1
|
Wei Z, Han B, Yang L, Zhao J, Nakai T, Chen S, Yao Y, Song C, Duan Y. Discovery of a potent and in vivo anti-inflammatory Efficacious, P2Y 14R antagonist with a novel benzisoxazoles scaffold by DNA-encoded chemical library technology. Eur J Med Chem 2025; 289:117451. [PMID: 40037063 DOI: 10.1016/j.ejmech.2025.117451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
P2Y14R is activated by UDP (uridine diphosphate) and UDP glucose and associated with the development of many inflammatory diseases. P2Y14R antagonists are expected to be a new choice for the treatment of inflammatory diseases. A DNA-encoded chemical library (DEL) of 4 billion molecules was screened, leading to the identification of compound A, a novel benzisoxazole scaffold-based P2Y14 antagonist with an IC50 value of 23.60 nM. Binding mode analysis and SPR analysis (KD = 7.26 μM) demonstrated that Compound A bind strongly to P2Y14R. Molecular dynamics simulations and binding free energy calculations were performed to analyze the binding mode of Compound A with P2Y14R. And in the LPS-induced acute lung injury mice, after treatment with Compound A, the degree of lung injury was greatly reduced, the infiltration of immune cells was decreased, the level of inflammatory factors IL-6, TNF-α and IL-β were considerably decreased. Compound A exhibited good P2Y14R antagonist activity, demonstrated efficacy both in vitro and in vivo, possessed favorable druggability, and featured a novel benzisoxazole scaffold with potential for further optimization, providing a new strategy for developing subsequent P2Y14 antagonists.
Collapse
Affiliation(s)
- Zhiyi Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Pingyuan Laboratory, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jiannan Zhao
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Suyi Chen
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China; Pingyuan Laboratory, Zhengzhou, 450001, China.
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Pingyuan Laboratory, Zhengzhou, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
2
|
Dos Reis TF, Delbaje E, Pinzan CF, Bastos R, Ackloo S, Fallah S, Laflamme B, Robbins N, Cowen LE, Goldman GH. The GPCR antagonist PPTN synergizes with caspofungin providing increased fungicidal activity against Aspergillus fumigatus. Microbiol Spectr 2025:e0331824. [PMID: 40090930 DOI: 10.1128/spectrum.03318-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/31/2025] [Indexed: 03/19/2025] Open
Abstract
Fungal pathogens pose a serious threat to human health, with Candida and Aspergillus spp. representing some of the most significant opportunistic invaders. Aspergillus fumigatus causes aspergillosis, one of the most prevalent fungal diseases of humans. There is a limited number of drugs available to combat these infections, and antifungal drug resistance is on the rise. In this manuscript, we show 4-[4-(4-Piperidinyl) phenyl]-7-[4-(-(trifluoromethyl) phenyl]-2-naphthalenecarboxylic acid (PPTN), a highly specific antagonist of the human P2Y14 receptor, is a promising antifungal adjuvant against diverse fungal pathogens. PPTN interacts with caspofungin (CAS), ibrexafungerp, voriconazole (VOR), and amphotericin against A. fumigatus CAS- and VOR-resistant clinical isolates, and also CAS against Candida spp and Cryptococcus neoformans. The combination of PPTN and CAS increases cell death in A. fumigatus. In the model yeast Saccharomyces cerevisiae, heterozygous deletion of genes involved in chromatin remodeling results in PPTN hypersensitivity, and in A. fumigatus, PPTN can have increased fungicidal activity when combined with the histone deacetylase inhibitor trichostatin A and the DNA methyltransferase inhibitor 5-azacytidine. Finally, PPTN has reduced toxicity to human immortalized cell lineages and partially clears A. fumigatus conidia infection in A549 pulmonary epithelial cells. Our results indicate that PPTN is a novel adjuvant antifungal drug against fungal diseases caused by A. fumigatus and Candida spp. IMPORTANCE Invasive fungal infections have a high mortality rate, causing more deaths annually than tuberculosis or malaria. Aspergillus fumigatus is the main etiological agent of aspergillosis, one of the most prevalent and deadly fungal diseases. There are few therapeutic options for treating this disease, and treatment commonly fails due to host complications or the emergence of antifungal resistance. Drug repurposing, where existing drugs are deployed for other clinical indications, has increasingly been used in the process of drug discovery. Here, we show that 4-[4-(4-Piperidinyl) phenyl]-7-[4-(-(trifluoromethyl) phenyl]-2-naphthalenecarboxylic acid (PPTN), a highly specific antagonist of the human P2Y14 receptor, when combined with caspofungin (CAS), ibrexafungerp, voriconazole (VOR), and amphotericin can increase the fungicidal activity against not only A. fumigatus CAS- and VOR-resistant clinical isolates but also CAS against Candida spp.
Collapse
Affiliation(s)
- Thaila Fernanda Dos Reis
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| | - Endrews Delbaje
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Camila Figueiredo Pinzan
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - Rafael Bastos
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
- Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Suzanne Ackloo
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | - Sara Fallah
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Bradley Laflamme
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Leah E Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Gustavo H Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, São Paulo, Brazil
| |
Collapse
|
3
|
Lu P, Cui L, Zhang L, Wang H, Yin L, Tian D, Zhang X. Integrated Metabolomics and Transcriptomics Analyses Reveal Metabolic Changes in Primary Angiitis of the Central Nervous System. J Inflamm Res 2025; 18:2767-2780. [PMID: 40026305 PMCID: PMC11871944 DOI: 10.2147/jir.s503058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose Metabolic characterization of primary angiitis of the central nervous system (PACNS) is crucial for understanding the disease pathogenesis and progression mechanisms, but it has not been reported in patients. This study aimed to explore changes in the plasma metabolome during the active and remission phases of PACNS and identify potential biomarkers. Methods We collected plasma samples from 35 patients with PACNS during the active and remission phases and 22 samples from patients with non-inflammatory disease as controls. Liquid and gas chromatography-mass spectrometry were used to analyze 63 plasma samples from 57 patients metabolically. Meanwhile, we cross-validated the metabolomics results with brain tissue transcriptomic data from comprehensive gene expression databases, enhancing the reliability of our conclusions. Results A total of 3,233 metabolites were identified. Enrichment analysis showed significant changes in lactate/amino acid/glycerol-pyruvic-tricarboxylic acid, glycerophospholipid/sphingolipid-membrane metabolism, lysine/tryptophan-essential amino acid metabolism, and uracil metabolism pathways during the active phase of PACNS. These findings were confirmed in both the remission phase of PACNS patients and the transcriptomic samples. Meanwhile, metabolic abnormalities in patients with PACNS were observed with benzoxazole, sesquiterpenoid, and octyl-phenolic products, and enrichment of environmental pollutants and their estrogen-like effects. Twelve metabolites, including D-Ribose, 13s-HPODE, and C16 Sphinganine, showed potential diagnostic and therapeutic evaluation value. Conclusion Our study identified potential biomarkers and metabolic characteristics of PACNS using integrated metabolomics and transcriptomics approaches. These findings highlight the importance of understanding PACNS from a metabolic perspective and guide future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Ping Lu
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People’s Republic of China
| | - Lingyun Cui
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People’s Republic of China
| | - Lulin Zhang
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People’s Republic of China
| | - Huabing Wang
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People’s Republic of China
| | - Linlin Yin
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, People’s Republic of China
| | - Decai Tian
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People’s Republic of China
- China National Clinical Research Center for Neurological Diseases, Beijing, 100070, People’s Republic of China
| | - Xinghu Zhang
- Center for Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, People’s Republic of China
| |
Collapse
|
4
|
Mao S, Liu W, Wang X, Wang M, Wang S, Yao Y, Duan Y, Song C. Design, Synthesis and Anti-Inflammatory Evaluation of 3-Substituted 5-Amidobenzoate Derivatives as Novel P2Y 14 Receptor Antagonists via Structure-Guided Molecular Hybridization. J Med Chem 2025; 68:2483-2503. [PMID: 39878051 DOI: 10.1021/acs.jmedchem.4c01539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The P2Y14R is activated by UDP and UDP glucose and is involved in many human inflammatory diseases. Based on the molecular docking analysis of currently reported P2Y14R antagonists and the crystallographic overlap study between PPTN and compound IV, a series of 3-substituted 5-amidobenzoate derivatives were designed, synthesized, and identified as promising P2Y14R antagonists. The optimal compound 45 (methyl 3-(1H-benzo[d]imidazol-2-yl)-5-(2-(p-tolyl) acetamido)benzoate, IC50 = 0.70 ± 0.01 nM) showed a strong binding ability to P2Y14R, high selectivity, moderate oral bioactivity, and improved pharmacokinetic profiles. In the LPS-induced acute lung injury model, compound 45 demonstrated significant anti-inflammatory efficacy, effectively mitigating the pulmonary infiltration of immune cells and inflammatory response through suppressing the NLRP3 signaling pathway. Thus, 45 with potent P2Y14R antagonistic activity, in vitro and vivo efficacy, and favorable druggability can be a strategy for treating acute lung injury and can be optimized in further studies.
Collapse
Affiliation(s)
- Shuqiang Mao
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjin Liu
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xin Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Simin Wang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yongfang Yao
- Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou 450001, China
- State Key Laboratory of Esophageal Cancer Prevention & Treatment; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450052, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan Laboratory, Zhengzhou 450001, China
| |
Collapse
|
5
|
Dales MO, Drummond RM, Kennedy C. How selective antagonists and genetic modification have helped characterise the expression and functions of vascular P2Y receptors. Purinergic Signal 2025; 21:11-22. [PMID: 38740733 PMCID: PMC11958928 DOI: 10.1007/s11302-024-10016-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Vascular P2Y receptors mediate many effects, but the role of individual subtypes is often unclear. Here we discuss how subtype-selective antagonists and receptor knockout/knockdown have helped identify these roles in numerous species and vessels. P2Y1 receptor-mediated vasoconstriction and endothelium-dependent vasodilation have been characterised using the selective antagonists, MRS2179 and MRS2216, whilst AR-C118925XX, a P2Y2 receptor antagonist, reduced endothelium-dependent relaxation, and signalling evoked by UTP or fluid shear stress. P2Y2 receptor knockdown reduced endothelial signalling and endothelial P2Y2 receptor knockout produced hypertensive mice and abolished vasodilation elicited by an increase in flow. UTP-evoked vasoconstriction was also blocked by AR-C118925XX, but the effects of P2Y2 receptor knockout were complex. No P2Y4 receptor antagonists are available and P2Y4 knockout did not affect the vascular actions of UTP and UDP. The P2Y6 receptor antagonist, MRS2578, identified endothelial P2Y6 receptors mediating vasodilation, but receptor knockout had complex effects. MRS2578 also inhibited, and P2Y6 knockout abolished, contractions evoked by UDP. P2Y6 receptors contribute to the myogenic tone induced by a stepped increase in vascular perfusion pressure and possibly to the development of atherosclerosis. The P2Y11 receptor antagonists, NF157 and NF340, inhibited ATP-evoked signalling in human endothelial cells. Vasoconstriction mediated by P2Y12/P2Y13 and P2Y14 receptors was characterised using the antagonists, cangrelor, ticagrelor, AR-C67085 and MRS2211 or PPTN respectively. This has yet to be backed up by receptor knockout experiments. Thus, subtype-selective antagonists and receptor knockout/knockdown have helped identify which P2Y subtypes are functionally expressed in vascular smooth muscle and endothelial cells and the effects that they mediate.
Collapse
Affiliation(s)
- Markie O Dales
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Robert M Drummond
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK.
| |
Collapse
|
6
|
Fjærvoll KA, Fjærvoll HK, Yang M, Bair J, Utheim TP, Dartt DA. Pyrimidinergic P2Y1-Like Nucleotide Receptors Are Functional in Rat Conjunctival Goblet Cells. Invest Ophthalmol Vis Sci 2025; 66:46. [PMID: 39836405 PMCID: PMC11753474 DOI: 10.1167/iovs.66.1.46] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/29/2024] [Indexed: 01/22/2025] Open
Abstract
Purpose To investigate the presence of uridine-5'-triphosphate (UTP)-activated P2Y1-like nucleotide receptors (P2Y2R, P2Y4R, and P2Y6R) in conjunctival goblet cells (CGCs) and determine if they increase intracellular Ca2+ concentration ([Ca2+]i) and induce mucin secretion. Methods Adult, male rat conjunctiva was used for culture of CGCs. To investigate the expression of P2YRs, mRNA was extracted from CGCs and used for reverse transcription PCR (RT-PCR) with commercially obtained primers specific to P2Y2R, P2Y4R, and P2Y6R. Immunofluorescence (IF) and western blot (WB) analyses were performed using first-passage CGCs and stained with antibodies specific to each P2YR. Furthermore, CGCs were incubated with fura-2/AM, and [Ca2+]i was measured after stimulation with the P2YR selective agonists UTP, uridine 5'-diphosphate (UDP), or UDP-glucose and agonists specific to P2Y2R (MRS 2768), P2Y4R (MRS 4062), and P2Y6R (MRS 2693). [Ca2+]i measurements after P2Y2R and P2Y6R siRNA treatment were performed. Mucin secretion was measured after stimulation of P2Y2R, P2Y4R, and P2Y6R. Results mRNA for all pyrimidinergic P2Y1-like receptors was found as single bands of expected base pair number with RT-PCR. The presence of these P2YRs was confirmed with IF microscopy and WB analysis. UTP and UDP elicited concentration-dependent increases in [Ca2+]i. The receptor-specific agonists and UDP-glucose increased [Ca2+]i, although these responses were substantially lower than those elicited by UTP and UDP at 10-4 M and 10-3 M and did not show similar dose dependency. P2Y2R- and P2Y6R-depleted CGCs responded with reduced peak [Ca2+]i. UTP, MRS 2768 (P2Y2R), and UDP each stimulated mucin secretion from CGCs. Conclusions P2Y2R, P2Y4R, and P2Y6R are present and functional in rat CGCs and may represent novel therapeutic targets for dry eye treatment and other types of ocular surface disease.
Collapse
Affiliation(s)
- Ketil A. Fjærvoll
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Division of Head, Neck and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Medical Student Research Program, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Haakon K. Fjærvoll
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Division of Head, Neck and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Medical Student Research Program, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Menglu Yang
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Jeffrey Bair
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P. Utheim
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
- Division of Head, Neck and Reconstructive Surgery, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Medical Student Research Program, Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Darlene A. Dartt
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
7
|
Zhao Y, Han B, Wei Z, Li Y, Yao Y, Song C, Duan Y. Discovery of a potent, Highly selective, and In vivo anti-inflammatory Efficacious, P2Y 6R antagonist with a novel quinoline-pyrazole scaffold. Eur J Med Chem 2024; 279:116890. [PMID: 39341096 DOI: 10.1016/j.ejmech.2024.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
The P2Y6 receptor (P2Y6R), as a crucial member of the purine family, is a potential therapeutic target for the treatment of intestinal inflammation, tracheal inflammation and diabetes. We first discovered the hit compound (5a, IC50 = 168.5 nM against P2Y6R) through our in-house library screening. Then, further medicinal chemistry efforts were made to optimize compound 5a, and a potent P2Y6R antagonist (5 ab) with better antagonistic activity (IC50 = 19.6 nM) was obtained. The molecular docking, CETSA, SPR and pull-down results indicated that compound 5 ab displayed strong binding to P2Y6R. Also, compound 5 ab possessed high selectivity and satisfying oral bioactivity and pharmacokinetic profiles. In experiments with LPS-induced acute lung injury in mice, after treatment with compound 5 ab, the level of inflammatory factors IL-6, TNF-α and IL-β were considerably decreased, the infiltration of immune cells was decreased. Further exploration revealed that 5 ab inhibited the expression and release of chemokines in lung tissue, suppressing the activation of the NLRP3 inflammasome. Compound 5 ab had certain anti-inflammatory abilities in vivo and in vitro. These results demonstrate that compound 5 ab is a potential P2Y6R antagonist and is worthy of further study.
Collapse
Affiliation(s)
- Yabiao Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Zhiyi Wei
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanzhe Li
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yongfang Yao
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China; School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China; Pingyuan Laboratory, Zhengzhou, 450001, China.
| | - Chuanjun Song
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; Pingyuan Laboratory, Zhengzhou, 450001, China.
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Pediatric Hematology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.
| |
Collapse
|
8
|
Zhang WJ, Shi QM, Li TZ, Huang YW. G protein coupled P2Y2 receptor as a regulatory molecule in cancer progression. Arch Biochem Biophys 2024; 762:110194. [PMID: 39486566 DOI: 10.1016/j.abb.2024.110194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/01/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
The occurrence and development of cancer involves the participation of many factors, its pathological mechanism is far more complicated than other diseases, and the treatment is also extremely difficult. Although the treatment of cancer adopts diversified methods to improve the survival rate and quality of life of patients, but the drug resistance, metastasis and recurrence of cancer cause most patients to fail in treatment. Therefore, exploring new molecular targets in cancer pathology is of great value for improving and preventing the treatment of cancer. Fortunately, the P2Y2 purinergic receptor (P2Y2 receptor) in the G protein-coupled receptor family has been recognized for regulating cancer progression. Agonist activated P2Y2 receptor has a certain contribution to the growth and metastasis of tumor cells. P2Y2 receptor activation participates in cancer progression by regulating calcium ion channels and classical signaling pathways (such as PLC-PKC and PI3K/AKT). It has the effect of anti-tumor therapy by inhibiting the activation of P2Y2 receptor (the use of antagonist) and reducing its expression. Therefore, in this article, we focus on the expression patterns of P2Y2 receptor in cancer and potential pharmacological targets as anti-cancer treatments.
Collapse
Affiliation(s)
- Wen-Jun Zhang
- Rehabilitation Medicine Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Qing-Ming Shi
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Teng-Zheng Li
- Orthopedic Department, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang City, Jiangxi province, China
| | - Ya-Wei Huang
- Urology Department, The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Nanchang City, China.
| |
Collapse
|
9
|
Alveal M, Méndez A, García A, Henríquez M. Purinergic regulation of pulmonary vascular tone. Purinergic Signal 2024; 20:595-606. [PMID: 38713328 PMCID: PMC11554604 DOI: 10.1007/s11302-024-10010-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 04/16/2024] [Indexed: 05/08/2024] Open
Abstract
Purinergic signaling is a crucial determinant in the regulation of pulmonary vascular physiology and presents a promising avenue for addressing lung diseases. This intricate signaling system encompasses two primary receptor classes: P1 and P2 receptors. P1 receptors selectively bind adenosine, while P2 receptors exhibit an affinity for ATP, ADP, UTP, and UDP. Functionally, P1 receptors are associated with vasodilation, while P2 receptors mediate vasoconstriction, particularly in basally relaxed vessels, through modulation of intracellular Ca2+ levels. The P2X subtype receptors facilitate extracellular Ca2+ influx, while the P2Y subtype receptors are linked to endoplasmic reticulum Ca2+ release. Notably, the primary receptor responsible for ATP-induced vasoconstriction is P2X1, with α,β-meATP and UDP being identified as potent vasoconstrictor agonists. Interestingly, ATP has been shown to induce endothelium-dependent vasodilation in pre-constricted vessels, associated with nitric oxide (NO) release. In the context of P1 receptors, adenosine stimulation of pulmonary vessels has been unequivocally demonstrated to induce vasodilation, with a clear dependency on the A2B receptor, as evidenced in studies involving guinea pigs and rats. Importantly, evidence strongly suggests that this vasodilation occurs independently of endothelium-mediated mechanisms. Furthermore, studies have revealed variations in the expression of purinergic receptors across different vessel sizes, with reports indicating notably higher expression of P2Y1, P2Y2, and P2Y4 receptors in small pulmonary arteries. While the existing evidence in this area is still emerging, it underscores the urgent need for a comprehensive examination of the specific characteristics of purinergic signaling in the regulation of pulmonary vascular tone, particularly focusing on the disparities observed across different intrapulmonary vessel sizes. Consequently, this review aims to meticulously explore the current evidence regarding the role of purinergic signaling in pulmonary vascular tone regulation, with a specific emphasis on the variations observed in intrapulmonary vessel sizes. This endeavor is critical, as purinergic signaling holds substantial promise in the modulation of vascular tone and in the proactive prevention and treatment of pulmonary vascular diseases.
Collapse
Affiliation(s)
- Marco Alveal
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
| | - Andrea Méndez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
- Escuela de Kinesiología, Facultad de Salud y Ciencias Sociales, Campus Providencia, Sede Santiago, Universidad de Las Américas, Santiago, Chile
| | - Aline García
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile
- Escuela de Graduados, Facultad de Ciencias Veterinarias,, Universidad Austral de Chile, Valdivia, Chile
| | - Mauricio Henríquez
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina Universidad de Chile, Independencia 1027, 7500975, Independencia, Santiago, Chile.
| |
Collapse
|
10
|
Dan H, Liu C, Zhang H, Gan M, Wang Y, Chen L, Zhao Y, Liu B, Zhu K, Niu L, Zhu L, Shen L. Integrated transcriptomic and metabolomic analyses reveal heterosis for meat quality of Neijiang pigs. Front Vet Sci 2024; 11:1493284. [PMID: 39654839 PMCID: PMC11626801 DOI: 10.3389/fvets.2024.1493284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024] Open
Abstract
Obese pig breeds have excellent meat quality, while lean pig breeds have high lean meat percentage and feed conversion rate. However, due to their respective shortcomings, obese pig and lean pig breeds are unable to balance production and consumption needs. Therefore, this study crossbred the obese Chinese pig breed Neijiang (NJ) with lean type Large White pigs (LW) to produce Neijiang × Large White(NL) pigs. This study compared the differences in carcass and meat quality traits between NJ pigs and NL pigs, and for the first time comprehensively analyzed the longissimus dorsi muscle of NJ pigs and NL pigs using transcriptomics and metabolomics. The results of slaughter and meat quality testing indicate that the carcass performance of NL pigs was significantly higher than that of NJ pigs, and the excellent meat quality characteristics of NJ pigs were also retained on NL pigs. The results of transcriptomics and metabolomics showed that there were 635 differentially expressed genes (DEGs) and 11 significantly different metabolites (SDM) in the longissimus dorsi muscle of NJ and NL pigs. The results of multi omics joint analysis showed that betaine, uridine triphosphate, glycerol 3-phosphate, and glutathione in SDMs were enriched in the shared KEGG pathway and significantly correlated with C1QTNF12, GGA3, SLC16A6, and RXRG in DEGs. In general, it is feasible to enhance the production performance of NJ pigs through crossbreeding with LW pigs. The hybrid offspring inherit the advantages of these two varieties, maintaining excellent meat quality while also having better carcass performance.
Collapse
Affiliation(s)
- Haifeng Dan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Chengming Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Huiling Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Mailin Gan
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Lei Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Ye Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Bin Liu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu, China
| | - Kangping Zhu
- Sichuan Dekon Livestock Foodstuff Group, Chengdu, China
| | - Lili Niu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Li Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linyuan Shen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, China
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Daghbouche-Rubio N, Álvarez-Miguel I, Flores VA, Rojo-Mencía J, Navedo M, Nieves-Citrón M, Cidad P, Pérez-García MT, López-López JR. The P2Y6 Receptor as a Potential Keystone in Essential Hypertension. FUNCTION 2024; 5:zqae045. [PMID: 39322240 DOI: 10.1093/function/zqae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/23/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024] Open
Abstract
Essential hypertension (HT) is a highly prevalent cardiovascular disease of unclear physiopathology. Pharmacological studies suggest that purinergic P2Y6 receptors (P2ry6) play important roles in cardiovascular function and may contribute to angiotensin II (AgtII) pathophysiological effects. Here, we tested the hypothesis that functional coupling between P2ry6 and AgtII receptors mediates altered vascular reactivity in HT. For this, a multipronged approach was implemented using mesenteric vascular smooth muscle cells (VSMCs) and arteries from Blood Pressure Normal (BPN) and Blood Pressure High (BPH) mice. Differential transcriptome profiling of mesenteric artery VSMCs identified P2ry6 purinergic receptor mRNA as one of the top upregulated transcripts in BPH. P2Y receptor activation elicited distinct vascular responses in mesenteric arteries from BPN and BPH mice. Accordingly, 10 µm UTP produced a contraction close to half-maximal activation in BPH arteries but no response in BPN vessels. AgtII-induced contraction was also higher in BPH mice despite having lower AgtII receptor type-1 (Agtr1) expression and was sensitive to P2ry6 modulators. Proximity ligation assay and super-resolution microscopy showed closer localization of Agtr1 and P2ry6 at/near the membrane of BPH mice. This proximal association was reduced in BPN mice, suggesting a functional role for Agtr1-P2ry6 complexes in the hypertensive phenotype. Intriguingly, BPN mice were resistant to AgtII-induced HT and showed reduced P2ry6 expression in VSMCs. Altogether, results suggest that increased functional coupling between P2ry6 and Agtr1 may contribute to enhanced vascular reactivity during HT. In this regard, blocking P2ry6 could be a potential pharmacological strategy to treat HT.
Collapse
MESH Headings
- Animals
- Essential Hypertension/metabolism
- Essential Hypertension/genetics
- Mice
- Receptors, Purinergic P2/metabolism
- Receptors, Purinergic P2/genetics
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Male
- Mesenteric Arteries/metabolism
- Mesenteric Arteries/drug effects
- Mesenteric Arteries/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Mice, Inbred C57BL
- Angiotensin II/pharmacology
- Blood Pressure/genetics
Collapse
Affiliation(s)
- Nuria Daghbouche-Rubio
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - Inés Álvarez-Miguel
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | | | - Jorge Rojo-Mencía
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - Manuel Navedo
- Department of Pharmacology, University of California Davis, Davis, CA 95616, USA
| | | | - Pilar Cidad
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - M Teresa Pérez-García
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| | - José R López-López
- Departamento de Bioquímica y Biología Molecular y Fisiología e Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid y Consejo Superior de Investigaciones Científicas (CSIC), Valladolid, 47003, Spain
| |
Collapse
|
12
|
Wang K, Zhong F, Zhang ZD, Li HQ, Tian S. Recent advances in the development of P2Y 14R inhibitors: a patent and literature review (2018-present). Expert Opin Ther Pat 2024; 34:611-625. [PMID: 38889204 DOI: 10.1080/13543776.2024.2369634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 06/12/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION The P2Y14 receptor (P2Y14R), a member of the G protein-coupled receptor family, is activated by extracellular nucleotides. Due to its involvement in inflammatory, immunological and other associated processes, P2Y14R has emerged as a promising therapeutic target. Despite lacking a determined three-dimensional crystal structure, the homology modeling technique based on closely related P2Y receptors' crystallography has been extensively utilized for developing active compounds targeting P2Y14R. Recent discoveries have unveiled numerous highly effective and subtype-specific P2Y14R inhibitors. This study presents an overview of the latest advancements in P2Y14R inhibitors. AREAS COVERED This review presents an overview of the advancements in P2Y14R inhibitor research over the past five years, encompassing new patents, journal articles, and highlighting the therapeutic prospects inherent in these compounds. EXPERT OPINION The recent revelation of the vast potential of P2Y14R inhibitors has led to the development of novel compounds that exhibit promising capabilities for the treatment of sterile inflammation of the kidney, potentially diabetes, and asthma. Despite being a relatively nascent class of compounds, certain members have already exhibited their capacity to surmount specific challenges posed by conventional P2Y14R inhibitors. Targeting P2Y14R through small molecules may present a promising therapeutic strategy for effectively managing diverse inflammatory diseases.
Collapse
Affiliation(s)
- Kai Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Fen Zhong
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhou-Dong Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Huan-Qiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| | - Sheng Tian
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou, China
| |
Collapse
|
13
|
Li Y, Zhou M, Li H, Dai C, Yin L, Liu C, Li Y, Zhang E, Dong X, Ji H, Hu Q. Macrophage P2Y6 receptor deletion attenuates atherosclerosis by limiting foam cell formation through phospholipase Cβ/store-operated calcium entry/calreticulin/scavenger receptor A pathways. Eur Heart J 2024; 45:268-283. [PMID: 38036416 DOI: 10.1093/eurheartj/ehad796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 10/16/2023] [Accepted: 11/17/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND AND AIMS Macrophage-derived foam cells play a causal role during the pathogenesis of atherosclerosis. P2Y6 receptor (P2Y6R) highly expressed has been considered as a disease-causing factor in atherogenesis, but the detailed mechanism remains unknown. This study aims to explore P2Y6R in regulation of macrophage foaming, atherogenesis, and its downstream pathways. Furthermore, the present study sought to find a potent P2Y6R antagonist and investigate the feasibility of P2Y6R-targeting therapy for atherosclerosis. METHODS The P2Y6R expression was examined in human atherosclerotic plaques and mouse artery. Atherosclerosis animal models were established in whole-body P2Y6R or macrophage-specific P2Y6R knockout mice to evaluate the role of P2Y6R. RNA sequencing, DNA pull-down experiments, and proteomic approaches were performed to investigate the downstream mechanisms. High-throughput Glide docking pipeline from repurposing drug library was performed to find potent P2Y6R antagonists. RESULTS The P2Y6R deficiency alleviated atherogenesis characterized by decreasing plaque formation and lipid deposition of the aorta. Mechanically, deletion of macrophage P2Y6R significantly inhibited uptake of oxidized low-density lipoprotein through decreasing scavenger receptor A expression mediated by phospholipase Cβ/store-operated calcium entry pathways. More importantly, P2Y6R deficiency reduced the binding of scavenger receptor A to CALR, accompanied by dissociation of calreticulin and STIM1. Interestingly, thiamine pyrophosphate was found as a potent P2Y6R antagonist with excellent P2Y6R antagonistic activity and binding affinity, of which the pharmacodynamic effect and mechanism on atherosclerosis were verified. CONCLUSIONS Macrophage P2Y6R regulates phospholipase Cβ/store-operated calcium entry/calreticulin signalling pathway to increase scavenger receptor A protein level, thereby improving foam cell formation and atherosclerosis, indicating that the P2Y6R may be a potential therapeutic target for intervention of atherosclerotic diseases using P2Y6R antagonists including thiamine pyrophosphate.
Collapse
Affiliation(s)
- Yehong Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Mengze Zhou
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Huanqiu Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Chen Dai
- Experimental Teaching Center of Life Science, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Li Yin
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Chunxiao Liu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Yuxin Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Enming Zhang
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Xinli Dong
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Hui Ji
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| | - Qinghua Hu
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Longmian Avenue 639, Nanjing 211198, China
| |
Collapse
|
14
|
Zaripova KA, Belova SP, Kostrominova TY, Shenkman BS, Nemirovskaya TL. P2Y1 and P2Y2 receptors differ in their role in the regulation of signaling pathways during unloading-induced rat soleus muscle atrophy. Arch Biochem Biophys 2024; 751:109844. [PMID: 38043889 DOI: 10.1016/j.abb.2023.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The current study aimed to investigate the hypothesis that purinergic receptors P2Y1 and P2Y2 play a regulatory role in gene expression in unloaded muscle. ATP is released from cells through pannexin channels, and it interacts with P2Y1 and P2Y2 receptors, leading to the activation of markers of protein catabolism and a reduction in protein synthesis. To test this hypothesis thirty-two rats were randomly divided into four groups (8 per group): a non-treated control group (C), a group subjected to three days of hindlimb unloading with a placebo (HS), a group subjected to three days of hindlimb unloading treated with a P2Y1 receptor inhibitor, MRS2179 (HSM), and a group subjected to three days of hindlimb unloading treated with a P2Y2 receptor inhibitor, AR-C 118925XX (HSA). This study revealed several key findings following three days of soleus muscle unloading: 1: Inhibition of P2Y1 or P2Y2 receptors prevented the accumulation of ATP, the increase in IP3 receptor content, and the decrease in the phosphorylation of GSK-3beta. This inhibition also mitigated the reduction in the rate of protein synthesis. However, it had no significant effect on the markers of mTORC1-dependent signaling. 2: Blocking P2Y1 receptors prevented the unloading-induced upregulation of phosphorylated p38MAPK and partially reduced the increase in MuRF1mRNA expression. 3: Blocking P2Y2 receptors prevented muscle atrophy during unloading, partially maintained the levels of phosphorylated ERK1/2, reduced the increase in mRNA expression of MAFbx, ubiquitin, and IL-6 receptor, prevented the decrease in phosphorylated AMPK, and attenuated the increase in phosphorylated p70S6K. Taken together, these results suggest that the prevention of muscle atrophy during unloading, as achieved by the P2Y2 receptor inhibitor, is likely mediated through a reduction in catabolic processes and maintenance of energy homeostasis. In contrast, the P2Y1 receptor appears to play a relatively minor role in muscle atrophy during unloading.
Collapse
Affiliation(s)
- Ksenia A Zaripova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Svetlana P Belova
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | - Tatiana Y Kostrominova
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine-Northwest, Gary, IN, USA
| | - Boris S Shenkman
- Myology Laboratory, Institute of Biomedical Problems, RAS, Moscow, Russia
| | | |
Collapse
|
15
|
Song S, Wang Q, Qu Y, Gao W, Li D, Xu X, Yue S. Pregabalin inhibits purinergic P2Y 2 receptor and TRPV4 to suppress astrocyte activation and to relieve neuropathic pain. Eur J Pharmacol 2023; 960:176140. [PMID: 37925132 DOI: 10.1016/j.ejphar.2023.176140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023]
Abstract
BACKGROUNDS Transient receptor potential vanilloid 4 (TRPV4)-mediated astrocyte activation is critical to neuropathic pain. Pregabalin, a widely used drug to treat chronic pain, is reported to lower the intracellular calcium level. However, the molecular mechanism by which pregabalin decreases the intracellular calcium level remains unknown. Purinergic P2Y2 receptor-a member of the G protein-coupled receptor (GPCR) family-regulates calcium-related signal transduction in astrocyte activation. We investigated whether P2Y2 receptor is involved in the pharmacological effects of pregabalin on neuropathic pain. METHODS Neuropathic pain was induced by chronic compression of the dorsal root ganglion (CCD) in rats. Paw withdrawal mechanical threshold (PWMT) was used for behavioral testing. Intracellular calcium concentration was measured using a fluorescent calcium indicator (Fluo-4 AM). RESULTS We found that P2Y2 receptor protein was upregulated and astrocytes were activated in the experimental rats after CCD surgery. Lipopolysaccharide (LPS) increased the intracellular calcium concentration and induced astrocyte activation in cultured astrocytes but was prevented via P2Y2 receptor inhibitor AR-C118925 or pregabalin. Furthermore, plasmid-mediated P2Y2 receptor overexpression induced an elevation of the intracellular calcium levels and inflammation in astrocytes, which was abolished by the TRPV4 inhibitor HC-067047. AR-C118925, HC-067047, and pregabalin relieved neuropathic pain and inflammation in rats after CCD surgery. Finally, plasmid-mediated P2Y2 receptor overexpression induced neuropathic pain in rats, which was abolished by pregabalin administration. CONCLUSIONS Pathophysiological variables that upregulated the P2Y2 receptor/TRPV4/calcium axis contribute to astrocyte activation in neuropathic pain. Pregabalin exerts an analgesic effect by inhibiting this pathway.
Collapse
Affiliation(s)
- Shasha Song
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qianwen Wang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yujuan Qu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Wenshuang Gao
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Danyang Li
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoqian Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shouwei Yue
- Rehabilitation Center, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
16
|
Girard M, Bellefeuille SD, Eiselt É, Arguin G, Longpré JM, Sarret P, Gendron FP. Ligand-dependent intracellular trafficking of the G protein-coupled P2Y 6 receptor. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119476. [PMID: 37059189 DOI: 10.1016/j.bbamcr.2023.119476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/28/2023] [Accepted: 04/05/2023] [Indexed: 04/16/2023]
Abstract
Endosomal trafficking is intricately linked to G protein-coupled receptors (GPCR) fate and signaling. Extracellular uridine diphosphate (UDP) acts as a signaling molecule by selectively activating the GPCR P2Y6. Despite the recent interest for this receptor in pathologies, such as gastrointestinal and neurological diseases, there is sparse information on the endosomal trafficking of P2Y6 receptors in response to its endogenous agonist UDP and synthetic selective agonist 5-iodo-UDP (MRS2693). Confocal microscopy and cell surface ELISA revealed delayed internalization kinetics in response to MRS2693 vs. UDP stimulation in AD293 and HCT116 cells expressing human P2Y6. Interestingly, UDP induced clathrin-dependent P2Y6 internalization, whereas receptor stimulation by MRS2693 endocytosis appeared to be associated with a caveolin-dependent mechanism. Internalized P2Y6 was associated with Rab4, 5, and 7 positive vesicles independent of the agonist. We have measured a higher frequency of receptor expression co-occurrence with Rab11-vesicles, the trans-Golgi network, and lysosomes in response to MRS2693. Interestingly, a higher agonist concentration reversed the delayed P2Y6 internalization and recycling kinetics in the presence of MRS2693 stimulation without changing its caveolin-dependent internalization. This work showed a ligand-dependent effect affecting the P2Y6 receptor internalization and endosomal trafficking. These findings could guide the development of bias ligands that could influence P2Y6 signaling.
Collapse
Affiliation(s)
- Mélissa Girard
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada
| | - Steve Dagenais Bellefeuille
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Émilie Eiselt
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada
| | - Guillaume Arguin
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Jean-Michel Longpré
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada
| | - Philippe Sarret
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada
| | - Fernand-Pierre Gendron
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, Canada.
| |
Collapse
|
17
|
Xiang Z, Liu S, Qiu J, Lin H, Li D, Jiang J. Identification and quality evaluation of Chinese rice wine using UPLC-PDA-QTOF/MS with dual-column separation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 108:154498. [PMID: 36272383 DOI: 10.1016/j.phymed.2022.154498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Chinese rice wine (CRW) is a well-known drink and functional food that is used in traditional Chinese medicine. However, there is still a lack of quality control and evaluation methods for CRWs. PURPOSE The study aimed to establish a new method that can serve both as quality control and evaluation method and, as well as an identification method for CRWs. METHOD Compound identification in different CRW samples and determination of uracil, xanthine, uridine, adenine, guanosine, 5-hydroxymethylfurfural, and adenosine contents from 29 CRW samples from 14 brands were performed using UPLC-PDA/TOF-MS. The dual-column chromatographic separation of CRW was performed using CORTECS T3 coupled to HSS T3. The optimal mobile phase consisted of water with 0.1% formic acid, 40 mM ammonium acetate, and methanol: acetonitrile (2:1). Furthermore, to compare the UPLC fingerprints between CRWs of different brands, a similarity analysis was performed to classify the CRW samples. Finally, network pharmacology and in vitro efficacy and toxicity tests were used to investigate the biological function of the seven components and CRWs. RESULTS A total of 55 compounds were unambiguously or tentatively identified. Among them, nucleoside, pyrimidines and purines were reported in CRW for the first time. The seven components were successfully determined, and their contents showed large variations among different brands of CRW, which was consistent with the results of the chromatographic fingerprint similarities. The results of in vitro efficacy and toxicity tests indicated that CRWs and seven components had obvious protective effect on H9c2 cell injury induced by the H2O2 model. Network pharmacology analysis showed that these seven compounds might be the main active components of CRW that promote blood circulation and ventilation. CONCLUSION This study revealed that dual-column chromatographic separation is an effective method for quantitative and chromatographic fingerprint analyzes of complex samples, and seven compounds can be used for the quality evaluation and control of CRWs.
Collapse
Affiliation(s)
- Zheng Xiang
- Medical School, Zhejiang University City College, Hangzhou 310015, China.
| | - Shundi Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Jieying Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hao Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Dan Li
- Shineway Pharmaceutical Group Co. Ltd., Shijiazhuang 051430, China
| | - Jianping Jiang
- Medical School, Zhejiang University City College, Hangzhou 310015, China
| |
Collapse
|
18
|
Characterisation of P2Y receptor subtypes mediating vasodilation and vasoconstriction of rat pulmonary artery using selective antagonists. Purinergic Signal 2022; 18:515-528. [PMID: 36018534 PMCID: PMC9832182 DOI: 10.1007/s11302-022-09895-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/12/2022] [Indexed: 01/14/2023] Open
Abstract
Pulmonary vascular tone is modulated by nucleotides, but which P2 receptors mediate these actions is largely unclear. The aim of this study, therefore, was to use subtype-selective antagonists to determine the roles of individual P2Y receptor subtypes in nucleotide-evoked pulmonary vasodilation and vasoconstriction. Isometric tension was recorded from rat intrapulmonary artery rings (i.d. 200-500 µm) mounted on a wire myograph. Nucleotides evoked concentration- and endothelium-dependent vasodilation of precontracted tissues, but the concentration-response curves were shallow and did not reach a plateau. The selective P2Y2 antagonist, AR-C118925XX, inhibited uridine 5'-triphosphate (UTP)- but not adenosine 5'-triphosphate (ATP)-evoked relaxation, whereas the P2Y6 receptor antagonist, MRS2578, had no effect on UTP but inhibited relaxation elicited by uridine 5'-diphosphate (UDP). ATP-evoked relaxations were unaffected by the P2Y1 receptor antagonist, MRS2179, which substantially inhibited responses to adenosine 5'-diphosphate (ADP), and by the P2Y12/13 receptor antagonist, cangrelor, which potentiated responses to ADP. Both agonists were unaffected by CGS1593, an adenosine receptor antagonist. Finally, AR-C118925XX had no effect on vasoconstriction elicited by UTP or ATP at resting tone, although P2Y2 receptor mRNA was extracted from endothelium-denuded tissues using reverse transcription polymerase chain reaction with specific oligonucleotide primers. In conclusion, UTP elicits pulmonary vasodilation via P2Y2 receptors, whereas UDP acts at P2Y6 and ADP at P2Y1 receptors, respectively. How ATP induces vasodilation is unclear, but it does not involve P2Y1, P2Y2, P2Y12, P2Y13, or adenosine receptors. UTP- and ATP-evoked vasoconstriction was not mediated by P2Y2 receptors. Thus, this study advances our understanding of how nucleotides modulate pulmonary vascular tone.
Collapse
|
19
|
Forde B, Yao L, Shaha R, Murphy S, Lunjani N, O'Mahony L. Immunomodulation by foods and microbes: Unravelling the molecular tango. Allergy 2022; 77:3513-3526. [PMID: 35892227 PMCID: PMC10087875 DOI: 10.1111/all.15455] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/15/2022] [Accepted: 07/23/2022] [Indexed: 01/28/2023]
Abstract
Metabolic health and immune function are intimately connected via diet and the microbiota. Nearly 90% of all immune cells in the body are associated with the gastrointestinal tract and these immune cells are continuously exposed to a wide range of microbes and microbial-derived compounds, with important systemic ramifications. Microbial dysbiosis has consistently been observed in patients with atopic dermatitis, food allergy and asthma and the molecular mechanisms linking changes in microbial populations with disease risk and disease endotypes are being intensively investigated. The discovery of novel bacterial metabolites that impact immune function is at the forefront of host-microbe research. Co-evolution of microbial communities within their hosts has resulted in intertwined metabolic pathways that affect physiological and pathological processes. However, recent dietary and lifestyle changes are thought to negatively influence interactions between microbes and their host. This review provides an overview of some of the critical metabolite-receptor interactions that have been recently described, which may underpin the immunomodulatory effects of the microbiota, and are of relevance for allergy, asthma and infectious diseases.
Collapse
Affiliation(s)
- Brian Forde
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Lu Yao
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | - Rupin Shaha
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland
| | | | - Nonhlanhla Lunjani
- APC Microbiome Ireland, UCC, Cork, Ireland.,University of Cape Town, Cape Town, South Africa
| | - Liam O'Mahony
- APC Microbiome Ireland, UCC, Cork, Ireland.,School of Microbiology, UCC, Cork, Ireland.,Department of Medicine, UCC, Cork, Ireland
| |
Collapse
|
20
|
Jasmer KJ, Muñoz Forti K, Woods LT, Cha S, Weisman GA. Therapeutic potential for P2Y 2 receptor antagonism. Purinergic Signal 2022:10.1007/s11302-022-09900-3. [PMID: 36219327 DOI: 10.1007/s11302-022-09900-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 09/22/2022] [Indexed: 10/17/2022] Open
Abstract
G protein-coupled receptors are the target of more than 30% of all FDA-approved drug therapies. Though the purinergic P2 receptors have been an attractive target for therapeutic intervention with successes such as the P2Y12 receptor antagonist, clopidogrel, P2Y2 receptor (P2Y2R) antagonism remains relatively unexplored as a therapeutic strategy. Due to a lack of selective antagonists to modify P2Y2R activity, studies using primarily genetic manipulation have revealed roles for P2Y2R in a multitude of diseases. These include inflammatory and autoimmune diseases, fibrotic diseases, renal diseases, cancer, and pathogenic infections. With the advent of AR-C118925, a selective and potent P2Y2R antagonist that became commercially available only a few years ago, new opportunities exist to gain a more robust understanding of P2Y2R function and assess therapeutic effects of P2Y2R antagonism. This review discusses the characteristics of P2Y2R that make it unique among P2 receptors, namely its involvement in five distinct signaling pathways including canonical Gαq protein signaling. We also discuss the effects of other P2Y2R antagonists and the pivotal development of AR-C118925. The remainder of this review concerns the mounting evidence implicating P2Y2Rs in disease pathogenesis, focusing on those studies that have evaluated AR-C118925 in pre-clinical disease models.
Collapse
Affiliation(s)
- Kimberly J Jasmer
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Kevin Muñoz Forti
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Lucas T Woods
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.,Department of Biochemistry, University of Missouri, Columbia, MO, USA
| | - Seunghee Cha
- Department of Oral and Maxillofacial Diagnostic Sciences, Center for Orphaned Autoimmune Disorders, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Gary A Weisman
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO, USA. .,Department of Biochemistry, University of Missouri, Columbia, MO, USA.
| |
Collapse
|
21
|
Caron P, Van Long FN, Rouleau M, Bujold E, Fortin P, Mohammadi S, Lévesque É, Breton S, Guillemette C. A liquid chromatography-mass spectrometry assay for the quantification of nucleotide sugars in human plasma and urine specimens and its clinical application. J Chromatogr A 2022; 1677:463296. [DOI: 10.1016/j.chroma.2022.463296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/29/2022] [Indexed: 10/17/2022]
|
22
|
Zhang M, Sykes DL, Sadofsky LR, Morice AH. ATP, an attractive target for the treatment of refractory chronic cough. Purinergic Signal 2022; 18:289-305. [PMID: 35727480 PMCID: PMC9209634 DOI: 10.1007/s11302-022-09877-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/08/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic cough is the most common complaint in respiratory clinics. Most of them have identifiable causes and some may respond to common disease-modifying therapies. However, there are many patients whose cough lacks effective aetiologically targeted treatments or remains unexplained after thorough assessments, which have been described as refractory chronic cough. Current treatments for refractory chronic cough are limited and often accompanied by intolerable side effects such as sedation. In recent years, various in-depth researches into the pathogenesis of chronic cough have led to an explosion in the development of drugs for the treatment of refractory chronic cough. There has been considerable progress in the underlying mechanisms of chronic cough targeting ATP, and ongoing or completed clinical studies have confirmed the promising antitussive efficacy of P2X3 antagonists for refractory cough. Herein, we review the foundation on which ATP target was developed as potential antitussive medications and provide an update on current clinical progresses.
Collapse
Affiliation(s)
- Mengru Zhang
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.,Department of Pulmonary and Critical Care Medicine, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Dominic L Sykes
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Laura R Sadofsky
- Respiratory Research Group, Hull York Medical School, Cottingham, UK
| | - Alyn H Morice
- Respiratory Research Group, Hull York Medical School, Cottingham, UK.
| |
Collapse
|
23
|
Mahmood A, Iqbal J. Purinergic receptors modulators: An emerging pharmacological tool for disease management. Med Res Rev 2022; 42:1661-1703. [PMID: 35561109 DOI: 10.1002/med.21888] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/10/2022]
Abstract
Purinergic signaling is mediated through extracellular nucleotides (adenosine 5'-triphosphate, uridine-5'-triphosphate, adenosine diphosphate, uridine-5'-diphosphate, and adenosine) that serve as signaling molecules. In the early 1990s, purines and pyrimidine receptors were cloned and characterized drawing the attention of scientists toward this aspect of cellular signaling. This signaling pathway is comprised of four subtypes of adenosine receptors (P1), eight subtypes of G-coupled protein receptors (P2YRs), and seven subtypes of ligand-gated ionotropic receptors (P2XRs). In current studies, the pathophysiology and therapeutic potentials of these receptors have been focused on. Various ligands, modulating the functions of purinergic receptors, are in current clinical practices for the treatment of various neurodegenerative disorders and cardiovascular diseases. Moreover, several purinergic receptors ligands are in advanced phases of clinical trials as a remedy for depression, epilepsy, autism, osteoporosis, atherosclerosis, myocardial infarction, diabetes, irritable bowel syndrome, and cancers. In the present study, agonists and antagonists of purinergic receptors have been summarized that may serve as pharmacological tools for drug design and development.
Collapse
Affiliation(s)
- Abid Mahmood
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad, Pakistan
| |
Collapse
|
24
|
The P2Y 2 Receptor C-Terminal Tail Modulates but Is Dispensable for β-Arrestin Recruitment. Int J Mol Sci 2022; 23:ijms23073460. [PMID: 35408820 PMCID: PMC8999042 DOI: 10.3390/ijms23073460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 02/05/2023] Open
Abstract
The P2Y2 receptor (P2Y2R) is a G protein-coupled receptor that is activated by extracellular ATP and UTP, to a similar extent. This allows it to play roles in the cell's response to the (increased) release of these nucleotides, e.g., in response to stress situations, including mechanical stress and oxygen deprivation. However, despite its involvement in important (patho)physiological processes, the intracellular signaling induced by the P2Y2R remains incompletely described. Therefore, this study implemented a NanoBiT® functional complementation assay to shed more light on the recruitment of β-arrestins (βarr1 and βarr2) upon receptor activation. More specifically, upon determination of the optimal configuration in this assay system, the effect of different (receptor) residues/regions on βarr recruitment to the receptor in response to ATP or UTP was estimated. To this end, the linker was shortened, the C-terminal tail was truncated, and phosphorylatable residues in the third intracellular loop of the receptor were mutated, in either singly or multiply adapted constructs. The results showed that none of the introduced adaptations entirely abolished the recruitment of either βarr, although EC50 values differed and time-luminescence profiles appeared to be qualitatively altered. The results hint at the C-terminal tail modulating the interaction with βarr, while not being indispensable.
Collapse
|
25
|
Neumann A, Attah I, Al-Hroub H, Namasivayam V, Müller CE. Discovery of P2Y 2 Receptor Antagonist Scaffolds through Virtual High-Throughput Screening. J Chem Inf Model 2022; 62:1538-1549. [DOI: 10.1021/acs.jcim.1c01235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| | - Isaac Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, 53121 Bonn, Germany
- Research Training Group 1873, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
26
|
Shihan M, Novoyatleva T, Lehmeyer T, Sydykov A, Schermuly RT. Role of the Purinergic P2Y2 Receptor in Pulmonary Hypertension. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182111009. [PMID: 34769531 PMCID: PMC8582672 DOI: 10.3390/ijerph182111009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/29/2022]
Abstract
Pulmonary arterial hypertension (PAH), group 1 pulmonary hypertension (PH), is a fatal disease that is characterized by vasoconstriction, increased pressure in the pulmonary arteries, and right heart failure. PAH can be described by abnormal vascular remodeling, hyperproliferation in the vasculature, endothelial cell dysfunction, and vascular tone dysregulation. The disease pathomechanisms, however, are as yet not fully understood at the molecular level. Purinergic receptors P2Y within the G-protein-coupled receptor family play a major role in fluid shear stress transduction, proliferation, migration, and vascular tone regulation in systemic circulation, but less is known about their contribution in PAH. Hence, studies that focus on purinergic signaling are of great importance for the identification of new therapeutic targets in PAH. Interestingly, the role of P2Y2 receptors has not yet been sufficiently studied in PAH, whereas the relevance of other P2Ys as drug targets for PAH was shown using specific agonists or antagonists. In this review, we will shed light on P2Y receptors and focus more on the P2Y2 receptor as a potential novel player in PAH and as a new therapeutic target for disease management.
Collapse
|
27
|
Müller CE, Namasivayam V. Recommended tool compounds and drugs for blocking P2X and P2Y receptors. Purinergic Signal 2021; 17:633-648. [PMID: 34476721 PMCID: PMC8677864 DOI: 10.1007/s11302-021-09813-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/15/2021] [Indexed: 12/21/2022] Open
Abstract
This review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed.
Collapse
Affiliation(s)
- Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany.
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, 53121, Bonn, Germany
| |
Collapse
|
28
|
Gao YY, Gao ZY. Extracellular Adenosine Diphosphate Stimulates CXCL10-Mediated Mast Cell Infiltration Through P2Y1 Receptor to Aggravate Airway Inflammation in Asthmatic Mice. Front Mol Biosci 2021; 8:621963. [PMID: 34291079 PMCID: PMC8287885 DOI: 10.3389/fmolb.2021.621963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/28/2021] [Indexed: 12/02/2022] Open
Abstract
Asthma is an inflammatory disease associated with variable airflow obstruction and airway inflammation. This study aimed to explore the role and mechanism of extracellular adenosine diphosphate (ADP) in the occurrence of airway inflammation in asthma. The expression of ADP in broncho-alveolar lavage fluid (BALF) of asthmatic patients was determined by enzyme linked immunosorbent assay (ELISA) and the expression of P2Y1 receptor in lung tissues was determined by reverse transcription-quantitative polymerase chain reaction. Asthmatic mouse model was induced using ovalbumin and the mice were treated with ADP to assess its effects on the airway inflammation and infiltration of mast cells (MCs). Additionally, alveolar epithelial cells were stimulated with ADP, and the levels of interleukin-13 (IL-13) and C-X-C motif chemokine ligand 10 (CXCL10) were measured by ELISA. We finally analyzed involvement of NF-κB signaling pathway in the release of CXCL10 in ADP-stimulated alveolar epithelial cells. The extracellular ADP was enriched in BALF of asthmatic patients, and P2Y1 receptor is highly expressed in lung tissues of asthmatic patients. In the OVA-induced asthma model, extracellular ADP aggravated airway inflammation and induced MC infiltration. Furthermore, ADP stimulated alveolar epithelial cells to secrete chemokine CXCL10 by activating P2Y1 receptor, whereby promoting asthma airway inflammation. Additionally, ADP activated the NF-κB signaling pathway to promote CXCL10 release. As a “danger signal” extracellular ADP could trigger and maintain airway inflammation in asthma by activating P2Y1 receptor. This study highlights the extracellular ADP as a promising anti-inflammatory target for the treatment of asthma.
Collapse
Affiliation(s)
- Yan-Yan Gao
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Zeng-Yan Gao
- Department of Respiratory Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, China
| |
Collapse
|
29
|
Oliveira NF, Silva CLM. Unveiling the Potential of Purinergic Signaling in Schistosomiasis Treatment. Curr Top Med Chem 2021; 21:193-204. [PMID: 32972342 DOI: 10.2174/1568026620666200924115113] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 11/22/2022]
Abstract
Schistosomiasis is a neglected tropical disease. It is related to long-lasting granulomatous fibrosis and inflammation of target organs, and current sub-optimal pharmacological treatment creates global public health concerns. Intravascular worms and eggs release antigens and extracellular vesicles that target host endothelial cells, modulate the immune system, and stimulate the release of damageassociated molecular patterns (DAMPs). ATP, one of the most studied DAMPs, triggers a cascade of autocrine and paracrine actions through purinergic P2X and P2Y receptors, which are shaped by ectonucleotidases (CD39). Both P2 receptor families, and in particular P2Y1, P2Y2, P2Y12, and P2X7 receptors, have been attracting increasing interest in several inflammatory diseases and drug development. Current data obtained from the murine model unveiled a CD39-ADP-P2Y1/P2Y12 receptors signaling pathway linked to the liver and mesenteric exacerbations of schistosomal inflammation. Therefore, we proposed that members of this purinergic signaling could be putative pharmacological targets to reduce schistosomal morbidity.
Collapse
Affiliation(s)
- Nathália Ferreira Oliveira
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claudia Lucia Martins Silva
- Laboratory of Molecular and Biochemical Pharmacology, Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
30
|
Nucleic acid ligands act as a PAM and agonist depending on the intrinsic ligand binding state of P2RY2. Proc Natl Acad Sci U S A 2021; 118:2019497118. [PMID: 33911033 PMCID: PMC8106294 DOI: 10.1073/pnas.2019497118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Discovery of ligands for G protein–coupled receptors (GPCRs) is of importance in receptor biology and pharmacology but is still a challenging issue. Here, we propose a method for the discovery of ligands against GPCRs by employing a virus-like particle (VLP) and show unique properties of identified nucleic acid aptamers for GPCR. One aptamer raised against purinergic receptor P2Y2 (P2RY2), a GPCR, behaves like a partial agonist to unliganded receptor, whereas it exhibits a positive allosteric modulator (PAM) activity to liganded receptor. We demonstrate the validity of our aptamer screening method targeting VLP-stabilized GPCR and a unique aptamer with dual function, agonist and PAM, for GPCR, depending on whether the intrinsic ligand is prebound to the receptor. G protein–coupled receptors (GPCRs) play diverse roles in physiological processes, and hence the ligands to modulate GPCRs have served as important molecules in biological and pharmacological approaches. However, the exploration of novel ligands for GPCR still remains an arduous challenge. In this study, we report a method for the discovery of nucleic acid ligands against GPCRs by an advanced RNA aptamer screening technology that employs a virus-like particle (VLP), exposing the GPCR of interest. An array of biochemical analyses coupled with a cell-based assay revealed that one of the aptamers raised against purinergic receptor P2Y2 (P2RY2), a GPCR, exhibits an activation potency to unliganded receptor and prohibits a further receptor activation by endogenous ligand, behaving like a partial agonist. However, the aptamer enhances the activity of intrinsic ligand-binding P2RY2, thereby acting as a positive allosteric modulator (PAM) to liganded receptor. Our findings demonstrate that the nucleic acid aptamer conditionally exerts PAM and agonist effects on GPCRs, depending on their intrinsic ligand binding state. These results indicate the validity of our VLP-based aptamer screening targeting GPCR and reemphasize the great potential of nucleic acid ligands for exploring the GPCR activation mechanism and therapeutic applications.
Collapse
|
31
|
Kennedy C. That was then, this is now: the development of our knowledge and understanding of P2 receptor subtypes. Purinergic Signal 2021; 17:9-23. [PMID: 33527235 PMCID: PMC7954963 DOI: 10.1007/s11302-021-09763-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022] Open
Abstract
P2 receptors are present in virtually all tissues and cell types in the human body, and they mediate the physiological and pharmacological actions of extracellular purine and pyrimidine nucleotides. They were first characterised and named by Geoff Burnstock in 1978, then subdivided into P2X and P2Y purinoceptors in 1985 on the basis of pharmacological criteria in functional studies on native receptors. Molecular cloning of receptors in the 1990s revealed P2X receptors to comprise seven different subunits that interact to produce functional homo- and heterotrimeric ligand-gated cation channels. A family of eight P2Y G protein-coupled receptors were also cloned, which can form homo- and heterodimers. Deep insight into the molecular mechanisms of agonist and antagonist action has been provided by more recent determination of the tertiary and quaternary structures of several P2X and P2Y receptor subtypes. Agonists and antagonists that are highly selective for individual subtypes are now available and some are in clinical use. This has all come about because of the intelligence, insight and drive of the force of nature that was Geoff Burnstock.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 161 Cathedral St, Glasgow, G4 0RE, Scotland, UK.
| |
Collapse
|
32
|
Lu R, Wang Y, Liu C, Zhang Z, Li B, Meng Z, Jiang C, Hu Q. Design, synthesis and evaluation of 3-amide-5-aryl benzoic acid derivatives as novel P2Y 14R antagonists with potential high efficiency against acute gouty arthritis. Eur J Med Chem 2021; 216:113313. [PMID: 33667846 DOI: 10.1016/j.ejmech.2021.113313] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/01/2021] [Accepted: 02/14/2021] [Indexed: 01/26/2023]
Abstract
P2Y14 nucleotide receptor plays important roles in series of physiological and pathologic events especially associated with immune and inflammation. Based on the 3-amide benzoic acid scaffold reported by our group previously, a series of 5-aryl-3-amide benzoic acid derivatives were designed as novel P2Y14 antagonists with improved pharmacokinetic properties. Among which compound 11m showed most potent P2Y14 antagonizing activity with an IC50 value of 2.18 nM, furnishing greatly improved water solubility and bioavailability compared with PPTN. In MSU-induced acute gouty arthritis model in mice, 11m exerted promising in vivo efficacy in alleviating mice paw swelling and inflammatory infiltration. Mechanistically, compound 11m notably blocked pyroptosis of macrophages through inhibiting NLRP3 inflammasome activation. This work may contribute to the identification of potential therapeutic agents to intervene in acute gouty arthritis.
Collapse
Affiliation(s)
- Ran Lu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yilin Wang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Chunxiao Liu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zhenguo Zhang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, PR China
| | - Baiyang Li
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Zibo Meng
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China
| | - Cheng Jiang
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; Jiang Su Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| | - Qinghua Hu
- School of Pharmacy, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, 211198, PR China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China.
| |
Collapse
|
33
|
Patritti-Cram J, Coover RA, Jankowski MP, Ratner N. Purinergic signaling in peripheral nervous system glial cells. Glia 2021; 69:1837-1851. [PMID: 33507559 PMCID: PMC8192487 DOI: 10.1002/glia.23969] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 01/11/2021] [Accepted: 01/12/2021] [Indexed: 01/02/2023]
Abstract
To facilitate analyses of purinergic signaling in peripheral nerve glia, we review recent literature and catalog purinergic receptor mRNA expression in cultured mouse Schwann cells (SCs). Purinergic signaling can decrease developmental SC proliferation, and promote SC differentiation. The purinergic receptors P2RY2 and P2RX7 are implicated in nerve development and in the ratio of Remak SCs to myelinating SCs in differentiated peripheral nerve. P2RY2, P2RX7, and other receptors are also implicated in peripheral neuropathies and SC tumors. In SC tumors lacking the tumor suppressor NF1, the SC pathway that suppresses SC growth through P2RY2‐driven β‐arrestin‐mediated AKT signaling is aberrant. SC‐released purinergic agonists acting through SC and/or neuronal purinergic receptors activate pain responses. In all these settings, purinergic receptor activation can result in calcium‐independent and calcium‐dependent release of SC ATP and UDP, growth factors, and cytokines that may contribute to disease and nerve repair. Thus, current research suggests that purinergic agonists and/or antagonists might have the potential to modulate peripheral glia function in development and in disease.
Collapse
Affiliation(s)
- Jennifer Patritti-Cram
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Neuroscience Graduate Program, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Robert A Coover
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Department of Basic Pharmaceutical Sciences, High Point University, High Point, North Carolina, USA
| | - Michael P Jankowski
- Department of Anesthesia, Division of Pain Management, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Center for Understanding Pediatric Pain, Cincinnati Children's Hospital Medical Center and University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
34
|
Kennedy C. The P2Y/P2X divide: How it began. Biochem Pharmacol 2021; 187:114408. [PMID: 33444568 DOI: 10.1016/j.bcp.2021.114408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/14/2022]
Abstract
Extracellular purine and pyrimidine nucleotides produce their pharmacological effects through P2 receptors. These were first named by Geoff Burnstock in an extensive review in 1978. They were then subdivided into P2X and P2Y purinoceptors by Burnstock and Kennedy in 1985, based on applying pharmacological criteria to data generated by functional studies in smooth muscle tissues. Several other P2 subtypes, P2T, P2Z, P2U and P2D were subsequently identified in the following years, again using pharmacological criteria. The number and identity of subtypes were clarified and simplified by the cloning of seven ATP-sensitive ligand-gated ion channel subunits and eight adenine and/or uracil nucleotide-sensitive G protein-coupled receptors from 1993 onwards. The former were all classified as members of the P2X receptor family and the latter as members of the P2Y receptor family. More recently, high resolution imaging of the tertiary and quaternary structures of several P2X and P2Y receptor subtypes has provided a much greater understanding of how and where agonists and antagonists bind to the receptors and how this leads to changes in receptor conformation and activity. In addition, medicinal chemistry has produced a variety of subtype-selective agonists and antagonists, some of which are now in clinical use. This progress and success is a testimony to the foresight, intelligence, enthusiasm and drive of Geoff Burnstock, who led the field forward throughout his scientific life.
Collapse
Affiliation(s)
- Charles Kennedy
- Strathclyde Institute of Pharmacy & Biomedical Sciences, University of Strathclyde, John Arbuthnott Building, 161 Cathedral St, Glasgow G4 0RE, Scotland.
| |
Collapse
|
35
|
Molecular pharmacology of P2Y receptor subtypes. Biochem Pharmacol 2020; 187:114361. [PMID: 33309519 DOI: 10.1016/j.bcp.2020.114361] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023]
Abstract
Professor Geoffrey Burnstock proposed the concept of purinergic signaling via P1 and P2 receptors. P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular adenine and uracil nucleotides. Eight mammalian P2Y receptor subtypes have been identified. They are divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). P2Y receptors are found in almost all cells and mediate responses in physiology and pathophysiology including pain and inflammation. The antagonism of platelet P2Y12 receptors by cangrelor, ticagrelor or active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel reduces the ADP-induced platelet aggregation in patients with thrombotic complications of vascular diseases. The nucleotide agonist diquafosol acting at P2Y2 receptors is used for the treatment of the dry eye syndrome. Structural information obtained by crystallography of the human P2Y1 and P2Y12 receptor proteins, site-directed mutagenesis and molecular modeling will facilitate the rational design of novel selective drugs.
Collapse
|
36
|
Grebert C, Becq F, Vandebrouck C. Phospholipase C controls chloride-dependent short-circuit current in human bronchial epithelial cells. Am J Physiol Lung Cell Mol Physiol 2020; 320:L205-L219. [PMID: 33236921 DOI: 10.1152/ajplung.00437.2019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Chloride secretion by airway epithelial cells is primordial for water and ion homeostasis and airways surface prevention of infections. This secretion is impaired in several human diseases, including cystic fibrosis, a genetic pathology due to CFTR gene mutations leading to chloride channel defects. A potential therapeutic approach is aiming at increasing chloride secretion either by correcting the mutated CFTR itself or by stimulating non-CFTR chloride channels at the plasma membrane. Here, we studied the role of phospholipase C in regulating the transepithelial chloride secretion in human airway epithelial 16HBE14o- and CFBE cells over-expressing wild type (WT)- or F508del-CFTR. Western blot analysis shows expression of the three endogenous phospholipase C (PLC) isoforms, namely, PLCδ1, PLCγ1, and PLCβ3 in 16HBE14o- cells. In 16HBE14o- cells, we performed Ussing chamber experiments after silencing each of these PLC isoforms or using the PLC inhibitor U73122 or its inactive analogue U73343. Our results show the involvement of PLCβ3 and PLCγ1 in CFTR-dependent short-circuit current activated by forskolin, but not of PLCδ1. In CFBE-WT CFTR and corrected CFBE-F508del CFTR cells, PLCβ3 silencing also inhibits CFTR-dependent current activated by forskolin and UTP-activated calcium-dependent chloride channels (CaCC). Our study supports the importance of PLC in maintaining CFTR-dependent chloride secretion over time, getting maximal CFTR-dependent current and increasing CaCC activation in bronchial epithelial cells.
Collapse
Affiliation(s)
- Chloé Grebert
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Frédéric Becq
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| | - Clarisse Vandebrouck
- Laboratoire Signalisation et Transports Ioniques Membranaires, Université de Poitiers, Poitiers, France
| |
Collapse
|
37
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
38
|
Li H, Jiang W, Ye S, Zhou M, Liu C, Yang X, Hao K, Hu Q. P2Y 14 receptor has a critical role in acute gouty arthritis by regulating pyroptosis of macrophages. Cell Death Dis 2020; 11:394. [PMID: 32457291 PMCID: PMC7250907 DOI: 10.1038/s41419-020-2609-7] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/11/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022]
Abstract
Nod-like receptor protein 3 (NLRP3)-mediated pyroptosis has a causal role in the pathogenesis of gout. P2Y14 receptor (P2Y14R) distributed in immune cells including macrophages is a Gi-coupled receptor that inhibits the synthesis of cAMP, which has been regarded as a potential regulator of inflammatory response. Nevertheless, the role of P2Y14R in MSU-induced pyroptosis of macrophages involved in acute gouty arthritis is still unclear. In our present study, P2Y14R knockout (P2Y14R-KO) disrupted MSU-induced histopathologic changes in rat synoviums, accompanied with a significant inhibition of pyroptotic cell death characterized by Caspase-1/PI double-positive and blockade of NLRP3 inflammasome activation in synovial tissues, which was consistent with that observed in in vitro studies. Owing to the interaction of NLRP3 inflammasome and cAMP, we then investigated the effect of adenylate cyclase activator (Forskolin) on macrophage pyroptosis and gout flare caused by MSU stimulation. The reversal effect of Forskolin verified the negative regulatory role of cAMP in MSU-induced pyroptosis. More importantly, adenylate cyclase inhibitor (SQ22536) intervention led to a reversal of protection attributed to P2Y14R deficiency. Findings in air pouch animal models also verified aforementioned experimental results. Our study first identified the role of P2Y14R/cAMP/NLRP3 signaling pathway in acute gouty arthritis, which provides a novel insight into the pathological mechanisms of pyroptosis-related diseases.
Collapse
Affiliation(s)
- Hanwen Li
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Wenjiao Jiang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Shumin Ye
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Mengze Zhou
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Chunxiao Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiping Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Kun Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Qinghua Hu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, 210009, PR China. .,Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
39
|
Jacobson KA, Delicado EG, Gachet C, Kennedy C, von Kügelgen I, Li B, Miras-Portugal MT, Novak I, Schöneberg T, Perez-Sen R, Thor D, Wu B, Yang Z, Müller CE. Update of P2Y receptor pharmacology: IUPHAR Review 27. Br J Pharmacol 2020; 177:2413-2433. [PMID: 32037507 DOI: 10.1111/bph.15005] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/12/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023] Open
Abstract
Eight G protein-coupled P2Y receptor subtypes respond to extracellular adenine and uracil mononucleotides and dinucleotides. P2Y receptors belong to the δ group of rhodopsin-like GPCRs and contain two structurally distinct subfamilies: P2Y1 , P2Y2 , P2Y4 , P2Y6 , and P2Y11 (principally Gq protein-coupled P2Y1 -like) and P2Y12-14 (principally Gi protein-coupled P2Y12 -like) receptors. Brain P2Y receptors occur in neurons, glial cells, and vasculature. Endothelial P2Y1 , P2Y2 , P2Y4 , and P2Y6 receptors induce vasodilation, while smooth muscle P2Y2 , P2Y4 , and P2Y6 receptor activation leads to vasoconstriction. Pancreatic P2Y1 and P2Y6 receptors stimulate while P2Y13 receptors inhibits insulin secretion. Antagonists of P2Y12 receptors, and potentially P2Y1 receptors, are anti-thrombotic agents, and a P2Y2 /P2Y4 receptor agonist treats dry eye syndrome in Asia. P2Y receptor agonists are generally pro-inflammatory, and antagonists may eventually treat inflammatory conditions. This article reviews recent developments in P2Y receptor pharmacology (using synthetic agonists and antagonists), structure and biophysical properties (using X-ray crystallography, mutagenesis and modelling), physiological and pathophysiological roles, and present and potentially future therapeutic targeting.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Massachusetts
| | - Esmerilda G Delicado
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Christian Gachet
- Université de Strasbourg INSERM, EFS Grand Est, BPPS UMR-S 1255, FMTS, Strasbourg, France
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Ivar von Kügelgen
- Biomedical Research Center, Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Beibei Li
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | | | - Ivana Novak
- Department of Biology, Section for Cell Biology and Physiology, University of Copenhagen, Copenhagen, Denmark
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Raquel Perez-Sen
- Dpto. Bioquimica y Biologia Molecular, Universidad Complutense de Madrid, Madrid, Spain
| | - Doreen Thor
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, Leipzig University, Leipzig, Germany.,IFB AdiposityDiseases, Leipzig University Medical Center, Leipzig, Germany
| | - Beili Wu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zhenlin Yang
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Christa E Müller
- Pharmaceutical Institute, Department of Pharmaceutical and Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
40
|
Neumann A, Müller CE, Namasivayam V. P2Y
1
‐like nucleotide receptors—Structures, molecular modeling, mutagenesis, and oligomerization. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2020. [DOI: 10.1002/wcms.1464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Alexander Neumann
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
- Research Training Group 1873, University of Bonn Bonn Germany
| | - Christa E. Müller
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
- Research Training Group 1873, University of Bonn Bonn Germany
| | - Vigneshwaran Namasivayam
- Department of Pharmaceutical and Medicinal Chemistry, PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB) University of Bonn Bonn Germany
| |
Collapse
|
41
|
The role of P2Y 6R in cardiovascular diseases and recent development of P2Y 6R antagonists. Drug Discov Today 2020; 25:568-573. [PMID: 31926135 DOI: 10.1016/j.drudis.2019.12.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/19/2019] [Accepted: 12/30/2019] [Indexed: 11/21/2022]
Abstract
As a member of the P2Y receptor family with a typical 7-transmembrane structure, P2Y6 purinergic receptor (P2Y6R) belongs to the G-protein-coupled nucleotide receptor activating the phospholipase-C signaling pathway. P2Y6R is widely involved in a range of human diseases, including atherosclerosis and other cardiovascular diseases, gradually attracting attention owing to its inappropriate or excessive activation. In addition, it was reported that P2Y6R might regulate inflammatory responses by governing the maturation and secretion of proinflammatory cytokines. Hence, several P2Y6R antagonists have been subjected to evaluation as new therapeutic strategies in recent years. This review was aimed at summarizing the role of P2Y6R in the pathogenesis of cardiovascular diseases, with an insight into the recent progress on discovery of P2Y6R antagonists.
Collapse
|
42
|
Abstract
Membrane receptors that are activated by the purine nucleoside adenosine (adenosine receptors) or by purine or pyrimidine nucleotides (P2Y and P2X receptors) transduce extracellular signals to the cytosol. They play important roles in physiology and disease. The G protein-coupled adenosine receptors comprise four subtypes: A1, A2A, A2B, and A3. The G-protein-coupled P2Y receptors are subdivided into eight subtypes: P2Y1, P2Y2, P2Y4, P2Y6, P2Y11, P2Y12, P2Y13, and P2Y14, while the P2X receptors represent ATP-gated homomeric or heteromeric ion channels consisting of three subunits; the most important subunits are P2X1, P2X2, P2X3, P2X4, and P2X7. This chapter provides guidance for selecting suitable tool compounds for studying these large and important purine receptor families.
Collapse
Affiliation(s)
- Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany.
| | - Younis Baqi
- Department of Chemistry, Sultan Qaboos University, Muscat, Oman
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, Bonn, Germany
| |
Collapse
|
43
|
Attah IY, Neumann A, Al-Hroub H, Rafehi M, Baqi Y, Namasivayam V, Müller CE. Ligand binding and activation of UTP-activated G protein-coupled P2Y 2 and P2Y 4 receptors elucidated by mutagenesis, pharmacological and computational studies. Biochim Biophys Acta Gen Subj 2019; 1864:129501. [PMID: 31812541 DOI: 10.1016/j.bbagen.2019.129501] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/17/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022]
Abstract
The nucleotide receptors P2Y2 and P2Y4 are the most closely related G protein-coupled receptors (GPCRs) of the P2Y receptor (P2YR) family. Both subtypes couple to Gq proteins and are activated by the pyrimidine nucleotide UTP, but only P2Y2R is also activated by the purine nucleotide ATP. Agonists and antagonists of both receptor subtypes have potential as drugs e.g. for neurodegenerative and inflammatory diseases. So far, potent and selective, "drug-like" ligands for both receptors are scarce, but would be required for target validation and as lead structures for drug development. Structural information on the receptors is lacking since no X-ray structures or cryo-electron microscopy images are available. Thus, we performed receptor homology modeling and docking studies combined with mutagenesis experiments on both receptors to address the question how ligand binding selectivity for these closely related P2YR subtypes can be achieved. The orthosteric binding site of P2Y2R appeared to be more spacious than that of P2Y4R. Mutation of Y197 to alanine in P2Y4R resulted in a gain of ATP sensitivity. Anthraquinone-derived antagonists are likely to bind to the orthosteric or an allosteric site depending on their substitution pattern and the nature of the orthosteric binding site of the respective P2YR subtype. These insights into the architecture of P2Y2- and P2Y4Rs and their interactions with structurally diverse agonists and antagonist provide a solid basis for the future design of potent and selective ligands.
Collapse
Affiliation(s)
- Isaac Y Attah
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Alexander Neumann
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Haneen Al-Hroub
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Muhammad Rafehi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Younis Baqi
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany; Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123 Muscat, Oman
| | - Vigneshwaran Namasivayam
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany
| | - Christa E Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical Sciences Bonn (PSB), Pharmaceutical & Medicinal Chemistry, University of Bonn, Germany.
| |
Collapse
|
44
|
Appy L, Chardet C, Peyrottes S, Roy B. Synthetic Strategies for Dinucleotides Synthesis. Molecules 2019; 24:molecules24234334. [PMID: 31783537 PMCID: PMC6930578 DOI: 10.3390/molecules24234334] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Dinucleoside 5′,5′-polyphosphates (DNPs) are endogenous substances that play important intra- and extracellular roles in various biological processes, such as cell proliferation, regulation of enzymes, neurotransmission, platelet disaggregation and modulation of vascular tone. Various methodologies have been developed over the past fifty years to access these compounds, involving enzymatic processes or chemical procedures based either on P(III) or P(V) chemistry. Both solution-phase and solid-support strategies have been developed and are reported here. Recently, green chemistry approaches have emerged, offering attracting alternatives. This review outlines the main synthetic pathways for the preparation of dinucleoside 5′,5′-polyphosphates, focusing on pharmacologically relevant compounds, and highlighting recent advances.
Collapse
|
45
|
Bagheri S, Saboury AA, Haertlé T. Adenosine deaminase inhibition. Int J Biol Macromol 2019; 141:1246-1257. [PMID: 31520704 DOI: 10.1016/j.ijbiomac.2019.09.078] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 12/18/2022]
Abstract
Adenosine deaminase is a critical enzyme in purine metabolism that regulates intra and extracellular adenosine concentrations by converting it to inosine. Adenosine is an important purine that regulates numerous physiological functions by interacting with its receptors. Adenosine and consequently adenosine deaminase can have pro or anti-inflammatory effects on tissues depending on how much time has passed from the start of the injury. In addition, an increase in adenosine deaminase activity has been reported for various diseases and the significant effect of deaminase inhibition on the clinical course of different diseases has been reported. However, the use of inhibitors is limited to only a few medical indications. Data on the increase of adenosine deaminase activity in different diseases and the impact of its inhibition in various cases have been collected and are discussed in this review. Overall, the evidence shows that many studies have been done to introduce inhibitors, however, in vivo studies have been much less than in vitro, and often have not been expanded for clinical use.
Collapse
Affiliation(s)
- S Bagheri
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - A A Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| | - T Haertlé
- Institut National de la Recherche Agronomique, Nantes, France
| |
Collapse
|
46
|
Muoboghare MO, Drummond RM, Kennedy C. Characterisation of P2Y 2 receptors in human vascular endothelial cells using AR-C118925XX, a competitive and selective P2Y 2 antagonist. Br J Pharmacol 2019; 176:2894-2904. [PMID: 31116875 DOI: 10.1111/bph.14715] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 05/03/2019] [Accepted: 05/13/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND PURPOSE There is a lack of potent, selective antagonists at most subtypes of P2Y receptor. The aims of this study were to characterise the pharmacological properties of the proposed P2Y2 receptor antagonist, AR-C118925XX, and then to use it to determine the role of P2Y2 receptors in the action of the P2Y2 agonist, UTP, in human vascular endothelial cells. EXPERIMENTAL APPROACH Cell lines expressing native or recombinant P2Y receptors were superfused constantly, and agonist-induced changes in intracellular Ca2+ levels monitored using the Ca2+ -sensitive fluorescent indicator, Cal-520. This set-up enabled full agonist concentration-response curves to be constructed on a single population of cells. KEY RESULTS UTP evoked a concentration-dependent rise in intracellular Ca2+ in 1321N1-hP2Y2 cells. AR-C118925XX (10 nM to 1 μM) had no effect per se on intracellular Ca2+ but shifted the UTP concentration-response curve progressively rightwards, with no change in maximum. The inhibition was fully reversible on washout. AR-C118925XX (1 μM) had no effect at native or recombinant hP2Y1 , hP2Y4 , rP2Y6 , or hP2Y11 receptors. Finally, in EAhy926 immortalised human vascular endothelial cells, AR-C118925XX (30 nM) shifted the UTP concentration-response curve rightwards, with no decrease in maximum. CONCLUSIONS AND IMPLICATIONS AR-C118925XX is a potent, selective and reversible, competitive P2Y2 receptor antagonist, which inhibited responses mediated by endogenous P2Y2 receptors in human vascular endothelial cells. As the only P2Y2 -selective antagonist currently available, it will greatly enhance our ability to identify the functions of native P2Y2 receptors and their contribution to disease and dysfunction.
Collapse
Affiliation(s)
- Markie O Muoboghare
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Robert M Drummond
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Charles Kennedy
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
47
|
Lu R, Zhang Z, Jiang C. Recent progress on the discovery of P2Y 14 receptor antagonists. Eur J Med Chem 2019; 175:34-39. [PMID: 31071548 DOI: 10.1016/j.ejmech.2019.04.068] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 04/27/2019] [Accepted: 04/27/2019] [Indexed: 11/16/2022]
Abstract
The P2Y14 receptor (P2Y14R), a G protein-coupled receptor (GPCR), is activated by extracellular nucleotides. P2Y14R is involved in inflammatory, diabetes, immune processes and other related complications, and is therefore an attractive therapeutic target. As the three-dimensional structure of the P2Y14R has not yet been elucidated, homology modeling based on the crystallography of the closely related P2Y12R have been used in the structure-based design of P2Y14R ligands. Several P2Y14R antagonists with excellent potency and high subtype-selectivity have been discovered in recent years. In this review, development of novel small molecules as antagonists of P2Y14R was described.
Collapse
Affiliation(s)
- Ran Lu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenguo Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
48
|
Zhou F, Liu X, Gao L, Zhou X, Cao Q, Niu L, Wang J, Zuo D, Li X, Yang Y, Hu M, Yu Y, Tang R, Lee BH, Choi BW, Wang Y, Izumiya Y, Xue M, Zheng K, Gao D. HIV-1 Tat enhances purinergic P2Y4 receptor signaling to mediate inflammatory cytokine production and neuronal damage via PI3K/Akt and ERK MAPK pathways. J Neuroinflammation 2019; 16:71. [PMID: 30947729 PMCID: PMC6449963 DOI: 10.1186/s12974-019-1466-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 03/26/2019] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND HIV-associated neurocognitive disorders (HANDs) afflict more than half of HIV-1-positive individuals. The transactivator of transcription (Tat) produced by HIV virus elicits inflammatory process and is a major neurotoxic mediator that induce neuron damage during HAND pathogenesis. Activated astrocytes are important cells involved in neuroinflammation and neuronal damage. Purinergic receptors expressed in astrocytes participate in a positive feedback loop in virus-induced neurotoxicity. Here, we investigated that whether P2Y4R, a P2Y receptor subtype, that expressed in astrocyte participates in Tat-induced neuronal death in vitro and in vivo. METHODS Soluble Tat protein was performed to determine the expression of P2Y4R and proinflammatory cytokines in astrocytes using siRNA technique via real-time PCR, Western blot, and immunofluorescence assays. Cytometric bead array was used to measure proinflammatory cytokine release. The TUNEL staining and MTT cell viability assay were analyzed for HT22 cell apoptosis and viability, and the ApopTag® peroxidase in situ apoptosis detection kit and cresyl violet staining for apoptosis and death of hippocampal neuron in vivo. RESULTS We found that Tat challenge increased the expression of P2Y4R in astrocytes. P2Y4R signaling in astrocytes was involved in Tat-induced inflammatory cytokine production via PI3K/Akt- and ERK1/2-dependent pathways. Knockdown of P2Y4R expression significantly reduced inflammatory cytokine production and relieved Tat-mediated neuronal apoptosis in vitro. Furthermore, in vivo challenged with Tat, P2Y4R knockdown mice showed decreased inflammation and neuronal damage, especially in hippocampal CA1 region. CONCLUSIONS Our data provide novel insights into astrocyte-mediated neuron damage during HIV-1 infection and suggest a potential therapeutic target for HANDs.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Animals, Newborn
- Astrocytes/drug effects
- Cells, Cultured
- Cerebral Cortex/cytology
- Cytokines/metabolism
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/genetics
- Glial Fibrillary Acidic Protein/genetics
- Glial Fibrillary Acidic Protein/metabolism
- Glioma/pathology
- Humans
- MAP Kinase Signaling System
- Mice
- Mice, Inbred C57BL
- Neurons/drug effects
- Neurons/pathology
- Oncogene Protein v-akt
- Phosphatidylinositol 3-Kinases
- RNA, Messenger/metabolism
- Receptors, Purinergic P2/genetics
- Receptors, Purinergic P2/metabolism
- Signal Transduction/genetics
- Signal Transduction/physiology
- Transduction, Genetic
- tat Gene Products, Human Immunodeficiency Virus/genetics
- tat Gene Products, Human Immunodeficiency Virus/metabolism
- tat Gene Products, Human Immunodeficiency Virus/pharmacology
Collapse
Affiliation(s)
- Feng Zhou
- Jiangsu Key Laboratory of Brain Disease Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu 221004 People’s Republic of China
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Xiaomei Liu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Lin Gao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xinxin Zhou
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Qianwen Cao
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Liping Niu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Jing Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dongjiao Zuo
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Xiangyang Li
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Ying Yang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Minmin Hu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yinghua Yu
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Renxian Tang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Bong Ho Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Byoung Wook Choi
- Department of Chemical and Biological Engineering, Hanbat National University, Dongseodaero 125, Yuseong-gu, Daejeon, 305-719 South Korea
| | - Yugang Wang
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Yoshihiro Izumiya
- Department of Dermatology, University of California Davis (UC Davis) School of Medicine, Sacramento, CA USA
| | - Min Xue
- Department of Physiology, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| | - Kuiyang Zheng
- Jiangsu Key Laboratory of Immunity and Metabolism and Department of Pathogen Biology and Immunology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004 Jiangsu China
| | - Dianshuai Gao
- Xuzhou Key Laboratory of Neurobiology, Department of Neurobiology and Anatomy, Xuzhou Medical University, Xuzhou, 221004 Jiangsu China
| |
Collapse
|
49
|
von Kügelgen I. Pharmacology of P2Y receptors. Brain Res Bull 2019; 151:12-24. [PMID: 30922852 DOI: 10.1016/j.brainresbull.2019.03.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/04/2019] [Accepted: 03/17/2019] [Indexed: 01/17/2023]
Abstract
P2Y receptors are G-protein-coupled receptors (GPCRs) for extracellular nucleotides. There are eight mammalian P2Y receptor subtypes divided into two subgroups (P2Y1, P2Y2, P2Y4, P2Y6, and P2Y11) and (P2Y12, P2Y13, and P2Y14). The P2Y receptors are expressed in various cell types and play important roles in physiology and pathophysiology including inflammatory responses and neuropathic pain. The antagonism of P2Y12 receptors is used in pharmacotherapy for the prevention and therapy of cardiovascular events. The nucleoside analogue ticagrelor and active metabolites of the thienopyridine compounds ticlopidine, clopidogrel and prasugrel inhibit platelet P2Y12 receptors and reduce thereby platelet aggregation. The P2Y2 receptor agonist diquafosol is used for the treatment of the dry eye syndrome. The P2Y receptor subtypes differ in their amino acid sequences, their pharmacological profiles and their signaling transduction pathways. Recently, selective receptor ligands have been developed for all subtypes. The published crystal structures of the human P2Y1 and P2Y12 receptors as well as receptor models will facilitate the development of novel drugs for pharmacotherapy.
Collapse
Affiliation(s)
- Ivar von Kügelgen
- Department of Pharmacology and Toxicology, Pharma Center, University of Bonn, D-53127, Bonn, Germany.
| |
Collapse
|
50
|
Moldovan RP, Wenzel B, Teodoro R, Neumann W, Dukic-Stefanovic S, Kraus W, Rong P, Deuther-Conrad W, Hey-Hawkins E, Krügel U, Brust P. Studies towards the development of a PET radiotracer for imaging of the P2Y 1 receptors in the brain: synthesis, 18F-labeling and preliminary biological evaluation. Eur J Med Chem 2019; 165:142-159. [PMID: 30665144 DOI: 10.1016/j.ejmech.2019.01.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/20/2018] [Accepted: 01/04/2019] [Indexed: 12/14/2022]
Abstract
Purine nucleotides such as ATP and ADP are important extracellular signaling molecules in almost all tissues activating various subtypes of purinoreceptors. In the brain, the P2Y1 receptor (P2Y1R) subtype mediates trophic functions like differentiation and proliferation, and modulates fast synaptic transmission, both suggested to be affected in diseases of the central nervous system. Research on P2Y1R is limited because suitable brain-penetrating P2Y1R-selective tracers are not yet available. Here, we describe the first efforts to develop an 18F-labeled PET tracer based on the structure of the highly affine and selective, non-nucleotidic P2Y1R allosteric modulator 1-(2-[2-(tert-butyl)phenoxy]pyridin-3-yl)-3-[4-(trifluoromethoxy)phenyl]urea (7). A small series of fluorinated compounds was developed by systematic modification of the p-(trifluoromethoxy)phenyl, the urea and the 2-pyridyl subunits of the lead compound 7. Additionally, the p-(trifluoromethoxy)phenyl subunit was substituted by carborane, a boron-rich cluster with potential applicability in boron neutron capture therapy (BNCT). By functional assays, the new fluorinated derivative 1-{2-[2-(tert-butyl)phenoxy]pyridin-3-yl}-3-[4-(2-fluoroethyl)phenyl]urea (18) was identified with a high P2Y1R antagonistic potency (IC50 = 10 nM). Compound [18F]18 was radiosynthesized by using tetra-n-butyl ammonium [18F]fluoride with high radiochemical purity, radiochemical yield and molar activities. Investigation of brain homogenates using hydrophilic interaction chromatography (HILIC) revealed [18F]fluoride as major radiometabolite. Although [18F]18 showed fast in vivo metabolization, the high potency and unique allosteric binding mode makes this class of compounds interesting for further optimizations and investigation of the theranostic potential as PET tracer and BNCT agent.
Collapse
Affiliation(s)
- Rareş-Petru Moldovan
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany.
| | - Barbara Wenzel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Rodrigo Teodoro
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Wilma Neumann
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103, Leipzig, Germany
| | - Sladjana Dukic-Stefanovic
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Werner Kraus
- BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, 100700, Beijing, China
| | - Winnie Deuther-Conrad
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Evamarie Hey-Hawkins
- Institute of Inorganic Chemistry, Faculty of Chemistry and Mineralogy, Universität Leipzig, 04103, Leipzig, Germany
| | - Ute Krügel
- Rudolf Boehm Institute of Pharmacology and Toxicology, Medical Faculty, Universität Leipzig, 04107, Leipzig, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| |
Collapse
|