1
|
Zhang J, Yin R, Xue Y, Qin R, Wang X, Wu S, Zhu J, Li YS, Zhang C, Wei Y. Advances in the study of epithelial mesenchymal transition in cancer progression: Role of miRNAs. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2025; 196:69-90. [PMID: 40185337 DOI: 10.1016/j.pbiomolbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Epithelial-mesenchymal transition (EMT) has been extensively studied for its roles in tumor metastasis, the generation and maintenance of cancer stem cells and treatment resistance. Epithelial mesenchymal plasticity allows cells to switch between various states within the epithelial-mesenchymal spectrum, resulting in a mixed epithelial/mesenchymal phenotypic profile. This plasticity underlies the acquisition of multiple malignant features during cancer progression and poses challenges for EMT in tumors. MicroRNAs (miRNAs) in the microenvironment affect numerous signaling processes through diverse mechanisms, influencing physiological activities. This paper reviews recent advances in EMT, the role of different hybrid states in tumor progression, and the important role of miRNAs in EMT. Furthermore, it explores the relationship between miRNA-based EMT therapies and their implications for clinical practice, discussing how ongoing developments may enhance therapeutic outcomes.
Collapse
Affiliation(s)
- Jia Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| | - Yongwang Xue
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Rong Qin
- Department of Medical Oncology, Jiangsu University Affiliated People's Hospital, Zhenjiang Clinical Medical College of Nanjing Medical University, Zhenjiang, China
| | - Xuequan Wang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Jun Zhu
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yan-Shuang Li
- Department of Breast Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Cai Zhang
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhen Jiang, 212013, China.
| |
Collapse
|
2
|
Chen L, Tang W, Liu J, Zhu M, Mu W, Tang X, Liu T, Zhu Z, Weng L, Cheng Y, Zhang Y, Chen X. On-demand reprogramming of immunosuppressive microenvironment in tumor tissue via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immunotherapy using engineered gold nanoparticles for malignant tumor treatment. Biomaterials 2025; 315:122956. [PMID: 39549441 DOI: 10.1016/j.biomaterials.2024.122956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024]
Abstract
The frequent immune escape of tumor cells and fluctuating therapeutic efficiency vary with each individual are two critical issues for immunotherapy against malignant tumor. Herein, we fabricated an intelligent core-shell nanoparticle (SNAs@CCMR) to significantly inhibit the PD-1/PD-L1 mediated immune escape by on-demand regulation of various oncogenic microRNAs and perform RNAs dependent photothermal-immunotherapy to achieve precise and efficient treatment meeting the individual requirements of specific patients by in situ generation of customized tumor-associated antigens. The SNAs@CCMR consisted of antisense oligonucleotides grafted gold nanoparticles (SNAs) as core and TLR7 agonist imiquimod (R837) functionalized cancer cell membrane (CCM) as shell, in which the acid-labile Schiff base bond was used to connect the R837 and CCM. During therapy, the acid environment of tumor tissue cleaved the Schiff base to generate free R837 and SNAs@CCM. The SNAs@CCM further entered tumor cells via CCM mediated internalization, and then specifically hybridized with over-expressed miR-130a and miR-21, resulting in effective inhibition of the migration and PD-L1 expression of tumor cells to avoid their immune escape. Meanwhile, the RNAs capture also caused significant aggregation of SNAs, which immediately generated photothermal agents within tumor cells to perform highly selective photothermal therapy under NIR irradiation. These chain processes not only damaged the primary tumor, but also produced plenty of tumor-associated antigens, which matured the surrounding dendritic cells (DCs) and activated anti-tumor T cells along with the released R837, resulting in the enhanced immunotherapy with suppressive immune escape. Both in vivo and in vitro experiments demonstrated that our nanoparticles were able to inhibit primary tumor and its metastasis via multi-regulation of carcinogenic microRNAs and RNAs dependent photothermal-immune activations, which provided a promising strategy to reprogram the immunosuppressive microenvironment in tumor tissue for better malignant tumor therapy.
Collapse
Affiliation(s)
- Li Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenjun Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Man Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Xiaoyu Tang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zeren Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lin Weng
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yumeng Cheng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yanmin Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
3
|
Vibishan B, Jain P, Sharma V, Hari K, Kadelka C, George JT, Jolly MK. Impacts of competition and phenotypic plasticity on the viability of adaptive therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.20.644475. [PMID: 40196605 PMCID: PMC11974694 DOI: 10.1101/2025.03.20.644475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cancer is heterogeneous and variability in drug sensitivity is widely documented across cancer types. Adaptive therapy is an emerging modality of cancer treatment that leverages this drug resistance heterogeneity to improve therapeutic outcomes. Current standard treatments typically eliminate a large fraction of drug-sensitive cells, leading to drug-resistant relapse due to competitive release. Adaptive therapy aims to retain some drug-sensitive cells, thereby limiting resistant cell growth by ecological competition. While early clinical trials of such a strategy have shown promise, optimisation of adaptive therapy is a subject of active study. Current methods largely assume cell phenotypes to remain constant, even though cell-state transitions could permit drug-sensitive and -resistant phenotypes to interchange and thus escape therapy. We address this gap using a deterministic model of population growth, in which sensitive and resistant cells grow under competition and undergo cell-state transitions. Based on the model's steady-state behaviour and temporal dynamics, we identify distinct balances of competition and phenotypic transitions that are suitable for effective adaptive versus constant dose therapy. Our data indicate that under adaptive therapy, models with cell-state transitions show a higher frequency of fluctuations than those without, suggesting that the balance between ecological competition and phenotypic transitions could determine population-level dynamical properties. Our analyses also identify key limitations of applying phenomenological models in clinical practice for therapy design and implementation, particularly when cell-state transitions are involved. These findings provide an overall perspective on the relevance of phenotypic plasticity for emerging cancer treatment strategies using population dynamics as an investigation framework.
Collapse
Affiliation(s)
- B. Vibishan
- Department of Bioengineering, Indian Institute of Science (IISc), Bengaluru, India
| | - Paras Jain
- Department of Bioengineering, Indian Institute of Science (IISc), Bengaluru, India
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
| | - Vedant Sharma
- Department of Bioengineering, Indian Institute of Science (IISc), Bengaluru, India
| | - Kishore Hari
- Department of Bioengineering, Indian Institute of Science (IISc), Bengaluru, India
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts, USA
| | - Claus Kadelka
- Department of Mathematics, Iowa State University, Ames, Iowa, USA
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, USA
- Center for Theoretical Biological Physics, Rice University, Houston, Texas, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science (IISc), Bengaluru, India
| |
Collapse
|
4
|
Visal TH, Bayraktar R, den Hollander P, Attathikhun MA, Zhou T, Wang J, Shen L, Minciuna CE, Chen M, Barrientos-Toro E, Batra H, Raso MG, Yang F, Parra ER, Sahin AA, Calin GA, Mani SA. Accumulation of CD38 in Hybrid Epithelial/Mesenchymal Cells Promotes Immune Remodeling and Metastasis in Breast Cancer. Cancer Res 2025; 85:894-911. [PMID: 39853244 PMCID: PMC11873730 DOI: 10.1158/0008-5472.can-24-0400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/24/2024] [Accepted: 11/12/2024] [Indexed: 01/26/2025]
Abstract
Triple-negative breast cancer (TNBC) is a highly metastatic subtype of breast cancer. The epithelial-to-mesenchymal transition is a nonbinary process in the metastatic cascade that generates tumor cells with both epithelial and mesenchymal traits known as hybrid EM cells. Recent studies have elucidated the enhanced metastatic potential of cancers featuring the hybrid EM phenotype, highlighting the need to uncover molecular drivers and targetable vulnerabilities of the hybrid EM state. Here, we discovered that hybrid EM breast tumors are enriched in CD38, an immunosuppressive molecule associated with worse clinical outcomes in liquid malignancies. Altering CD38 expression in tumor cell impacted migratory, invasive, and metastatic capabilities of hybrid EM cells. Abrogation of CD38 expression stimulated an antitumor immune response, thereby preventing the generation of an immunosuppressive microenvironment in hybrid EM tumors. CD38 levels positively correlated with PD-L1 expression in samples from patients with TNBC. Moreover, targeting CD38 potentiated the activity of anti-PD-L1, eliciting strong antitumor immunity, with reduced tumor growth in hybrid EM models. Overall, this research exposes upregulation of CD38 as a specific survival strategy utilized by hybrid EM breast tumors to suppress immune cell activity and sustain metastasis, with strong implications in other carcinomas that have hybrid EM properties. Significance: Hybrid cells co-featuring epithelial and mesenchymal traits in triple-negative breast cancer express elevated levels of CD38 to induce immunosuppression and metastasis, indicating CD38 inhibition as potential strategy for treating breast cancer.
Collapse
Affiliation(s)
- Tanvi H. Visal
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Recep Bayraktar
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Petra den Hollander
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- The Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Michael A. Attathikhun
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Biology, Houston Christian University, Houston, Texas
| | - Tieling Zhou
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Li Shen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Corina-Elena Minciuna
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of General Surgery, Fundeni Clinical Institute, Bucharest, Romania
| | - Meng Chen
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elizve Barrientos-Toro
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Harsh Batra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Maria Gabriela Raso
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fei Yang
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Edwin R. Parra
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Aysegul A. Sahin
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - George A. Calin
- Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas
- The University of Texas Graduate School of Biomedical Sciences, Houston, Texas
| | - Sendurai A. Mani
- Department of Pathology and Laboratory Medicine, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
- The Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, Rhode Island
| |
Collapse
|
5
|
Hari K, Harlapur P, Saxena A, Haldar K, Girish A, Malpani T, Levine H, Jolly MK. Low dimensionality of phenotypic space as an emergent property of coordinated teams in biological regulatory networks. iScience 2025; 28:111730. [PMID: 39898023 PMCID: PMC11787609 DOI: 10.1016/j.isci.2024.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/14/2024] [Accepted: 12/30/2024] [Indexed: 02/04/2025] Open
Abstract
Cell-fate decisions involve coordinated genome-wide expression changes, typically leading to a limited number of phenotypes. Although often modeled as simple toggle switches, these rather simplistic representations often disregard the complexity of regulatory networks governing these changes. Here, we unravel design principles underlying complex cell decision-making networks in multiple contexts. We show that the emergent dynamics of these networks and corresponding transcriptomic data are consistently low-dimensional, as quantified by the variance explained by principal component 1 (PC1). This low dimensionality in phenotypic space arises from extensive feedback loops in these networks arranged to effectively enable the formation of two teams of mutually inhibiting nodes. We use team strength as a metric to quantify these feedback interactions and show its strong correlation with PC1 variance. Using artificial networks of varied topologies, we also establish the conditions for generating canalized cell-fate landscapes, offering insights into diverse binary cellular decision-making networks.
Collapse
Affiliation(s)
- Kishore Hari
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Pradyumna Harlapur
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Aashna Saxena
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Kushal Haldar
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
- Indian Institute of Science Education and Research Kolkata, Kolkata, West Bengal 741246, India
| | - Aishwarya Girish
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Tanisha Malpani
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA 02115, USA
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
6
|
Bou Antoun N, Afshan Mahmood HTN, Walker AJ, Modjtahedi H, Grose RP, Chioni AM. Development and Characterization of Three Novel FGFR Inhibitor Resistant Cervical Cancer Cell Lines to Help Drive Cervical Cancer Research. Int J Mol Sci 2025; 26:1799. [PMID: 40076427 PMCID: PMC11898767 DOI: 10.3390/ijms26051799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/10/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
Primary or acquired resistance to therapeutic agents is a major obstacle in the treatment of cancer patients. Cervical cancer is the fourth leading cause of cancer deaths among women worldwide and, despite major advances in cancer screening and treatments, many patients with advanced stage cervical cancer have a high recurrence rate within two years of standard treatment, with drug resistance being a major contributing factor. The development of cancer cell lines with acquired resistance to therapeutic agents can facilitate the comprehensive investigation of resistance mechanisms, which cannot be easily performed in clinical trials. This study aimed to create three novel and robust cervical cancer cell lines (HeLa, CaSki, and SiHa) with acquired resistance to a fibroblast growth factor receptor (FGFR) tyrosine kinase inhibitor (PD173074). All three drug-resistant (DR) cell lines overexpressed FGFR1, FGFR2, FGF2, FGF4, and FGF7 proteins that were also localized to the nucleus. In addition, the DR cells had a significantly more aggressive phenotype (more migratory and proliferative, less apoptotic) compared to the parental cell lines. These novel DR cervical cancer cells are a critical tool for understanding the molecular mechanisms underpinning drug resistance and for the identification of potential cervical cancer biomarkers. Moreover, the availability of such DR cell lines may facilitate the development of more effective therapeutic strategies using FGFR inhibitors in combination with other agents that target pathways responsible for acquired resistance to FGFR inhibitors.
Collapse
Affiliation(s)
- Nauf Bou Antoun
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Hiba-Tun-Noor Afshan Mahmood
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Anthony J. Walker
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Helmout Modjtahedi
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| | - Richard P. Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK;
| | - Athina-Myrto Chioni
- School of Life Sciences Pharmacy and Chemistry, Department of Biomolecular Sciences, Kingston University London, Kingston-upon-Thames KT1 2EE, UK; (N.B.A.); (A.J.W.); (H.M.)
| |
Collapse
|
7
|
Zuo Y, Li T, Yang S, Chen X, Tao X, Dong D, Liu F, Zhu Y. Contribution and expression of renal drug transporters in renal cell carcinoma. Front Pharmacol 2025; 15:1466877. [PMID: 40034145 PMCID: PMC11873565 DOI: 10.3389/fphar.2024.1466877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/23/2024] [Indexed: 03/05/2025] Open
Abstract
Renal cell carcinoma (RCC) is a common substantive tumor. According to incomplete statistics, RCC incidence accounts for approximately 90% of renal malignant tumors, and is the second most prevalent major malignant tumor in the genitourinary system, following bladder cancer. Only 10%-15% of chemotherapy regimens for metastatic renal cell carcinoma (mRCC) are effective, and mRCC has a high mortality. Drug transporters are proteins located on the cell membrane that are responsible for the absorption, distribution, and excretion of drugs. Lots of drug transporters are expressed in the kidneys. Changes in carrier function weaken balance, cause disease, or modify the effectiveness of drug treatment. The changes in expression of these transporters during cancer pathology results in multi-drug resistance to cancer chemotherapy. In the treatment of RCC, the study of drug transporters helps to optimize treatment regimens, improve therapeutic effects, and reduce drug side effects. In this review, we summarize advances in the role of renal drug transporters in the genesis, progression, and treatment of RCC.
Collapse
Affiliation(s)
- Yawen Zuo
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tong Li
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xuyang Chen
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xufeng Tao
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Deshi Dong
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fang Liu
- Department of Medical Oncology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yanna Zhu
- Department of Pharmacy, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Keresztes D, Kerestély M, Szarka L, Kovács BM, Schulc K, Veres DV, Csermely P. Cancer drug resistance as learning of signaling networks. Biomed Pharmacother 2025; 183:117880. [PMID: 39884030 DOI: 10.1016/j.biopha.2025.117880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/08/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025] Open
Abstract
Drug resistance is a major cause of tumor mortality. Signaling networks became useful tools for driving pharmacological interventions against cancer drug resistance. Signaling datasets now cover the entire human cell. Recently, network adaptation became understood as a learning process. We review rapidly increasing evidence showing that the development of cancer drug resistance can be described as learning of signaling networks. During drug adaptation, the network forgets drug-affected pathways by desensitization and relearns by strengthening alternative pathways. Thus, resistant cancer cells develop a drug resistance memory. We show that all key players of cellular learning (i.e., IDPs, protein translocation, microRNAs/lncRNAs, scaffolding proteins and epigenetic/chromatin memory) have important roles in the development of cancer drug resistance. Moreover, all of them are central components of the epithelial-mesenchymal transition leading to metastases and resistance. Phenotypic plasticity was recently listed as a hallmark of cancer. We review how network plasticity induces rare, pre-existent drug-resistant cells in the absence of drug treatment. Key network methods assessing the development of drug resistance and network pharmacological interventions against drug resistance are summarized. Finally, we highlight the class of cellular memory drugs affecting cellular learning and forgetting, and we summarize current challenges to prevent or break drug resistance using network models.
Collapse
Affiliation(s)
- Dávid Keresztes
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Márk Kerestély
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Levente Szarka
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Borbála M Kovács
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary
| | - Klára Schulc
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Division of Oncology, Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Dániel V Veres
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary; Turbine Simulated Cell Technologies, Budapest, Hungary
| | - Peter Csermely
- Department of Molecular Biology, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
9
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
10
|
Guo W, Zhou B, Dou L, Guo L, Li Y, Qin J, Wang Z, Huai Q, Xue X, Li Y, Ying J, Xue Q, Gao S, He J. Single-cell RNA sequencing and spatial transcriptomics of esophageal squamous cell carcinoma with lymph node metastases. Exp Mol Med 2025; 57:59-71. [PMID: 39741182 PMCID: PMC11799171 DOI: 10.1038/s12276-024-01369-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 01/02/2025] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) patients often face a grim prognosis due to lymph node metastasis. However, a comprehensive understanding of the cellular and molecular characteristics of metastatic lymph nodes in ESCC remains elusive. In this study involving 12 metastatic ESCC patients, we employed single-cell sequencing, spatial transcriptomics (ST), and multiplex immunohistochemistry (mIHC) to explore the spatial and molecular attributes of primary tumor samples, adjacent tissues, metastatic and non-metastatic lymph nodes. The analysis of 161,333 cells revealed specific subclusters of epithelial cells that were significantly enriched in metastatic lymph nodes, suggesting pro-metastatic characteristics. Furthermore, stromal cells in the tumor microenvironment, including MMP3+IL24+ fibroblasts, APLN+ endothelial cells, and CXCL12+ pericytes, were implicated in ESCC metastasis through angiogenesis, collagen production, and inflammatory responses. Exhausted CD8+ T cells in a cycling status were notably prevalent in metastatic lymph nodes, indicating their potential role in facilitating metastasis. We identified distinct cell-cell communication networks and specific ligand-receptor pathways. Our findings were validated through a spatial transcriptome map and mIHC. This study enhances our comprehension of the cellular and molecular aspects of metastatic lymph nodes in ESCC patients, offering potential insights into novel therapeutic strategies for these individuals.
Collapse
Affiliation(s)
- Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Bolun Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lizhou Dou
- Department of Endoscopy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei Guo
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yong Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianjun Qin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qilin Huai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xuemin Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yin Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Key Laboratory of Minimally Invasive Therapy Research for Lung Cancer, Chinese Academy of Medical Sciences, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
11
|
Błaszczak E, Miziak P, Odrzywolski A, Baran M, Gumbarewicz E, Stepulak A. Triple-Negative Breast Cancer Progression and Drug Resistance in the Context of Epithelial-Mesenchymal Transition. Cancers (Basel) 2025; 17:228. [PMID: 39858010 PMCID: PMC11764116 DOI: 10.3390/cancers17020228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/30/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Triple-negative breast cancer (TNBC) is one of the most difficult subtypes of breast cancer to treat due to its distinct clinical and molecular characteristics. Patients with TNBC face a high recurrence rate, an increased risk of metastasis, and lower overall survival compared to other breast cancer subtypes. Despite advancements in targeted therapies, traditional chemotherapy (primarily using platinum compounds and taxanes) continues to be the standard treatment for TNBC, often with limited long-term efficacy. TNBC tumors are heterogeneous, displaying a diverse mutation profile and considerable chromosomal instability, which complicates therapeutic interventions. The development of chemoresistance in TNBC is frequently associated with the process of epithelial-mesenchymal transition (EMT), during which epithelial tumor cells acquire a mesenchymal-like phenotype. This shift enhances metastatic potential, while simultaneously reducing the effectiveness of standard chemotherapeutics. It has also been suggested that EMT plays a central role in the development of cancer stem cells. Hence, there is growing interest in exploring small-molecule inhibitors that target the EMT process as a future strategy for overcoming resistance and improving outcomes for patients with TNBC. This review focuses on the progression and drug resistance of TNBC with an emphasis on the role of EMT in these processes. We present TNBC-specific and EMT-related molecular features, key EMT protein markers, and various signaling pathways involved. We also discuss other important mechanisms and factors related to chemoresistance in TNBC within the context of EMT, highlighting treatment advancements to improve patients' outcomes.
Collapse
Affiliation(s)
- Ewa Błaszczak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| | | | | | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland
| |
Collapse
|
12
|
Lazzari N, Rigotto G, Montini B, Del Bianco P, Moretto E, Palladino F, Cappellesso R, Tonello M, Cenzi C, Scapinello A, Piano MA, Rossi CR, Dalerba P, Pilati P, Sommariva A, Calabrò ML. Stemness and hybrid epithelial-mesenchymal profiles guide peritoneal dissemination of malignant mesothelioma and pseudomyxoma peritonei. Int J Cancer 2025; 156:201-215. [PMID: 39146488 DOI: 10.1002/ijc.35137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/15/2024] [Accepted: 07/25/2024] [Indexed: 08/17/2024]
Abstract
Intrabdominal dissemination of malignant mesothelioma (MM) and pseudomyxoma peritonei (PMP) is poorly characterized with respect to the stemness window which malignant cells activate during their reshaping on the epithelial-mesenchymal (E/M) axis. To gain insights into stemness properties and their prognostic significance in these rarer forms of peritoneal metastases (PM), primary tumor cultures from 55 patients selected for cytoreductive surgery with hyperthermic intraperitoneal chemotherapy were analyzed for cancer stem cells (CSC) by aldehyde dehydrogenase 1 (ALDH1) and spheroid formation assays, and for expression of a set of plasticity-related genes to measure E/M transition (EMT) score. Intratumor heterogeneity was also analyzed. Samples from PM of colorectal cancer were included for comparison. Molecular data were confirmed using principal component and cluster analyses. Associations with survival were evaluated using Kaplan-Meier and Cox regression models. The activity of acetylsalicylic acid (ASA), a stemness modifier, was tested in five cultures. Significantly increased amounts of ALDH1bright-cells identified high-grade PMP, and discriminated solid masses from ascitic/mucin-embedded tumor cells in both forms of PM. Epithelial/early hybrid EMT scores and an early hybrid expression pattern correlated with pluripotency factors were significantly associated with early peritoneal progression (p = .0343 and p = .0339, respectively, log-rank test) in multivariable models. ASA impaired spheroid formation and increased cisplatin sensitivity in all five cultures. These data suggest that CSC subpopulations and hybrid E/M states may guide peritoneal spread of MM and PMP. Stemness could be exploited as targetable vulnerability to increase chemosensitivity and improve patient outcomes. Additional research is needed to confirm these preliminary data.
Collapse
Affiliation(s)
- Nayana Lazzari
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Giulia Rigotto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Barbara Montini
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Paola Del Bianco
- Clinical Research Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Elena Moretto
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Federica Palladino
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Marco Tonello
- Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Carola Cenzi
- Clinical Research Unit, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
- Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Antonio Scapinello
- Anatomy and Histopathology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Maria Assunta Piano
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | | | - Piero Dalerba
- Center for Discovery and Innovation (CDI), Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Pierluigi Pilati
- Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Antonio Sommariva
- Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
- Surgical Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
- Advanced Surgical Oncology Unit, Surgical Oncology of the Esophagus and Digestive Tract, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Maria Luisa Calabrò
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| |
Collapse
|
13
|
Brasier AR. Interactions between epithelial mesenchymal plasticity, barrier dysfunction and innate immune pathways shape the genesis of allergic airway disease. Expert Rev Respir Med 2025; 19:29-41. [PMID: 39745473 PMCID: PMC11757041 DOI: 10.1080/17476348.2024.2449079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/30/2024] [Indexed: 01/19/2025]
Abstract
INTRODUCTION In genetically predisposed individuals, exposure to aeroallergens and infections from RNA viruses shape epithelial barrier function, leading to Allergic Asthma (AA). Here, activated pattern recognition receptors (PRRs) in lower airway sentinel cells signal epithelial injury-repair pathways leading to cell-state changes [epithelial mesenchymal plasticity (EMP)], barrier disruption and sensitization. AREAS COVERED 1. Characteristics of sentinel epithelial cells of the bronchoalveolar junction, 2. The effect of aeroallergens on epithelial PRRs, 3. Role of tight junctions (TJs) in barrier function and how aeroallergens disrupt their function, 4. Induction of mucosal TGF autocrine loops activating type-2 innate lymphoid cells (ICL2s) leading to Th2 polarization, 5. How respiratory syncytial virus (RSV) directs goblet cell hyperplasia, and 6. Coupling of endoplasmic reticulum (ER) stress to metabolic adaptations and effects on basal lamina remodeling. EXPERT OPINION When aeroallergens or viral infections activate innate immunity in sentinel cells of the bronchoalveolar junction, normal barrier function is disrupted, promoting chronic inflammation and Th2 responses. An improved mechanistic understanding of how activated PRRs induce EMP couples with TJ disruption, metabolic reprogramming and ECM deposition provides new biologically validated targets to restore barrier function, reduce sensitization, and remodeling in AA.
Collapse
Affiliation(s)
- Allan R Brasier
- School of Medicine and Public Health, University of Wisconsin Madison, Madison, Wisconsin, United States
- The Institute for Clinical and Translational Research, Madison, Wisconsin, United States
| |
Collapse
|
14
|
Nturubika BDD, Logan J, Johnson IRD, Moore C, Li KL, Tang J, Lam G, Parkinson-Lawrence E, Williams DB, Chakiris J, Hindes M, Brooks RD, Miles MA, Selemidis S, Gregory P, Weigert R, Butler L, Ward MP, Waugh DJJ, O’Leary JJ, Brooks DA. Components of the Endosome-Lysosome Vesicular Machinery as Drivers of the Metastatic Cascade in Prostate Cancer. Cancers (Basel) 2024; 17:43. [PMID: 39796673 PMCID: PMC11718918 DOI: 10.3390/cancers17010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/16/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer remains a significant global health concern, with over 1.4 million new cases diagnosed and more than 330,000 deaths each year. The primary clinical challenge that contributes to poor patient outcomes involves the failure to accurately predict and treat at the onset of metastasis, which remains an incurable stage of the disease. This review discusses the emerging paradigm that prostate cancer metastasis is driven by a dysregulation of critical molecular machinery that regulates endosome-lysosome homeostasis. Endosome and lysosome compartments have crucial roles in maintaining normal cellular function but are also involved in many hallmarks of cancer pathogenesis, including inflammation, immune response, nutrient sensing, metabolism, proliferation, signalling, and migration. Here we discuss new insight into how alterations in the complex network of trafficking machinery, responsible for the microtubule-based transport of endosomes and lysosomes, may be involved in prostate cancer progression. A better understanding of endosome-lysosome dynamics may facilitate the discovery of novel strategies to detect and manage prostate cancer metastasis and improve patient outcomes.
Collapse
Affiliation(s)
- Bukuru Dieu-Donne Nturubika
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jessica Logan
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ian R. D. Johnson
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Courtney Moore
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Ka Lok Li
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Jingying Tang
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Giang Lam
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Emma Parkinson-Lawrence
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Desmond B. Williams
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - James Chakiris
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Madison Hindes
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Robert D. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
| | - Mark A. Miles
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Stavros Selemidis
- Centre for Respiratory Science and Health, School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia; (M.A.M.); (S.S.)
| | - Philip Gregory
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - Roberto Weigert
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Lisa Butler
- South Australian ImmunoGENomics Cancer Institute, Freemasons Centre for Male Health and Wellbeing, University of Adelaide, Adelaide, SA 5000, Australia;
- Solid Tumour Program, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Mark P. Ward
- Department of Pathology, The Coombe Women and Infants University Hospital, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - David J. J. Waugh
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5000, Australia; (G.L.); (P.G.); (D.J.J.W.)
| | - John J. O’Leary
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| | - Douglas A. Brooks
- Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (J.L.); (C.M.); (K.L.L.); (J.T.); (E.P.-L.); (D.B.W.); (J.C.); (M.H.); (R.D.B.)
- Department of Histopathology, Trinity College Dublin, D08 XW7X Dublin, Ireland;
| |
Collapse
|
15
|
Wang J, Chen Z, Zhao P, Wang Y, Chen J, Lin Q. PDGFR-α shRNA-polyplex for uveal melanoma treatment via EMT mediated vasculogenic mimicry interfering. J Nanobiotechnology 2024; 22:797. [PMID: 39726008 DOI: 10.1186/s12951-024-03077-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/17/2024] [Indexed: 12/28/2024] Open
Abstract
Up to 50% of individuals with uveal melanoma (UM), a frequent cancer of the eye, pass away from metastases. One of the major challenges in treating UM is the role of receptor tyrosine kinases (RTKs), which mediate the epithelial-mesenchymal transition (EMT) of tumors. RTKs are involved in binding multiple growth factors, leading to angiogenesis and vasculogenic mimicry (VM) phenomena. Currently, most anti-angiogenic drugs have shown a tendency to increase the VM of tumors in clinical trials, resulting in limited efficacy. The existing gap in UM treatment lies in the lack of effective strategies to target RTK-mediated EMT and VM. While some approaches have been attempted, there is still a need for novel therapeutic interventions that can specifically interfere with these processes. This research employed the gene vector PEI-g-PEG to interfere with the platelet derived growth factor-alpha receptor (PDGFR-α)-mediated EMT process, thereby retarding the growth of UM. The cell experiments demonstrated that the gene polyplex exhibited favorable cell uptake and lysosome escape properties, effectively suppressing the expression of PDGFR-α protein and EMT marker proteins and the occurrence of VM phenomenon. In vivo animal studies also inhibited the growth of UM, and PAS assays showed that the treatment reduced the generation of VM in tumor tissue. This study broadens the application of PEI-g-PEG while interfering with the RTK-mediated tumor EMT process with the help of RNAi technology, providing a new idea for tumor reduction research.
Collapse
Affiliation(s)
- Jiahao Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Zhirong Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Peiyi Zhao
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yajia Wang
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiang Chen
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Quankui Lin
- National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
16
|
Li X, Zheng W, Han L, He ZJ, Kang JC. A new aglycone derivative from the saprophytic fungus Tubeufia rubra. Nat Prod Res 2024:1-7. [PMID: 39688321 DOI: 10.1080/14786419.2024.2424391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 10/06/2024] [Accepted: 10/25/2024] [Indexed: 12/18/2024]
Abstract
A new aglycone derivative (1) and five known compounds (2-6) have been isolated from a saprophytic fungus Tubeufia rubra for the first time. Their structures and absolute configurations were determined by nuclear magnetic resonance, high resolution mass spectrometry data and electronic circular dichroism. The bioactivities of all compounds were evaluated by cell analysis. Compound 5 showed significant toxicity to human cancer A549 cells, and the IC50 value was 32. 89 μg/mL. Compound 6 could reverse the multidrug resistance of A549/DDP cells, and the reversal value was 2.92. With the extension of the action time, the IC50 value of compound 6 decreased from 424.72 μg/mL at 24 h to 9.45 μg/mL at 72 h.
Collapse
Affiliation(s)
- Xin Li
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang, P. R. China
- College of Pharmacy, Guizhou University, Guiyang, P. R. China
| | - Wen Zheng
- College of Pharmacy, Guizhou University, Guiyang, P. R. China
| | - Long Han
- College of Pharmacy, Guizhou University, Guiyang, P. R. China
| | - Zhang-Jiang He
- College of Pharmacy, Guizhou University, Guiyang, P. R. China
| | - Ji-Chuan Kang
- Engineering Research Center of the Utilization for Characteristic Bio-Pharmaceutical Resources in Southwest, Ministry of Education, Guizhou University, Guiyang, P. R. China
- College of Pharmacy, Guizhou University, Guiyang, P. R. China
| |
Collapse
|
17
|
Luo M, Shen N, Shang L, Fang Z, Xin Y, Ma Y, Du M, Yuan Y, Hu C, Tang Y, Huang J, Wei W, Lee MR, Hergenrother PJ, Wicha MS. Simultaneous Targeting of NQO1 and SOD1 Eradicates Breast Cancer Stem Cells via Mitochondrial Futile Redox Cycling. Cancer Res 2024; 84:4264-4282. [PMID: 39264695 PMCID: PMC11647209 DOI: 10.1158/0008-5472.can-24-0800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/24/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Triple-negative breast cancer (TNBC) contains the highest proportion of cancer stem-like cells (CSC), which display intrinsic resistance to currently available cancer therapies. This therapeutic resistance is partially mediated by an antioxidant defense coordinated by the transcription factor NRF2 and its downstream targets that include NAD(P)H quinone oxidoreductase 1 (NQO1). In this study, we identified the antioxidant enzymes NQO1 and superoxide dismutase 1 (SOD1) as therapeutic vulnerabilities of ALDH+ epithelial-like CSCs and CD24-/loCD44+/hi mesenchymal-like CSCs in TNBC. Effective targeting of these CSC states was achieved by using isobutyl-deoxynyboquinone (IB-DNQ), a potent and specific NQO1-bioactivatable futile redox cycling molecule, which generated large amounts of reactive oxygen species including superoxide and hydrogen peroxide. Furthermore, the CSC killing effect was specifically enhanced by genetic or pharmacologic inhibition of SOD1, a copper-containing superoxide dismutase highly expressed in TNBC. Mechanistically, a significant portion of NQO1 resides in the mitochondrial intermembrane space, catalyzing futile redox cycling from IB-DNQ to generate high levels of mitochondrial superoxide, and SOD1 inhibition markedly potentiated this effect, resulting in mitochondrial oxidative injury, cytochrome c release, and activation of the caspase-3-mediated apoptotic pathway. Treatment with IB-DNQ alone or together with SOD1 inhibition effectively suppressed tumor growth, metastasis, and tumor-initiating potential in xenograft models of TNBC expressing different levels of NQO1. This futile oxidant-generating strategy, which targets CSCs across the epithelial-mesenchymal continuum, could be a promising therapeutic approach for treating patients with TNBC. Significance: Combining NQO1-bioactivatable futile oxidant generators with SOD1 inhibition eliminates breast cancer stem cells, providing a therapeutic strategy that may have wide applicability, as NQO1 and SOD1 are overexpressed in several cancers.
Collapse
Affiliation(s)
- Ming Luo
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Na Shen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Department of Breast and Thyroid Surgery, Union Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Shang
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Zeng Fang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ying Xin
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Yuxi Ma
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
- Cancer Center, Union Hospital, Tonji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Du
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuan Yuan
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Chenchen Hu
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yun Tang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jing Huang
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Wei Wei
- Department of Breast and Thyroid Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Myung Ryul Lee
- Department of Chemistry, Cancer Center at Illinois, and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| | - Paul J. Hergenrother
- Department of Chemistry, Cancer Center at Illinois, and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois
| | - Max S. Wicha
- Division of Hematology and Oncology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
18
|
Huang S, Zhang J, Qiao Y, Pathak JL, Zou R, Piao Z, Xie S, Liang J, Ouyang K. CHRDL1 inhibits OSCC metastasis via MAPK signaling-mediated inhibition of MED29. Mol Med 2024; 30:187. [PMID: 39462350 PMCID: PMC11512478 DOI: 10.1186/s10020-024-00956-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND CHRDL1 belongs to a novel class of mRNA molecules. Nonetheless, the specific biological functions and underlying mechanisms of CHRDL1 in oral squamous cell carcinoma (OSCC) remain largely unexplored. METHODS RT-qPCR and immunohistochemical staining were employed to assess the mRNA and protein expression levels of the MED29 gene in clinical samples of OSCC. Additionally, RT-qPCR and Western Blot analyses were conducted to investigate the mRNA and protein expression levels of the MED29 gene specifically in OSCC. The impact of MED29 on epithelial-mesenchymal transition (EMT), invasion, and migration of OSCC was evaluated through scratch assay, transwell assay, and immunofluorescence staining. Furthermore, wound healing assay and Transwell assay were utilized to examine whether CHRDL1 influences the malignant behavior of OSCC by modulating MED29 in vitro. The regulatory role of CHRDL1 on MED29 was further elucidated in vivo through a tail vein lung metastasis model in nude mice. RESULTS MED29 expression was elevated in tumor tissues of OSCC patients compared with adjacent cancer tissues. Moreover, in CAL27 and SCC25 cell lines, MED29 was upregulated and associated with increased cell migration and invasion abilities. Overexpression of MED29 facilitated EMT in OSCC cell lines, whereas knockdown of MED29 impeded EMT, resulting in diminished cell migration and invasion capacities. CHRDL1 exerted inhibitory effects on the expression of MED29, thereby suppressing EMT progression and consequently restraining the invasion and migration of OSCC cells. Furthermore, CHRDL1 mediated the inhibition of migration of OSCC cell lines to the OSCC through its regulation of MED29. CONCLUSIONS MED29 facilitated the epithelial-mesenchymal transition process in OSCC, thereby promoting migration and invasion. On the other hand, CHRDL1 exerted inhibitory effects on the invasion and metastasis of OSCC by suppressing MED29 through the inhibition of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Songkai Huang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Junwei Zhang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Yu Qiao
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-Ssen University, Shenzhen, 518000, Guangdong, China
| | - Janak Lal Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Rui Zou
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - ZhengGuo Piao
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - ShiMin Xie
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China
| | - Jun Liang
- Department of Stomatology, The Seventh Affiliated Hospital, Sun Yat-Ssen University, Shenzhen, 518000, Guangdong, China.
| | - Kexiong Ouyang
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, 510182, China.
| |
Collapse
|
19
|
Perelmuter VM, Grigoryeva ES, Alifanov VV, Kalinchuk AY, Andryuhova ES, Savelieva OE, Patskan IA, Bragina OD, Garbukov EY, Vostrikova MA, Zavyalova MV, Denisov EV, Cherdyntseva NV, Tashireva LA. Characterization of EpCAM-Positive and EpCAM-Negative Tumor Cells in Early-Stage Breast Cancer. Int J Mol Sci 2024; 25:11109. [PMID: 39456890 PMCID: PMC11508537 DOI: 10.3390/ijms252011109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Most studies on CTCs have focused on isolating cells that express EpCAM. In this study, we emphasize the presence of EpCAM-negative and EpCAMlow CTCs, in addition to EpCAMhigh CTCs, in early BC. We evaluated stem cell markers (CD44/CD24 and CD133) and EMT markers (N-cadherin) in each subpopulation. Our findings indicate that all stemness variants were present in both EpCAMhigh and EpCAM-negative CTCs, whereas only one variant of stemness (nonCD44+CD24-/CD133+) was observed among EpCAMlow CTCs. Nearly all EpCAMhigh CTCs were represented by CD133+ stem cells. Notably, the hybrid EMT phenotype was more prevalent among EpCAM-negative CTCs. scRNA-seq of isolated CTCs and primary tumor partially confirmed this pattern. Therefore, further investigation is imperative to elucidate the prognostic significance of EpCAM-negative and EpCAMlow CTCs.
Collapse
Affiliation(s)
- Vladimir M. Perelmuter
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Evgeniya S. Grigoryeva
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
- The Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Vladimir V. Alifanov
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Anna Yu. Kalinchuk
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Elena S. Andryuhova
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Olga E. Savelieva
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Ivan A. Patskan
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Olga D. Bragina
- The Department of Nuclear Therapy and Diagnostics, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Evgeniy Yu. Garbukov
- The Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Mariya A. Vostrikova
- The Department of General Oncology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Marina V. Zavyalova
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Evgeny V. Denisov
- The Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Nadezhda V. Cherdyntseva
- The Laboratory of Molecular Oncology and Immunology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| | - Liubov A. Tashireva
- The Department of General and Molecular Pathology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
- The Laboratory of Molecular Therapy of Cancer, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russia
| |
Collapse
|
20
|
Zheng C, Allen KO, Liu T, Solodin NM, Meyer MB, Salem K, Tsourkas PK, McIlwain SJ, Vera JM, Cromwell ER, Ozers MS, Fowler AM, Alarid ET. Elevated GRHL2 Imparts Plasticity in ER-Positive Breast Cancer Cells. Cancers (Basel) 2024; 16:2906. [PMID: 39199676 PMCID: PMC11353109 DOI: 10.3390/cancers16162906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 09/01/2024] Open
Abstract
Estrogen receptor (ER)-positive breast cancer is characterized by late recurrences following initial treatment. The epithelial cell fate transcription factor Grainyhead-like protein 2 (GRHL2) is overexpressed in ER-positive breast cancers and is linked to poorer prognosis as compared to ER-negative breast cancers. To understand how GRHL2 contributes to progression, GRHL2 was overexpressed in ER-positive cells. We demonstrated that elevated GRHL2 imparts plasticity with stem cell- and dormancy-associated traits. RNA sequencing and immunocytochemistry revealed that high GRHL2 not only strengthens the epithelial identity but supports a hybrid epithelial to mesenchymal transition (EMT). Proliferation and tumor studies exhibited a decrease in growth and an upregulation of dormancy markers, such as NR2F1 and CDKN1B. Mammosphere assays and flow cytometry revealed enrichment of stem cell markers CD44 and ALDH1, and increased self-renewal capacity. Cistrome analyses revealed a change in transcription factor motifs near GRHL2 sites from developmental factors to those associated with disease progression. Together, these data support the idea that the plasticity and properties induced by elevated GRHL2 may provide a selective advantage to explain the association between GRHL2 and breast cancer progression.
Collapse
Affiliation(s)
- Christy Zheng
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Kaelyn O. Allen
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Tianrui Liu
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Natalia M. Solodin
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mark B. Meyer
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kelley Salem
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Phillipos K. Tsourkas
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sean J. McIlwain
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jessica M. Vera
- Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Erika R. Cromwell
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Mary Szatkowski Ozers
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Proteovista LLC, Madison, WI 53719, USA
| | - Amy M. Fowler
- Department of Radiology, University of Wisconsin-Madison, Madison, WI 53792, USA
- Department of Medical Physics, University of Wisconsin-Madison, WI 53705, USA
- Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Elaine T. Alarid
- McArdle Laboratory for Cancer Research, Department of Oncology, Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
21
|
Tomecka P, Kunachowicz D, Górczyńska J, Gebuza M, Kuźnicki J, Skinderowicz K, Choromańska A. Factors Determining Epithelial-Mesenchymal Transition in Cancer Progression. Int J Mol Sci 2024; 25:8972. [PMID: 39201656 PMCID: PMC11354349 DOI: 10.3390/ijms25168972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a process in which an epithelial cell undergoes multiple modifications, acquiring both morphological and functional characteristics of a mesenchymal cell. This dynamic process is initiated by various inducing signals that activate numerous signaling pathways, leading to the stimulation of transcription factors. EMT plays a significant role in cancer progression, such as metastasis and tumor heterogeneity, as well as in drug resistance. In this article, we studied molecular mechanisms, epigenetic regulation, and cellular plasticity of EMT, as well as microenvironmental factors influencing this process. We included both in vivo and in vitro models in EMT investigation and clinical implications of EMT, such as the use of EMT in curing oncological patients and targeting its use in therapies. Additionally, this review concludes with future directions and challenges in the wide field of EMT.
Collapse
Affiliation(s)
- Paulina Tomecka
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Dominika Kunachowicz
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland;
| | - Julia Górczyńska
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Michał Gebuza
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Jacek Kuźnicki
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Katarzyna Skinderowicz
- Faculty of Medicine, Wroclaw Medical University, 50-367 Wroclaw, Poland; (P.T.); (J.G.); (M.G.); (J.K.); (K.S.)
| | - Anna Choromańska
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland
| |
Collapse
|
22
|
Schroeder J, Polemi KM, Tapaswi A, Svoboda LK, Sexton JZ, Colacino JA. Investigating phenotypic plasticity due to toxicants with exposure disparities in primary human breast cells in vitro. Front Oncol 2024; 14:1411295. [PMID: 38915368 PMCID: PMC11194339 DOI: 10.3389/fonc.2024.1411295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/20/2024] [Indexed: 06/26/2024] Open
Abstract
Introduction Breast cancer is the second most diagnosed cancer, as well as the primary cause of cancer death in women worldwide. Of the different breast cancer subtypes, triple-negative breast cancer (TNBC) is particularly aggressive and is associated with poor prognosis. Black women are two to three times more likely to be diagnosed with TNBCs than white women. Recent experimental evidence suggests that basal-like TNBCs may derive from luminal cells which acquire basal characteristics through phenotypic plasticity, a newly recognized hallmark of cancer. Whether chemical exposures can promote phenotypic plasticity in breast cells is poorly understood. Methods To investigate further, we developed a high-content immunocytochemistry assay using normal human breast cells to test whether chemical exposures can impact luminal/basal plasticity by unbiased quantification of keratin 14 (KRT14), a basal-myoepithelial marker; keratin 8 (KRT8), a luminal-epithelial marker; and Hoechst 33342, a DNA marker. Six cell lines established from healthy tissue from donors to the Susan G. Komen Normal Tissue Bank were exposed for 48 hours to three different concentrations (0.1μM, 1μM, and 10μM) of eight ubiquitous chemicals (arsenic, BPA, BPS, cadmium, copper, DDE, lead, and PFNA), with documented exposure disparities in US Black women, in triplicate. Automated fluorescence image quantification was performed using Cell Profiler software, and a random-forest classifier was trained to classify individual cells as KRT8 positive, KRT14 positive, or hybrid (both KRT8 and KRT14 positive) using Cell Profiler Analyst. Results and discussion Results demonstrated significant concentration-dependent increases in hybrid populations in response to BPA, BPS, DDE, and PFNA. The increase in hybrid populations expressing both KRT14 and KRT8 is indicative of a phenotypically plastic progenitor-like population in line with known theories of carcinogenesis. Furthermore, BPA, BPS, DDE, and copper produced significant increases in cell proliferation, which could be indicative of a more malignant phenotype. These results further elucidate the relationship between chemical exposure and breast phenotypic plasticity and highlight potential environmental factors that may impact TNBC risk.
Collapse
Affiliation(s)
- Jade Schroeder
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Katelyn M. Polemi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Anagha Tapaswi
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
| | - Laurie K. Svoboda
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Jonathan Z. Sexton
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, United States
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Justin A. Colacino
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, MI, United States
- Department of Nutritional Sciences, University of Michigan, Ann Arbor, MI, United States
- Program in the Environment, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
23
|
Hui San S, Ching Ngai S. E-cadherin re-expression: Its potential in combating TRAIL resistance and reversing epithelial-to-mesenchymal transition. Gene 2024; 909:148293. [PMID: 38373660 DOI: 10.1016/j.gene.2024.148293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 02/21/2024]
Abstract
The major limitation of conventional chemotherapy drugs is their lack of specificity for cancer cells. As a selective apoptosis-inducing agent, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) has emerged as an attractive alternative. However, most of the cancer cells are found to be either intrinsically resistant to the TRAIL protein or may develop resistance after multiple treatments, and TRAIL resistance can induce epithelial-to-mesenchymal transition (EMT) at a later stage, promoting cancer invasion and migration. Interestingly, E-cadherin loss has been linked to TRAIL resistance and initiation of EMT, making E-cadherin re-expression a potential target to overcome these obstacles. Recent research suggests that re-expressing E-cadherin may reduce TRAIL resistance by enhancing TRAIL-induced apoptosis and preventing EMT by modulating EMT signalling factors. This reversal of EMT, can also aid in improving TRAIL-induced apoptosis. Therefore, this review provides remarkable insights into the mechanisms underlying E-cadherin re-expression, clinical implications, and potentiation, as well as the research gaps of E-cadherin re-expression in the current cancer treatment.
Collapse
Affiliation(s)
- Ser Hui San
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
24
|
Khan AQ, Hasan A, Mir SS, Rashid K, Uddin S, Steinhoff M. Exploiting transcription factors to target EMT and cancer stem cells for tumor modulation and therapy. Semin Cancer Biol 2024; 100:1-16. [PMID: 38503384 DOI: 10.1016/j.semcancer.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/21/2024]
Abstract
Transcription factors (TFs) are essential in controlling gene regulatory networks that determine cellular fate during embryogenesis and tumor development. TFs are the major players in promoting cancer stemness by regulating the function of cancer stem cells (CSCs). Understanding how TFs interact with their downstream targets for determining cell fate during embryogenesis and tumor development is a critical area of research. CSCs are increasingly recognized for their significance in tumorigenesis and patient prognosis, as they play a significant role in cancer initiation, progression, metastasis, and treatment resistance. However, traditional therapies have limited effectiveness in eliminating this subset of cells, allowing CSCs to persist and potentially form secondary tumors. Recent studies have revealed that cancer cells and tumors with CSC-like features also exhibit genes related to the epithelial-to-mesenchymal transition (EMT). EMT-associated transcription factors (EMT-TFs) like TWIST and Snail/Slug can upregulate EMT-related genes and reprogram cancer cells into a stem-like phenotype. Importantly, the regulation of EMT-TFs, particularly through post-translational modifications (PTMs), plays a significant role in cancer metastasis and the acquisition of stem cell-like features. PTMs, including phosphorylation, ubiquitination, and SUMOylation, can alter the stability, localization, and activity of EMT-TFs, thereby modulating their ability to drive EMT and stemness properties in cancer cells. Although targeting EMT-TFs holds potential in tackling CSCs, current pharmacological approaches to do so directly are unavailable. Therefore, this review aims to explore the role of EMT- and CSC-TFs, their connection and impact in cellular development and cancer, emphasizing the potential of TF networks as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Abdul Q Khan
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Adria Hasan
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Bioengineering, Faculty of Engineering, Integral University, Kursi Road, Lucknow 226026, India
| | - Snober S Mir
- Molecular Cell Biology Laboratory, Integral Information and Research Centre-4 (IIRC-4), Integral University, Kursi Road, Lucknow 226026, India; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India
| | - Khalid Rashid
- Department of Urology,Feinberg School of Medicine, Northwestern University, 303 E Superior Street, Chicago, IL 60611, USA
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Department of Biosciences, Faculty of Science, Integral University, Kursi Road, Lucknow 226026, India; Laboratory Animal Research Center, Qatar University, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar
| | - Martin Steinhoff
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha 3050, Qatar; Department of Dermatology and Venereology, Rumailah Hospital, Hamad Medical Corporation, Doha 3050, Qatar; Department of Medicine, Weill Cornell Medicine Qatar, Qatar Foundation-Education City, Doha 24144, Qatar; Department of Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA; College of Medicine, Qatar University, Doha 2713, Qatar
| |
Collapse
|
25
|
Ren Z, Dharmaratne M, Liang H, Benard O, Morales-Gallego M, Suyama K, Kumar V, Fard AT, Kulkarni AS, Prystowsky M, Mar JC, Norton L, Hazan RB. Redox signalling regulates breast cancer metastasis via phenotypic and metabolic reprogramming due to p63 activation by HIF1α. Br J Cancer 2024; 130:908-924. [PMID: 38238426 PMCID: PMC10951347 DOI: 10.1038/s41416-023-02522-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Redox signaling caused by knockdown (KD) of Glutathione Peroxidase 2 (GPx2) in the PyMT mammary tumour model promotes metastasis via phenotypic and metabolic reprogramming. However, the tumour cell subpopulations and transcriptional regulators governing these processes remained unknown. METHODS We used single-cell transcriptomics to decipher the tumour cell subpopulations stimulated by GPx2 KD in the PyMT mammary tumour and paired pulmonary metastases. We analyzed the EMT spectrum across the various tumour cell clusters using pseudotime trajectory analysis and elucidated the transcriptional and metabolic regulation of the hybrid EMT state. RESULTS Integration of single-cell transcriptomics between the PyMT/GPx2 KD primary tumour and paired lung metastases unraveled a basal/mesenchymal-like cluster and several luminal-like clusters spanning an EMT spectrum. Interestingly, the luminal clusters at the primary tumour gained mesenchymal gene expression, resulting in epithelial/mesenchymal subpopulations fueled by oxidative phosphorylation (OXPHOS) and glycolysis. By contrast, at distant metastasis, the basal/mesenchymal-like cluster gained luminal and mesenchymal gene expression, resulting in a hybrid subpopulation using OXPHOS, supporting adaptive plasticity. Furthermore, p63 was dramatically upregulated in all hybrid clusters, implying a role in regulating partial EMT and MET at primary and distant sites, respectively. Importantly, these effects were reversed by HIF1α loss or GPx2 gain of function, resulting in metastasis suppression. CONCLUSIONS Collectively, these results underscored a dramatic effect of redox signaling on p63 activation by HIF1α, underlying phenotypic and metabolic plasticity leading to mammary tumour metastasis.
Collapse
Affiliation(s)
- Zuen Ren
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Malindrie Dharmaratne
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Huizhi Liang
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | | | - Kimita Suyama
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Viney Kumar
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Atefeh Taherian Fard
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Ameya S Kulkarni
- Department of Endocrinology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Michael Prystowsky
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jessica C Mar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, QLD, Australia
| | - Larry Norton
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, NY, 10021, USA
| | - Rachel B Hazan
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
26
|
Rashid M, Devi BM, Banerjee M. Combinatorial Cooperativity in miR200-Zeb Feedback Network can Control Epithelial-Mesenchymal Transition. Bull Math Biol 2024; 86:48. [PMID: 38555331 DOI: 10.1007/s11538-024-01277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Carcinomas often utilize epithelial-mesenchymal transition (EMT) programs for cancer progression and metastasis. Numerous studies report SNAIL-induced miR200/Zeb feedback circuit as crucial in regulating EMT by placing cancer cells in at least three phenotypic states, viz. epithelial (E), hybrid (h-E/M), mesenchymal (M), along the E-M phenotypic spectrum. However, a coherent molecular-level understanding of how such a tiny circuit controls carcinoma cell entrance into and residence in various states is lacking. Here, we use molecular binding data and mathematical modeling to report that the miR200/Zeb circuit can essentially utilize combinatorial cooperativity to control E-M phenotypic plasticity. We identify minimal combinatorial cooperativities that give rise to E, h-E/M, and M phenotypes. We show that disrupting a specific number of miR200 binding sites on Zeb as well as Zeb binding sites on miR200 can have phenotypic consequences-the circuit can dynamically switch between two (E, M) and three (E, h-E/M, M) phenotypes. Further, we report that in both SNAIL-induced and SNAIL knock-out miR200/Zeb circuits, cooperative transcriptional feedback on Zeb as well as Zeb translation inhibition due to miR200 are essential for the occurrence of intermediate h-E/M phenotype. Finally, we demonstrate that SNAIL can be dispensable for EMT, and in the absence of SNAIL, the transcriptional feedback can control cell state transition from E to h-E/M, to M state. Our results thus highlight molecular-level regulation of EMT in miR200/Zeb circuit and we expect these findings to be crucial to future efforts aiming to prevent EMT-facilitated dissemination of carcinomas.
Collapse
Affiliation(s)
- Mubasher Rashid
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India.
| | - Brasanna M Devi
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Malay Banerjee
- Department of Mathematics and Statistics, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| |
Collapse
|
27
|
Pastorino GA, Sheraj I, Huebner K, Ferrero G, Kunze P, Hartmann A, Hampel C, Husnugil HH, Maiuthed A, Gebhart F, Schlattmann F, Gulec Taskiran AE, Oral G, Palmisano R, Pardini B, Naccarati A, Erlenbach-Wuensch K, Banerjee S, Schneider-Stock R. A partial epithelial-mesenchymal transition signature for highly aggressive colorectal cancer cells that survive under nutrient restriction. J Pathol 2024; 262:347-361. [PMID: 38235615 DOI: 10.1002/path.6240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/12/2023] [Accepted: 11/21/2023] [Indexed: 01/19/2024]
Abstract
Partial epithelial-mesenchymal transition (p-EMT) has recently been identified as a hybrid state consisting of cells with both epithelial and mesenchymal characteristics and is associated with the migration, metastasis, and chemoresistance of cancer cells. Here, we describe the induction of p-EMT in starved colorectal cancer (CRC) cells and identify a p-EMT gene signature that can predict prognosis. Functional characterisation of starvation-induced p-EMT in HCT116, DLD1, and HT29 cells showed changes in proliferation, morphology, and drug sensitivity, supported by in vivo studies using the chorioallantoic membrane model. An EMT-specific quantitative polymerase chain reaction (qPCR) array was used to screen for deregulated genes, leading to the establishment of an in silico gene signature that was correlated with poor disease-free survival in CRC patients along with the CRC consensus molecular subtype CMS4. Among the significantly deregulated p-EMT genes, a triple-gene signature consisting of SERPINE1, SOX10, and epidermal growth factor receptor (EGFR) was identified. Starvation-induced p-EMT was characterised by increased migratory potential and chemoresistance, as well as E-cadherin processing and internalisation. Both gene signature and E-cadherin alterations could be reversed by the proteasomal inhibitor MG132. Spatially resolving EGFR expression with high-resolution immunofluorescence imaging identified a proliferation stop in starved CRC cells caused by EGFR internalisation. In conclusion, we have gained insight into a previously undiscovered EMT mechanism that may become relevant when tumour cells are under nutrient stress, as seen in early stages of metastasis. Targeting this process of tumour cell dissemination might help to prevent EMT and overcome drug resistance. © 2024 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Gil A Pastorino
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Ilir Sheraj
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Kerstin Huebner
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Giulio Ferrero
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Philipp Kunze
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Arndt Hartmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Chuanpit Hampel
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Arnatchai Maiuthed
- Department of Pharmacology, Mahidol University, Bangkok, Thailand
- Centre of Biopharmaceutical Science for Healthy Ageing, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Florian Gebhart
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Fynn Schlattmann
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Aliye Ezgi Gulec Taskiran
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
- Department of Molecular Biology and Genetics, Baskent University, Ankara, Turkey
| | - Goksu Oral
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Ralph Palmisano
- Optical Imaging Competence Centre FAU OICE, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Barbara Pardini
- Italian Institute for Genomic Medicine (IIGM), c/o FPO-IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Alessio Naccarati
- Italian Institute for Genomic Medicine (IIGM), c/o FPO-IRCCS Candiolo, Turin, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Turin, Italy
| | - Katharina Erlenbach-Wuensch
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sreeparna Banerjee
- Department of Biological Sciences, Orta Dogu Teknik Universitesi, Ankara, Turkey
- Cancer Systems Biology Laboratory (CanSyl), Orta Dogu Teknik Universitesi, Ankara, Turkey
| | - Regine Schneider-Stock
- Institute of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
28
|
Ebrahimi N, Manavi MS, Faghihkhorasani F, Fakhr SS, Baei FJ, Khorasani FF, Zare MM, Far NP, Rezaei-Tazangi F, Ren J, Reiter RJ, Nabavi N, Aref AR, Chen C, Ertas YN, Lu Q. Harnessing function of EMT in cancer drug resistance: a metastasis regulator determines chemotherapy response. Cancer Metastasis Rev 2024; 43:457-479. [PMID: 38227149 DOI: 10.1007/s10555-023-10162-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024]
Abstract
Epithelial-mesenchymal transition (EMT) is a complicated molecular process that governs cellular shape and function changes throughout tissue development and embryogenesis. In addition, EMT contributes to the development and spread of tumors. Expanding and degrading the surrounding microenvironment, cells undergoing EMT move away from the main location. On the basis of the expression of fibroblast-specific protein-1 (FSP1), fibroblast growth factor (FGF), collagen, and smooth muscle actin (-SMA), the mesenchymal phenotype exhibited in fibroblasts is crucial for promoting EMT. While EMT is not entirely reliant on its regulators like ZEB1/2, Twist, and Snail proteins, investigation of upstream signaling (like EGF, TGF-β, Wnt) is required to get a more thorough understanding of tumor EMT. Throughout numerous cancers, connections between tumor epithelial and fibroblast cells that influence tumor growth have been found. The significance of cellular crosstalk stems from the fact that these events affect therapeutic response and disease prognosis. This study examines how classical EMT signals emanating from various cancer cells interfere to tumor metastasis, treatment resistance, and tumor recurrence.
Collapse
Affiliation(s)
- Nasim Ebrahimi
- Genetics Division, Department of Cell and Molecular Biology and Microbiology, Faculty of Science and Technology, University of Isfahan, Isfahan, Iran
| | | | | | - Siavash Seifollahy Fakhr
- Department of Biotechnology, Faculty of Applied Ecology, Agricultural Science and Biotechnology, Campus Hamar, Inland Norway University of Applied Sciences, Hamar, Norway
| | | | | | - Mohammad Mehdi Zare
- Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Nazanin Pazhouhesh Far
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Jun Ren
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Russel J Reiter
- Department of Cellular and Structural Biology, UT Health Science Center, San Antonio, TX, 77030, USA
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Amir Reza Aref
- Translational Medicine Group, Xsphera Biosciences, 6 Tide Street, Boston, MA, 02210, USA.
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Chu Chen
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China
| | - Yavuz Nuri Ertas
- ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, 38039, Türkiye.
- Department of Biomedical Engineering, Erciyes University, Kayseri, 38039, Türkiye.
| | - Qi Lu
- Department of Cardiology, Affiliated Hospital of Nantong University, Jiangsu, 226001, China.
| |
Collapse
|
29
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
30
|
Sehgal M, Ramu S, Vaz JM, Ganapathy YR, Muralidharan S, Venkatraghavan S, Jolly MK. Characterizing heterogeneity along EMT and metabolic axes in colorectal cancer reveals underlying consensus molecular subtype-specific trends. Transl Oncol 2024; 40:101845. [PMID: 38029508 PMCID: PMC10698572 DOI: 10.1016/j.tranon.2023.101845] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023] Open
Abstract
Colorectal cancer (CRC) is highly heterogeneous with variable survival outcomes and therapeutic vulnerabilities. A commonly used classification system in CRC is the Consensus Molecular Subtypes (CMS) based on gene expression patterns. However, how these CMS categories connect to axes of phenotypic plasticity and heterogeneity remains unclear. Here, in our analysis of CMS-specific TCGA data and 101 bulk transcriptomic datasets, we found the epithelial phenotype score to be consistently positively correlated with scores of glycolysis, OXPHOS and FAO pathways, while PD-L1 activity scores positively correlated with mesenchymal phenotype scoring, revealing possible interconnections among plasticity axes. Single-cell RNA-sequencing analysis of patient samples revealed that that CMS2 and CMS3 subtype samples were relatively more epithelial as compared to CMS1 and CMS4. CMS1 revealed two subpopulations: one close to CMS4 (more mesenchymal) and the other closer to CMS2 or CMS3 (more epithelial), indicating a partial EMT-like behavior. Consistent observations were made in single-cell analysis of metabolic axes and PD-L1 activity scores. Together, our results quantify the patterns of two functional interconnected axes of phenotypic heterogeneity - EMT and metabolic reprogramming - in a CMS-specific manner in CRC.
Collapse
Affiliation(s)
- Manas Sehgal
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Soundharya Ramu
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | - Joel Markus Vaz
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India; School of Biological Sciences, Georgia Institute of Technology, Atlanta 30332, United States
| | | | - Srinath Muralidharan
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India
| | | | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
31
|
Fontana R, Mestre-Farrera A, Yang J. Update on Epithelial-Mesenchymal Plasticity in Cancer Progression. ANNUAL REVIEW OF PATHOLOGY 2024; 19:133-156. [PMID: 37758242 PMCID: PMC10872224 DOI: 10.1146/annurev-pathmechdis-051222-122423] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a cellular process by which epithelial cells lose their characteristics and acquire mesenchymal traits to promote cell movement. This program is aberrantly activated in human cancers and endows tumor cells with increased abilities in tumor initiation, cell migration, invasion, metastasis, and therapy resistance. The EMT program in tumors is rarely binary and often leads to a series of gradual or intermediate epithelial-mesenchymal states. Functionally, epithelial-mesenchymal plasticity (EMP) improves the fitness of cancer cells during tumor progression and in response to therapies. Here, we discuss the most recent advances in our understanding of the diverse roles of EMP in tumor initiation, progression, metastasis, and therapy resistance and address major clinical challenges due to EMP-driven phenotypic heterogeneity in cancer. Uncovering novel molecular markers and key regulators of EMP in cancer will aid the development of new therapeutic strategies to prevent cancer recurrence and overcome therapy resistance.
Collapse
Affiliation(s)
- Rosa Fontana
- Department of Pharmacology, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California, USA;
| | - Aida Mestre-Farrera
- Department of Pharmacology, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California, USA;
| | - Jing Yang
- Department of Pharmacology, Moores Cancer Center, University of California San Diego School of Medicine, La Jolla, California, USA;
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, California, USA
| |
Collapse
|
32
|
den Hollander P, Maddela JJ, Mani SA. Spatial and Temporal Relationship between Epithelial-Mesenchymal Transition (EMT) and Stem Cells in Cancer. Clin Chem 2024; 70:190-205. [PMID: 38175600 PMCID: PMC11246550 DOI: 10.1093/clinchem/hvad197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Epithelial-mesenchymal transition (EMT) is often linked with carcinogenesis. However, EMT is also important for embryo development and only reactivates in cancer. Connecting how EMT occurs during embryonic development and in cancer could help us further understand the root mechanisms of cancer diseases. CONTENT There are key regulatory elements that contribute to EMT and the induction and maintenance of stem cell properties during embryogenesis, tissue regeneration, and carcinogenesis. Here, we explore the implications of EMT in the different stages of embryogenesis and tissue development. We especially highlight the necessity of EMT in the mesodermal formation and in neural crest cells. Through EMT, these cells gain epithelial-mesenchymal plasticity (EMP). With this transition, crucial morphological changes occur to progress through the metastatic cascade as well as tissue regeneration after an injury. Stem-like cells, including cancer stem cells, are generated from EMT and during this process upregulate factors necessary for stem cell maintenance. Hence, it is important to understand the key regulators allowing stem cell awakening in cancer, which increases plasticity and promotes treatment resistance, to develop strategies targeting this cell population and improve patient outcomes. SUMMARY EMT involves multifaceted regulation to allow the fluidity needed to facilitate adaptation. This regulatory mechanism, plasticity, involves many cooperating transcription factors. Additionally, posttranslational modifications, such as splicing, activate the correct isoforms for either epithelial or mesenchymal specificity. Moreover, epigenetic regulation also occurs, such as acetylation and methylation. Downstream signaling ultimately results in the EMT which promotes tissue generation/regeneration and cancer progression.
Collapse
Affiliation(s)
- Petra den Hollander
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Joanna Joyce Maddela
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| | - Sendurai A Mani
- Legorreta Cancer Center, The Warren Alpert Medical School, Brown University, Providence, RI, United States
- Department of Pathology and Lab Medicine, The Warren Alpert Medical School, Brown University, Providence, RI, United States
| |
Collapse
|
33
|
Catalanotto M, Vaz JM, Abshire C, Youngblood R, Chu M, Levine H, Jolly MK, Dragoi AM. Dual role of CASP8AP2/FLASH in regulating epithelial-to-mesenchymal transition plasticity (EMP). Transl Oncol 2024; 39:101837. [PMID: 37984255 PMCID: PMC10689956 DOI: 10.1016/j.tranon.2023.101837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/17/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) is a developmental program that consists of the loss of epithelial features concomitant with the acquisition of mesenchymal features. Activation of EMT in cancer facilitates the acquisition of aggressive traits and cancer invasion. EMT plasticity (EMP), the dynamic transition between multiple hybrid states in which cancer cells display both epithelial and mesenchymal markers, confers survival advantages for cancer cells in constantly changing environments during metastasis. METHODS RNAseq analysis was performed to assess genome-wide transcriptional changes in cancer cells depleted for histone regulators FLASH, NPAT, and SLBP. Quantitative PCR and Western blot were used for the detection of mRNA and protein levels. Computational analysis was performed on distinct sets of genes to determine the epithelial and mesenchymal score in cancer cells and to correlate FLASH expression with EMT markers in the CCLE collection. RESULTS We demonstrate that loss of FLASH in cancer cells gives rise to a hybrid E/M phenotype with high epithelial scores even in the presence of TGFβ, as determined by computational methods using expression of predetermined sets of epithelial and mesenchymal genes. Multiple genes involved in cell-cell junction formation are similarly specifically upregulated in FLASH-depleted cells, suggesting that FLASH acts as a repressor of the epithelial phenotype. Further, FLASH expression in cancer lines is inversely correlated with the epithelial score. Nonetheless, subsets of mesenchymal markers were distinctly up-regulated in FLASH, NPAT, or SLBP-depleted cells. CONCLUSIONS The ZEB1low/SNAILhigh/E-cadherinhigh phenotype described in FLASH-depleted cancer cells is driving a hybrid E/M phenotype in which epithelial and mesenchymal markers coexist.
Collapse
Affiliation(s)
| | - Joel Markus Vaz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Reneau Youngblood
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA
| | - Min Chu
- Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Northeastern University, Boston, MA, USA; Department of Physics, Northeastern University, Boston, MA, USA; Department of Bioengineering, Northeastern University, Boston, MA, USA
| | - Mohit Kumar Jolly
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore, India
| | - Ana-Maria Dragoi
- Department of Molecular and Cellular Physiology, LSUHSC, Shreveport, LA, USA; Feist-Weiller Cancer Center, INLET Core, LSUHSC, Shreveport, LA, USA.
| |
Collapse
|
34
|
Wang Y, Chen Y, Zhang J, Yang Y, Fleishman JS, Wang Y, Wang J, Chen J, Li Y, Wang H. Cuproptosis: A novel therapeutic target for overcoming cancer drug resistance. Drug Resist Updat 2024; 72:101018. [PMID: 37979442 DOI: 10.1016/j.drup.2023.101018] [Citation(s) in RCA: 46] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 11/20/2023]
Abstract
Cuproptosis is a newly identified form of cell death driven by copper. Recently, the role of copper and copper triggered cell death in the pathogenesis of cancers have attracted attentions. Cuproptosis has garnered enormous interest in cancer research communities because of its great potential for cancer therapy. Copper-based treatment exerts an inhibiting role in tumor growth and may open the door for the treatment of chemotherapy-insensitive tumors. In this review, we provide a critical analysis on copper homeostasis and the role of copper dysregulation in the development and progression of cancers. Then the core molecular mechanisms of cuproptosis and its role in cancer is discussed, followed by summarizing the current understanding of copper-based agents (copper chelators, copper ionophores, and copper complexes-based dynamic therapy) for cancer treatment. Additionally, we summarize the emerging data on copper complexes-based agents and copper ionophores to subdue tumor chemotherapy resistance in different types of cancers. We also review the small-molecule compounds and nanoparticles (NPs) that may kill cancer cells by inducing cuproptosis, which will shed new light on the development of anticancer drugs through inducing cuproptosis in the future. Finally, the important concepts and pressing questions of cuproptosis in future research that should be focused on were discussed. This review article suggests that targeting cuproptosis could be a novel antitumor therapy and treatment strategy to overcome cancer drug resistance.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China.
| | - Yongming Chen
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China
| | - Junjing Zhang
- Department of Hepato-Biliary Surgery, Department of Surgery, Huhhot First Hospital, Huhhot 010030, PR China
| | - Yihui Yang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Yan Wang
- Hunan Provincial Key Laboratory of Hepatobiliary Disease Research & Division of Hepato-Biliary-Pancreatic Surgery, Department of Surgery, The Second Xiangya Hospital of Central South University, Changsha 410011, PR China
| | - Jinhua Wang
- Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, PR China
| | - Jichao Chen
- Department of Respiratory and Critical Care Medicine, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing 100049, PR China
| | - Yuanfang Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, PR China.
| | - Hongquan Wang
- Department of Neurology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, PR China.
| |
Collapse
|
35
|
Illmer J, Zauner R, Piñón Hofbauer J, Wimmer M, Gruner S, Ablinger M, Bischof J, Dorfer S, Hainzl S, Tober V, Bergson S, Sarig O, Samuelov L, Guttmann-Gruber C, Shalom-Feuerstein R, Sprecher E, Koller U, Laimer M, Bauer JW, Wally V. MicroRNA-200b-mediated reversion of a spectrum of epithelial-to-mesenchymal transition states in recessive dystrophic epidermolysis bullosa squamous cell carcinomas. Br J Dermatol 2023; 190:80-93. [PMID: 37681509 DOI: 10.1093/bjd/ljad335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cutaneous squamous cell carcinoma (SCC) is the leading cause of death in patients with recessive dystrophic epidermolysis bullosa (RDEB). However, the survival time from first diagnosis differs between patients; some tumours spread particularly fast, while others may remain localized for years. As treatment options are limited, there is an urgent need for further insights into the pathomechanisms of RDEB tumours, to foster therapy development and support clinical decision-making. OBJECTIVES To investigate differences in RDEB tumours of diverging aggressiveness at the molecular and phenotypic level, with a particular focus on epithelial-to-mesenchymal (EMT) transition states and thus microRNA-200b (miR-200b) as a regulator. METHODS Primary RDEB-SCC keratinocyte lines were characterized with respect to their EMT state. For this purpose, cell morphology was classified and the expression of EMT markers analysed using immunofluorescence, flow cytometry, semi-quantitative reverse transcriptase polymerase chain reaction and Western blotting. The motility of RDEB-SCC cells was determined and conditioned medium of RDEB-SCC cells was used to treat endothelial cells in an angiogenesis assay. In addition, we mined previously generated microRNA (miRNA) profiling data to identify a candidate with potential therapeutic relevance and performed transient miRNA transfection studies to investigate the candidate's ability to reverse EMT characteristics. RESULTS We observed high variability in EMT state in the RDEB-SCC cell lines, which correlated with in situ analysis of two available patient biopsies and respective clinical disease course. Furthermore, we identified miR-200b-3p to be downregulated in RDEB-SCCs, and the extent of deregulation significantly correlated with the EMT features of the various tumour lines. miR-200b-3p was reintroduced into RDEB-SCC cell lines with pronounced EMT features, which resulted in a significant increase in epithelial characteristics, including cell morphology, EMT marker expression, migration and angiogenic potential. CONCLUSIONS RDEB-SCCs exist in different EMT states and the level of miR-200b is indicative of how far an RDEB-SCC has gone down the EMT path. Moreover, the reintroduction of miR-200b significantly reduced mesenchymal features.
Collapse
Affiliation(s)
- Julia Illmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Roland Zauner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Josefina Piñón Hofbauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Monika Wimmer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Stefanie Gruner
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Michael Ablinger
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Johannes Bischof
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Sonja Dorfer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Stefan Hainzl
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Vanessa Tober
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Shir Bergson
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ofer Sarig
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Liat Samuelov
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Christina Guttmann-Gruber
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Ruby Shalom-Feuerstein
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion Israel Institute of Technology, Haifa, Israel
| | - Eli Sprecher
- Division of Dermatology, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Ulrich Koller
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| | - Martin Laimer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Johann W Bauer
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Verena Wally
- EB House Austria, Research Program for Molecular Therapy of Genodermatoses, Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University Salzburg, Austria
| |
Collapse
|
36
|
Richardson L, Wilcockson SG, Guglielmi L, Hill CS. Context-dependent TGFβ family signalling in cell fate regulation. Nat Rev Mol Cell Biol 2023; 24:876-894. [PMID: 37596501 DOI: 10.1038/s41580-023-00638-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2023] [Indexed: 08/20/2023]
Abstract
The transforming growth factor-β (TGFβ) family are a large group of evolutionarily conserved cytokines whose signalling modulates cell fate decision-making across varying cellular contexts at different stages of life. Here we discuss new findings in early embryos that reveal how, in contrast to our original understanding of morphogen interpretation, robust cell fate specification can originate from a noisy combination of signalling inputs and a broad range of signalling levels. We compare this evidence with novel findings on the roles of TGFβ family signalling in tissue maintenance and homeostasis during juvenile and adult life, spanning the skeletal, haemopoietic and immune systems. From these comparisons, it emerges that in contrast to robust developing systems, relatively small perturbations in TGFβ family signalling have detrimental effects at later stages in life, leading to aberrant cell fate specification and disease, for example in cancer or congenital disorders. Finally, we highlight novel strategies to target and amend dysfunction in signalling and discuss how gleaning knowledge from different fields of biology can help in the development of therapeutics for aberrant TGFβ family signalling in disease.
Collapse
Affiliation(s)
- Louise Richardson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Scott G Wilcockson
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
| | - Luca Guglielmi
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, UK.
| |
Collapse
|
37
|
Proença C, Freitas M, Ribeiro D, Rufino AT, Fernandes E, Ferreira de Oliveira JMP. The role of flavonoids in the regulation of epithelial-mesenchymal transition in cancer: A review on targeting signaling pathways and metastasis. Med Res Rev 2023; 43:1878-1945. [PMID: 37147865 DOI: 10.1002/med.21966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/07/2023]
Abstract
One of the hallmarks of cancer is metastasis, a process that entails the spread of cancer cells to distant regions in the body, culminating in tumor formation in secondary organs. Importantly, the proinflammatory environment surrounding cancer cells further contributes to cancer cell transformation and extracellular matrix destruction. During metastasis, front-rear polarity and emergence of migratory and invasive features are manifestations of epithelial-mesenchymal transition (EMT). A variety of transcription factors (TFs) are implicated in the execution of EMT, the most prominent belonging to the Snail Family Transcriptional Repressor (SNAI) and Zinc Finger E-Box Binding Homeobox (ZEB) families of TFs. These TFs are regulated by interaction with specific microRNAs (miRNAs), as miR34 and miR200. Among the several secondary metabolites produced in plants, flavonoids constitute a major group of bioactive molecules, with several described effects including antioxidant, antiinflammatory, antidiabetic, antiobesogenic, and anticancer effects. This review scrutinizes the modulatory role of flavonoids on the activity of SNAI/ZEB TFs and on their regulatory miRNAs, miR-34, and miR-200. The modulatory role of flavonoids can attenuate mesenchymal features and stimulate epithelial features, thereby inhibiting and reversing EMT. Moreover, this modulation is concomitant with the attenuation of signaling pathways involved in diverse processes as cell proliferation, cell growth, cell cycle progression, apoptosis inhibition, morphogenesis, cell fate, cell migration, cell polarity, and wound healing. The antimetastatic potential of these versatile compounds is emerging and represents an opportunity for the synthesis of more specific and potent agents.
Collapse
Affiliation(s)
- Carina Proença
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Marisa Freitas
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Daniela Ribeiro
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Ana T Rufino
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Eduarda Fernandes
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - José Miguel P Ferreira de Oliveira
- LAQV, REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| |
Collapse
|
38
|
Shang Q, Peng J, Jiang Y, Qing M, Zhou Y, Xu H, Chen Q. SNAI2 promotes the malignant transformation of oral leukoplakia by modulating p-EMT. Oral Dis 2023; 29:3232-3242. [PMID: 35894087 DOI: 10.1111/odi.14321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Snail family transcriptional repressor 2 (SNAI2) is a key regulator of partial epithelial-mesenchymal transition (p-EMT) and is associated with tumorigenesis. Whether SNAI2 promotes oral leukoplakia (OLK) malignant transformation by modulating p-EMT is unclear. MATERIALS AND METHODS This study utilized two clinical datasets (GSE26549 and GSE85195) from the Gene Expression Omnibus database, cytological experiments, and a 4-nitroquinoline 1-oxide-induced mice model to explore the role of SNAI2 in OLK malignant transformation. RESULTS The clinical cohort found SNAI2, as a risk factor (HR = 2.50, 95% CI: 1.08-5.79, p = 0.033), could promote OLK malignant transformation (p = 0.012). Cytological experiments indicated that SNAI2 overexpression promoted DOK cell proliferation, invasion, migration, and increase the protein expression of p-EMT relative signatures, whereas SNAI2 silencing has opposite effects. Furthermore, the mice model and clinical datasets demonstrated the expression of SNAI2 and p-EMT relative signatures were increased with OLK malignant transformation. And SNAI2 was strongly correlated with p-EMT. Besides, co-expressed genes of SNAI2 were also enriched in p-EMT relative biological processes and signaling pathways. CONCLUSIONS p-EMT plays a significant role in promoting the OLK malignant transformation. As an important regulator of p-EMT, SNAI2 could be a target to block the OLK malignant transformation.
Collapse
Affiliation(s)
- Qianhui Shang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Jiakuan Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Maofeng Qing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Yu Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Hao Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, P.R. China
| |
Collapse
|
39
|
Bhatia S, Gunter JH, Burgess JT, Adams MN, O'Byrne K, Thompson EW, Duijf PH. Stochastic epithelial-mesenchymal transitions diversify non-cancerous lung cell behaviours. Transl Oncol 2023; 37:101760. [PMID: 37611490 PMCID: PMC10466920 DOI: 10.1016/j.tranon.2023.101760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/23/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023] Open
Abstract
Epithelial-mesenchymal plasticity (EMP) is a hallmark of cancer. By enabling cells to shift between different morphological and functional states, EMP promotes invasion, metastasis and therapy resistance. We report that near-diploid non-cancerous human epithelial lung cells spontaneously shift along the EMP spectrum without genetic changes. Strikingly, more than half of single cell-derived clones adopt a mesenchymal morphology. We independently characterise epithelial-like and mesenchymal-like clones. Mesenchymal clones lose epithelial markers, display larger cell aspect ratios and lower motility, with mostly unaltered proliferation rates. Stemness marker expression and metabolic rewiring diverge independently of phenotypes. In 3D culture, more epithelial clones become mesenchymal-like. Thus, non-cancerous epithelial cells may acquire cancer metastasis-associated features prior to genetic alterations and cancerous transformation.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia.
| | - Jennifer H Gunter
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia; Australian Prostate Cancer Research Centre-Queensland (APCRC-Q), Queensland University of Technology, Woolloongabba 4102, Australia
| | - Joshua T Burgess
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - Mark N Adams
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - Kenneth O'Byrne
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia; Princess Alexandra Hospital, Woolloongabba 4102, QLD, Australia
| | - Erik W Thompson
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia
| | - Pascal Hg Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health at the Translational Research Institute, Woolloongabba 4102, QLD, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide SA, 5001, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
40
|
Montero-Calle A, Jiménez de Ocaña S, Benavente-Naranjo R, Rejas-González R, Bartolomé RA, Martínez-Useros J, Sanz R, Dziaková J, Fernández-Aceñero MJ, Mendiola M, Casal JI, Peláez-García A, Barderas R. Functional Proteomics Characterization of the Role of SPRYD7 in Colorectal Cancer Progression and Metastasis. Cells 2023; 12:2548. [PMID: 37947626 PMCID: PMC10648221 DOI: 10.3390/cells12212548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/12/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
SPRY domain-containing protein 7 (SPRYD7) is a barely known protein identified via spatial proteomics as being upregulated in highly metastatic-to-liver KM12SM colorectal cancer (CRC) cells in comparison to its isogenic poorly metastatic KM12C CRC cells. Here, we aimed to analyze SPRYD7's role in CRC via functional proteomics. Through immunohistochemistry, the overexpression of SPRYD7 was observed to be associated with the poor survival of CRC patients and with an aggressive and metastatic phenotype. Stable SPRYD7 overexpression was performed in KM12C and SW480 poorly metastatic CRC cells and in their isogenic highly metastatic-to-liver-KM12SM-and-to-lymph-nodes SW620 CRC cells, respectively. Upon upregulation of SPRYD7, in vitro and in vivo functional assays confirmed a key role of SPRYD7 in the invasion and migration of CRC cells and in liver homing and tumor growth. Additionally, transient siRNA SPRYD7 silencing allowed us to confirm in vitro functional results. Furthermore, SPRYD7 was observed as an inductor of angiogenesis. In addition, the dysregulated SPRYD7-associated proteome and SPRYD7 interactors were elucidated via 10-plex TMT quantitative proteins, immunoproteomics, and bioinformatics. After WB validation, the biological pathways associated with the stable overexpression of SPRYD7 were visualized. In conclusion, it was demonstrated here that SPRYD7 is a novel protein associated with CRC progression and metastasis. Thus, SPRYD7 and its interactors might be of relevance in identifying novel therapeutic targets for advanced CRC.
Collapse
Affiliation(s)
- Ana Montero-Calle
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Sofía Jiménez de Ocaña
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Ruth Benavente-Naranjo
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Raquel Rejas-González
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| | - Rubén A. Bartolomé
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain;
| | - Javier Martínez-Useros
- Translational Oncology Division, OncoHealth Institute, Health Research Institute-University Hospital Fundación Jiménez Díaz-Universidad Autónoma de Madrid, 28040 Madrid, Spain;
| | - Rodrigo Sanz
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (R.S.); (J.D.)
| | - Jana Dziaková
- Surgical Digestive Department, Hospital Universitario Clínico San Carlos, 28040 Madrid, Spain; (R.S.); (J.D.)
| | | | - Marta Mendiola
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (M.M.); (A.P.-G.)
| | - José Ignacio Casal
- Centro de Investigaciones Biológicas Margarita Salas, CSIC, 28040 Madrid, Spain;
| | - Alberto Peláez-García
- Molecular Pathology and Therapeutic Targets Group, La Paz University Hospital (IdiPAZ), 28046 Madrid, Spain; (M.M.); (A.P.-G.)
| | - Rodrigo Barderas
- Chronic Disease Programme (UFIEC), Instituto de Salud Carlos III, 28220 Madrid, Spain; (S.J.d.O.); (R.B.-N.); (R.R.-G.)
| |
Collapse
|
41
|
Shah S, Philipp LM, Giaimo S, Sebens S, Traulsen A, Raatz M. Understanding and leveraging phenotypic plasticity during metastasis formation. NPJ Syst Biol Appl 2023; 9:48. [PMID: 37803056 PMCID: PMC10558468 DOI: 10.1038/s41540-023-00309-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 09/15/2023] [Indexed: 10/08/2023] Open
Abstract
Cancer metastasis is the process of detrimental systemic spread and the primary cause of cancer-related fatalities. Successful metastasis formation requires tumor cells to be proliferative and invasive; however, cells cannot be effective at both tasks simultaneously. Tumor cells compensate for this trade-off by changing their phenotype during metastasis formation through phenotypic plasticity. Given the changing selection pressures and competitive interactions that tumor cells face, it is poorly understood how plasticity shapes the process of metastasis formation. Here, we develop an ecology-inspired mathematical model with phenotypic plasticity and resource competition between phenotypes to address this knowledge gap. We find that phenotypically plastic tumor cell populations attain a stable phenotype equilibrium that maintains tumor cell heterogeneity. Considering treatment types inspired by chemo- and immunotherapy, we highlight that plasticity can protect tumors against interventions. Turning this strength into a weakness, we corroborate current clinical practices to use plasticity as a target for adjuvant therapy. We present a parsimonious view of tumor plasticity-driven metastasis that is quantitative and experimentally testable, and thus potentially improving the mechanistic understanding of metastasis at the cell population level, and its treatment consequences.
Collapse
Affiliation(s)
- Saumil Shah
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany.
| | - Lisa-Marie Philipp
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U30, Entrance 1, 24105, Kiel, Germany
| | - Stefano Giaimo
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Susanne Sebens
- Institute for Experimental Cancer Research, Kiel University and University Hospital Schleswig-Holstein, Campus Kiel, Arnold-Heller-Str. 3, Building U30, Entrance 1, 24105, Kiel, Germany
| | - Arne Traulsen
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| | - Michael Raatz
- Department of Theoretical Biology, Max Planck Institute for Evolutionary Biology, August-Thienemann-Str. 2, 24306, Plön, Germany
| |
Collapse
|
42
|
Kobayashi K, Takemura RD, Miyamae J, Mitsui I, Murakami K, Kutara K, Saeki K, Kanda T, Okamura Y, Sugiyama A. Phenotypic and molecular characterization of novel pulmonary adenocarcinoma cell lines established from a dog. Sci Rep 2023; 13:16823. [PMID: 37798461 PMCID: PMC10556002 DOI: 10.1038/s41598-023-44062-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
Canine pulmonary adenocarcinoma (PAC) resembles human lung tumors in never-smokers, but it is rarer than human pulmonary adenocarcinoma. Therefore, research on canine PAC is challenging. In the present study, we successfully established various novel canine PAC cell lines from a single lesion in a dog, including two parent cell lines and fourteen cloned cell lines, and characterized their cellular properties in vitro. Several of these cell lines showed epithelial-mesenchymal transition (EMT)-like and/or cancer stem cell (CSCs)-like phenotypes. We additionally assessed the sensitivity of the cells to vinorelbine in vitro. Three clonal lines, two of which showed EMT- and CSC-like phenotypes, were resistant to vinorelbine. Furthermore, we evaluated the expression and activation status of EGFR, HER2, and Ras signaling factors. The findings indicated that the cell lines we established preserved the expression and activation of these factors to varying extents. These novel canine PAC cell lines can be utilized in future research for understanding the pathogenesis and development of treatments for canine PAC.
Collapse
Affiliation(s)
- Kosuke Kobayashi
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan.
| | - Reika Deja Takemura
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Jiro Miyamae
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Ikki Mitsui
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Kohei Murakami
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Kenji Kutara
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Kohei Saeki
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Teppei Kanda
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Yasuhiko Okamura
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| | - Akihiko Sugiyama
- Faculty of Veterinary Medicine, Okayama University of Science, Ikoino-oka 1-3, Imabari Ehime, Japan
| |
Collapse
|
43
|
Hashimoto A, Hashimoto S. ADP-Ribosylation Factor 6 Pathway Acts as a Key Executor of Mesenchymal Tumor Plasticity. Int J Mol Sci 2023; 24:14934. [PMID: 37834383 PMCID: PMC10573442 DOI: 10.3390/ijms241914934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Despite the "big data" on cancer from recent breakthroughs in high-throughput technology and the development of new therapeutic modalities, it remains unclear as to how intra-tumor heterogeneity and phenotypic plasticity created by various somatic abnormalities and epigenetic and metabolic adaptations orchestrate therapy resistance, immune evasiveness, and metastatic ability. Tumors are formed by various cells, including immune cells, cancer-associated fibroblasts, and endothelial cells, and their tumor microenvironment (TME) plays a crucial role in malignant tumor progression and responses to therapy. ADP-ribosylation factor 6 (ARF6) and AMAP1 are often overexpressed in cancers, which statistically correlates with poor outcomes. The ARF6-AMAP1 pathway promotes the intracellular dynamics and cell-surface expression of various proteins. This pathway is also a major target for KRAS/TP53 mutations to cooperatively promote malignancy in pancreatic ductal adenocarcinoma (PDAC), and is closely associated with immune evasion. Additionally, this pathway is important in angiogenesis, acidosis, and fibrosis associated with tumor malignancy in the TME, and its inhibition in PDAC cells results in therapeutic synergy with an anti-PD-1 antibody in vivo. Thus, the ARF6-based pathway affects the TME and the intrinsic function of tumors, leading to malignancy. Here, we discuss the potential mechanisms of this ARF6-based pathway in tumorigenesis, and novel therapeutic strategies.
Collapse
Affiliation(s)
- Ari Hashimoto
- Department of Molecular Biology, Graduate School of Medicine, Hokkaido University, Sapporo 060-8638, Japan
| | - Shigeru Hashimoto
- Division of Molecular Psychoimmunology, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| |
Collapse
|
44
|
Wang XC, Tang YL, Liang XH. Tumour follower cells: A novel driver of leader cells in collective invasion (Review). Int J Oncol 2023; 63:115. [PMID: 37615176 PMCID: PMC10552739 DOI: 10.3892/ijo.2023.5563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/28/2023] [Indexed: 08/25/2023] Open
Abstract
Collective cellular invasion in malignant tumours is typically characterized by the cooperative migration of multiple cells in close proximity to each other. Follower cells are led away from the tumour by specialized leader cells, and both cell populations play a crucial role in collective invasion. Follower cells form the main body of the migration system and depend on intercellular contact for migration, whereas leader cells indicate the direction for the entire cell population. Although collective invasion can occur in epithelial and non‑epithelial malignant neoplasms, such as medulloblastoma and rhabdomyosarcoma, the present review mainly provided an extensive analysis of epithelial tumours. In the present review, the cooperative mechanisms of contact inhibition locomotion between follower and leader cells, where follower cells coordinate and direct collective movement through physical (mechanical) and chemical (signalling) interactions, is summarised. In addition, the molecular mechanisms of follower cell invasion and metastasis during remodelling and degradation of the extracellular matrix and how chemotaxis and lateral inhibition mediate follower cell behaviour were analysed. It was also demonstrated that follower cells exhibit genetic and metabolic heterogeneity during invasion, unlike leader cells.
Collapse
Affiliation(s)
- Xiao-Chen Wang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Ya-Ling Tang
- Departments of Oral Pathology, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xin-Hua Liang
- Departments of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
45
|
Liguori GL, Kralj-Iglič V. Pathological and Therapeutic Significance of Tumor-Derived Extracellular Vesicles in Cancer Cell Migration and Metastasis. Cancers (Basel) 2023; 15:4425. [PMID: 37760395 PMCID: PMC10648223 DOI: 10.3390/cancers15184425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
The infiltration of primary tumors and metastasis formation at distant sites strongly impact the prognosis and the quality of life of cancer patients. Current therapies including surgery, radiotherapy, and chemotherapy are limited in targeting the complex cell migration mechanisms responsible for cancer cell invasiveness and metastasis. A better understanding of these mechanisms and the development of new therapies are urgently needed. Extracellular vesicles (EVs) are lipid-enveloped particles involved in inter-tissue and inter-cell communication. This review article focuses on the impact of EVs released by tumor cells, specifically on cancer cell migration and metastasis. We first introduce cell migration processes and EV subtypes, and we give an overview of how tumor-derived EVs (TDEVs) may impact cancer cell migration. Then, we discuss ongoing EV-based cancer therapeutic approaches, including the inhibition of general EV-related mechanisms as well as the use of EVs for anti-cancer drug delivery, focusing on the harnessing of TDEVs. We propose a protein-EV shuttle as a route alternative to secretion or cell membrane binding, influencing downstream signaling and the final effect on target cells, with strong implications in tumorigenesis. Finally, we highlight the pitfalls and limitations of therapeutic EV exploitation that must be overcome to realize the promise of EVs for cancer therapy.
Collapse
Affiliation(s)
- Giovanna L. Liguori
- Institute of Genetics and Biophysics (IGB) “Adriano Buzzati-Traverso”, National Research Council (CNR) of Italy, 80131 Naples, Italy
| | - Veronika Kralj-Iglič
- University of Ljubljana, Faculty of Health Sciences, Laboratory of Clinical Biophysics, SI-1000 Ljubljana, Slovenia;
| |
Collapse
|
46
|
Polak KL, Tamagno I, Parameswaran N, Smigiel J, Chan ER, Yuan X, Rios B, Jackson MW. Oncostatin-M and OSM-Receptor Feed-Forward Activation of MAPK Induces Separable Stem-like and Mesenchymal Programs. Mol Cancer Res 2023; 21:975-990. [PMID: 37310811 PMCID: PMC10527478 DOI: 10.1158/1541-7786.mcr-22-0715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/19/2023] [Accepted: 06/08/2023] [Indexed: 06/15/2023]
Abstract
Patients diagnosed with pancreatic ductal adenocarcinoma (PDAC) frequently present with advanced metastatic disease and exhibit a poor response to therapy, resulting in poor outcomes. The tumor microenvironment cytokine Oncostatin-M (OSM) initiates PDAC plasticity, inducing the reprogramming to a stem-like/mesenchymal state, which enhances metastasis and therapy resistance. Using a panel of PDAC cells driven through epithelial-mesenchymal transition (EMT) by OSM or the transcription factors ZEB1 or SNAI1, we find that OSM uniquely induces tumor initiation and gemcitabine resistance independently of its ability to induce a CD44HI/mesenchymal phenotype. In contrast, while ZEB1 and SNAI1 induce a CD44HI/mesenchymal phenotype and migration comparable with OSM, they are unable to promote tumor initiation or robust gemcitabine resistance. Transcriptomic analysis identified that OSM-mediated stemness requires MAPK activation and sustained, feed-forward transcription of OSMR. MEK and ERK inhibitors prevented OSM-driven transcription of select target genes and stem-like/mesenchymal reprogramming, resulting in reduced tumor growth and resensitization to gemcitabine. We propose that the unique properties of OSMR, which hyperactivates MAPK signaling when compared with other IL6 family receptors, make it an attractive therapeutic target, and that disrupting the OSM-OSMR-MAPK feed-forward loop may be a novel way to therapeutically target the stem-like behaviors common to aggressive PDAC. IMPLICATIONS Small-molecule MAPK inhibitors may effectively target the OSM/OSMR-axis that leads to EMT and tumor initiating properties that promote aggressive PDAC.
Collapse
Affiliation(s)
- Kelsey L Polak
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Ilaria Tamagno
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Neetha Parameswaran
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Jacob Smigiel
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - E. Ricky Chan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Xueer Yuan
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| | - Brenda Rios
- Cancer Biology Program, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - Mark W. Jackson
- Department of Pathology and Case Comprehensive Cancer Center, Case Western Reserve University Cleveland, OH, USA
| |
Collapse
|
47
|
Bai L, Yan X, Lv J, Qi P, Song X, Zhang L. Intestinal Flora in Chemotherapy Resistance of Biliary Pancreatic Cancer. BIOLOGY 2023; 12:1151. [PMID: 37627035 PMCID: PMC10452461 DOI: 10.3390/biology12081151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023]
Abstract
Biliary pancreatic malignancy has an occultic onset, a high degree of malignancy, and a poor prognosis. Most clinical patients miss the opportunity for surgical resection of the tumor. Systemic chemotherapy is still one of the important methods for the treatment of biliary pancreatic malignancies. Many chemotherapy regimens are available, but their efficacy is not satisfactory, and the occurrence of chemotherapy resistance is a major reason leading to poor prognosis. With the advancement of studies on intestinal flora, it has been found that intestinal flora is correlated with and plays an important role in chemotherapy resistance. The application of probiotics and other ways to regulate intestinal flora can improve this problem. This paper aims to review and analyze the research progress of intestinal flora in the chemotherapy resistance of biliary pancreatic malignancies to provide new ideas for treatment.
Collapse
Affiliation(s)
- Liuhui Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiangdong Yan
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jin Lv
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ping Qi
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaojing Song
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Lei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou 730000, China; (L.B.); (X.Y.); (J.L.); (P.Q.); (X.S.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
48
|
Kahounová Z, Pícková M, Drápela S, Bouchal J, Szczyrbová E, Navrátil J, Souček K. Circulating tumor cell-derived preclinical models: current status and future perspectives. Cell Death Dis 2023; 14:530. [PMID: 37591867 PMCID: PMC10435501 DOI: 10.1038/s41419-023-06059-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/19/2023]
Abstract
Despite the advancements made in the diagnosis and treatment of cancer, the stages associated with metastasis remain largely incurable and represent the primary cause of cancer-related deaths. The dissemination of cancer is facilitated by circulating tumor cells (CTCs), which originate from the primary tumor or metastatic sites and enter the bloodstream, subsequently spreading to distant parts of the body. CTCs have garnered significant attention in research due to their accessibility in peripheral blood, despite their low abundance. They are being extensively studied to gain a deeper understanding of the mechanisms underlying cancer dissemination and to identify effective therapeutic strategies for advanced stages of the disease. Therefore, substantial efforts have been directed towards establishing and characterizing relevant experimental models derived from CTCs, aiming to provide relevant tools for research. In this review, we provide an overview of recent progress in the establishment of preclinical CTC-derived models, such as CTC-derived xenografts (CDX) and cell cultures, which show promise for the study of CTCs. We discuss the advantages and limitations of these models and conclude by summarizing the potential future use of CTCs and CTC-derived models in cancer treatment decisions and their utility as precision medicine tools.
Collapse
Affiliation(s)
- Zuzana Kahounová
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 00, Brno, Czech Republic
| | - Markéta Pícková
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
| | - Stanislav Drápela
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 00, Brno, Czech Republic
- International Clinical Research Center, St. Anne's University Hospital, 602 00, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Jan Bouchal
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, 779 00, Olomouc, Czech Republic
| | - Eva Szczyrbová
- Department of Clinical and Molecular Pathology, Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital, 779 00, Olomouc, Czech Republic
| | - Jiří Navrátil
- Department of Comprehensive Cancer Care, Masaryk Memorial Cancer Institute, 656 53, Brno, Czech Republic
| | - Karel Souček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 612 00, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's University Hospital, 602 00, Brno, Czech Republic.
- Department of Experimental Biology, Faculty of Science, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
49
|
Lems CM, Burger GA, Beltman JB. Tumor-mediated immunosuppression and cytokine spreading affects the relation between EMT and PD-L1 status. Front Immunol 2023; 14:1219669. [PMID: 37638024 PMCID: PMC10449452 DOI: 10.3389/fimmu.2023.1219669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/30/2023] [Indexed: 08/29/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) and immune resistance mediated by Programmed Death-Ligand 1 (PD-L1) upregulation are established drivers of tumor progression. Their bi-directional crosstalk has been proposed to facilitate tumor immunoevasion, yet the impact of immunosuppression and spatial heterogeneity on the interplay between these processes remains to be characterized. Here we study the role of these factors using mathematical and spatial models. We first designed models incorporating immunosuppressive effects on T cells mediated via PD-L1 and the EMT-inducing cytokine Transforming Growth Factor beta (TGFβ). Our models predict that PD-L1-mediated immunosuppression merely reduces the difference in PD-L1 levels between EMT states, while TGFβ-mediated suppression also causes PD-L1 expression to correlate negatively with TGFβ within each EMT phenotype. We subsequently embedded the models in multi-scale spatial simulations to explicitly describe heterogeneity in cytokine levels and intratumoral heterogeneity. Our multi-scale models show that Interferon gamma (IFNγ)-induced partial EMT of a tumor cell subpopulation can provide some, albeit limited protection to bystander tumor cells. Moreover, our simulations show that the true relationship between EMT status and PD-L1 expression may be hidden at the population level, highlighting the importance of studying EMT and PD-L1 status at the single-cell level. Our findings deepen the understanding of the interactions between EMT and the immune response, which is crucial for developing novel diagnostics and therapeutics for cancer patients.
Collapse
Affiliation(s)
| | | | - Joost B. Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| |
Collapse
|
50
|
Cheng C, Deneke N, Moon HR, Choi SR, Ospina-Muñoz N, Elzey BD, Davis CS, Chiu GTC, Han B. Inkjet-printed morphogenesis of tumor-stroma interface using bi-cellular bioinks of collagen-poly(N-isopropyl acrylamide-co-methyl methacrylate) mixture. MATERIALS TODAY. ADVANCES 2023; 19:100408. [PMID: 37691883 PMCID: PMC10486313 DOI: 10.1016/j.mtadv.2023.100408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Recent advances in biomaterials and 3D printing/culture methods enable various tissue-engineered tumor models. However, it is still challenging to achieve native tumor-like characteristics due to lower cell density than native tissues and prolonged culture duration for maturation. Here, we report a new method to create tumoroids with a mechanically active tumor-stroma interface at extremely high cell density. This method, named "inkjet-printed morphogenesis" (iPM) of the tumor-stroma interface, is based on a hypothesis that cellular contractile force can significantly remodel the cell-laden polymer matrix to form densely-packed tissue-like constructs. Thus, differential cell-derived compaction of tumor cells and cancer-associated fibroblasts (CAFs) can be used to build a mechanically active tumor-stroma interface. In this methods, two kinds of bioinks are prepared, in which tumor cells and CAFs are suspended respectively in the mixture of collagen and poly (N-isopropyl acrylamide-co-methyl methacrylate) solution. These two cellular inks are inkjet-printed in multi-line or multi-layer patterns. As a result of cell-derived compaction, the resulting structure forms tumoroids with mechanically active tumor-stroma interface at extremely high cell density. We further test our working hypothesis that the morphogenesis can be controlled by manipulating the force balance between cellular contractile force and matrix stiffness. Furthermore, this new concept of "morphogenetic printing" is demonstrated to create more complex structures beyond current 3D bioprinting techniques.
Collapse
Affiliation(s)
- Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Naomi Deneke
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Sae Rome Choi
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | | | - Bennett D. Elzey
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Chelsea S. Davis
- School of Materials Engineering, Purdue University, West Lafayette, IN, USA
| | - George T.-C Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|