonly known as motor neuron disease, is a neurodegenerative disorder characterized by the progressive degeneration of both upper and lower motor neurons. This pathological process results in muscle weakness and can culminate in paralysis. To date, the precise etiology of ALS remains unclear. However, a burgeoning body of research indicates that axonal dysfunction is a pivotal element in the pathogenesis of ALS and significantly influences the progression of disease. Dysfunction of axons in ALS can result in impediments to nerve impulse transmission, leading to motor impairment, muscle atrophy, and other associated complications that severely compromise patients' quality of life and survival prognosis. In this review, we concentrate on several key areas: the ultrastructure of axons, the mechanisms of axonal degeneration in ALS, the impact of impaired axonal transport on disease progression in ALS, and the potential for axonal regeneration within the central nervous system (CNS). Our objective is to achieve a more holistic and profound understanding of the multifaceted role that axons play in ALS, thereby offering a more intricate and refined perspective on targeted axonal therapeutic interventions.
Collapse
Affiliation(s)
- Xiaosu Chen
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Shuchang Lv
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Jinmeng Liu
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
- Department of Physiology and Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266000, China
| | - Yingjun Guan
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Chunjie Xu
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Xiaonan Ma
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Mu Li
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Xue Bai
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Kexin Liu
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Haoyun Zhang
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Qiupeng Yan
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Fenghua Zhou
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| | - Yanchun Chen
- Department of Histology and Embryology, Shandong Second Medical University, Weifang 261053, China; (X.C.); (S.L.); (C.X.); (X.M.); (X.B.)
- Neurologic Disorders and Regenerative Repair Lab of Shandong Higher Education, Shandong Second Medical University, Weifang 261053, China; (J.L.); (M.L.); (K.L.); (H.Z.); (Q.Y.); (F.Z.)
| |
Collapse
|
11
|
Fang F, Guan YN, Zhong MJ, Wen JY, Chen ZW. H 2S protects rat cerebral ischemia-reperfusion injury by inhibiting expression and activation of hippocampal ROCK 2 at the Thr436 and Ser575 sites. Eur J Pharmacol 2024; 985:177079. [PMID: 39486769 DOI: 10.1016/j.ejphar.2024.177079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 09/30/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND H2S is an endogenous gas signal molecule, which protects cerebral ischemia/reperfusion (I/R) injury by phosphorylating rho-associated coiled coil-containing protein kinase 2 (ROCK2) at Tyr722, and inhibiting ROCK2 protein expression and activities. We previously reported that H2S protected rat neurons from hypoxia/reoxygenation injury in vitro through inhibiting phosphorylation of ROCK2 at Thr436 and Ser575, but it is unclear whether these two sites are involved in protection of H2S against cerebral I/R injury. METHOD Rats transfected with wild-type and mutant eukaryotic plasmids of ROCK2 in hippocampus were used to establish I/R model by ligating bilateral common carotid artery. Rat behavioral deficit was detected by water maze assay, and ROCK2, lactate dehydrogenase (LDH), nerve-specific enolase (NSE) and reactive oxygen species (ROS) were determined by ELISA. ROCK2 expressions was examined by western-blot assay, and bcl-2 and Bax mRNAs were examined by RT-qPCR. RESULTS NaHS (4.8 mg/kg) significantly inhibited the I/R-increased serum LDH, NSE and ROS in the ROCK2wild-pEGFP-N1-transfected rats, but had no obvious effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats; inhibitions of NaHS on the I/R-increased escape latency and the I/R-decreased percentage of target quadrant distance to total distance were markedly attenuated or abolished in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats compared with those in the ROCK2wild-pEGFP-N1-transfected rats; NaHS obviously inhibited the I/R-increased hippocampal ROCK2 and GFP-ROCK2 proteins, Bax mRNA, and ROCK2 activity, as well as the I/R-decreased hippocampal bcl-2 mRNA in the hippocampus of the ROCK2wild-pEGFP-N1-transfected rats, but had no significant effect in the ROCK2T436A-pEGFP-N1- or the ROCK2S575F-pEGFP-N1-transfected rats. CONCLUSION H2S protects cerebral I/R injury in rats by inhibiting expression and activation of hippocampal ROCK2 via the Thr436 and Ser575 sites.
Collapse
Affiliation(s)
- Fang Fang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China; Department of Pharmacy, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, PR China
| | - Yi-Ning Guan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Mei-Jing Zhong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China
| | - Ji-Yue Wen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| | - Zhi-Wu Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, 230032, PR China.
| |
Collapse
|
12
|
Lim KH, Park S, Han E, Baek HW, Hyun K, Hong S, Kim HJ, Lee Y, Rah YC, Choi J. Protective Effects of Fasudil Against Cisplatin-Induced Ototoxicity in Zebrafish: An In Vivo Study. Int J Mol Sci 2024; 25:13363. [PMID: 39769128 PMCID: PMC11678128 DOI: 10.3390/ijms252413363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
While cisplatin is an effective anti-tumor treatment, it induces ototoxicity through mechanisms involving DNA damage, oxidative stress, and programmed cell death. Rho-associated coiled-coil-containing protein kinase (ROCK) is essential for numerous cellular processes, including apoptosis regulation. Studies have suggested that ROCK inhibitors could prevent apoptosis and promote regeneration. We aimed to investigate the protective effects of the ROCK inhibitor fasudil against cisplatin-induced ototoxicity in a zebrafish model. The zebrafish larvae were exposed to 1 mM cisplatin alone or 1 mM cisplatin co-administered with varying concentrations of fasudil for 4 h. The surviving hair cell counts, apoptosis, reactive oxygen species (ROS) levels, mitochondrial membrane potential (ΔΨm), caspase 3 activity, and autophagy activation were assessed. Rheotaxis behavior was also examined. Cisplatin reduced hair cell counts; increased apoptosis, ROS production, and ΔΨm loss; and activated caspase 3 and autophagy. Fasudil (100 and 500 µM) mitigated cisplatin-induced hair cell loss, reduced apoptosis, and inhibited caspase 3 and autophagy activation. Rheotaxis in zebrafish was preserved by the co-administration of fasudil with cisplatin. Cisplatin induces hair cell apoptosis in zebrafish, whereas fasudil is a promising protective agent against cisplatin-induced ototoxicity.
Collapse
Affiliation(s)
- Kang Hyeon Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
| | - Hyun woo Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
| | - Kyungtae Hyun
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
| | - Sumin Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
| | - Hwee-Jin Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15355, Republic of Korea
| | - Yunkyoung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15355, Republic of Korea
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (K.H.L.); (S.P.); (E.H.); (H.w.B.); (K.H.); (S.H.); (H.-J.K.); (Y.L.); (Y.C.R.)
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15355, Republic of Korea
| |
Collapse
|
13
|
Park G, Jin Z, Lu H, Du J. Clearing Amyloid-Beta by Astrocytes: The Role of Rho GTPases Signaling Pathways as Potential Therapeutic Targets. Brain Sci 2024; 14:1239. [PMID: 39766438 PMCID: PMC11674268 DOI: 10.3390/brainsci14121239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 01/11/2025] Open
Abstract
Astrocytes, vital support cells in the central nervous system (CNS), are crucial for maintaining neuronal health. In neurodegenerative diseases such as Alzheimer's disease (AD), astrocytes play a key role in clearing toxic amyloid-β (Aβ) peptides. Aβ, a potent neuroinflammatory trigger, stimulates astrocytes to release excessive glutamate and inflammatory factors, exacerbating neuronal dysfunction and death. Recent studies underscore the role of Rho GTPases-particularly RhoA, Rac1, and Cdc42-in regulating Aβ clearance and neuroinflammation. These key regulators of cytoskeletal dynamics and intracellular signaling pathways function independently through distinct mechanisms but may converge to modulate inflammatory responses. Their influence on astrocyte structure and function extends to regulating endothelin-converting enzyme (ECE) activity, which modulates vasoactive peptides such as endothelin-1 (ET-1). Through these processes, Rho GTPases impact vascular permeability and neuroinflammation, contributing to AD pathogenesis by affecting both Aβ clearance and cerebrovascular interactions. Understanding the interplay between Rho GTPases and the cerebrovascular system provides fresh insights into AD pathogenesis. Targeting Rho GTPase signaling pathways in astrocytes could offer a promising therapeutic approach to mitigate neuroinflammation, enhance Aβ clearance, and slow disease progression, ultimately improving cognitive outcomes in AD patients.
Collapse
Affiliation(s)
- Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Zhen Jin
- Department of Pharmaceutical Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| | - Hui Lu
- Department of Pharmacology and Physiology, School of Medicine, The George Washington University, Washington, DC 20037, USA;
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA;
| |
Collapse
|
14
|
Shang N, Li X, Zhang L, Wang S, He C, Zhang L, Niu Q, Zheng X. Zinc as a Mediator Through the ROCK1 Pathway of Cognitive Impairment in Aluminum-Exposed Workers: A Clinical and Animal Study. Biol Trace Elem Res 2024; 202:5413-5428. [PMID: 38407795 DOI: 10.1007/s12011-024-04119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Aluminum (Al) exposure was implicated in neurodegenerative diseases and cognitive impairment, yet the involvement of zinc (Zn) and its mechanism in Al-induced mild cognitive impairment (MCI) remains poorly understood. The objective is to explore the role of Zn in Al-induced cognitive impairment and its potential mechanisms. Montreal cognitive assessment (MoCA) test scores and serum Al, Zn from Al industry workers were collected. A mediation analysis was performed to evaluate the role of serum Zn among serum Al and MoCA test scores. Subsequently, an Al-exposure study was conducted on a rat model categorized into control, low-, medium-, and high-dose groups. After a Morris Water Maze test and detection of Al, Zn content in the hippocampus, integrated transcriptomic and proteomic analyses between the control group and the high-dose group were performed to identify the differentially expressed genes (DEPs), proteins (DEPs), and pathways. To corroborate these findings, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) were selected to identify the gene and protein results. Zn overall mediates the relationship between serum Al and cognitive function (mediation effect 17.82%, effect value = - 0.0351). In the Al-exposed rat model, 734 DEGs, 18 miRNAs, 35 lncRNAs, 64 circRNAs, and 113 DEPs were identified between the high-dose group and the control group. Among them, ROCK1, DMD, and other four DEPs were identified as related to zinc finger proteins (ZNF). Co-enrichment analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) linked these changes to the RHOA/ROCK1 signaling axis. ZNF-related proteins Rock1, DMD, and DHX57 in the high-dose group were downregulated (p = 0.006, 0.003, 0.04), and the expression of Myl9, Rhoa, miR431, and miR182 was also downregulated (p = 0.003, 0.032, 0.032, and 0.046). These findings also show correlations between Al, Zn levels in the hippocampus, water maze performance, and expressions of Myl9, Rhoa, miR431, miR182, DMD, ROCK1, and DHX57, with both negative and positive associations. Based on the results, we determined that Zn was involved in Al-induced MCI in Al workers and Al-exposed rat models. Al exposure and interaction with Zn could trigger the downregulation of ZNF of ROCK1, DMD, and DHX57. miR431, miR182 regulate RHOA/ROCK1 was one of the Zn-involved pathways in Al-induced cognitive impairment.
Collapse
Affiliation(s)
- Nan Shang
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xianlin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lan Zhang
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - ShanShan Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ling Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaojun Zheng
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
15
|
Bachman NP, Ketelhut NB, Blomquist M, Terwoord JD. Rho-kinase inhibition reduces systolic blood pressure and forearm vascular resistance in healthy older adults: a double-blind, randomized, placebo-controlled pilot study. GeroScience 2024; 46:6317-6329. [PMID: 38888876 PMCID: PMC11494619 DOI: 10.1007/s11357-024-01240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Rho-kinase has been implicated in the development of hypertension in preclinical studies and may contribute to age-related blood pressure elevation. This study tested the hypothesis that Rho-kinase contributes to elevated systolic blood pressure (SBP) in healthy older adults. Young (18-30 years, 6F/6M) and older (60-80 years, 7F/6M) adults were enrolled in a double-blind, placebo-controlled crossover study using intravenous fasudil infusion to inhibit Rho-kinase. Fasudil lowered SBP in older adults compared to placebo (saline) (2-h post-infusion: 125 ± 4 vs. 133 ± 4 mmHg, P < 0.05), whereas fasudil had no impact on SBP in young adults. Immediately following fasudil infusion, there was a transient reduction in mean arterial pressure (MAP) in young adults that was no longer evident 1-h post-infusion. In older adults, MAP remained lower throughout the fasudil visit compared to placebo (2-h post-infusion: 93 ± 3 vs. 100 ± 3 mmHg, P < 0.05) such that age-related differences in SBP and MAP were abolished. Aortic stiffness (carotid-femoral pulse wave velocity) was not altered by fasudil when central MAP was included as a covariate in analyses. Fasudil reduced forearm vascular resistance in older (2-h post-infusion: 3.3 ± 0.4 vs. 4.8 ± 0.6 mmHg/ml/min, P < 0.05) but not young (4.0 ± 0.6 vs. 3.8 ± 0.5 mmHg/ml/min) adults, which was accompanied by an increase in brachial artery diameter only in older adults. Brachial artery flow-mediated dilation was not affected by fasudil in either group. These findings indicate that Rho-kinase inhibition reduces SBP in healthy older but not young adults, which is associated with a concomitant reduction in forearm vascular resistance.
Collapse
Affiliation(s)
- Nate P Bachman
- Department of Kinesiology, Colorado Mesa University, Grand Junction, CO, USA
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Nathaniel B Ketelhut
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Michael Blomquist
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Biomedical Sciences Department, Rocky Vista University, 255 E. Center St., Ivins, UT, 84738, USA
| | - Janée D Terwoord
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA.
- Biomedical Sciences Department, Rocky Vista University, 255 E. Center St., Ivins, UT, 84738, USA.
| |
Collapse
|
16
|
Ye Q, Li X, Gao W, Gao J, Zheng L, Zhang M, Yang F, Li H. Role of Rho-associated kinases and their inhibitor fasudil in neurodegenerative diseases. Front Neurosci 2024; 18:1481983. [PMID: 39628659 PMCID: PMC11613983 DOI: 10.3389/fnins.2024.1481983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 11/01/2024] [Indexed: 12/06/2024] Open
Abstract
Neurodegenerative diseases (NDDs) are prevalent in the elderly. The pathogenesis of NDDs is complex, and currently, there is no cure available. With the increase in aging population, over 20 million people are affected by common NDDs alone (Alzheimer's disease and Parkinson's disease). Therefore, NDDs have profound negative impacts on patients, their families, and society, making them a major global health concern. Rho-associated kinases (ROCKs) belong to the serine/threonine protein kinases family, which modulate diverse cellular processes (e.g., apoptosis). ROCKs may elevate the risk of various NDDs (including Huntington's disease, Parkinson's disease, and Alzheimer's disease) by disrupting synaptic plasticity and promoting inflammatory responses. Therefore, ROCK inhibitors have been regarded as ideal therapies for NDDs in recent years. Fasudil, one of the classic ROCK inhibitor, is a potential drug for treating NDDs, as it repairs nerve damage and promotes axonal regeneration. Thus, the current review summarizes the relationship between ROCKs and NDDs and the mechanism by which fasudil inhibits ROCKs to provide new ideas for the treatment of NDDs.
Collapse
Affiliation(s)
- Qiuyan Ye
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Xue Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wei Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- Jiangsu College of Nursing, Huaian, China
| | - Jiayue Gao
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Liping Zheng
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Miaomiao Zhang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Fengge Yang
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Honglin Li
- Graduate School, Heilongjiang University of Chinese Medicine, Harbin, China
- The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
17
|
Hashmi MATS, Fatima H, Ahmad S, Rehman A, Safdar F. The interplay between epitranscriptomic RNA modifications and neurodegenerative disorders: Mechanistic insights and potential therapeutic strategies. IBRAIN 2024; 10:395-426. [PMID: 39691424 PMCID: PMC11649393 DOI: 10.1002/ibra.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 12/19/2024]
Abstract
Neurodegenerative disorders encompass a group of age-related conditions characterized by the gradual decline in both the structure and functionality of the central nervous system (CNS). RNA modifications, arising from the epitranscriptome or RNA-modifying protein mutations, have recently been observed to contribute significantly to neurodegenerative disorders. Specific modifications like N6-methyladenine (m6A), N1-methyladenine (m1A), 5-methylcytosine (m5C), pseudouridine and adenosine-to-inosine (A-to-I) play key roles, with their regulators serving as crucial therapeutic targets. These epitranscriptomic changes intricately control gene expression, influencing cellular functions and contributing to disease pathology. Dysregulation of RNA metabolism, affecting mRNA processing and noncoding RNA biogenesis, is a central factor in these diseases. This review underscores the complex relationship between RNA modifications and neurodegenerative disorders, emphasizing the influence of RNA modification and the epitranscriptome, exploring the function of RNA modification enzymes in neurodegenerative processes, investigating the functional consequences of RNA modifications within neurodegenerative pathways, and evaluating the potential therapeutic advancements derived from assessing the epitranscriptome.
Collapse
Affiliation(s)
| | | | - Sadia Ahmad
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Amna Rehman
- Institute of ZoologyUniversity of PunjabLahorePakistan
| | - Fiza Safdar
- Department of BiochemistryUniversity of NarowalNarowalPakistan
| |
Collapse
|
18
|
Koch JC, Leha A, Bidner H, Cordts I, Dorst J, Günther R, Zeller D, Braun N, Metelmann M, Corcia P, De La Cruz E, Weydt P, Meyer T, Großkreutz J, Soriani MH, Attarian S, Weishaupt JH, Weyen U, Kuttler J, Zurek G, Rogers ML, Feneberg E, Deschauer M, Neuwirth C, Wuu J, Ludolph AC, Schmidt J, Remane Y, Camu W, Friede T, Benatar M, Weber M, Lingor P. Safety, tolerability, and efficacy of fasudil in amyotrophic lateral sclerosis (ROCK-ALS): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Neurol 2024; 23:1133-1146. [PMID: 39424560 DOI: 10.1016/s1474-4422(24)00373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Fasudil is a small molecule inhibitor of Rho-associated kinase (ROCK) and is approved for the treatment of subarachnoid haemorrhage. In preclinical studies, fasudil has been shown to attenuate neurodegeneration, modulate neuroinflammation, and foster axonal regeneration. We aimed to investigate the safety, tolerability, and efficacy of fasudil in patients with amyotrophic lateral sclerosis. METHODS ROCK-ALS was a phase 2, randomised, double-blind, placebo-controlled trial conducted at 19 amyotrophic lateral sclerosis centres in Germany, France, and Switzerland. Individuals (aged 18-80 years) with at least probable amyotrophic lateral sclerosis (as per the revised El Escorial criteria), a disease duration of 6-24 months, and a slow vital capacity greater than 65% of predicted normal were eligible for inclusion. Patients were randomly assigned (1:1:1) to receive 30 mg (15 mg twice daily) or 60 mg (30 mg twice daily) fasudil or matched placebo intravenously for 20 days over a 4-week period. Follow-up assessments were performed at 45, 90, and 180 days after treatment initiation. The co-primary endpoints were safety until day 180 (defined as the proportion without drug-related serious adverse events) and tolerability during the treatment period (defined as the proportion who did not discontinue treatment due to suspected drug-related adverse events). The primary analyses were carried out in the intention-to-treat population, which included all participants who entered the treatment phase. This trial is registered at ClinicalTrials.gov (NCT03792490) and Eudra-CT (2017-003676-31) and is now completed. FINDINGS Between Feb 20, 2019, and April 20, 2022, 120 participants were enrolled and randomised; two individuals assigned fasudil 30 mg withdrew consent before the baseline visit. Thus, the intention-to-treat population comprised 35 in the fasudil 30 mg group, 39 in the fasudil 60 mg group, and 44 in the placebo group. The estimated proportion without a drug-related serious adverse event was 1·00 (95% CI 0·91 to 1·00) with placebo, 1·00 (0·89 to 1·00) with fasudil 30 mg, and 1·00 (0·90 to 1·00) with fasudil 60 mg; the difference in proportions was 0·00 (95% CI -0·11 to 0·10; p>0·99) for fasudil 30 mg versus placebo and 0·00 (-0·10 to 0·10; p>0·99) for fasudil 60 mg versus placebo. Treatment tolerability (the estimated proportion who did not discontinue) was 0·93 (95% CI 0·81 to 0·99) with placebo, 1·00 (0·90 to 1·00) with fasudil 30 mg, and 0·90 (0·76 to 0·97) with fasudil 60 mg; the difference in proportions was 0·07 (95% CI -0·05 to 0·20; p=0·25) for fasudil 30 mg versus placebo, and -0·03 (-0·18 to 0·10; p=0·70) for fasudil 60 mg versus placebo. Eight deaths occurred: two in the placebo group, four in the fasudil 30 mg group, and two in the fasudil 60 mg group. The most common serious adverse events were respiratory failure (seven events), gastrostomy (five events), pneumonia (four events), and dysphagia (four events). No serious adverse events or deaths were attributed to study treatment. Adverse events, which were mainly related to disease progression, occurred in 139 participants in the placebo group, 108 in the fasudil 30 mg group, and 105 in the fasudil 60 mg group. INTERPRETATION Fasudil was well tolerated and safe in people with amyotrophic lateral sclerosis. The effect of fasudil on efficacy outcomes should be explored in larger clinical trials with a longer treatment duration, oral administration, and potentially higher dose of the trial drug. FUNDING Framework of the E-Rare Joint Transnational Call 2016 "Clinical research for new therapeutic uses of already existing molecules (repurposing) in rare diseases".
Collapse
Affiliation(s)
- Jan C Koch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Andreas Leha
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Helen Bidner
- Münchner Studienzentrum, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Isabell Cordts
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, School of Medicine and Health, Munich, Germany
| | | | - René Günther
- Department of Neurology, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany; German Centre for Neurodegenerative Diseases, Site Dresden, Dresden, Germany
| | - Daniel Zeller
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Nathalie Braun
- Neuromuscular Diseases Unit/ALS Clinic, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Moritz Metelmann
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Philippe Corcia
- Centre de Référence Maladie Rare (CRMR) SLA et les Autres Maladies du Neurone Moteur (FILSLAN), Tours, France; Faculté de Médecine, INSERM U1253, "iBrain Imaging Brain and Neuropsychiatry" Université François-Rabelais de Tours, Tours, France
| | - Elisa De La Cruz
- ALS centre, CHU Gui de Chauliac, Univ Montpellier, INM, INSERM, Montpellier, France
| | - Patrick Weydt
- Department for Neuromuscular Disorders, University Hospital Bonn, Bonn, Germany; German Centre for Neurodegenerative Diseases, Site Bonn, Bonn, Germany
| | - Thomas Meyer
- Department of Neurology, Center for ALS and Other Motor Neuron Disorders, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Julian Großkreutz
- Department of Neurology, Jena University Hospital, Jena, Germany; Precision Neurology of Neuromuscular and Motoneuron Diseases, University of Lübeck, Lübeck, Germany
| | - Marie-Hélène Soriani
- ALS Reference Centre, Pasteur 2 Hospital, CHU de Nice, Université Côte d'Azur, UMR2CA, Nice, France
| | - Shahram Attarian
- Neuromuscular Disease and ALS Reference Center, Timone University Hospital, Aix-Marseille University, CHU Timone, Marseille, France
| | - Jochen H Weishaupt
- Division for Neurodegenerative Diseases, Neurology Department, Mannheim Center for Translational Medicine, University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Ute Weyen
- Department of Neurology, Ruhr-University Bochum, BG-Kliniken Bergmannsheil, Bochum, Germany
| | - Josua Kuttler
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | | | - Mary-Louise Rogers
- MND&NR Lab, FHMRI, College of Medicine and Public health, Flinders University, Bedford Park, Adelaide, SA, Australia
| | - Emily Feneberg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Marcus Deschauer
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, School of Medicine and Health, Munich, Germany
| | - Christoph Neuwirth
- Neuromuscular Diseases Unit/ALS Clinic, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Joanne Wuu
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany; German Center for Neurodegenerative Diseases, Site Ulm, Ulm, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany; Department of Neurology and Pain Treatment, Neuromuscular Center, Center for Translational Medicine, Immanuel University Hospital Rüdersdorf, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Berlin, Germany; Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Rüdersdorf bei Berlin, Berlin, Germany
| | - Yvonne Remane
- Central Pharmacy, Leipzig University Medical Center, Leipzig, Germany
| | - William Camu
- ALS centre, CHU Gui de Chauliac, Univ Montpellier, INM, INSERM, Montpellier, France
| | - Tim Friede
- Department of Medical Statistics, University Medical Center Göttingen, Göttingen, Germany
| | - Michael Benatar
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Markus Weber
- Neuromuscular Diseases Unit/ALS Clinic, Cantonal Hospital St Gallen, St Gallen, Switzerland
| | - Paul Lingor
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, School of Medicine and Health, Munich, Germany; German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
19
|
Xia T, Pan Z, Wan H, Li Y, Mao G, Zhao J, Zhang F, Pan S. Mechanisms of mechanical stimulation in the development of respiratory system diseases. Am J Physiol Lung Cell Mol Physiol 2024; 327:L724-L739. [PMID: 39316681 DOI: 10.1152/ajplung.00122.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/06/2024] [Accepted: 09/11/2024] [Indexed: 09/26/2024] Open
Abstract
During respiration, mechanical stress can initiate biological responses that impact the respiratory system. Mechanical stress plays a crucial role in the development of the respiratory system. However, pathological mechanical stress can impact the onset and progression of respiratory diseases by influencing the extracellular matrix and cell transduction processes. In this article, we explore the mechanisms by which mechanical forces communicate with and influence cells. We outline the basic knowledge of respiratory mechanics, elucidating the important role of mechanical stimulation in influencing respiratory system development and differentiation from a microscopic perspective. We also explore the potential mechanisms of mechanical transduction in the pathogenesis and development of respiratory diseases such as asthma, lung injury, pulmonary fibrosis, and lung cancer. Finally, we look forward to new research directions in cellular mechanotransduction, aiming to provide fresh insights for future therapeutic research on respiratory diseases.
Collapse
Affiliation(s)
- Tian Xia
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Ziyin Pan
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, People's Republic of China
| | - Haoxin Wan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Yongsen Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Guocai Mao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| | - Fangbiao Zhang
- Department of Cardiothoracic Surgery, Lishui Municipal Central Hospital, Lishui, People's Republic of China
| | - Shu Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
- Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, People's Republic of China
| |
Collapse
|
20
|
Mulder IA, Abbinanti M, Woller SA, Ruschel J, Coutinho JM, de Vries HE, van Bavel E, Rosen K, McKerracher L, Ayata C. The novel ROCK2 selective inhibitor NRL-1049 preserves the blood-brain barrier after acute injury. J Cereb Blood Flow Metab 2024; 44:1238-1252. [PMID: 38833563 PMCID: PMC11542141 DOI: 10.1177/0271678x241238845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 06/06/2024]
Abstract
Endothelial blood-brain barrier (BBB) dysfunction is critical in the pathophysiology of brain injury. Rho-associated protein kinase (ROCK) activation disrupts BBB integrity in the injured brain. We aimed to test the efficacy of a novel ROCK2 inhibitor in preserving the BBB after acute brain injury. We characterized the molecular structure and pharmacodynamic and pharmacokinetic properties of a novel selective ROCK2 inhibitor, NRL-1049, and its first metabolite, 1-hydroxy-NRL-1049 (referred to as NRL-2017 hereon) and tested the efficacy of NRL-1049 on the BBB integrity in rodent models of acute brain injury. Our data show that NRL-1049 and NRL-2017 both inhibit ROCK activity and are 44-fold and 17-fold more selective towards ROCK2 than ROCK1, respectively. When tested in a mouse model of cortical cryoinjury, NRL-1049 significantly attenuated the increase in water content. Interestingly, 60% of the mice in the vehicle arm developed seizures within 2 hours after cryoinjury versus none in the NRL-1049 arm. In spontaneously hypertensive rats, NRL-1049 attenuated the dramatic surge in Evans Blue extravasation compared with the vehicle arm after transient middle cerebral artery occlusion. Hemorrhagic transformation was also reduced. We show that NRL-1049, a selective ROCK2 inhibitor, is a promising drug candidate to preserve the BBB after brain injury.
Collapse
Affiliation(s)
- Inge A Mulder
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
| | | | | | | | - Jonathan M Coutinho
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
- Department of Neurology, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
| | - Helga E de Vries
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit, Amsterdam, the Netherlands
| | - Ed van Bavel
- Department of Biomedical Engineering and Physics, Amsterdam UMC location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Microcirculation, Amsterdam, the Netherlands
- Amsterdam Neurosciences, Neurovascular Disorders, Amsterdam, the Netherlands
| | | | - Lisa McKerracher
- BioAxone BioSciences Inc, Boston, MA, USA
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Cenk Ayata
- Neurovascular Research Unit, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Stroke Service, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Montaser AB, Gao F, Peters D, Vainionpää K, Zhibin N, Skowronska-Krawczyk D, Figeys D, Palczewski K, Leinonen H. Retinal Proteome Profiling of Inherited Retinal Degeneration Across Three Different Mouse Models Suggests Common Drug Targets in Retinitis Pigmentosa. Mol Cell Proteomics 2024; 23:100855. [PMID: 39389360 PMCID: PMC11602984 DOI: 10.1016/j.mcpro.2024.100855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/14/2024] [Accepted: 10/06/2024] [Indexed: 10/12/2024] Open
Abstract
Inherited retinal degenerations (IRDs) are a leading cause of blindness among the population of young people in the developed world. Approximately half of IRDs initially manifest as gradual loss of night vision and visual fields, characteristic of retinitis pigmentosa (RP). Due to challenges in genetic testing, and the large heterogeneity of mutations underlying RP, targeted gene therapies are an impractical largescale solution in the foreseeable future. For this reason, identifying key pathophysiological pathways in IRDs that could be targets for mutation-agnostic and disease-modifying therapies (DMTs) is warranted. In this study, we investigated the retinal proteome of three distinct IRD mouse models, in comparison to sex- and age-matched wild-type mice. Specifically, we used the Pde6βRd10 (rd10) and RhoP23H/WT (P23H) mouse models of autosomal recessive and autosomal dominant RP, respectively, as well as the Rpe65-/- mouse model of Leber's congenital amaurosis type 2 (LCA2). The mice were housed at two distinct institutions and analyzed using LC-MS in three separate facilities/instruments following data-dependent and data-independent acquisition modes. This cross-institutional and multi-methodological approach signifies the reliability and reproducibility of the results. The large-scale profiling of the retinal proteome, coupled with in vivo electroretinography recordings, provided us with a reliable basis for comparing the disease phenotypes and severity. Despite evident inflammation, cellular stress, and downscaled phototransduction observed consistently across all three models, the underlying pathologies of RP and LCA2 displayed many differences, sharing only four general KEGG pathways. The opposite is true for the two RP models in which we identify remarkable convergence in proteomic phenotype even though the mechanism of primary rod death in rd10 and P23H mice is different. Our data highlights the cAMP and cGMP second-messenger signaling pathways as potential targets for therapeutic intervention. The proteomic data is curated and made publicly available, facilitating the discovery of universal therapeutic targets for RP.
Collapse
Affiliation(s)
- Ahmed B Montaser
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| | - Fangyuan Gao
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Danielle Peters
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Katri Vainionpää
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ning Zhibin
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Dorota Skowronska-Krawczyk
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA
| | - Daniel Figeys
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Krzysztof Palczewski
- Center for Translational Vision Research, Department of Ophthalmology, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, California, USA; Department of Physiology and Biophysics, University of California, Irvine, California, USA; Department of Chemistry, University of California, Irvine, California, USA; Department of Molecular Biology and Biochemistry, University of California, Irvine, California, USA
| | - Henri Leinonen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland.
| |
Collapse
|
22
|
Olasehinde TA, Olaokun OO. Apigenin and inflammation in the brain: can apigenin inhibit neuroinflammation in preclinical models? Inflammopharmacology 2024; 32:3099-3108. [PMID: 39126572 DOI: 10.1007/s10787-024-01538-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Apigenin is a flavone-kind of flavonoid present in fruits and vegetables. Apigenin exhibits biological activities including neuropharmacological effects against different neurological disorders. In this study, we summarize and discuss the molecular mechanisms of the anti-neuroinflammatory effects of apigenin in neurological disorders. A systematic review was conducted by searching Google Scholar, Web of Science, Scopus and PubMed. A total of 461 records were retrieved from the search. After screening of the records based on the inclusion criteria, 16 articles were selected and discussed in this study. The results from the selected studies showed that apigenin exhibited anti-neuroinflammatory effect in preclinical studies. The anti-neuroinflammatory mechanisms exhibited by apigenin include inhibition of overproduction of pro-inflammatory cytokines, attenuation of microglia activation via reduction of CD-11b-positive cells, inhibition of ROCK-1 expression and upregulation of miR-15a, p-ERK1/2, p-CREB, and BDNF, downregulation of NLRP3 inflammasome, iNOS and COX-2 expression, reduction of Toll-like receptor-4 expression and inhibition of nuclear factor-kappa B (NF-kB) activation. Overall, apigenin inhibited neuroinflammation which suggests it confers neuroprotective effect against neuronal degeneration in some neurodegenerative conditions. This review provides important neuropharmacological information on the neuroprotective mechanisms of apigenin against neuroinflammation which may be useful for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Tosin A Olasehinde
- Nutrition and Toxicology Division, Food Technology Department, Federal Institute of Industrial Research Oshodi, Lagos, Nigeria.
| | - Oyinlola O Olaokun
- Department of Biology and Environmental Science, School of Science and Technology, Sefako Makgatho Health Science University, Pretoria, 0208, South Africa
| |
Collapse
|
23
|
Ansari MM, Sahu SK, Singh TG, Singh SRJ, Kaur P. Evolving significance of kinase inhibitors in the management of Alzheimer's disease. Eur J Pharmacol 2024; 979:176816. [PMID: 39038637 DOI: 10.1016/j.ejphar.2024.176816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Alzheimer's disease is a neurodegenerative problem with progressive loss of memory and other cognitive function disorders resulting in the imbalance of neurotransmitter activity and signaling progression, which poses the need of the potential therapeutic target to improve the intracellular signaling cascade brought by kinases. Protein kinase plays a significant and multifaceted role in the treatment of Alzheimer's disease, by targeting pathological mechanisms like tau hyperphosphorylation, neuroinflammation, amyloid-beta production and synaptic dysfunction. In this review, we thoroughly explore the essential protein kinases involved in Alzheimer's disease, detailing their physiological roles, regulatory impacts, and the newest inhibitors and compounds that are progressing into clinical trials. All the findings of studies exhibited the promising role of kinase inhibitors in the management of Alzheimer's disease. However, it still poses the need of addressing current challenges and opportunities involved with this disorder for the future perspective of kinase inhibitors in the management of Alzheimer's disease. Further study includes the development of biomarkers, combination therapy, and next-generation kinase inhibitors with increased potency and selectivity for its future prospects.
Collapse
Affiliation(s)
- Md Mustafiz Ansari
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | - Sanjeev Kumar Sahu
- School of Pharmaceutical Sciences, Lovely Professional University, Punjab, India
| | | | - Sovia R J Singh
- University Language Centre- Chitkara Business School, Chitkara University, Punjab, India
| | - Paranjeet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| |
Collapse
|
24
|
Reboussin É, Bastelica P, Benmessabih I, Cordovilla A, Delarasse C, Réaux-Le Goazigo A, Brignole-Baudouin F, Olmière C, Baudouin C, Buffault J, Mélik Parsadaniantz S. Evaluation of Rho kinase inhibitor effects on neuroprotection and neuroinflammation in an ex-vivo retinal explant model. Acta Neuropathol Commun 2024; 12:150. [PMID: 39300576 PMCID: PMC11412021 DOI: 10.1186/s40478-024-01859-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Glaucoma is a leading cause of blindness, affecting retinal ganglion cells (RGCs) and their axons. By 2040, it is likely to affect 110 million people. Neuroinflammation, specifically through the release of proinflammatory cytokines by M1 microglial cells, plays a crucial role in glaucoma progression. Indeed, in post-mortem human studies, pre-clinical models, and ex-vivo models, RGC degeneration has been consistently shown to be linked to inflammation in response to cell death and tissue damage. Recently, Rho kinase inhibitors (ROCKis) have emerged as potential therapies for neuroinflammatory and neurodegenerative diseases. This study aimed to investigate the potential effects of three ROCKis (Y-27632, Y-33075, and H-1152) on retinal ganglion cell (RGC) loss and retinal neuroinflammation using an ex-vivo retinal explant model. METHODS Rat retinal explants underwent optic nerve axotomy and were treated with Y-27632, Y-33075, or H-1152. The neuroprotective effects on RGCs were evaluated using immunofluorescence and Brn3a-specific markers. Reactive glia and microglial activation were studied by GFAP, CD68, and Iba1 staining. Flow cytometry was used to quantify day ex-vivo 4 (DEV 4) microglial proliferation and M1 activation by measuring the number of CD11b+, CD68+, and CD11b+/CD68+ cells after treatment with control solvent or Y-33075. The modulation of gene expression was measured by RNA-seq analysis on control and Y-33075-treated explants and glial and pro-inflammatory cytokine gene expression was validated by RT-qPCR. RESULTS Y-27632 and H-1152 did not significantly protect RGCs. By contrast, at DEV 4, 50 µM Y-33075 significantly increased RGC survival. Immunohistology showed a reduced number of Iba1+/CD68+ cells and limited astrogliosis with Y-33075 treatment. Flow cytometry confirmed lower CD11b+, CD68+, and CD11b+/CD68+ cell numbers in the Y-33075 group. RNA-seq showed Y-33075 inhibited the expression of M1 microglial markers (Tnfα, Il-1β, Nos2) and glial markers (Gfap, Itgam, Cd68) and to reduce apoptosis, ferroptosis, inflammasome formation, complement activation, TLR pathway activation, and P2rx7 and Gpr84 gene expression. Conversely, Y-33075 upregulated RGC-specific markers, neurofilament formation, and neurotransmitter regulator expression, consistent with its neuroprotective effects. CONCLUSION Y-33075 demonstrates marked neuroprotective and anti-inflammatory effects, surpassing the other tested ROCKis (Y-27632 and H-1152) in preventing RGC death and reducing microglial inflammatory responses. These findings highlight its potential as a therapeutic option for glaucoma.
Collapse
Affiliation(s)
- Élodie Reboussin
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Paul Bastelica
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Faculty of Pharmacy of Paris, University Paris Cité, 75006, Paris, France
| | - Ilyes Benmessabih
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Arnaud Cordovilla
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Cécile Delarasse
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Annabelle Réaux-Le Goazigo
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
| | - Françoise Brignole-Baudouin
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- Laboratoire, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Faculty of Pharmacy of Paris, University Paris Cité, 75006, Paris, France
| | | | - Christophe Baudouin
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU FOReSIGHT, 75012, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, UVSQ, Paris Saclay University, 91190, Gif-sur-Yvette, France
| | - Juliette Buffault
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France
- INSERM-DHOS CIC 1423, IHU FOReSIGHT, Quinze-Vingts National Ophthalmology Hospital, 75012, Paris, France
- Department of Ophthalmology III, Quinze-Vingts National Ophthalmology Hospital, IHU FOReSIGHT, 75012, Paris, France
- Department of Ophthalmology, Ambroise Paré Hospital, AP-HP, UVSQ, Paris Saclay University, 91190, Gif-sur-Yvette, France
| | - Stéphane Mélik Parsadaniantz
- INSERM UMR 968, CNRS UMR 7210, Institut de la Vision, IHU FOReSIGHT, Sorbonne Université UM80, 75012, Paris, France.
| |
Collapse
|
25
|
Sun H, Gao Y, Ma X, Deng Y, Bi L, Li L. Mechanism and application of feedback loops formed by mechanotransduction and histone modifications. Genes Dis 2024; 11:101061. [PMID: 39071110 PMCID: PMC11282412 DOI: 10.1016/j.gendis.2023.06.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 03/24/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2024] Open
Abstract
Mechanical stimulation is the key physical factor in cell environment. Mechanotransduction acts as a fundamental regulator of cell behavior, regulating cell proliferation, differentiation, apoptosis, and exhibiting specific signature alterations during the pathological process. As research continues, the role of epigenetic science in mechanotransduction is attracting attention. However, the molecular mechanism of the synergistic effect between mechanotransduction and epigenetics in physiological and pathological processes has not been clarified. We focus on how histone modifications, as important components of epigenetics, are coordinated with multiple signaling pathways to control cell fate and disease progression. Specifically, we propose that histone modifications can form regulatory feedback loops with signaling pathways, that is, histone modifications can not only serve as downstream regulators of signaling pathways for target gene transcription but also provide feedback to regulate signaling pathways. Mechanotransduction and epigenetic changes could be potential markers and therapeutic targets in clinical practice.
Collapse
Affiliation(s)
- Han Sun
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Yafang Gao
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Xinyu Ma
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Yizhou Deng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| | - Lintao Bi
- Department of Hematology and Oncology, China-Japan Union Hospital, Jilin University, Changchun, Jilin 130021, China
| | - Lisha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
26
|
Ouellette J, Lacoste B. Rock2 heterozygosity improves recognition memory and endothelial function in a mouse model of 16p11.2 deletion autism syndrome. Neurosci Lett 2024; 837:137904. [PMID: 39029613 DOI: 10.1016/j.neulet.2024.137904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Rho-associated protein kinase-2 (ROCK2) is a critical player in many cellular processes and was incriminated in cardiovascular and neurological disorders. Recent evidence has shown that non-selective pharmacological blockage of ROCKs ameliorates behavioral alterations in a mouse model of 16p11.2 haploinsufficiency. We had revealed that 16p11.2-deficient mice also display cerebrovascular abnormalities, including endothelial dysfunction. To investigate whether genetic blockage of ROCK2 also exerts beneficial effects on cognition and angiogenesis, we generated mice with both 16p11.2 and Rock2 haploinsufficiency (16p11.2df/+;Rock2+/-). We find that Rock2 heterozygosity on a 16p11.2df/+ background significantly improved recognition memory. Furthermore, brain endothelial cells from 16p11.2df/+;Rock2+/- mice display improved angiogenic capacity compared to cells from 16p11.2df/+ littermates. Overall, this study implicates Rock2 gene as a modulator of 16p11.2-associated alterations, highlighting its potential as a target for treatment of autism spectrum disorders.
Collapse
Affiliation(s)
- Julie Ouellette
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, The Ottawa Hospital Research Institute, Ottawa, ON, Canada; Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
| |
Collapse
|
27
|
Cai Y, Wang LW, Wu J, Chen ZW, Yu XF, Liu FH, Gao DP. Fasudil alleviates alcohol-induced cognitive deficits and hippocampal morphology injury partly by altering the assembly of the actin cytoskeleton and microtubules. Behav Brain Res 2024; 471:115068. [PMID: 38830386 DOI: 10.1016/j.bbr.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/07/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024]
Abstract
Alcohol-Related Brain Damage (ARBD) manifests predominantly as cognitive impairment and brain atrophy with the hippocampus showing particular vulnerability. Fasudil, a Rho kinase (ROCK) inhibitor, has established neuroprotective properties; however, its impact on alcohol-induced cognitive dysfunction and hippocampal structural damage remains unelucidated. This study probes Fasudil's neuroprotective potential and identifies its mechanism of action in an in vivo context. Male C57BL/6 J mice were exposed to 30% (v/v, 6.0 g/kg) ethanol by intragastric administration for four weeks. Concurrently, these mice received a co-treatment with Fasudil through intraperitoneal injections at a dosage of 10 mg/kg/day. Fasudil was found to mitigate alcohol-induced spatial and recognition memory deficits, which were quantified using Y maze, Morris water maze, and novel object recognition tests. Concurrently, Fasudil attenuated hippocampal structural damage prompted by chronic alcohol exposure. Notably, Fasudil moderated alcohol-induced disassembly of the actin cytoskeleton and microtubules-mechanisms central to the maintenance of hippocampal synaptic integrity. Collectively, our findings indicate that Fasudil partially reverses alcohol-induced cognitive and morphological detriments by modulating cytoskeletal dynamics, offering insights into potential therapeutic strategies for ARBD.
Collapse
Affiliation(s)
- Yu Cai
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Lu-Wan Wang
- School of Medical, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang 315211, PR China
| | - Jing Wu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Zi-Wei Chen
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Xue-Feng Yu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Fu-He Liu
- Department of Pharmacy, Zhejiang Pharmaceutical University, 666 Siming Rd, Ningbo, Zhejiang 315500, PR China
| | - Da-Peng Gao
- Department of Neurology, The First Affiliated Hospital of Ningbo University, 247 Renmin Rd, Ningbo, Zhejiang 315020, PR China.
| |
Collapse
|
28
|
Doody NE, Smith NJ, Akam EC, Askew GN, Kwok JCF, Ichiyama RM. Differential expression of genes in the RhoA/ROCK pathway in the hippocampus and cortex following intermittent hypoxia and high-intensity interval training. J Neurophysiol 2024; 132:531-543. [PMID: 38985935 PMCID: PMC11427053 DOI: 10.1152/jn.00422.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/13/2024] [Accepted: 07/04/2024] [Indexed: 07/12/2024] Open
Abstract
Structural neuroplasticity such as neurite extension and dendritic spine dynamics is enhanced by brain-derived neurotrophic factor (BDNF) and impaired by types of inhibitory molecules that induce growth cone collapse and actin depolymerization, for example, myelin-associated inhibitors, chondroitin sulfate proteoglycans, and negative guidance molecules. These inhibitory molecules can activate RhoA/rho-associated coiled-coil containing protein kinase (ROCK) signaling (known to restrict structural plasticity). Intermittent hypoxia (IH) and high-intensity interval training (HIIT) are known to upregulate BDNF that is associated with improvements in learning and memory and greater functional recovery following neural insults. We investigated whether the RhoA/ROCK signaling pathway is also modulated by IH and HIIT in the hippocampus, cortex, and lumbar spinal cord of male Wistar rats. The gene expression of 25 RhoA/ROCK signaling pathway components was determined following IH, HIIT, or IH combined with HIIT (30 min/day, 5 days/wk, 6 wk). IH included 10 3-min bouts that alternated between hypoxia (15% O2) and normoxia. HIIT included 10 3-min bouts alternating between treadmill speeds of 50 cm·s-1 and 15 cm·s-1. In the hippocampus, IH and HIIT significantly downregulated Acan and NgR2 mRNA that are involved in the inhibition of neuroplasticity. However, IH and IH + HIIT significantly upregulated Lingo-1 and NgR3 in the cortex. This is the first time IH and HIIT have been linked to the modulation of plasticity-inhibiting pathways. These results provide a fundamental step toward elucidating the interplay between the neurotrophic and inhibitory mechanisms involved in experience-driven neural plasticity that will aid in optimizing physiological interventions for the treatment of cognitive decline or neurorehabilitation.NEW & NOTEWORTHY Intermittent hypoxia (IH) and high-intensity interval training (HIIT) enhance neuroplasticity and upregulate neurotrophic factors in the central nervous system (CNS). We provide evidence that IH and IH + HIIT also have the capacity to regulate genes involved in the RhoA/ROCK signaling pathway that is known to restrict structural plasticity in the CNS. This provides a new mechanistic insight into how these interventions may enhance hippocampal-related plasticity and facilitate learning, memory, and neuroregeneration.
Collapse
Affiliation(s)
- Natalie E Doody
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Nicole J Smith
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Elizabeth C Akam
- School of Sport, Exercise, and Health Sciences, Loughborough University, Loughborough, United Kingdom
| | - Graham N Askew
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| | - Jessica C F Kwok
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
- Institute of Experimental Medicine, The Czech Academy of Sciences, Prague 4, Czech Republic
| | - Ronaldo M Ichiyama
- School of Biomedical Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
29
|
Bizingre C, Bianchi C, Baudry A, Alleaume-Butaux A, Schneider B, Pietri M. Post-translational modifications in prion diseases. Front Mol Neurosci 2024; 17:1405415. [PMID: 39011540 PMCID: PMC11247024 DOI: 10.3389/fnmol.2024.1405415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/17/2024] Open
Abstract
More than 650 reversible and irreversible post-translational modifications (PTMs) of proteins have been listed so far. Canonical PTMs of proteins consist of the covalent addition of functional or chemical groups on target backbone amino-acids or the cleavage of the protein itself, giving rise to modified proteins with specific properties in terms of stability, solubility, cell distribution, activity, or interactions with other biomolecules. PTMs of protein contribute to cell homeostatic processes, enabling basal cell functions, allowing the cell to respond and adapt to variations of its environment, and globally maintaining the constancy of the milieu interieur (the body's inner environment) to sustain human health. Abnormal protein PTMs are, however, associated with several disease states, such as cancers, metabolic disorders, or neurodegenerative diseases. Abnormal PTMs alter the functional properties of the protein or even cause a loss of protein function. One example of dramatic PTMs concerns the cellular prion protein (PrPC), a GPI-anchored signaling molecule at the plasma membrane, whose irreversible post-translational conformational conversion (PTCC) into pathogenic prions (PrPSc) provokes neurodegeneration. PrPC PTCC into PrPSc is an additional type of PTM that affects the tridimensional structure and physiological function of PrPC and generates a protein conformer with neurotoxic properties. PrPC PTCC into PrPSc in neurons is the first step of a deleterious sequence of events at the root of a group of neurodegenerative disorders affecting both humans (Creutzfeldt-Jakob diseases for the most representative diseases) and animals (scrapie in sheep, bovine spongiform encephalopathy in cow, and chronic wasting disease in elk and deer). There are currently no therapies to block PrPC PTCC into PrPSc and stop neurodegeneration in prion diseases. Here, we review known PrPC PTMs that influence PrPC conversion into PrPSc. We summarized how PrPC PTCC into PrPSc impacts the PrPC interactome at the plasma membrane and the downstream intracellular controlled protein effectors, whose abnormal activation or trafficking caused by altered PTMs promotes neurodegeneration. We discussed these effectors as candidate drug targets for prion diseases and possibly other neurodegenerative diseases.
Collapse
Affiliation(s)
- Chloé Bizingre
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
| | - Clara Bianchi
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
| | - Anne Baudry
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
| | | | - Benoit Schneider
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
- Ecole polytechnique, Institut Polytechnique de Paris, CNRS UMR7654, Palaiseau, France
| | - Mathéa Pietri
- INSERM UMR-S 1124, Paris, France
- Université Paris Cité, UMR-S 1124, Paris, France
| |
Collapse
|
30
|
Tao X, Zhang W, Chen C, Tao Y, Tao Y, Chen Z, Zhang G. miR-101a-3p/ROCK2 axis regulates neuronal injury in Parkinson's disease models. Aging (Albany NY) 2024; 16:8732-8746. [PMID: 38775730 PMCID: PMC11164493 DOI: 10.18632/aging.205836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disease characterized by the loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). This study focuses on deciphering the role of microRNA (miR)-101a-3p in the neuronal injury of PD and its regulatory mechanism. METHODS We constructed a mouse model of PD by intraperitoneal injection of 1-methyl 4-phenyl 1, 2, 3, 6-tetrahydropyridine hydrochloride (MPTP), and used 1-methyl-4-phenylpyridinium (MPP+) to treat Neuro-2a cells to construct an in-vitro PD model. Neurological dysfunction in mice was evaluated by swimming test and traction test. qRT-PCR was utilized to examine miR-101a-3p expression and ROCK2 expression in mouse brain tissues and Neuro-2a cells. Western blot was conducted to detect the expression of α-synuclein protein and ROCK2 in mouse brain tissues and Neuro-2a cells. The targeting relationship between miR-101a-3p and ROCK2 was determined by dual-luciferase reporter gene assay. The apoptosis of neuro-2a cells was assessed by flow cytometry. RESULTS Low miR-101a-3p expression and high ROCK2 expression were found in the brain tissues of PD mice and MPP+-treated Neuro-2a cells; PD mice showed decreased neurological disorders, and apoptosis of Neuro-2a cells was increased after MPP+ treatment, both of which were accompanied by increased accumulation of α-synuclein protein. After miR-101a-3p was overexpressed, the neurological function of PD mice was improved, and the apoptosis of Neuro-2a cells induced by MPP+ was alleviated, and the accumulation of α-synuclein protein was reduced; ROCK2 overexpression counteracted the protective effect of miR-101a-3p. Additionally, ROCK2 was identified as the direct target of miR-101a-3p. CONCLUSION MiR-101a-3p can reduce neuronal apoptosis and neurological deficit in PD mice by inhibiting ROCK2 expression, suggesting that miR-101a-3p is a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Xiang Tao
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Wenfei Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chen Chen
- Department of Orthodontics, Wuhan First Stomatological Hospital, Wuhan, Hubei 430060, China
| | - Yang Tao
- Department of Nursing, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yun Tao
- Department of Stomatology, Wuhan Central Hospital, Wuhan, Hubei 430060, China
| | - Zhibiao Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Ge Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
31
|
Prasanth MI, Sivamaruthi BS, Cheong CSY, Verma K, Tencomnao T, Brimson JM, Prasansuklab A. Role of Epigenetic Modulation in Neurodegenerative Diseases: Implications of Phytochemical Interventions. Antioxidants (Basel) 2024; 13:606. [PMID: 38790711 PMCID: PMC11118909 DOI: 10.3390/antiox13050606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics defines changes in cell function without involving alterations in DNA sequence. Neuroepigenetics bridges neuroscience and epigenetics by regulating gene expression in the nervous system and its impact on brain function. With the increase in research in recent years, it was observed that alterations in the gene expression did not always originate from changes in the genetic sequence, which has led to understanding the role of epigenetics in neurodegenerative diseases (NDDs) including Alzheimer's disease (AD) and Parkinson's disease (PD). Epigenetic alterations contribute to the aberrant expression of genes involved in neuroinflammation, protein aggregation, and neuronal death. Natural phytochemicals have shown promise as potential therapeutic agents against NDDs because of their antioxidant, anti-inflammatory, and neuroprotective effects in cellular and animal models. For instance, resveratrol (grapes), curcumin (turmeric), and epigallocatechin gallate (EGCG; green tea) exhibit neuroprotective effects through their influence on DNA methylation patterns, histone acetylation, and non-coding RNA expression profiles. Phytochemicals also aid in slowing disease progression, preserving neuronal function, and enhancing cognitive and motor abilities. The present review focuses on various epigenetic modifications involved in the pathology of NDDs, including AD and PD, gene expression regulation related to epigenetic alterations, and the role of specific polyphenols in influencing epigenetic modifications in AD and PD.
Collapse
Affiliation(s)
- Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Bhagavathi Sundaram Sivamaruthi
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Innovation Center for Holistic Health, Nutraceuticals, and Cosmeceuticals, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Clerance Su Yee Cheong
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Kanika Verma
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- Research, Innovation and International Affairs, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (M.I.P.); (C.S.Y.C.); (K.V.); (T.T.); (J.M.B.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
32
|
Gathings A, Zaman V, Banik NL, Haque A. Insights into Calpain Activation and Rho-ROCK Signaling in Parkinson's Disease and Aging. Biomedicines 2024; 12:1074. [PMID: 38791036 PMCID: PMC11117523 DOI: 10.3390/biomedicines12051074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/26/2024] Open
Abstract
Parkinson's disease (PD), a progressive neurodegenerative disease, has no cure, and current therapies are not effective at halting disease progression. The disease affects mid-brain dopaminergic neurons and, subsequently, the spinal cord, contributing to many debilitating symptoms associated with PD. The GTP-binding protein, Rho, plays a significant role in the cellular pathology of PD. The downstream effector of Rho, Rho-associated kinase (ROCK), plays multiple functions, including microglial activation and induction of inflammatory responses. Activated microglia have been implicated in the pathology of many neurodegenerative diseases, including PD, that initiate inflammatory responses, leading to neuron death. Calpain expression and activity is increased following glial activation, which triggers the Rho-ROCK pathway and induces inflammatory T cell activation and migration as well as mediates toxic α-synuclein (α-syn) aggregation and neuron death, indicating a pivotal role for calpain in the inflammatory and degenerative processes in PD. Increased calpain activity and Rho-ROCK activation may represent a new mechanism for increased oxidative damage in aging. This review will summarize calpain activation and the role of the Rho-ROCK pathway in oxidative stress and α-syn aggregation, their influence on the neurodegenerative process in PD and aging, and possible strategies and research directions for therapeutic intervention.
Collapse
Affiliation(s)
- Amy Gathings
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
| | - Vandana Zaman
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Narendra L. Banik
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| | - Azizul Haque
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA; (A.G.); (N.L.B.)
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas Street, Charleston, SC 29425, USA;
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee Street, Charleston, SC 29401, USA
| |
Collapse
|
33
|
Han T, Xu Y, Liu H, Sun L, Cheng X, Shen Y, Wei J. Function and Mechanism of Abscisic Acid on Microglia-Induced Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2024; 25:4920. [PMID: 38732130 PMCID: PMC11084589 DOI: 10.3390/ijms25094920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Parkinson's disease (PD), as a neurologically implemented disease with complex etiological factors, has a complex and variable pathogenesis. Accompanying further research, neuroinflammation has been found to be one of the possible factors in its pathogenesis. Microglia, as intrinsic immune cells in the brain, play an important role in maintaining microenvironmental homeostasis in the brain. However, over-activation of neurotoxic microglia in PD promotes neuroinflammation, which further increases dopaminergic (DA) neuronal damage and exacerbates the disease process. Therefore, targeting and regulating the functional state of microglia is expected to be a potential avenue for PD treatment. In addition, plant extracts have shown great potential in the treatment of neurodegenerative disorders due to their abundant resources, mild effects, and the presence of multiple active ingredients. However, it is worth noting that some natural products have certain toxic side effects, so it is necessary to pay attention to distinguish medicinal ingredients and usage and dosage when using to avoid aggravating the progression of diseases. In this review, the roles of microglia with different functional states in PD and the related pathways inducing microglia to transform into neuroprotective states are described. At the same time, it is discussed that abscisic acid (ABA) may regulate the polarization of microglia by targeting them, promote their transformation into neuroprotective state, reduce the neuroinflammatory response in PD, and provide a new idea for the treatment of PD and the selection of drugs.
Collapse
Affiliation(s)
- Tingting Han
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Yuxiang Xu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Haixuan Liu
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Lin Sun
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, China
| | - Xiangshu Cheng
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China;
| | - Jianshe Wei
- Institute for Brain Sciences Research, School of Life Sciences, Henan University, Kaifeng 475004, China; (T.H.); (Y.X.); (H.L.); (X.C.)
| |
Collapse
|
34
|
Wolff AW, Peine J, Höfler J, Zurek G, Hemker C, Lingor P. SAFE-ROCK: A Phase I Trial of an Oral Application of the ROCK Inhibitor Fasudil to Assess Bioavailability, Safety, and Tolerability in Healthy Participants. CNS Drugs 2024; 38:291-302. [PMID: 38416402 PMCID: PMC10980656 DOI: 10.1007/s40263-024-01070-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND The intravenous (IV) formulation of Rho-kinase (ROCK) inhibitor fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995. Additionally, fasudil has shown promising preclinical results for various chronic diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis, Parkinson's disease, and dementia, in which long-term intravenous (IV) administration might not be suitable. OBJECTIVE The objective of this study was to assess the absolute bioavailability of oral, in comparison to IV, application of the approved formulation of fasudil (ERIL®) and to evaluate the safety and tolerability of the oral application of fasudil. METHODS This was a phase I, single-center, open-label, randomized, two period cross-over clinical trial in healthy women and men. By applying a cross-over design, each subject served as their own control. Two treatments were investigated, separated by a wash out phase of at least 3 days. Oral fasudil was administered once on day 1 to assess pharmacokinetics and three times on day 2, at an interval of 8 ± 1 h, to assess safety and gastrointestinal tolerability. For pharmacometrics of IV fasudil, it was administered once on day 1. Plasma profiles of fasudil and its active metabolite hydroxyfasudil after oral or IV administration were measured by liquid chromatography electrospray tandem mass spectrometry. Tolerability was assessed as proportion of subjects without significant drug intolerance, and safety was assessed by the proportion of subjects without clinical or laboratory treatment-associated serious adverse events. Gastrointestinal safety was assessed by applying the gastrointestinal symptom rating scale (GSRS). RESULTS Fourteen subjects aged 30-70 years were included in this trial. After oral administration, fasudil concentrations in blood were mostly very low [1.4 g/L; coefficient of variation (CV) 41.0%]. After IV application, the peak concentration was 100.6 µg/L (CV 74.2%); however, a high variance in peak concentrations were assessed for both treatments. The maximal concentrations of hydroxyfasudil in blood were similar after oral and IV treatment [111.6 µg/L (CV 24.1%) and 108.4 µg/L (CV 19.7%), respectively]. Exposure of hydroxyfasudil (assessed as AUC0-tz) differed between both treatments, with 449 µg × h/L after IV treatment and 309 µg × h/L after oral treatment. Therefore, the absolute bioavailability of hydroxyfasudil after the oral treatment was approximately 69% of the IV treatment. No serious adverse events (SAEs) occurred during this trial, and good tolerability of oral fasudil (90 mg/day) was documented. CONCLUSIONS Oral fasudil was generally well tolerated in the studied population, and no safety concerns were identified. However, systemic bioavailability of oral hydroxyfasudil corresponded to 69%, and dose adjustments need to considered. The results presented here lay grounds for future trials of fasudil in chronic diseases, which require an oral long-term application. This trial was registered with EudraCT (no. 2019-001805-26).
Collapse
Affiliation(s)
- Andreas W Wolff
- Clinical Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany
| | - Jörg Peine
- Institute for Clinical Research, AtoZ-CRO GmbH, Overath, Germany
| | | | | | - Claus Hemker
- CTC North GmbH & Co. KG at the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Lingor
- Clinical Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Ismaninger Str. 22, 81675, Munich, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
35
|
Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. The Rise of Boron-Containing Compounds: Advancements in Synthesis, Medicinal Chemistry, and Emerging Pharmacology. Chem Rev 2024; 124:2441-2511. [PMID: 38382032 DOI: 10.1021/acs.chemrev.3c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Boron-containing compounds (BCC) have emerged as important pharmacophores. To date, five BCC drugs (including boronic acids and boroles) have been approved by the FDA for the treatment of cancer, infections, and atopic dermatitis, while some natural BCC are included in dietary supplements. Boron's Lewis acidity facilitates a mechanism of action via formation of reversible covalent bonds within the active site of target proteins. Boron has also been employed in the development of fluorophores, such as BODIPY for imaging, and in carboranes that are potential neutron capture therapy agents as well as novel agents in diagnostics and therapy. The utility of natural and synthetic BCC has become multifaceted, and the breadth of their applications continues to expand. This review covers the many uses and targets of boron in medicinal chemistry.
Collapse
Affiliation(s)
- R Justin Grams
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Webster L Santos
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | | | - Antonio Abad-García
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| | - Carol Ann Rosenblum
- Department of Chemistry and Virginia Tech Center for Drug Discovery, Virginia Tech, 900 West Campus Drive, Blacksburg, Virginia 24061, United States
| | - Andrei Bita
- Department of Pharmacognosy & Phytotherapy, Faculty of Pharmacy, University of Medicine and Pharmacy of Craiova, 2 Petru Rareş Street, 200349 Craiova, Romania
| | - Hugo Cerecetto
- Centro de Investigaciones Nucleares, Facultad de Ciencias, Universidad de la República, Mataojo 2055, 11400 Montevideo, Uruguay
| | - Clara Viñas
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Marvin A Soriano-Ursúa
- Academia de Fisiología y Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, 11340 Mexico City, Mexico
| |
Collapse
|
36
|
Willis EF, Kim SJ, Chen W, Nyuydzefe M, MacDonald KPA, Zanin-Zhorov A, Ruitenberg MJ, Vukovic J. ROCK2 regulates microglia proliferation and neuronal survival after traumatic brain injury. Brain Behav Immun 2024; 117:181-194. [PMID: 38211634 DOI: 10.1016/j.bbi.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/13/2024] Open
Abstract
Traumatic brain injury (TBI) results in prolonged and non-resolving activation of microglia. Forced turnover of these cells during the acute phase of TBI aids recovery, but the cell-intrinsic pathways that underpin the pro-repair phenotype of these repopulating microglia remain unclear. Here, we show that selective targeting of ROCK2 with the small molecule inhibitor KD025 impairs the proliferative response of microglia after TBI as well as during genetically induced turnover of microglia. KD025 treatment abolished the substantial neuroprotective and cognitive benefits conferred by repopulating microglia, preventing these cells from replenishing the depleted niche during the early critical time window post-injury. Delaying KD025 treatment to the subacute phase of TBI allowed microglial repopulation to occur, but this did not enhance the benefits conferred by repopulating microglia. Taken together, our data indicate that ROCK2 mediates neuronal survival and microglial population dynamics after TBI, including the emergence of repopulating microglia with a pro-repair phenotype.
Collapse
Affiliation(s)
- Emily F Willis
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Australia
| | - Seung Jae Kim
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Australia
| | - Wei Chen
- Graviton Bioscience Corporation, Gravition Bioscience B.V., Amsterdam, Netherlands
| | - Melanie Nyuydzefe
- Graviton Bioscience Corporation, Gravition Bioscience B.V., Amsterdam, Netherlands
| | | | | | - Marc J Ruitenberg
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Australia
| | - Jana Vukovic
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Australia; Queensland Brain Institute, The University of Queensland, Australia.
| |
Collapse
|
37
|
Wolff AW, Bidner H, Remane Y, Zimmer J, Aarsland D, Rascol O, Wyse RK, Hapfelmeier A, Lingor P. Protocol for a randomized, placebo-controlled, double-blind phase IIa study of the safety, tolerability, and symptomatic efficacy of the ROCK-inhibitor Fasudil in patients with Parkinson's disease (ROCK-PD). Front Aging Neurosci 2024; 16:1308577. [PMID: 38419648 PMCID: PMC10899319 DOI: 10.3389/fnagi.2024.1308577] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background The Rho-kinase (ROCK) inhibitor Fasudil has shown symptomatic and disease-modifying effects in Parkinson's disease (PD) models in vitro and in vivo. In Japan, Fasudil has been approved for the treatment of subarachnoid haemorrhage since 1995 and shows a favourable safety profile. Objectives/design To investigate the safety, tolerability, and symptomatic efficacy of ROCK-inhibitor Fasudil in comparison to placebo in a randomized, national, multicenter, double-blind phase IIa study in patients with PD. Methods/analysis We plan to include 75 patients with at least 'probable' PD (MDS criteria), Hoehn and Yahr stages 1-3, and age 30-80 years in 13 German study sites. Patients must be non-fluctuating and their response to PD medication must have been stable for 6 weeks. Patients will be randomly allocated to treatment with the oral investigational medicinal product (IMP) containing either Fasudil in two dosages, or placebo, for a total of 22 days. As primary analysis, non-inferiority of low/high dose of Fasudil on the combined endpoint consisting of occurrence of intolerance and/or treatment-related serious adverse events (SAEs) over 22 days will be assessed in a sequential order, starting with the lower dose. Secondary endpoints will include tolerability alone over 22 days and occurrence of treatment-related SAEs (SARs) over 22 and 50 days and will be compared on group level. Additional secondary endpoints include efficacy on motor and non-motor symptoms, measured on established scales, and will be assessed at several timepoints. Biomaterial will be collected to determine pharmacokinetics of Fasudil and its active metabolite, and to evaluate biomarkers of neurodegeneration. Ethics/registration/discussion After positive evaluation by the competent authority and the ethics committee, patient recruitment started in the 3rd quarter of 2023. ROCK-PD is registered with Eudra-CT (2021-003879-34) and clinicaltrials.gov (NCT05931575). Results of this trial can pave way for conducting extended-duration studies assessing both symptomatic efficacy and disease-modifying properties of Fasudil.
Collapse
Affiliation(s)
- Andreas W Wolff
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Helen Bidner
- Münchner Studienzentrum (MSZ), School of Medicine, Technical University of Munich, Munich, Germany
| | - Yvonne Remane
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Janine Zimmer
- Department of Clinical Pharmacy and Drug Safety Center, Leipzig University, Leipzig, Germany
| | - Dag Aarsland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
- Centre for Age-Related Research, Stavanger University Hospital, Stavanger, Norway
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, University of Toulouse 3, University Hospital of Toulouse, INSERM, Toulouse, France
| | | | - Alexander Hapfelmeier
- Institute of AI and Informatics in Medicine, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of General Practice and Health Services Research, School of Medicine, Technical University of Munich, Munich, Germany
| | - Paul Lingor
- Department of Neurology, Klinikum Rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
38
|
Zhang W, Xu H, Li C, Han B, Zhang Y. Exploring Chinese herbal medicine for ischemic stroke: insights into microglia and signaling pathways. Front Pharmacol 2024; 15:1333006. [PMID: 38318134 PMCID: PMC10838993 DOI: 10.3389/fphar.2024.1333006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Ischemic stroke is a prevalent clinical condition affecting the central nervous system, characterized by a high mortality and disability rate. Its incidence is progressively rising, particularly among younger individuals, posing a significant threat to human well-being. The activation and polarization of microglia, leading to pro-inflammatory and anti-inflammatory responses, are widely recognized as pivotal factors in the pathogenesis of cerebral ischemia and reperfusion injury. Traditional Chinese herbal medicines (TCHMs) boasts a rich historical background, notable efficacy, and minimal adverse effects. It exerts its effects by modulating microglia activation and polarization, suppressing inflammatory responses, and ameliorating nerve injury through the mediation of microglia and various associated pathways (such as NF-κB signaling pathway, Toll-like signaling pathway, Notch signaling pathway, AMPK signaling pathway, MAPK signaling pathway, among others). Consequently, this article focuses on microglia as a therapeutic target, reviewing relevant pathway of literature on TCHMs to mitigate neuroinflammation and mediate IS injury, while also exploring research on drug delivery of TCHMs. The ultimate goal is to provide new insights that can contribute to the clinical management of IS using TCHMs.
Collapse
Affiliation(s)
| | | | | | - Bingbing Han
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yimin Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
39
|
Huang Y, Mao CR, Lou Y, Zhan S, Chen Z, Ding W, Ma Z. Design, Synthesis, and Biological Evaluation of an Orally Bioavailable, Potent, and Selective ROCK2 Inhibitor for Psoriasis Treatment. J Med Chem 2023; 66:15205-15229. [PMID: 37943013 DOI: 10.1021/acs.jmedchem.3c01297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Psoriasis, a prevalent chronic skin disorder, remains a significant therapeutic obstacle. This study centers on rho-associated coiled-coil-containing kinase2 (ROCK2) as an advantageous target for treating psoriasis and identifies five potent and selective ROCK2 inhibitors (A31-35). Notably, A32-35 outperform KD025 in ROCK2/ROCK1 selectivity by up to 216-fold. Among these candidates, A31 emerged as an exceedingly promising molecule, showcasing remarkable inhibitory potency (IC50 = 3.7 ± 0.8 nM), 19-fold ROCK2/ROCK1 selectivity, and favorable pharmacokinetics. Insights from the binding mode study further underscored the pivotal role of interactions with Phe103 on the P-loop in determining the selectivity between ROCK1 and ROCK2. In an imiquimod-induced psoriasis-like mouse model, oral administration of A31 notably ameliorated symptoms by targeting the IL-23/Th17 axis. Based on these compelling findings, A31 was selected as a highly promising compound for further investigation as a potential treatment for psoriasis.
Collapse
Affiliation(s)
- Yun Huang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Chu-Ru Mao
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Yijie Lou
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Shuai Zhan
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhe Chen
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, the First Affiliated Hospital of Zhejiang Chinese Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wanjing Ding
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| | - Zhongjun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, China
- Hainan Institute of Zhejiang University, Sanya 572025, China
| |
Collapse
|
40
|
Polopalli S, Saha A, Niri P, Kumar M, Das P, Kamboj DV, Chattopadhyay P. ROCK Inhibitors as an Alternative Therapy for Corneal Grafting: A Systematic Review. J Ocul Pharmacol Ther 2023; 39:585-599. [PMID: 37738326 DOI: 10.1089/jop.2023.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/24/2023] Open
Abstract
Currently, corneal blindness is affecting >10 million individuals worldwide, and there is a significant unmet medical need because only 1.5% of transplantation needs are met globally due to a lack of high-quality grafts. In light of this global health disaster, researchers are developing corneal substitutes that can resemble the human cornea in vivo and replace human donor tissue. Thus, this review examines ROCK (Rho-associated coiled-coil containing protein kinases) inhibitors as a potential corneal wound-healing (CWH) therapy by reviewing the existing clinical and nonclinical findings. The systematic review was done from PubMed, Scopus, Web of Science, and Google Scholar for CWH, corneal injury, corneal endothelial wound healing, ROCK inhibitors, Fasudil, Netarsudil, Ripasudil, Y-27632, clinical trial, clinical study, case series, case reports, preclinical study, in vivo, and in vitro studies. After removing duplicates, all downloaded articles were examined. The literature search included the data till January 2023. This review summarized the results of ROCK inhibitors in clinical and preclinical trials. In a clinical trial, various ROCK inhibitors improved CWH in individuals with open-angle glaucoma, cataract, iris cyst, ocular hypertension, and other ocular diseases. ROCK inhibitors also improved ocular wound healing by increasing cell adhesion, migration, and proliferation in vitro and in vivo. ROCK inhibitors have antifibrotic, antiangiogenic, anti-inflammatory, and antiapoptotic characteristics in CWH, according to the existing research. ROCK inhibitors were effective topical treatments for corneal infections. Ripasudil, Y-27632, H-1152, Y-39983, and AMA0526 are a few new ROCK inhibitors that may help CWH and replace human donor tissue.
Collapse
Affiliation(s)
- Subramanyam Polopalli
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Achintya Saha
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Pakter Niri
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Mohit Kumar
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| | - Parikshit Das
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| | - Dev Vrat Kamboj
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| | - Pronobesh Chattopadhyay
- Division of Pharmaceutical Technology, Defence Research Laboratory (DRL), Defence Research and Development Organisation (DRDO), Tezpur, India
| |
Collapse
|
41
|
Tanaka R, Yamada K. Genomic and Reverse Translational Analysis Discloses a Role for Small GTPase RhoA Signaling in the Pathogenesis of Schizophrenia: Rho-Kinase as a Novel Drug Target. Int J Mol Sci 2023; 24:15623. [PMID: 37958606 PMCID: PMC10648424 DOI: 10.3390/ijms242115623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Schizophrenia is one of the most serious psychiatric disorders and is characterized by reductions in both brain volume and spine density in the frontal cortex. RhoA belongs to the RAS homolog (Rho) family and plays critical roles in neuronal development and structural plasticity via Rho-kinase. RhoA activity is regulated by GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs). Several variants in GAPs and GEFs associated with RhoA have been reported to be significantly associated with schizophrenia. Moreover, several mouse models carrying schizophrenia-associated gene variants involved in RhoA/Rho-kinase signaling have been developed. In this review, we summarize clinical evidence showing that variants in genes regulating RhoA activity are associated with schizophrenia. In the last half of the review, we discuss preclinical evidence indicating that RhoA/Rho-kinase is a potential therapeutic target of schizophrenia. In particular, Rho-kinase inhibitors exhibit anti-psychotic-like effects not only in Arhgap10 S490P/NHEJ mice, but also in pharmacologic models of schizophrenia (methamphetamine- and MK-801-treated mice). Accordingly, we propose that Rho-kinase inhibitors may have antipsychotic effects and reduce cognitive deficits in schizophrenia despite the presence or absence of genetic variants in small GTPase signaling pathways.
Collapse
Affiliation(s)
- Rinako Tanaka
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
| | - Kiyofumi Yamada
- Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya 466-8560, Japan;
- International Center for Brain Science (ICBS), Fujita Health University, Toyoake 470-1192, Japan
| |
Collapse
|
42
|
Jurcau A, Andronie-Cioara FL, Nistor-Cseppento DC, Pascalau N, Rus M, Vasca E, Jurcau MC. The Involvement of Neuroinflammation in the Onset and Progression of Parkinson's Disease. Int J Mol Sci 2023; 24:14582. [PMID: 37834030 PMCID: PMC10573049 DOI: 10.3390/ijms241914582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/15/2023] Open
Abstract
Parkinson's disease is a neurodegenerative disease exhibiting the fastest growth in incidence in recent years. As with most neurodegenerative diseases, the pathophysiology is incompletely elucidated, but compelling evidence implicates inflammation, both in the central nervous system and in the periphery, in the initiation and progression of the disease, although it is not yet clear what triggers this inflammatory response and where it begins. Gut dysbiosis seems to be a likely candidate for the initiation of the systemic inflammation. The therapies in current use provide only symptomatic relief, but do not interfere with the disease progression. Nonetheless, animal models have shown promising results with therapies that target various vicious neuroinflammatory cascades. Translating these therapeutic strategies into clinical trials is still in its infancy, and a series of issues, such as the exact timing, identifying biomarkers able to identify Parkinson's disease in early and pre-symptomatic stages, or the proper indications of genetic testing in the population at large, will need to be settled in future guidelines.
Collapse
Affiliation(s)
- Anamaria Jurcau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Felicia Liana Andronie-Cioara
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Delia Carmen Nistor-Cseppento
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Nicoleta Pascalau
- Department of Psycho-Neuroscience and Rehabilitation, Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (A.J.); (D.C.N.-C.)
| | - Marius Rus
- Department of Medical Disciplines, Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| | - Elisabeta Vasca
- Department of Oral Rehabilitation, Faculty of Medicine “Vasile Goldis” Arad, 310025 Arad, Romania
| | | |
Collapse
|
43
|
Benarroch E. What Is the Role of the Rho-ROCK Pathway in Neurologic Disorders? Neurology 2023; 101:536-543. [PMID: 37722862 PMCID: PMC10516277 DOI: 10.1212/wnl.0000000000207779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/20/2023] Open
|
44
|
Sousa T, Moreira PI, Cardoso S. Current Advances in Mitochondrial Targeted Interventions in Alzheimer's Disease. Biomedicines 2023; 11:2331. [PMID: 37760774 PMCID: PMC10525414 DOI: 10.3390/biomedicines11092331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/29/2023] Open
Abstract
Alzheimer's disease is the most prevalent neurodegenerative disorder and affects the lives not only of those who are diagnosed but also of their caregivers. Despite the enormous social, economic and political burden, AD remains a disease without an effective treatment and with several failed attempts to modify the disease course. The fact that AD clinical diagnosis is most often performed at a stage at which the underlying pathological events are in an advanced and conceivably irremediable state strongly hampers treatment attempts. This raises the awareness of the need to identify and characterize the early brain changes in AD, in order to identify possible novel therapeutic targets to circumvent AD's cascade of events. One of the most auspicious targets is mitochondria, powerful organelles found in nearly all cells of the body. A vast body of literature has shown that mitochondria from AD patients and model organisms of the disease differ from their non-AD counterparts. In view of this evidence, preserving and/or restoring mitochondria's health and function can represent the primary means to achieve advances to tackle AD. In this review, we will briefly assess and summarize the previous and latest evidence of mitochondria dysfunction in AD. A particular focus will be given to the recent updates and advances in the strategy options aimed to target faulty mitochondria in AD.
Collapse
Affiliation(s)
- Tiago Sousa
- Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal;
| | - Paula I. Moreira
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3000-370 Coimbra, Portugal
| | - Susana Cardoso
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal;
- CIBB—Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC—Institute for Interdisciplinary Research, University of Coimbra, 3030-789 Coimbra, Portugal
| |
Collapse
|
45
|
Yeo RW, Zhou OY, Zhong BL, Sun ED, Navarro Negredo P, Nair S, Sharmin M, Ruetz TJ, Wilson M, Kundaje A, Dunn AR, Brunet A. Chromatin accessibility dynamics of neurogenic niche cells reveal defects in neural stem cell adhesion and migration during aging. NATURE AGING 2023; 3:866-893. [PMID: 37443352 PMCID: PMC10353944 DOI: 10.1038/s43587-023-00449-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/02/2023] [Indexed: 07/15/2023]
Abstract
The regenerative potential of brain stem cell niches deteriorates during aging. Yet the mechanisms underlying this decline are largely unknown. Here we characterize genome-wide chromatin accessibility of neurogenic niche cells in vivo during aging. Interestingly, chromatin accessibility at adhesion and migration genes decreases with age in quiescent neural stem cells (NSCs) but increases with age in activated (proliferative) NSCs. Quiescent and activated NSCs exhibit opposing adhesion behaviors during aging: quiescent NSCs become less adhesive, whereas activated NSCs become more adhesive. Old activated NSCs also show decreased migration in vitro and diminished mobilization out of the niche for neurogenesis in vivo. Using tension sensors, we find that aging increases force-producing adhesions in activated NSCs. Inhibiting the cytoskeletal-regulating kinase ROCK reduces these adhesions, restores migration in old activated NSCs in vitro, and boosts neurogenesis in vivo. These results have implications for restoring the migratory potential of NSCs and for improving neurogenesis in the aged brain.
Collapse
Affiliation(s)
- Robin W Yeo
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Olivia Y Zhou
- Department of Genetics, Stanford University, Stanford, CA, USA
- Stanford Biophysics Program, Stanford University, Stanford, CA, USA
- Stanford Medical Scientist Training Program, Stanford University, Stanford, CA, USA
| | - Brian L Zhong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Eric D Sun
- Department of Genetics, Stanford University, Stanford, CA, USA
- Biomedical Informatics Graduate Program, Stanford University, Stanford, CA, USA
| | | | - Surag Nair
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Mahfuza Sharmin
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Tyson J Ruetz
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Mikaela Wilson
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA, USA.
- Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA, USA.
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
46
|
Zhang H, Lu F, Liu P, Qiu Z, Li J, Wang X, Xu H, Zhao Y, Li X, Wang H, Lu D, Qi R. A direct interaction between RhoGDIα/Tau alleviates hyperphosphorylation of Tau in Alzheimer's disease and vascular dementia. J Neuroimmune Pharmacol 2023; 18:58-71. [PMID: 35080740 DOI: 10.1007/s11481-021-10049-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023]
Abstract
RhoGDIα is an inhibitor of RhoGDP dissociation that involves in Aβ metabolism and NFTs production in Alzheimer's disease (AD) by regulating of RhoGTP enzyme activity. Our previous research revealed that RhoGDIα, as the target of Polygala saponin (Sen), might alleviate apoptosis of the nerve cells caused by hypoxia/reoxygenation (H/R). To further clarify the role of RhoGDIα in the generation of NFTs, we explored the relationship between RhoGDIα and Tau. We found out that RhoGDIα and Tau can bind with each other and interact by using coimmunoprecipitation (Co-IP) and GST pulldown methods in vitro. This RhoGDIα-Tau partnership was further verified by using immunofluorescence colocalization and fluorescence resonance energy transfer (FRET) approaches in PC12 cells. Using the RNA interference (RNAi) technique, we found that the RhoGDIα may be involved in an upstream signaling pathway for Tau. Subsequently, in Aβ25-35- and H/R-induced PC12 cells, forced expression of RhoGDIα via cDNA plasmid transfection was found to reduce the hyperphosphorylation of Tau, augment the expression of bcl-2 protein, and inhibit the expression of Bax protein (reducing the Bax/bcl-2 ratio) and the activity of caspase-3. In mouse AD and VaD models, forced expression of RhoGDIα via injection of a viral vector (pAAV-EGFP-RhoGDIα) into the lateral ventricle of the brain alleviated the pathological symptoms of AD and VaD. Finally, GST pulldown confirmed that the binding sites on RhoGDIα for Tau were located in the range of the ΔC33 fragment (aa 1-33). These results indicate that RhoGDIα is involved in the phosphorylation of Tau and apoptosis in AD and VaD. Overexpression of RhoGDIα can inhibit the generation of NFTs and delay the progress of these two types of dementia.
Collapse
Affiliation(s)
- Heping Zhang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Fan Lu
- Department of Emergency, First Affiliated Hospital of Jinan University, Guangzhou, 510630, Guangdong, China
| | - Panhong Liu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, China
| | - Zhaohui Qiu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, The Eighth Affiliated Hospital, Sun Yat-Sen University, ShenZhen, 518033, China
| | - Jianling Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Anesthesiology, First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Xiaotong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Hui Xu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Yandong Zhao
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Xuemin Li
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Anhui, 230031, China
| | - Huadong Wang
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Daxiang Lu
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Renbin Qi
- Department of Pathophysiology, Key Laboratory of State Administration of Traditional Chinese Medicine, School of Medicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
47
|
Wong TS, Li G, Li S, Gao W, Chen G, Gan S, Zhang M, Li H, Wu S, Du Y. G protein-coupled receptors in neurodegenerative diseases and psychiatric disorders. Signal Transduct Target Ther 2023; 8:177. [PMID: 37137892 PMCID: PMC10154768 DOI: 10.1038/s41392-023-01427-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 02/17/2023] [Accepted: 03/30/2023] [Indexed: 05/05/2023] Open
Abstract
Neuropsychiatric disorders are multifactorial disorders with diverse aetiological factors. Identifying treatment targets is challenging because the diseases are resulting from heterogeneous biological, genetic, and environmental factors. Nevertheless, the increasing understanding of G protein-coupled receptor (GPCR) opens a new possibility in drug discovery. Harnessing our knowledge of molecular mechanisms and structural information of GPCRs will be advantageous for developing effective drugs. This review provides an overview of the role of GPCRs in various neurodegenerative and psychiatric diseases. Besides, we highlight the emerging opportunities of novel GPCR targets and address recent progress in GPCR drug development.
Collapse
Affiliation(s)
- Thian-Sze Wong
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Guangzhi Li
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China
| | - Shiliang Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Wei Gao
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Geng Chen
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Shiyi Gan
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China
| | - Manzhan Zhang
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China
| | - Honglin Li
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, 200237, Shanghai, China.
- Innovation Center for AI and Drug Discovery, East China Normal University, 200062, Shanghai, China.
| | - Song Wu
- Institute of Urology, The Affiliated Luohu Hospital of Shenzhen University, Shenzhen University, 518000, Shenzhen, Guangdong, China.
- Department of Urology, South China Hospital, Health Science Center, Shenzhen University, 518116, Shenzhen, Guangdong, China.
| | - Yang Du
- Kobilka Institute of Innovative Drug Discovery, Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Medicine, The Chinese University of Hong Kong, 518172, Shenzhen, Guangdong, China.
| |
Collapse
|
48
|
Cellular and Molecular Mechanisms Underly the Combined Treatment of Fasudil and Bone Marrow Derived-Neuronal Stem Cells in a Parkinson's Disease Mouse Model. Mol Neurobiol 2023; 60:1826-1835. [PMID: 36580198 DOI: 10.1007/s12035-022-03173-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 12/04/2022] [Indexed: 12/30/2022]
Abstract
Bone marrow-derived neural stem cells (BM-NSCs) have shed light on novel therapeutic approaches for PD with the potential to halt or even reverse disease progression. Various strategies have been developed to promote therapeutic efficacy via optimizing implanted cells and the microenvironment of transplantation in the central nervous system (CNS). This current study further proved that the combination of fasudil, a Rho-kinase inhibitor, and BM-NSCs exhibited a synergetic effect on restoring neuron loss in the MPTP-PD mice model. It simultaneously unveiled cellular mechanisms underlying synergistic neuron-protection effects of fasudil and BM-NSCs, which included promoting the proliferation, and migration of endogenous NSCs, and contributing to microglia shift into the M2 phenotype. Corresponding molecular mechanisms were observed, including the inhibition of inflammatory responses, the elevation of neurotrophic factors, and the induction of WNT/β-catenin and PI3K/Akt/mTOR signaling pathways. Our study provides evidence for the co-intervention of BM-NSCs and fasudil as a promising therapeutic method with enhanced efficacy in treating neurodegenerative diseases.
Collapse
|
49
|
Ru Q, Wang Y, Zhou E, Chen L, Wu Y. The potential therapeutic roles of Rho GTPases in substance dependence. Front Mol Neurosci 2023; 16:1125277. [PMID: 37063367 PMCID: PMC10097952 DOI: 10.3389/fnmol.2023.1125277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Rho GTPases family are considered to be molecular switches that regulate various cellular processes, including cytoskeleton remodeling, cell polarity, synaptic development and maintenance. Accumulating evidence shows that Rho GTPases are involved in neuronal development and brain diseases, including substance dependence. However, the functions of Rho GTPases in substance dependence are divergent and cerebral nuclei-dependent. Thereby, comprehensive integration of their roles and correlated mechanisms are urgently needed. In this review, the molecular functions and regulatory mechanisms of Rho GTPases and their regulators such as GTPase-activating proteins (GAPs) and guanine nucleotide exchange factors (GEFs) in substance dependence have been reviewed, and this is of great significance for understanding their spatiotemporal roles in addictions induced by different addictive substances and in different stages of substance dependence.
Collapse
Affiliation(s)
| | | | | | - Lin Chen
- *Correspondence: Lin Chen, ; Yuxiang Wu,
| | - Yuxiang Wu
- *Correspondence: Lin Chen, ; Yuxiang Wu,
| |
Collapse
|
50
|
Taha M, Eldemerdash OM, Elshaffei IM, Yousef EM, Soliman AS, Senousy MA. Apigenin Attenuates Hippocampal Microglial Activation and Restores Cognitive Function in Methotrexate-Treated Rats: Targeting the miR-15a/ROCK-1/ERK1/2 Pathway. Mol Neurobiol 2023; 60:3770-3787. [PMID: 36943623 DOI: 10.1007/s12035-023-03299-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/22/2023] [Indexed: 03/23/2023]
Abstract
Microglial activation underpins the methotrexate (MTX)-induced neurotoxicity; however, the precise mechanism remains unclear. This study appraised the potential impact of apigenin (Api), a neuroprotective flavonoid, in MTX-induced neurotoxicity in rats in terms of microglial activation through targeting the miR-15a/Rho-associated protein kinase-1 (ROCK-1)/extracellular signal-regulated kinase 1/2 (ERK1/2) pathway. Male Sprague Dawley rats were randomly divided into 4 groups: Normal control (saline i.p. daily and i.v. on days 8 and 15); Api control (20 mg/kg, p.o.) daily for 30 days; MTX-alone (75 mg/kg, i.v.) on days 8 and 15, then four i.p. injections of leucovorin (LCV): 6 mg/kg after 18 h, then three doses (3 mg/kg) every 8 h post-MTX; and Api co-treated (20 mg/kg/day, p.o.) throughout the model for 30 days, with administration of MTX and LCV as in group 3. MTX administration elevated hippocampal ionized calcium-binding adaptor protein-1 (Iba-1) immunostaining, indicating microglial activation. This was accompanied by neuroinflammation, oxidative stress, and enhanced apoptosis manifested by elevated hippocampal interleukin-1β, malondialdehyde, and caspase-3, and decreased reduced glutathione levels. Concurrently, abated miR-15a expression, overexpression of its target ROCK-1, diminished downstream ERK1/2 and cAMP response element-binding protein (CREB) phosphorylation, and decreased hippocampal brain-derived neurotrophic factor (BDNF) levels were observed. Api mitigated the MTX-induced neurotoxicity by reversing the biochemical, histopathological, and behavioral derangements tested by novel object recognition and Morris water maze tests. Conclusively, Api lessens MTX-induced neuroinflammation, oxidative stress, and apoptosis and boosts cognitive function through inhibiting microglial activation via modulating the miR-15a/ROCK-1/ERK1/2/CREB/BDNF pathway. Graphical abstract showing the effects of methotrexate and apigenin co-treatment in MTX-induced neurotoxicity model. On the left, methotrexate (MTX) administration to rats resulted in hippocampal miR-15a downregulation, which triggered an enhanced expression of its target ROCK-1, consequently inhibiting the downstream ERK1/2/CREB/BDNF pathway, instigating a state of microglial activation, neuroinflammation, oxidative stress, and apoptosis. On the other hand, apigenin (Api) co-treatment restored miR-15a, inhibited ROCK-1 expression, and activated the ERK1/2/CREB/BDNF pathway, leading to diminished hippocampal microglial activation, neuroinflammation, and apoptosis, and restoration of the redox balance, along with improvement in memory and cognitive function of the MTX-treated rats.
Collapse
Affiliation(s)
- Mohamed Taha
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., Cairo, 11562, Egypt.
| | - Omar Mohsen Eldemerdash
- Department of Biochemistry, Faculty of Pharmacy, Misr International University (MIU), KM 28 Cairo, Ismailia Road, Cairo, 44971, Egypt
| | - Ismail Mohamed Elshaffei
- Department of Biochemistry, Faculty of Pharmacy, Misr International University (MIU), KM 28 Cairo, Ismailia Road, Cairo, 44971, Egypt
| | - Einas Mohamed Yousef
- Department of Histology and Cell Biology, Faculty of Medicine, Menoufia University, Shibin El Kom, Egypt
| | - Ayman S Soliman
- Medical Physiology Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mahmoud Ahmed Senousy
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El Ainy st., Cairo, 11562, Egypt
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, 11786, Egypt
| |
Collapse
|