1
|
Cheng H, Zhang B, Jiang P, Liao M, Gao X, Xu D, Wang Y, Hu Y, Wang H, Liu T, Chai R. Biomaterial-based drug delivery systems in the treatment of inner ear disorders. J Nanobiotechnology 2025; 23:297. [PMID: 40247337 PMCID: PMC12004832 DOI: 10.1186/s12951-025-03368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/01/2025] [Indexed: 04/19/2025] Open
Abstract
Inner ear disorders are among the predominant etiology of hearing loss. The blood-labyrinth barrier limits the ability of drugs to attain pharmacologically effective concentrations within the inner ear; consequently, delivering drugs systemically is insufficient for effectively treating inner ear disorders. Hence, it is imperative to create efficient, minimal or non-invasive methods for administering drugs to the inner ear. However, the development of such a system is hindered by three main factors: anatomical unavailability, the lack of sustained drug delivery, and individual variability. Advances in biomaterials technology have created new opportunities for overcoming existing barriers, offering great hope for the effective treatment of inner ear disorders. Hydrogel- and nanoparticle-based drug delivery systems can carry drugs to targeted designated anatomical locations in the inner ear for long-term, sustained release. Furthermore, a range of devices, including microneedles, micropumps, and cochlear implants, when paired with biomaterials, enhance the delivery of drugs to the inner ear, making the treatment of inner ear disorders more effective. Therefore, biomaterial-based drug delivery systems offer the possibility for extensive clinical uses and promise to restore hearing to millions of patients with inner ear disorders.
Collapse
Affiliation(s)
- Hong Cheng
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Bin Zhang
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Pei Jiang
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Menghui Liao
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Xin Gao
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Dongyu Xu
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Yusong Wang
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China
| | - Yangnan Hu
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, China.
| | - Tingting Liu
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
| | - Renjie Chai
- Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, State Key Laboratory of Digital Medical Engineering, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Public Health, School of Medicine, Advanced Institute for Life and Health, Southeast University, Nanjing, 210096, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China.
| |
Collapse
|
2
|
Fu Z, Zhao L, Guo Y, Yang J. Gene therapy for hereditary hearing loss. Hear Res 2025; 455:109151. [PMID: 39616957 DOI: 10.1016/j.heares.2024.109151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 12/28/2024]
Abstract
Gene therapy is a technique by which exogenous genetic material is introduced into target cells to treat or prevent diseases caused by genetic mutations. Hearing loss is the most common sensory disorder. Genetic factors contribute to approximately 50 % of all cases of profound hearing loss, and more than 150 independent genes have been reported as associated with hearing loss. Recent advances in CRISPR/Cas based gene-editing tools have facilitated the development of gene therapies for hereditary hearing loss (HHL). Viral delivery vectors, and especially adeno-associated virus (AAV) vectors, have been demonstrated as safe and efficient carriers for the delivery of transgenes into inner ear cells in animal models. More importantly, AAV-mediated gene therapy can restore hearing in some children with hereditary deafness. However, there are many different types of HHL that need to be identified and evaluated to determine appropriate gene therapy options. In the present review, we summarize recent animal model-based advances in gene therapy for HHL, as well as gene therapy strategies, gene-editing tools, delivery vectors, and administration routes. We also discuss the strengths and limitations of different gene therapy methods and describe future challenges for the eventual clinical application of gene therapy for HHL.
Collapse
Affiliation(s)
- Zeming Fu
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Liping Zhao
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin University, Changchun 130022, China
| | - Yingyuan Guo
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China
| | - Jingpu Yang
- Department of Otolaryngology- Head and Neck Surgery, The Second Hospital of Jilin University, 4026 Yatai Street, Changchun 130022, China.
| |
Collapse
|
3
|
Zhang LL, Wang J, Gao ZW, Lv J, Jiang LY, Cui C, Wang ZJ, Wang DQ, Chen YX, Fan XT, Ye C, Wang H, Chen B, Wang WQ, Li HW, Shu YL. A Novel Delivery Approach of Clinical Inner Ear Gene Therapy. Otol Neurotol 2025; 46:31-38. [PMID: 39511736 DOI: 10.1097/mao.0000000000004366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
BACKGROUND To create and develop a delivery approach for clinical inner ear gene therapy, we conducted a study of trans-round window membrane (RWM) microinjection using a pipetting microneedle via transcanal endoscopic ear surgery (TEES). METHODS The implementation of the trans-RWM microinjection surgery involved seven cadaveric specimens, and the surgical procedures and the pipetting microneedle were developed and optimized. The TEES procedures included tympanic cavity visualization, RWM exposure, stapes footplate perforation, and trans-RWM microinjection. The feasibility of different pipetting microneedles was evaluated during microinjection. RESULTS Exposure of the RWM microinjection site could be easily achieved in TEES, and the soft-connected pipetting microneedle was most suitable for the trans-RWM microinjection. The fluid outflow from stapes perforation could be visibly observed during the microinjection, which indicated inner ear drug delivery was successful. This inner ear drug delivery approach was successfully applied in the clinical trial. CONCLUSION The trans-RWM microinjection via the soft-connected pipetting microneedle in TEES was proved to be a feasible delivery approach of the inner ear gene therapy.
Collapse
|
4
|
Ma Y, Li S, Lin X, Chen Y. A perspective of lipid nanoparticles for RNA delivery. EXPLORATION (BEIJING, CHINA) 2024; 4:20230147. [PMID: 39713203 PMCID: PMC11655307 DOI: 10.1002/exp.20230147] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 03/07/2024] [Indexed: 12/24/2024]
Abstract
Over the last two decades, lipid nanoparticles (LNPs) have evolved as an effective biocompatible and biodegradable RNA delivery platform in the fields of nanomedicine, biotechnology, and drug delivery. They are novel bionanomaterials that can be used to encapsulate a wide range of biomolecules, such as mRNA, as demonstrated by the current successes of COVID-19 mRNA vaccines. Therefore, it is important to provide a perspective on LNPs for RNA delivery, which further offers useful guidance for researchers who want to work in the RNA-based LNP field. This perspective first summarizes the approaches for the preparation of LNPs, followed by the introduction of the key characterization parameters. Then, the in vitro cell experiments to study LNP performance, including cell selection, cell viability, cellular association/uptake, endosomal escape, and their efficacy, were summarized. Finally, the in vivo animal experiments in the aspects of animal selection, administration, dosing and safety, and their therapeutic efficacy were discussed. The authors hope this perspective can offer valuable guidance to researchers who enter the field of RNA-based LNPs and help them understand the crucial parameters that RNA-based LNPs demand.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of PharmacyUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Shiyao Li
- School of ScienceRMIT UniversityBundooraVictoriaAustralia
- ARC Centre of Excellence in Convergent Bio‐Nano Science and Technology, and the Department of Chemical EngineeringThe University of MelbourneParkvilleVictoriaAustralia
| | - Xin Lin
- Department of Cell BiologyDuke University Medical CenterDurhamNorth CarolinaUSA
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in NanoscienceNational Center for Nanoscience and TechnologyBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
5
|
Oh SY, Kim HY, Jung SY, Kim HS. Tissue Engineering and Regenerative Medicine in the Field of Otorhinolaryngology. Tissue Eng Regen Med 2024; 21:969-984. [PMID: 39017827 PMCID: PMC11416456 DOI: 10.1007/s13770-024-00661-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/21/2024] [Accepted: 06/30/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Otorhinolaryngology is a medical specialty that focuses on the clinical study and treatments of diseases within head and neck regions, specifically including the ear, nose, and throat (ENT), but excluding eyes and brain. These anatomical structures play significant roles in a person's daily life, including eating, speaking as well as facial appearance and expression, thus greatly impacting one's overall satisfaction and quality of life. Consequently, injuries to these regions can significantly impact a person's well-being, leading to extensive research in the field of tissue engineering and regenerative medicine over many years. METHODS This chapter provides an overview of the anatomical characteristics of otorhinolaryngologic tissues and explores the tissue engineering and regenerative medicine research in otology (ear), rhinology (nose), facial bone, larynx, and trachea. RESULTS AND CONCLUSION The integration of tissue engineering and regenerative medicine in otorhinolaryngology holds the promise of broadening the therapeutic choices for a wide range of conditions, ultimately improving quality of a patient's life.
Collapse
Affiliation(s)
- Se-Young Oh
- Department of Convergence Medicine, College of Medicine, Ewha Womans University Mokdong Hospital, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Ha Yeong Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Soo Yeon Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea
| | - Han Su Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Ewha Womans University, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul, 07985, Republic of Korea.
| |
Collapse
|
6
|
Foster T, Lim P, Jones M, Wagle SR, Kovacevic B, Ionescu CM, Wong EYM, Mooranian A, Al-Salami H. Polymer-Based Nanoparticles for Inner Ear Targeted Trans Differentiation Gene Therapy. ChemMedChem 2024; 19:e202400038. [PMID: 38818625 DOI: 10.1002/cmdc.202400038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/27/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Hearing loss is a significant disability that often goes under recognised, largely due to poor identification, prevention, and treatment. Steps are being made to amend these pitfalls in the investigation of hearing loss, however, the development of a cure to reverse advanced forms remains distant. This review details some current advances in the treatment of hearing loss, with a particular focus on genetic-based nanotechnology and how it may provide a useful avenue for further research. This review presents a broad background on the pathophysiology of hearing loss and some current interventions. We also highlight some potential genes that may be useful in the amelioration of hearing loss. Pathways of cellular differentiation from stem or supporting cell to functional hair cell are covered in detail, as this mechanism represents a key means of regenerating these cell types. Overall, we believe that polymer-based nanotechnology coupled with novel excipients represents a useful area of further research in the treatment of hearing loss, although further studies in this area are required.
Collapse
Affiliation(s)
- Thomas Foster
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Department of Clinical Biochemistry, Pathwest Laboratory Medicine, Royal Perth Hospital, Perth, 6000, Western Australia, Australia
| | - Patrick Lim
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Melissa Jones
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Susbin Raj Wagle
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Bozica Kovacevic
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Corina Mihaela Ionescu
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
| | - Elaine Y M Wong
- Hearing Therapeutics Department, Ear Science Institute Australia, Queen Elizabeth II Medical Centre, Nedlands 6009, Perth, Western Australia, Australia
| | - Armin Mooranian
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- School of Pharmacy, University of Otago, Dunedin 9016, Otago, New Zealand
| | - Hani Al-Salami
- The Biotechnology and Drug Development Research Laboratory, Curtin Medical School & Curtin Health Innovation Research Institute, Curtin University, Bentley, 6102, Western Australia, Australia
- Medical School, The University of Western Australia, Crawley, 6009, Western Australia, Australia
| |
Collapse
|
7
|
Singh CV, Jain S. The Role of Platelet-Rich Plasma in the Management of Sensorineural Hearing Loss: Current Evidence and Emerging Trends. Cureus 2024; 16:e68646. [PMID: 39371823 PMCID: PMC11451513 DOI: 10.7759/cureus.68646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 10/08/2024] Open
Abstract
Sensorineural hearing loss (SNHL) is a common form of hearing impairment characterized by damage to the inner ear or auditory nerve, resulting in significant communication difficulties and reduced quality of life. Current treatment options, including hearing aids, cochlear implants, and corticosteroids, primarily focus on symptom management and do not address the underlying pathophysiological damage. Platelet-rich plasma (PRP), an autologous concentrate rich in platelets and growth factors, has emerged as a potential regenerative therapy due to its ability to promote tissue repair and cellular regeneration. This review provides a comprehensive overview of the role of PRP in the management of SNHL, examining the current evidence from preclinical and clinical studies. We discuss the mechanisms through which PRP may promote auditory tissue regeneration and repair, analyze its efficacy and safety profile, and explore innovative approaches and future directions in its application for SNHL. Despite promising preliminary findings, further research is needed to optimize PRP protocols, establish standardized treatment guidelines, and conduct large-scale randomized controlled trials to validate efficacy. This review aims to highlight the potential of PRP as a novel therapeutic strategy in treating SNHL and its possible integration into current clinical practices, offering new hope for patients with this debilitating condition.
Collapse
Affiliation(s)
- Chandra Veer Singh
- Otolaryngology - Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Shraddha Jain
- Otolaryngology - Head and Neck Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
8
|
Wang L, Zhang R, Jiang L, Gao S, Wu J, Jiao Y. Biomaterials as a new option for treating sensorineural hearing loss. Biomater Sci 2024; 12:4006-4023. [PMID: 38979939 DOI: 10.1039/d4bm00518j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sensorineural hearing loss (SNHL) usually involves damage to complex auditory pathways such as inner ear cells and auditory nerves. The highly intricate and nuanced characteristics of these cells render their repair and regeneration extremely challenging, making it difficult to restore hearing to normal levels once it has been compromised. The effectiveness of traditional drugs is so minimal that they provide little help with the treatment. Fortunately, extensive experiments have demonstrated that combining biomaterials with conventional techniques significantly enhances drug effectiveness. This article reviews the research progress of biomaterials in protecting hair cells and the auditory nerve, repairing genes related to hearing, and developing artificial cochlear materials. By organizing the knowledge presented in this article, perhaps new insights can be provided for the clinical management of SNHL.
Collapse
Affiliation(s)
- Liwen Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Ruhe Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Linlan Jiang
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Shuyi Gao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| | - Jun Wu
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China.
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yuenong Jiao
- Department of Otorhinolaryngology Head and Neck Surgery, Guangzhou Twelfth People's Hospital (The Affiliated Twelfth People's Hospital of Guangzhou Medical University), Guangzhou 510620, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, Guangzhou Medical University, Guangzhou 510620, China.
| |
Collapse
|
9
|
Pasdelou MP, Byelyayeva L, Malmström S, Pucheu S, Peytavy M, Laullier H, Hodges DB, Tzafriri AR, Naert G. Ototoxicity: a high risk to auditory function that needs to be monitored in drug development. Front Mol Neurosci 2024; 17:1379743. [PMID: 38756707 PMCID: PMC11096496 DOI: 10.3389/fnmol.2024.1379743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Hearing loss constitutes a major global health concern impacting approximately 1.5 billion people worldwide. Its incidence is undergoing a substantial surge with some projecting that by 2050, a quarter of the global population will experience varying degrees of hearing deficiency. Environmental factors such as aging, exposure to loud noise, and the intake of ototoxic medications are implicated in the onset of acquired hearing loss. Ototoxicity resulting in inner ear damage is a leading cause of acquired hearing loss worldwide. This could be minimized or avoided by early testing of hearing functions in the preclinical phase of drug development. While the assessment of ototoxicity is well defined for drug candidates in the hearing field - required for drugs that are administered by the otic route and expected to reach the middle or inner ear during clinical use - ototoxicity testing is not required for all other therapeutic areas. Unfortunately, this has resulted in more than 200 ototoxic marketed medications. The aim of this publication is to raise awareness of drug-induced ototoxicity and to formulate some recommendations based on available guidelines and own experience. Ototoxicity testing programs should be adapted to the type of therapy, its indication (targeting the ear or part of other medications classes being potentially ototoxic), and the number of assets to test. For multiple molecules and/or multiple doses, screening options are available: in vitro (otic cell assays), ex vivo (cochlear explant), and in vivo (in zebrafish). In assessing the ototoxicity of a candidate drug, it is good practice to compare its ototoxicity to that of a well-known control drug of a similar class. Screening assays provide a streamlined and rapid method to know whether a drug is generally safe for inner ear structures. Mammalian animal models provide a more detailed characterization of drug ototoxicity, with a possibility to localize and quantify the damage using functional, behavioral, and morphological read-outs. Complementary histological measures are routinely conducted notably to quantify hair cells loss with cochleogram. Ototoxicity studies can be performed in rodents (mice, rats), guinea pigs and large species. However, in undertaking, or at the very least attempting, all preclinical investigations within the same species, is crucial. This encompasses starting with pharmacokinetics and pharmacology efficacy studies and extending through to toxicity studies. In life read-outs include Auditory Brainstem Response (ABR) and Distortion Product OtoAcoustic Emissions (DPOAE) measurements that assess the activity and integrity of sensory cells and the auditory nerve, reflecting sensorineural hearing loss. Accurate, reproducible, and high throughput ABR measures are fundamental to the quality and success of these preclinical trials. As in humans, in vivo otoscopic evaluations are routinely carried out to observe the tympanic membrane and auditory canal. This is often done to detect signs of inflammation. The cochlea is a tonotopic structure. Hair cell responsiveness is position and frequency dependent, with hair cells located close to the cochlea apex transducing low frequencies and those at the base transducing high frequencies. The cochleogram aims to quantify hair cells all along the cochlea and consequently determine hair cell loss related to specific frequencies. This measure is then correlated with the ABR & DPOAE results. Ototoxicity assessments evaluate the impact of drug candidates on the auditory and vestibular systems, de-risk hearing loss and balance disorders, define a safe dose, and optimize therapeutic benefits. These types of studies can be initiated during early development of a therapeutic solution, with ABR and otoscopic evaluations. Depending on the mechanism of action of the compound, studies can include DPOAE and cochleogram. Later in the development, a GLP (Good Laboratory Practice) ototoxicity study may be required based on otic related route of administration, target, or known potential otic toxicity.
Collapse
|
10
|
Carroll AM, Riley JR, Borland MS, Danaphongse TT, Hays SA, Kilgard MP, Engineer CT. Bursts of vagus nerve stimulation paired with auditory rehabilitation fail to improve speech sound perception in rats with hearing loss. iScience 2024; 27:109527. [PMID: 38585658 PMCID: PMC10995867 DOI: 10.1016/j.isci.2024.109527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/09/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Hearing loss can lead to long-lasting effects on the central nervous system, and current therapies, such as auditory training and rehabilitation, show mixed success in improving perception and speech comprehension. Vagus nerve stimulation (VNS) is an adjunctive therapy that can be paired with rehabilitation to facilitate behavioral recovery after neural injury. However, VNS for auditory recovery has not been tested after severe hearing loss or significant damage to peripheral receptors. This study investigated the utility of pairing VNS with passive or active auditory rehabilitation in a rat model of noise-induced hearing loss. Although auditory rehabilitation helped rats improve their frequency discrimination, learn novel speech discrimination tasks, and achieve speech-in-noise performance similar to normal hearing controls, VNS did not enhance recovery of speech sound perception. These results highlight the limitations of VNS as an adjunctive therapy for hearing loss rehabilitation and suggest that optimal benefits from neuromodulation may require restored peripheral signaling.
Collapse
Affiliation(s)
- Alan M. Carroll
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Jonathan R. Riley
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael S. Borland
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Tanya T. Danaphongse
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Seth A. Hays
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Bioengineering, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Michael P. Kilgard
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| | - Crystal T. Engineer
- The University of Texas at Dallas, Texas Biomedical Device Center, 800 West Campbell Road, Richardson, TX 75080-3021, USA
- Department of Neuroscience, School of Behavioral and Brain Sciences, The University of Texas at Dallas, 800 West Campbell Road, Richardson, TX 75080-3021, USA
| |
Collapse
|
11
|
Liu Y, Zeng X, Zhang H. An Emerging Approach of Age-Related Hearing Loss Research: Application of Integrated Multi-Omics Analysis. Adv Biol (Weinh) 2024; 8:e2300613. [PMID: 38279573 DOI: 10.1002/adbi.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/03/2024] [Indexed: 01/28/2024]
Abstract
As one of the most common otologic diseases in the elderly, age-related hearing loss (ARHL) usually characterized by hearing loss and cognitive disorders, which have a significant impact on the elderly's physical and mental health and quality of life. However, as a typical disease of aging, it is unclear why aging causes widespread hearing impairment in the elderly. As molecular biological experiments have been conducted for research recently, ARHL is gradually established at various levels with the application and development of integrated multi-omics analysis in the studies of ARHL. Here, the recent progress in the application of multi-omics analysis in the molecular mechanisms of ARHL development and therapeutic regimens, including the combined analysis of different omics, such as transcriptome, proteome, and metabolome, to screen for risk sites, risk genes, and differences in lipid metabolism, etc., is outlined and the integrated histological data further promote the profound understanding of the disease process as well as physiological mechanisms of ARHL. The advantages and disadvantages of multi-omics analysis in disease research are also discussed and the authors speculate on the future prospects and applications of this part-to-whole approach, which may provide more comprehensive guidance for ARHL and aging disease prevention and treatment.
Collapse
Affiliation(s)
- Yue Liu
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Xianhai Zeng
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
- Department of Graduate and Scientific Research, Zunyi Medical University Zhuhai Campus, Zhuhai, 519041, China
| | - Huasong Zhang
- Department of Otolaryngology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
- Department of Otolaryngology, Longgang E.N.T. Hospital and Shenzhen Key Laboratory of E.N.T, Institute of E.N.T., Shenzhen, 518172, China
| |
Collapse
|
12
|
Slika E, Fuchs PA. Genetic tools for studying cochlear inhibition. Front Cell Neurosci 2024; 18:1372948. [PMID: 38560293 PMCID: PMC10978695 DOI: 10.3389/fncel.2024.1372948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/28/2024] [Indexed: 04/04/2024] Open
Abstract
Efferent feedback to the mammalian cochlea includes cholinergic medial olivocochlear neurons (MOCs) that release ACh to hyperpolarize and shunt the voltage change that drives electromotility of outer hair cells (OHCs). Via brainstem connectivity, MOCs are activated by sound in a frequency- and intensity-dependent manner, thereby reducing the amplification of cochlear vibration provided by OHC electromotility. Among other roles, this efferent feedback protects the cochlea from acoustic trauma. Lesion studies, as well as a variety of genetic mouse models, support the hypothesis of efferent protection from acoustic trauma. Genetic knockout and gain-of-function knockin of the unique α9α10-containing nicotinic acetylcholine receptor (nAChR) in hair cells show that acoustic protection correlates with the efficacy of cholinergic inhibition of OHCs. This protective effect was replicated by viral transduction of the gain-of-function α9L9'T nAChR into α9-knockout mice. Continued progress with "efferent gene therapy" will require a reliable method for visualizing nAChR expression in cochlear hair cells. To that end, mice expressing HA-tagged α9 or α10 nAChRs were generated using CRISPR technology. This progress will facilitate continued study of the hair cell nAChR as a therapeutic target to prevent hearing loss and potentially to ameliorate associated pathologies such as hyperacusis.
Collapse
Affiliation(s)
| | - Paul Albert Fuchs
- The Center for Hearing and Balance, Otolaryngology-Head and Neck Surgery, Johns Hopkins, University School of Medicine Baltimore, Baltimore, MD, United States
| |
Collapse
|
13
|
Li L, Shen T, Liu S, Qi J, Zhao Y. Advancements and future prospects of adeno-associated virus-mediated gene therapy for sensorineural hearing loss. Front Neurosci 2024; 18:1272786. [PMID: 38327848 PMCID: PMC10847333 DOI: 10.3389/fnins.2024.1272786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Sensorineural hearing loss (SNHL), a highly prevalent sensory impairment, results from a multifaceted interaction of genetic and environmental factors. As we continually gain insights into the molecular basis of auditory development and the growing compendium of deafness genes identified, research on gene therapy for SNHL has significantly deepened. Adeno-associated virus (AAV), considered a relatively secure vector for gene therapy in clinical trials, can deliver various transgenes based on gene therapy strategies such as gene replacement, gene silencing, gene editing, or gene addition to alleviate diverse types of SNHL. This review delved into the preclinical advances in AAV-based gene therapy for SNHL, spanning hereditary and acquired types. Particular focus is placed on the dual-AAV construction method and its application, the vector delivery route of mouse inner ear models (local, systemic, fetal, and cerebrospinal fluid administration), and the significant considerations in transforming from AAV-based animal model inner ear gene therapy to clinical implementation.
Collapse
Affiliation(s)
- Linke Li
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Shen
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
14
|
Liao Y, Mao H, Gao X, Lin H, Li W, Chen Y, Li H. Drug screening identifies aldose reductase as a novel target for treating cisplatin-induced hearing loss. Free Radic Biol Med 2024; 210:430-447. [PMID: 38056576 DOI: 10.1016/j.freeradbiomed.2023.11.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/08/2023] [Accepted: 11/24/2023] [Indexed: 12/08/2023]
Abstract
Cisplatin is a frequently used chemotherapeutic medicine for cancer treatment. Permanent hearing loss is one of the most serious side effects of cisplatin, but there are few FDA-approved medicines to prevent it. We applied high-through screening and target fishing and identified aldose reductase, a key enzyme of the polyol pathway, as a novel target for treating cisplatin ototoxicity. Cisplatin treatment significantly increased the expression level and enzyme activity of aldose reductase in the cochlear sensory epithelium. Genetic knockdown or pharmacological inhibition of aldose reductase showed a significant protective effect on cochlear hair cells. Cisplatin-induced overactivation of aldose reductase led to the decrease of NADPH/NADP+ and GSH/GSSG ratios, as well as the increase of oxidative stress, and contributed to hair cell death. Results of target prediction, molecular docking, and enzyme activity detection further identified that Tiliroside was an effective inhibitor of aldose reductase. Tiliroside was proven to inhibit the enzymatic activity of aldose reductase via competitively interfering with the substrate-binding region. Both Tiliroside and another clinically approved aldose reductase inhibitor, Epalrestat, inhibited cisplatin-induced oxidative stress and subsequent cell death and thus protected hearing function. These findings discovered the role of aldose reductase in the pathogenesis of cisplatin-induced deafness and identified aldose reductase as a new target for the prevention and treatment of hearing loss.
Collapse
Affiliation(s)
- Yaqi Liao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Huanyu Mao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Xian Gao
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Hailiang Lin
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China
| | - Wenyan Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| | - Yan Chen
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| | - Huawei Li
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230031, PR China; Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, PR China; NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai, 200031, PR China; The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, 200032, PR China; ENT Institute and Otorhinolaryngology Department of Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200031, PR China.
| |
Collapse
|
15
|
Micaletti F, Escoffre JM, Kerneis S, Bouakaz A, Galvin JJ, Boullaud L, Bakhos D. Microbubble-assisted ultrasound for inner ear drug delivery. Adv Drug Deliv Rev 2024; 204:115145. [PMID: 38042259 DOI: 10.1016/j.addr.2023.115145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 12/04/2023]
Abstract
Treating pathologies of the inner ear is a major challenge. To date, a wide range of procedures exists for administering therapeutic agents to the inner ear, with varying degrees of success. The key is to deliver therapeutics in a way that is minimally invasive, effective, long-lasting, and without adverse effects on vestibular and cochlear function. Microbubble-assisted ultrasound ("sonoporation") is a promising new modality that can be adapted to the inner ear. Combining ultrasound technology with microbubbles in the middle ear can increase the permeability of the round window, enabling therapeutic agents to be delivered safely and effectively to the inner ear in a targeted manner. As such, sonoporation is a promising new approach to treat hearing loss and vertigo. This review summarizes all studies on the delivery of therapeutic molecules to the inner ear using sonoporation.
Collapse
Affiliation(s)
- Fabrice Micaletti
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France.
| | | | - Sandrine Kerneis
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
| | - John J Galvin
- Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| | - Luc Boullaud
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France
| | - David Bakhos
- ENT and Cervico-Facial Surgery Department, University Hospital Center of Tours, 2 Boulevard Tonnellé, 37044 Tours, France; UMR 1253, iBrain, Université de Tours, Inserm, Tours, France; Faculty of medicine, Université de Tours, 10 boulevard Tonnellé, 37044 Tours, France; House Institute Foundation, 2100 W 3rd Street, Suite 111, Los Angeles, CA 90057, USA
| |
Collapse
|
16
|
Ma Y, Li S, Lin X, Chen Y. Bioinspired Spatiotemporal Management toward RNA Therapies. ACS NANO 2023; 17:24539-24563. [PMID: 38091941 DOI: 10.1021/acsnano.3c08219] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Ribonucleic acid (RNA)-based therapies have become an attractive topic in disease intervention, especially with some that have been approved by the FDA such as the mRNA COVID-19 vaccine (Comirnaty, Pfizer-BioNTech, and Spikevax, Moderna) and Patisiran (siRNA-based drug for liver delivery). However, extensive applications are still facing challenges in delivering highly negatively charged RNA to the targeted site. Therapeutic delivery strategies including RNA modifications, RNA conjugates, and RNA polyplexes and delivery platforms such as viral vectors, nanoparticle-based delivery platforms, and hydrogel-based delivery platforms as potential nucleic acid-releasing depots have been developed to enhance their cellular uptake and protect nucleic acid from being degraded by immune systems. Here, we review the growing number of viral vectors, nanoparticles, and hydrogel-based RNA delivery systems; describe RNA loading/release mechanism induced by environmental stimulations including light, heat, pH, or enzyme; discuss their physical or chemical interactions; and summarize the RNA therapeutics release period (temporal) and their target cells/organs (spatial). Finally, we describe current concerns, highlight current challenges and future perspectives of RNA-based delivery systems, and provide some possible research areas that provide opportunities for clinical translation of RNA delivery carriers.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Shiyao Li
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, and the Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xin Lin
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina 27705, United States
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
17
|
Tisi A, Palaniappan S, Maccarrone M. Advanced Omics Techniques for Understanding Cochlear Genome, Epigenome, and Transcriptome in Health and Disease. Biomolecules 2023; 13:1534. [PMID: 37892216 PMCID: PMC10605747 DOI: 10.3390/biom13101534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Advanced genomics, transcriptomics, and epigenomics techniques are providing unprecedented insights into the understanding of the molecular underpinnings of the central nervous system, including the neuro-sensory cochlea of the inner ear. Here, we report for the first time a comprehensive and updated overview of the most advanced omics techniques for the study of nucleic acids and their applications in cochlear research. We describe the available in vitro and in vivo models for hearing research and the principles of genomics, transcriptomics, and epigenomics, alongside their most advanced technologies (like single-cell omics and spatial omics), which allow for the investigation of the molecular events that occur at a single-cell resolution while retaining the spatial information.
Collapse
Affiliation(s)
- Annamaria Tisi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Sakthimala Palaniappan
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
- Laboratory of Lipid Neurochemistry, European Center for Brain Research (CERC), Santa Lucia Foundation IRCCS, 00143 Rome, Italy
| |
Collapse
|
18
|
Gunewardene N, Ma Y, Lam P, Wagstaff S, Cortez-Jugo C, Hu Y, Caruso F, Richardson RT, Wise AK. Developing the supraparticle technology for round window-mediated drug administration into the cochlea. J Control Release 2023; 361:621-635. [PMID: 37572963 DOI: 10.1016/j.jconrel.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/14/2023]
Abstract
The semi-permeable round window membrane (RWM) is the gateway to the cochlea. Although the RWM is considered a minimally invasive and clinically accepted route for localised drug delivery to the cochlea, overcoming this barrier is challenging, hindering development of effective therapies for hearing loss. Neurotrophin 3 (NT3) is an emerging treatment option for hearing loss, but its therapeutic effect relies on sustained delivery across the RWM into the cochlea. Silica supraparticles (SPs) are drug delivery carriers capable of providing long-term NT3 delivery, when injected directly into the guinea pig cochlea. However, for clinical translation, a RWM delivery approach is desirable. Here, we aimed to test approaches to improve the longevity and biodistribution of NT3 inside the cochlea after RWM implantation of SPs in guinea pigs and cats. Three approaches were tested (i) coating the SPs to slow drug release (ii) improving the retention of SPs on the RWM using a clinically approved gel formulation and (iii) permeabilising the RWM with hyaluronic acid. A radioactive tracer (iodine 125: 125I) tagged to NT3 (125I NT3) was loaded into the SPs to characterise drug pharmacokinetics in vitro and in vivo. The neurotrophin-loaded SPs were coated using a chitosan and alginate layer-by-layer coating strategy, named as '(Chi/Alg)SPs', to promote long term drug release. The guinea pigs were implanted with 5× 125I NT3 loaded (Chi/Alg) SPs on the RWM, while cats were implanted with 30× (Chi/Alg) SPs. A cohort of animals were also implanted with SPs (controls). We found that the NT3 loaded (Chi/Alg)SPs exhibited a more linear release profile compared to NT3 loaded SPs alone. The 125I NT3 loaded (Chi/Alg)SPs in fibrin sealant had efficient drug loading (~5 μg of NT3 loaded per SP that weights ~50 μg) and elution capacities (~49% over one month) in vitro. Compared to the SPs in fibrin sealant, the (Chi/Alg)SPs in fibrin sealant had a significantly slower 125I NT3 drug release profile over the first 7 days in vitro (~12% for (Chi/Alg) SPs in fibrin sealant vs ~43% for SPs in fibrin sealant). One-month post-implantation of (Chi/Alg) SPs, gamma count measurements revealed an average of 0.3 μg NT3 remained in the guinea pig cochlea, while for the cat, 1.3 μg remained. Histological analysis of cochlear tissue revealed presence of a 125I NT3 signal localised in the basilar membrane of the lower basal turn in some cochleae after 4 weeks in guinea pigs and 8 weeks in cats. Comparatively, and in contrast to the in vitro release data, implantation of the SPs presented better NT3 retention and distribution inside the cochlea in both the guinea pigs and cats. No significant difference in drug entry was observed upon acute treatment of the RWM with hyaluronic acid. Collectively, our findings indicate that SPs and (Chi/Alg)SPs can facilitate drug transfer across the RWM, with detectable levels inside the cat cochlea even after 8 weeks with the intracochlear approach. This is the first study to examine neurotrophin pharmacokinetics in the cochlea for such an extended period of times in these two animal species. Whilst promising, we note that outcomes between animals were variable, and opposing results were found between in vitro and in vivo release studies. These findings have important clinical ramifications, emphasising the need to understand the physical properties and mechanics of this complex barrier in parallel with the development of therapies for hearing loss.
Collapse
Affiliation(s)
- Niliksha Gunewardene
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| | - Yutian Ma
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Patrick Lam
- Bionics Institute, East Melbourne, Victoria 3002, Australia
| | | | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yingjie Hu
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Rachael T Richardson
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia; Department of Surgery (Otolaryngology), University of Melbourne, The Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria 3002, Australia
| | - Andrew K Wise
- Bionics Institute, East Melbourne, Victoria 3002, Australia; Department of Medical Bionics, The University of Melbourne, Fitzroy, Victoria 3065, Australia.
| |
Collapse
|
19
|
Wang C, Wang X, Zheng H, Yao J, Xiang Y, Liu D. The ndrg2 Gene Regulates Hair Cell Morphogenesis and Auditory Function during Zebrafish Development. Int J Mol Sci 2023; 24:10002. [PMID: 37373150 PMCID: PMC10297845 DOI: 10.3390/ijms241210002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
Damages of sensory hair cells (HCs) are mainly responsible for sensorineural hearing loss, however, its pathological mechanism is not yet fully understood due to the fact that many potential deafness genes remain unidentified. N-myc downstream-regulated gene 2 (ndrg2) is commonly regarded as a tumor suppressor and a cell stress-responsive gene extensively involved in cell proliferation, differentiation, apoptosis and invasion, while its roles in zebrafish HC morphogenesis and hearing remains unclear. Results of this study suggested that ndrg2 was highly expressed in the HCs of the otic vesicle and neuromasts via in situ hybridization and single-cell RNA sequencing. Ndrg2 loss-of-function larvae showed decreased crista HCs, shortened cilia, and reduced neuromasts and functional HCs, which could be rescued by the microinjection of ndrg2 mRNA. Moreover, ndrg2 deficiency induced attenuated startle response behaviors to sound vibration stimuli. Mechanistically, there were no detectable HC apoptosis and supporting cell changes in the ndrg2 mutants, and HCs were capable of recovering by blocking the Notch signaling pathway, suggesting that ndrg2 was implicated in HC differentiation mediated by Notch. Overall, our study demonstrates that ndrg2 plays crucial roles in HC development and auditory sensory function utilizing the zebrafish model, which provides new insights into the identification of potential deafness genes and regulation mechanism of HC development.
Collapse
Affiliation(s)
- Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (C.W.); (J.Y.); (Y.X.)
| | - Xin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226001, China;
| | - Hao Zheng
- School of Medicine, Nantong University, Nantong 226001, China;
| | - Jia Yao
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (C.W.); (J.Y.); (Y.X.)
| | - Yuqing Xiang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (C.W.); (J.Y.); (Y.X.)
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; (C.W.); (J.Y.); (Y.X.)
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Nantong University, Nantong 226001, China;
| |
Collapse
|
20
|
Yang S, Wang X, Zhou X, Hou L, Wu J, Zhang W, Li H, Gao C, Sun C. ncRNA-mediated ceRNA regulatory network: Transcriptomic insights into breast cancer progression and treatment strategies. Biomed Pharmacother 2023; 162:114698. [PMID: 37060661 DOI: 10.1016/j.biopha.2023.114698] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023] Open
Abstract
With the rapid development of next-generation sequencing technology, several studies have shown that ncRNAs can act as competitive endogenous RNAs (ceRNAs) and are involved in various biological processes, such as proliferation, differentiation, apoptosis, and migration of breast cancer (BC) cells, and plays an important role in BC progression as a molecular target for its diagnosis, treatment, prognosis, and differentiation of subtypes and age groups of BC patients. Based on the description of ceRNA-related biological functions, this study screened and sorted the sequencing analysis and experimental verification conclusions of BC-related ceRNAs and found that the ncRNAs mediated ceRNA networks can promote the development of BC by promoting the expression of genes related to BC proliferation, drug resistance, and apoptosis, inducing the production of epithelial-mesenchymal transition (EMT) to promote metastasis and activating cancer-related signaling pathways.
Collapse
Affiliation(s)
- Shu Yang
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Xiaomin Wang
- Special Medicine Department, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xintong Zhou
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lin Hou
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China
| | - Jibiao Wu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenfeng Zhang
- School of Traditional Chinese Medicine, Macau University of Science and Technology, Macao Special Administrative Region, China
| | - Huayao Li
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Chundi Gao
- College of Chinese Medicine, Weifang Medical University, Weifang, China
| | - Changgang Sun
- Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China; College of Chinese Medicine, Weifang Medical University, Weifang, China.
| |
Collapse
|
21
|
Wang X, Xiong H, Zhang P, Liu Y, Gao C, Zhou Z, Sun J, Diao M. Intratympanic microcrystals of dexamethasone and lipoic acid for the treatment of cisplatin-induced inner ear injury. Colloids Surf B Biointerfaces 2023; 223:113191. [PMID: 36739674 DOI: 10.1016/j.colsurfb.2023.113191] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Steroids (anti-inflammatory drugs) combined with antioxidants are frequently prescribed to treat cisplatin (CP)-induced hearing loss in the clinic. Compared to systemic administration of free drugs, local drug delivery systems offer better therapeutic qualities and patient compliance since they not only can bypass the blood-labyrinth barrier but also can perform sustained release. In this work, dexamethasone (DEX) and lipoic acid (LA) non-spherical microcrystals (MCs) were prepared without complicated chemical modification. Following a series of physical characterizations, including morphology, stability and injectability, dissolution and round window membrane distribution of MCs, DEX MCs, LA MCs and the simple mixture of DEX MCs + LA MCs (combination group) were administered in guinea pigs by intratympanic injection. We found that LA MCs enabled improvement of DEX absorption in the combination group compared to a single dose. In addition, no significant morphological changes or inflammatory responses were observed in cochlear tissue, indicating good biocompatibility. Finally, the combination group also demonstrated synergistic therapeutic effect for protecting hair cells against CP-induced damage. The local co delivery of DEX MCs and LA MCs offers a new strategy for the treatment of CP-induced inner ear injury since they provide sustained anti-inflammatory and antioxidant effects simultaneously.
Collapse
Affiliation(s)
- Xiangxiang Wang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Haixia Xiong
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Peili Zhang
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Ya Liu
- Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China
| | - Chang Gao
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China
| | - Zhimin Zhou
- Biomedical Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, China.
| | - Jianjun Sun
- Department of Otorhinolaryngology Head and Neck Surgery, Peking University International Hospital, Beijing 102206, China.
| | - Mingfang Diao
- Department of Otolaryngology, School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Endoscopic Ear Surgery, Senior Department of Otorhinolaryngology Head and Neck Surgery, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China; National Clinical Medical Research Center for Otolaryngology Diseases, Beijing 100048, China.
| |
Collapse
|
22
|
Schvartz-Leyzac KC, Colesa DJ, Swiderski DL, Raphael Y, Pfingst BE. Cochlear Health and Cochlear-implant Function. J Assoc Res Otolaryngol 2023; 24:5-29. [PMID: 36600147 PMCID: PMC9971430 DOI: 10.1007/s10162-022-00882-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/24/2022] [Indexed: 01/06/2023] Open
Abstract
The cochlear implant (CI) is widely considered to be one of the most innovative and successful neuroprosthetic treatments developed to date. Although outcomes vary, CIs are able to effectively improve hearing in nearly all recipients and can substantially improve speech understanding and quality of life for patients with significant hearing loss. A wealth of research has focused on underlying factors that contribute to success with a CI, and recent evidence suggests that the overall health of the cochlea could potentially play a larger role than previously recognized. This article defines and reviews attributes of cochlear health and describes procedures to evaluate cochlear health in humans and animal models in order to examine the effects of cochlear health on performance with a CI. Lastly, we describe how future biologic approaches can be used to preserve and/or enhance cochlear health in order to maximize performance for individual CI recipients.
Collapse
Affiliation(s)
- Kara C Schvartz-Leyzac
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
- Department of Otolaryngology-Head and Neck Surgery, Medical University of South Carolina, 135 Rutledge Ave, Charleston, SC, 29425, USA
| | - Deborah J Colesa
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Donald L Swiderski
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Yehoash Raphael
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA
| | - Bryan E Pfingst
- Department of Otolaryngology-Head and Neck Surgery, Michigan Medicine, Kresge Hearing Research Institute, University of Michigan, 1150 Medical Center Drive, Ann Arbor, MI, 48109-5616, USA.
| |
Collapse
|
23
|
Wang J, Wei L, Tian K, Xu M, Chen X, Chen F, Zha D, Xue T. NRG1/ErbB2 axis regulated mitochondrial function and antioxidant enzymes of neural stem cells in the cochlear nucleus partially through PGC-1α. Neurosci Lett 2023; 792:136942. [PMID: 36328292 DOI: 10.1016/j.neulet.2022.136942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 10/24/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Neuregulin-1 (NRG1)/erythroblastic leukaemia viral oncogene homologues 2 (ErbB2) pathway had been implicated in promoting differentiation and suppressing apoptosis of neuronal stem cells (NSCs) isolated from cochlear nucleus. In the current study, we aimed at determining the effects of NRG1/ErbB2 on mitochondrial (mt) function of NSCs. As expected, NRG1 increased the expression of mitofusin (Mfn) 1 and Mfn2 and decreased the expression of mitochondrial fission protein 1 (Fis1) and dynamin-related protein 1 (Drp1). However, after ErbB2 knockout, Mfn1 and Mfn2 expression decreased while Fis1 and Drp1 increased. Moreover, the increased mtDNA copy number and intracellular ATP level, elevated ATPase activities as well as decreased lactate production induced by NRG1 were partially reversed by ErbB2 knockout. Additionally, NRG1 treatment increased the activities of catalase, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) and upregulated the protein expression of catalase, manganese superoxide dismutase (MnSOD), peroxisome proliferator-activated receptor-γ coactlvator-1α (PGC-1α), nuclear respiratory factor 1 (NRF1) and transcription factor A, mitochondrial (TFAM), which were also reversed by ErbB2 knockout. Furthermore, PGC-1α overexpression partially reversed the above effects of ErbB2 knockout. In conclusion, these findings suggest that the promotion of mitochondrial function of NRG1/ErbB2 axis is at least in part mediated by PGC-1α in NSCs from cochlear nucleus.
Collapse
Affiliation(s)
- Jian Wang
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, P.R. China
| | - Li Wei
- Department of Obstetrics and Gynecology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, P.R. China
| | - Keyong Tian
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, P.R. China
| | - Min Xu
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, P.R. China
| | - Xiaodong Chen
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, P.R. China
| | - Fuquan Chen
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, P.R. China
| | - Dingjun Zha
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, P.R. China.
| | - Tao Xue
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi, P.R. China.
| |
Collapse
|
24
|
Jin X, Ji J, Sun Y. Preparation and characterization of morphine gelatine microspheres. Des Monomers Polym 2022; 26:1-14. [PMID: 36567726 PMCID: PMC9788704 DOI: 10.1080/15685551.2022.2158571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
Morphine is a widely used opioid analgesic. However, standard morphine dosages and administration methods exhibit a short half-life and pose a risk of respiratory depression. Sustained-release microspheres can deliver prolonged efficacy and reduce side effects. We present a new controlled-release morphine gelatine microsphere (MGM) prepared using an emulsification-crosslinking strategy. The gelatine microsphere design improves the bioavailability of morphine. And it not only increases the clinical analgesic efficacy but also the safety of clinical medication through a gradual, sustained release. Besides, we describe MGMs' preparation, release, pharmacodynamics, and pharmacokinetics. And the drug metabolism pathway. We calculate the release rate of morphine by measuring plasma morphine concentration over time and pharmacokinetic parameters. It optimized the manufacturing process of MGMs, which makes the analgesic effect have a longer duration. MGMs analgesic effect shows dose dependence. After they were administrated, MGMs were released more slowly. Peak concentration was reduced, and the relative bioavailability improved. It even reached 88.84%. Its pharmacokinetic process was consistent with the two-component first-order absorption model. MGMs deliver sustained-release and long-action pharmacokinetics. It shows design goals of improving drug bioavailability, prolonging drug residence time in vivo, and maintaining stable blood drug concentration.
Collapse
Affiliation(s)
- Xin Jin
- Anesthesiology Department, the Chinese PLA Air Force Medical Center, Beijing, Hebei, China
| | - Jun Ji
- Anesthesiology Department, the Chinese PLA Air Force Medical Center, Beijing, Hebei, China
| | - Yonghai Sun
- Department of Comprehensive Treatment, the Second Medical Center of the Chinese PLA General Hospital, Beijing, Hebei, China
| |
Collapse
|
25
|
Robillard KN, de Vrieze E, van Wijk E, Lentz JJ. Altering gene expression using antisense oligonucleotide therapy for hearing loss. Hear Res 2022; 426:108523. [PMID: 35649738 DOI: 10.1016/j.heares.2022.108523] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 04/20/2022] [Accepted: 05/14/2022] [Indexed: 12/12/2022]
Abstract
Hearing loss affects more than 430 million people, worldwide, and is the third most common chronic physical condition in the United States and Europe (GBD Hearing Loss Collaborators, 2021; NIOSH, 2021; WHO, 2021). The loss of hearing significantly impacts motor and cognitive development, communication, education, employment, and overall quality of life. The inner ear houses the sensory organs for both hearing and balance and provides an accessible target for therapeutic delivery. Antisense oligonucleotides (ASOs) use various mechanisms to manipulate gene expression and can be tailor-made to treat disorders with defined genetic targets. In this review, we discuss the preclinical advancements within the field of the highly promising ASO-based therapies for hereditary hearing loss disorders. Particular focus is on ASO mechanisms of action, preclinical studies on ASO treatments of hearing loss, timing of therapeutic intervention, and delivery routes to the inner ear.
Collapse
Affiliation(s)
| | - Erik de Vrieze
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL
| | - Erwin van Wijk
- Department of Otorhinolaryngology, RUMC, Geert Grooteplein 10, Route 855, GA, Nijmegen 6525, the Netherlands; Donders Institute for Brain, Cognition, and Behavior, RUMC, Nijmegen, NL.
| | - Jennifer J Lentz
- Neuroscience Center of Excellence, LSUHSC, New Orleans, LA, USA; Department of Otorhinolaryngology, LSUHSC, 2020 Gravier Street, Lions Building, Room 795, New Orleans, LA, USA.
| |
Collapse
|
26
|
Hearing loss drug discovery and medicinal chemistry: Current status, challenges, and opportunities. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:1-91. [PMID: 35753714 DOI: 10.1016/bs.pmch.2022.05.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Hearing loss is a severe high unmet need condition affecting more than 1.5 billion people globally. There are no licensed medicines for the prevention, treatment or restoration of hearing. Prosthetic devices, such as hearing aids and cochlear implants, do not restore natural hearing and users struggle with speech in the presence of background noise. Hearing loss drug discovery is immature, and small molecule approaches include repurposing existing drugs, combination therapeutics, late-stage discovery optimisation of known chemotypes for identified molecular targets of interest, phenotypic tissue screening and high-throughput cell-based screening. Hearing loss drug discovery requires the integration of specialist therapeutic area biology and otology clinical expertise. Small molecule drug discovery projects in the global clinical portfolio for hearing loss are here collated and reviewed. An overview is provided of human hearing, inner ear anatomy, inner ear delivery, types of hearing loss and hearing measurement. Small molecule experimental drugs in clinical development for hearing loss are reviewed, including their underpinning biology, discovery strategy and activities, medicinal chemistry, calculated physicochemical properties, pharmacokinetics and clinical trial status. SwissADME BOILED-Egg permeability modelling is applied to the molecules reviewed, and these results are considered. Non-small molecule hearing loss assets in clinical development are briefly noted in this review. Future opportunities in hearing loss drug discovery for human genomics and targeted protein degradation are highlighted.
Collapse
|
27
|
Chen Y, Gu J, Liu Y, Xu K, Song J, Wang X, Yu D, Wu H. Epigallocatechin gallate-loaded tetrahedral DNA nanostructures as a novel inner ear drug delivery system. NANOSCALE 2022; 14:8000-8011. [PMID: 35587814 DOI: 10.1039/d1nr07921b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The study of drug delivery systems to the inner ear is a crucial but challenging field. The sensory organ (in the inner ear) is protected by the petrous bone labyrinth and the membranous labyrinth, both of which need to be overcome during the drug delivery process. The requirements for such a delivery system include small size, appropriate flexibility and biodegradability. DNA nanostructures, biomaterials that can arrange multiple functional components with nanometer precision, exhibit characteristics that are compatible with the requirements for inner ear drug delivery. Herein, we report the development of a novel inner ear drug delivery system based on epigallocatechin gallate (EGCG)-loaded tetrahedral DNA nanostructures (TDNs, EGCG@TDNs). The TDNs self-assembled via base-pairing of four single-stranded DNA constructs and EGCG was loaded into the TDNs through non-covalent interactions. Cy5-labeled TDNs (Cy5-TDNs) were significantly internalized by the House Ear Institute-Organ of Corti 1 cell line, and this endocytosis was energy-, clathrin-, and micropinocytosis-dependent. Cy5-TDNs penetrated the round window membrane (RWM) rapidly in vivo. Local application of EGCG@TDNs onto the RWM of guinea pigs in a single dose continuously released EGCG over 4 hours. Drug concentrations in the perilymph were significantly elevated compared with the administration of free EGCG at the same dose. EGCG@TDNs were found to have favorable biocompatibility and strongly affected the RSL3-induced down-regulation of GPX4 and the generation of reactive oxygen species, on the basis of 2',7'-dichlorodihydrofluorescein diacetate staining. JC-1 staining suggested that EGCG@TDNs successfully reversed the decrease in mitochondrial membrane potential induced by RSL-3 in vitro and rescued cells from apoptosis, as demonstrated by the analysis of Annexin V-FITC/PI staining. Further functional studies showed that a locally administered single-dose of EGCG@TDNs effectively preserved spiral ganglion cells in C57/BL6 mice after noise-induced hearing loss. Hearing loss at 5.6 and 8 kHz frequencies was significantly attenuated when compared with the control EGCG formulation. Histological analyses indicated that the administration of TDNs and EGCG@TDNs did not induce local inflammatory responses. These favorable histological and functional effects resulting from the delivery of EGCG by TDNs through a local intratympanic injection suggest potential for therapeutic benefit in clinical applications.
Collapse
Affiliation(s)
- Yuming Chen
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Jiayi Gu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Ke Xu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Institute of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences; The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, People's Republic of China
| | - Xueling Wang
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| | - Dehong Yu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Hao Wu
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China.
- Ear Institute, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, People's Republic of China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases(14DZ2260300), Shanghai 200011, People's Republic of China
| |
Collapse
|
28
|
Rauterkus G, Maxwell AK, Kahane JB, Lentz JJ, Arriaga MA. Conversations in Cochlear Implantation: The Inner Ear Therapy of Today. Biomolecules 2022; 12:649. [PMID: 35625577 PMCID: PMC9138212 DOI: 10.3390/biom12050649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
As biomolecular approaches for hearing restoration in profound sensorineural hearing loss evolve, they will be applied in conjunction with or instead of cochlear implants. An understanding of the current state-of-the-art of this technology, including its advantages, disadvantages, and its potential for delivering and interacting with biomolecular hearing restoration approaches, is helpful for designing modern hearing-restoration strategies. Cochlear implants (CI) have evolved over the last four decades to restore hearing more effectively, in more people, with diverse indications. This evolution has been driven by advances in technology, surgery, and healthcare delivery. Here, we offer a practical treatise on the state of cochlear implantation directed towards developing the next generation of inner ear therapeutics. We aim to capture and distill conversations ongoing in CI research, development, and clinical management. In this review, we discuss successes and physiological constraints of hearing with an implant, common surgical approaches and electrode arrays, new indications and outcome measures for implantation, and barriers to CI utilization. Additionally, we compare cochlear implantation with biomolecular and pharmacological approaches, consider strategies to combine these approaches, and identify unmet medical needs with cochlear implants. The strengths and weaknesses of modern implantation highlighted here can mark opportunities for continued progress or improvement in the design and delivery of the next generation of inner ear therapeutics.
Collapse
Affiliation(s)
- Grant Rauterkus
- Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Anne K. Maxwell
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jacob B. Kahane
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
| | - Jennifer J. Lentz
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Moises A. Arriaga
- Department of Otorhinolaryngology and Biocommunications, Division of Neurotology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA; (A.K.M.); (J.B.K.)
- Hearing and Balance Center, Our Lady of the Lake Regional Medical Center, Baton Rouge, LA 70808, USA
- Hearing Balance Center, Culicchia Neurological Clinic, New Orleans, LA 70112, USA
| |
Collapse
|
29
|
Mahshid SS, Higazi AM, Ogier JM, Dabdoub A. Extracellular Biomarkers of Inner Ear Disease and Their Potential for Point-of-Care Diagnostics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104033. [PMID: 34957708 PMCID: PMC8948604 DOI: 10.1002/advs.202104033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/09/2021] [Indexed: 06/14/2023]
Abstract
Rapid diagnostic testing has become a mainstay of patient care, using easily obtained samples such as blood or urine to facilitate sample analysis at the point-of-care. These tests rely on the detection of disease or organ-specific biomarkers that have been well characterized for a particular disorder. Currently, there is no rapid diagnostic test for hearing loss, which is one of the most prevalent sensory disorders in the world. In this review, potential biomarkers for inner ear-related disorders, their detection, and quantification in bodily fluids are described. The authors discuss lesion-specific changes in cell-free deoxyribonucleic acids (DNAs), micro-ribonucleic acids (microRNAs), proteins, and metabolites, in addition to recent biosensor advances that may facilitate rapid and precise detection of these molecules. Ultimately, these biomarkers may be used to provide accurate diagnostics regarding the site of damage in the inner ear, providing practical information for individualized therapy and assessment of treatment efficacy in the future.
Collapse
Affiliation(s)
- Sahar Sadat Mahshid
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Aliaa Monir Higazi
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Clinical and Chemical PathologyMinia UniversityMinia61519Egypt
| | - Jacqueline Michelle Ogier
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
| | - Alain Dabdoub
- Biological SciencesSunnybrook Research InstituteSunnybrook Health Sciences CentreTorontoONM4N 3M5Canada
- Department of Otolaryngology–Head & Neck SurgeryUniversity of TorontoTorontoONM5G 2C4Canada
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONM5S 1A8Canada
| |
Collapse
|
30
|
Aragona M, Porcino C, Guerrera MC, Montalbano G, Laurà R, Cometa M, Levanti M, Abbate F, Cobo T, Capitelli G, Vega JA, Germanà A. The BDNF/TrkB Neurotrophin System in the Sensory Organs of Zebrafish. Int J Mol Sci 2022; 23:ijms23052621. [PMID: 35269763 PMCID: PMC8910639 DOI: 10.3390/ijms23052621] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/21/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) was discovered in the last century, and identified as a member of the neurotrophin family. BDNF shares approximately 50% of its amino acid with other neurotrophins such as NGF, NT-3 and NT-4/5, and its linear amino acid sequences in zebrafish (Danio rerio) and human are 91% identical. BDNF functions can be mediated by two categories of receptors: p75NTR and Trk. Intriguingly, BDNF receptors were highly conserved in the process of evolution, as were the other NTs’ receptors. In this review, we update current knowledge about the distribution and functions of the BDNF-TrkB system in the sensory organs of zebrafish. In fish, particularly in zebrafish, the distribution and functions of BDNF and TrkB in the brain have been widely studied. Both components of the system, associated or segregated, are also present outside the central nervous system, especially in sensory organs including the inner ear, lateral line system, retina, taste buds and olfactory epithelium.
Collapse
Affiliation(s)
- Marialuisa Aragona
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Caterina Porcino
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Cristina Guerrera
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Giuseppe Montalbano
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Rosaria Laurà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Marzio Cometa
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Maria Levanti
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Francesco Abbate
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
| | - Teresa Cobo
- Departamento de Cirugía y Especialidades Médico-Quirúrgicas, Universidad de Oviedo, 33006 Oviedo, Spain;
| | - Gabriel Capitelli
- Faculty of Medical Sciences, University of Buenos Aires, Viamonte 1053, CABA, Buenos Aires 1056, Argentina;
| | - José A. Vega
- Grupo SINPOS, Universidad de Oviedo, 33003 Oviedo, Spain;
- Departamento de Morfología y Biología Celular, Universidad de Oviedo, 33006 Oviedo, Spain
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 7500912, Chile
| | - Antonino Germanà
- Zebrafish Neuromorphology Lab, Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (M.A.); (C.P.); (M.C.G.); (G.M.); (R.L.); (M.C.); (M.L.); (F.A.)
- Correspondence:
| |
Collapse
|
31
|
Lin Q, Guo Q, Zhu M, Zhang J, Chen B, Wu T, Jiang W, Tang W. Application of Nanomedicine in Inner Ear Diseases. Front Bioeng Biotechnol 2022; 9:809443. [PMID: 35223817 PMCID: PMC8873591 DOI: 10.3389/fbioe.2021.809443] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
The treatment of inner ear disorders always remains a challenge for researchers. The presence of various physiological barriers, primarily the blood–labyrinth barrier (BLB), limits the accessibility of the inner ear and hinders the efficacy of various drug therapies. Yet despite recent advances in the cochlea for repair and regeneration, there are currently no pharmacological or biological interventions for hearing loss. Current research focuses on the localized drug-, gene-, and cell-based therapies. Drug delivery based on nanotechnology represents an innovative strategy to improve inner ear treatments. Materials with specific nanostructures not only exhibit a unique ability to encapsulate and transport therapeutics to the inner ear but also endow specific targeting properties to auditory hair cells as well as the stabilization and sustained drug release. Along with this, some alternative routes, like intratympanic drug delivery, can also offer a better means to access the inner ear without exposure to the BLB. This review discusses a variety of nano-based drug delivery systems to the ear for treating inner ear diseases. The main factors affecting the curative efficacy of nanomaterials are also discussed. With a deeper understanding of the link between these crucial factors and the clinical effect of nanomaterials, it paves the way for the optimization of the therapeutic activity of nanocarriers.
Collapse
Affiliation(s)
- Qianyu Lin
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Qiong Guo
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Mingchao Zhu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical University, Nanjing, China
| | - Juanli Zhang
- Henan Institute of Medical Device Inspection, Zhengzhou, China
| | - Bei Chen
- Department of Otology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tingting Wu
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wei Jiang, ; Wenxue Tang,
| | - Wenxue Tang
- Department of Molecular Pathology, Application Center for Precision Medicine, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Center for Precision Medicine, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, China
- *Correspondence: Wei Jiang, ; Wenxue Tang,
| |
Collapse
|
32
|
Niu L, Liu L, Tian J, Chen W, Zhang C, Lan X. Genetic screening of common genetic deafness in 60,391 women of childbearing age and intervention of birth defects. Arch Med Sci 2022; 20:113-123. [PMID: 38414474 PMCID: PMC10895943 DOI: 10.5114/aoms/146024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/22/2022] [Indexed: 02/29/2024] Open
Abstract
Introduction At least 60% of cases of severe hearing loss result from genetic factors. In this study genetic screening was carried out for common genetic deafness in women of childbearing age to prevent deafness and birth defects via providing genetic counseling and follow-up services for high-risk families. Material and methods In total 60,391 pre-pregnancy/early-gestation women who received treatment in second-level or above hospitals in Weihai from February 2017 to December 2019 were selected. Venous or peripheral blood was collected to make dried blood slices on filter paper to extract genomic DNA, and high-throughput sequencing was applied to detect 20 variant sites in 4 common deafness genes (GJB2, GJB3, SLC26A4 and mitochondrial 12S rRNA) in the Chinese population. The spouses of women with deafness gene variants were sequenced. Results In total 3,761 carriers with deafness gene variants were detected in 60,391 women of childbearing age, with a carrier rate of 6.2%. Among them, 1,739 women (2.88%) only carried GJB2 pathogenic variants. The carrying rate of c.235delC in GJB2 pathogenic variants was the highest at 2.08%. 1,553 women (2.58%) only carried SLC26A4 pathogenic variants. The carrying rate of c.919-2A>G in SLC26A4 pathogenic variants was the highest at 1.63%. 300 women (0.5%) only carried GJB3 variants, and 125 women (0.2%) carried the mitochondrial drug-sensitive gene variant. Conclusions This screening model will greatly reduce the birth rate of children with hearing disabilities and is an effective way to prevent newborn deafness. In addition, genetic screening provided the related knowledge of hereditary deafness, especially strengthening genetic counseling and the clinical decision making from the genetic screening.
Collapse
Affiliation(s)
- Linyuan Niu
- Weihai Second Municipal Hospital Affiliated to Qingdao University, Weihai Maternal and Child Health Hospital, Weihai, China
| | - Liqin Liu
- Weihai Second Municipal Hospital Affiliated to Qingdao University, Weihai Maternal and Child Health Hospital, Weihai, China
| | - Jinjun Tian
- Weihai Second Municipal Hospital Affiliated to Qingdao University, Weihai Maternal and Child Health Hospital, Weihai, China
| | - Wei Chen
- Weihai Second Municipal Hospital Affiliated to Qingdao University, Weihai Maternal and Child Health Hospital, Weihai, China
| | - Chunxiao Zhang
- Weihai Second Municipal Hospital Affiliated to Qingdao University, Weihai Maternal and Child Health Hospital, Weihai, China
| | - Xinqiang Lan
- Weihai Second Municipal Hospital Affiliated to Qingdao University, Weihai Maternal and Child Health Hospital, Weihai, China
| |
Collapse
|
33
|
Manousiouthakis E, Park J, Hardy JG, Lee JY, Schmidt CE. Towards the translation of electroconductive organic materials for regeneration of neural tissues. Acta Biomater 2022; 139:22-42. [PMID: 34339871 DOI: 10.1016/j.actbio.2021.07.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/13/2022]
Abstract
Carbon-based conductive and electroactive materials (e.g., derivatives of graphene, fullerenes, polypyrrole, polythiophene, polyaniline) have been studied since the 1970s for use in a broad range of applications. These materials have electrical properties comparable to those of commonly used metals, while providing other benefits such as flexibility in processing and modification with biologics (e.g., cells, biomolecules), to yield electroactive materials with biomimetic mechanical and chemical properties. In this review, we focus on the uses of these electroconductive materials in the context of the central and peripheral nervous system, specifically recent studies in the peripheral nerve, spinal cord, brain, eye, and ear. We also highlight in vivo studies and clinical trials, as well as a snapshot of emerging classes of electroconductive materials (e.g., biodegradable materials). We believe such specialized electrically conductive biomaterials will clinically impact the field of tissue regeneration in the foreseeable future. STATEMENT OF SIGNIFICANCE: This review addresses the use of conductive and electroactive materials for neural tissue regeneration, which is of significant interest to a broad readership, and of particular relevance to the growing community of scientists, engineers and clinicians in academia and industry who develop novel medical devices for tissue engineering and regenerative medicine. The review covers the materials that may be employed (primarily focusing on derivatives of fullerenes, graphene and conjugated polymers) and techniques used to analyze materials composed thereof, followed by sections on the application of these materials to nervous tissues (i.e., peripheral nerve, spinal cord, brain, optical, and auditory tissues) throughout the body.
Collapse
Affiliation(s)
- Eleana Manousiouthakis
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States
| | - Junggeon Park
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - John G Hardy
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, United Kingdom; Materials Science Institute, Lancaster University, Lancaster LA1 4YB, United Kingdom.
| | - Jae Young Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.
| | - Christine E Schmidt
- Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville 32611, FL, United States.
| |
Collapse
|
34
|
Li M, Mu Y, Cai H, Wu H, Ding Y. Application of New Materials in Auditory Disease Treatment. Front Cell Neurosci 2022; 15:831591. [PMID: 35173583 PMCID: PMC8841849 DOI: 10.3389/fncel.2021.831591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 12/22/2021] [Indexed: 11/16/2022] Open
Abstract
Auditory diseases are disabling public health problems that afflict a significant number of people worldwide, and they remain largely incurable until now. Driven by continuous innovation in the fields of chemistry, physics, and materials science, novel materials that can be applied to hearing diseases are constantly emerging. In contrast to conventional materials, new materials are easily accessible, inexpensive, non-invasive, with better acoustic therapy effects and weaker immune rejection after implantation. When new materials are used to treat auditory diseases, the wound healing, infection prevention, disease recurrence, hair cell regeneration, functional recovery, and other aspects have been significantly improved. Despite these advances, clinical success has been limited, largely due to issues regarding a lack of effectiveness and safety. With ever-developing scientific research, more novel materials will be facilitated into clinical use in the future.
Collapse
|
35
|
Wang M, Dong Y, Gao S, Zhong Z, Cheng C, Qiang R, Zhang Y, Shi X, Qian X, Gao X, Guan B, Yu C, Yu Y, Chai R. Hippo/YAP signaling pathway protects against neomycin-induced hair cell damage in the mouse cochlea. Cell Mol Life Sci 2022; 79:79. [PMID: 35044530 PMCID: PMC8770373 DOI: 10.1007/s00018-021-04029-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/23/2021] [Accepted: 11/08/2021] [Indexed: 12/18/2022]
Abstract
AbstractThe Hippo/Yes-associated protein (YAP) signaling pathway has been shown to be able to maintain organ size and homeostasis by regulating cell proliferation, differentiation, and apoptosis. The abuse of aminoglycosides is one of the main causes of sensorineural hearing loss (SSNHL). However, the role of the Hippo/YAP signaling pathway in cochlear hair cell (HC) damage protection in the auditory field is still unclear. In this study, we used the YAP agonist XMU-MP-1 (XMU) and the inhibitor Verteporfin (VP) to regulate the Hippo/YAP signaling pathway in vitro. We showed that YAP overexpression reduced neomycin-induced HC loss, while downregulated YAP expression increased HC vulnerability after neomycin exposure in vitro. We next found that activation of YAP expression inhibited C-Abl-mediated cell apoptosis, which led to reduced HC loss. Many previous studies have reported that the level of reactive oxygen species (ROS) is significantly increased in cochlear HCs after neomycin exposure. In our study, we also found that YAP overexpression significantly decreased ROS accumulation, while downregulation of YAP expression increased ROS accumulation. In summary, our results demonstrate that the Hippo/YAP signaling pathway plays an important role in reducing HC injury and maintaining auditory function after aminoglycoside exposure. YAP overexpression could protect against neomycin-induced HC loss by inhibiting C-Abl-mediated cell apoptosis and decreasing ROS accumulation, suggesting that YAP could be a novel therapeutic target for aminoglycosides-induced sensorineural hearing loss in the clinic.
Collapse
Affiliation(s)
- Maohua Wang
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-Sen University, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China
| | - Ying Dong
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Song Gao
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Zhenhua Zhong
- Department of Otolaryngology, Head and Neck Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225000, China
| | - Cheng Cheng
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Ruiying Qiang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yuhua Zhang
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xinyi Shi
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Xiaoyun Qian
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Xia Gao
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China
| | - Bing Guan
- Department of Otolaryngology, Head and Neck Surgery, Clinical Medical College, Yangzhou University, Yangzhou, 225001, China.
| | - Chenjie Yu
- Department of Otolaryngology, Head and Neck Surgery, Affiliated Drum Tower Hospital of Nanjing University Medical School, Jiangsu Provincial Key Medical Discipline (Laboratory), Nanjing, 210008, China.
| | - Youjun Yu
- Department of Otolaryngology, Head and Neck Surgery, The First People's Hospital of Foshan, Affiliated Foshan Hospital of Sun Yat-Sen University, Hearing and Balance Medical Engineering Technology Center of Guangdong, Foshan, 528000, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China.
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
- Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
36
|
Zhang L, Chen S, Sun Y. Mechanism and Prevention of Spiral Ganglion Neuron Degeneration in the Cochlea. Front Cell Neurosci 2022; 15:814891. [PMID: 35069120 PMCID: PMC8766678 DOI: 10.3389/fncel.2021.814891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/09/2021] [Indexed: 12/14/2022] Open
Abstract
Sensorineural hearing loss (SNHL) is one of the most prevalent sensory deficits in humans, and approximately 360 million people worldwide are affected. The current treatment option for severe to profound hearing loss is cochlear implantation (CI), but its treatment efficacy is related to the survival of spiral ganglion neurons (SGNs). SGNs are the primary sensory neurons, transmitting complex acoustic information from hair cells to second-order sensory neurons in the cochlear nucleus. In mammals, SGNs have very limited regeneration ability, and SGN loss causes irreversible hearing loss. In most cases of SNHL, SGN damage is the dominant pathogenesis, and it could be caused by noise exposure, ototoxic drugs, hereditary defects, presbycusis, etc. Tremendous efforts have been made to identify novel treatments to prevent or reverse the damage to SGNs, including gene therapy and stem cell therapy. This review summarizes the major causes and the corresponding mechanisms of SGN loss and the current protection strategies, especially gene therapy and stem cell therapy, to promote the development of new therapeutic methods.
Collapse
Affiliation(s)
- Li Zhang
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Sen Chen
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Otorhinolaryngology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
37
|
Martin MJ, Spitzmaul G, Lassalle V. Novel insights and perspectives for the diagnosis and treatment of hearing loss through the implementation of magnetic nanotheranostics. ChemMedChem 2022; 17:e202100685. [PMID: 34978134 DOI: 10.1002/cmdc.202100685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/29/2021] [Indexed: 11/06/2022]
Abstract
Hearing loss (HL) is a sensory disability that affects 5% of the world's population. HL predominantly involves damage and death to the cochlear cells. Currently, there is no cure or specific medications for HL. Furthermore, the arrival of therapeutic molecules to the inner ear represents a challenge due to the limited blood supply to the sensory cells and the poor penetration of the blood-cochlear barrier. Superparamagnetic iron oxide nanoparticles (SPIONs) perfectly coordinate with the requirements for controlled drug delivery along with magnetic resonance imaging (MRI) diagnostic and monitoring capabilities. Besides, they are suitable tools to be applied to HL, expecting to be more effective and non-invasive. So far, the published literature only refers to some preclinical studies of SPIONs for HL management. This contribution aims to provide an integrated view of the best options and strategies that can be considered for future research punctually in the field of magnetic nanotechnology applied to HL.
Collapse
Affiliation(s)
- Maria Julia Martin
- INQUISUR: Instituto de Quimica del Sur, Departamento de Química, Universidad Nacional del Sur (CONICET-UNS), Alem 1253, 8000, Bahía Blanca, ARGENTINA
| | - Guillermo Spitzmaul
- Universidad Nacional del Sur Departamento de Biología Bioquímica y Farmacia: Universidad Nacional del Sur Departamento de Biologia Bioquimica y Farmacia, Departamento de Biología, Bioquímica Y farmacia, Camino La Carrindanga Km 7, 8000, Bahía Blanca, ARGENTINA
| | - Verónica Lassalle
- INQUISUR: Instituto de Quimica del Sur, Química, Av Alem 1253, 8000, Bahía Blanca, ARGENTINA
| |
Collapse
|
38
|
Shuster B, Casserly R, Lipford E, Olszewski R, Milon B, Viechweg S, Davidson K, Enoch J, McMurray M, Rutherford MA, Ohlemiller KK, Hoa M, Depireux DA, Mong JA, Hertzano R. Estradiol Protects against Noise-Induced Hearing Loss and Modulates Auditory Physiology in Female Mice. Int J Mol Sci 2021; 22:12208. [PMID: 34830090 PMCID: PMC8620009 DOI: 10.3390/ijms222212208] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Recent studies have identified sex-differences in auditory physiology and in the susceptibility to noise-induced hearing loss (NIHL). We hypothesize that 17β-estradiol (E2), a known modulator of auditory physiology, may underpin sex-differences in the response to noise trauma. Here, we gonadectomized B6CBAF1/J mice and used a combination of electrophysiological and histological techniques to study the effects of estrogen replacement on peripheral auditory physiology in the absence of noise exposure and on protection from NIHL. Functional analysis of auditory physiology in gonadectomized female mice revealed that E2-treatment modulated the peripheral response to sound in the absence of changes to the endocochlear potential compared to vehicle-treatment. E2-replacement in gonadectomized female mice protected against hearing loss following permanent threshold shift (PTS)- and temporary threshold shift (TTS)-inducing noise exposures. Histological analysis of the cochlear tissue revealed that E2-replacement mitigated outer hair cell loss and cochlear synaptopathy following noise exposure compared to vehicle-treatment. Lastly, using fluorescent in situ hybridization, we demonstrate co-localization of estrogen receptor-2 with type-1C, high threshold spiral ganglion neurons, suggesting that the observed protection from cochlear synaptopathy may occur through E2-mediated preservation of these neurons. Taken together, these data indicate the estrogen signaling pathways may be harnessed for the prevention and treatment of NIHL.
Collapse
Affiliation(s)
- Benjamin Shuster
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Ryan Casserly
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Erika Lipford
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Rafal Olszewski
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | - Béatrice Milon
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Shaun Viechweg
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Kanisa Davidson
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Jennifer Enoch
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Mark McMurray
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
| | - Mark A. Rutherford
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Kevin K. Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO 63110, USA; (M.A.R.); (K.K.O.)
| | - Michael Hoa
- Auditory Development and Restoration Program, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA; (R.O.); (M.H.)
| | | | - Jessica A. Mong
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (S.V.); (K.D.); (J.E.); (J.A.M.)
| | - Ronna Hertzano
- Department of Otorhinolaryngology—Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (B.S.); (R.C.); (E.L.); (B.M.); (M.M.)
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
39
|
Abstract
PURPOSE OF REVIEW Treatment of auditory dysfunction is dependent on inner ear drug delivery, with microtechnologies playing an increasingly important role in cochlear access and pharmacokinetic profile control. This review examines recent developments in the field for clinical and animal research environments. RECENT FINDINGS Micropump technologies are being developed for dynamic control of flow rates with refillable reservoirs enabling timed delivery of multiple agents for protection or regeneration therapies. These micropumps can be combined with cochlear implants with integral catheters or used independently with cochleostomy or round window membrane (RWM) delivery modalities for therapy development in animal models. Sustained release of steroids with coated cochlear implants remains an active research area with first-time-in-human demonstration of reduced electrode impedances. Advanced coatings containing neurotrophin producing cells have enhanced spiral ganglion neuron survival in animal models, and have proven safe in a human study. Microneedles have emerged for controlled microperforation of the RWM for significant enhancement in permeability, combinable with emerging matrix formulations that optimize biological interaction and drug release kinetics. SUMMARY Microsystem technologies are providing enhanced and more controlled access to the inner ear for advanced drug delivery approaches, alone and in conjunction with cochlear implants.
Collapse
|
40
|
Sun F, Zhou K, Tian KY, Zhang XY, Liu W, Wang J, Zhong CP, Qiu JH, Zha DJ. Atrial Natriuretic Peptide Promotes Neurite Outgrowth and Survival of Cochlear Spiral Ganglion Neurons in vitro Through NPR-A/cGMP/PKG Signaling. Front Cell Dev Biol 2021; 9:681421. [PMID: 34268307 PMCID: PMC8276373 DOI: 10.3389/fcell.2021.681421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/10/2021] [Indexed: 01/22/2023] Open
Abstract
Sensorineural hearing loss (SNHL) is a dominant public health issue affecting millions of people around the globe, which is correlated with the irreversible deterioration of the hair cells and spiral ganglion neurons (SGNs) within the cochlea. Strategies using bioactive molecules that regulate neurite regeneration and neuronal survival to reestablish connections between auditory epithelium or implanted electrodes and SGN neurites would become attractive therapeutic candidates for SNHL. As an intracellular second messenger, cyclic guanosine-3’,5’-monophosphate (cGMP) can be synthesized through activation of particulate guanylate cyclase-coupled natriuretic peptide receptors (NPRs) by natriuretic peptides, which in turn modulates multiple aspects of neuronal functions including neuronal development and neuronal survival. As a cardiac-derived hormone, atrial natriuretic peptide (ANP), and its specific receptors (NPR-A and NPR-C) are broadly expressed in the nervous system where they might be involved in the maintenance of diverse neural functions. Despite former literatures and our reports indicating the existence of ANP and its receptors within the inner ear, particularly in the spiral ganglion, their potential regulatory mechanisms underlying functional properties of auditory neurons are still incompletely understood. Our recently published investigation revealed that ANP could promote the neurite outgrowth of SGNs by activating NPR-A/cGMP/PKG cascade in a dose-dependent manner. In the present research, the influence of ANP and its receptor-mediated downstream signaling pathways on neurite outgrowth, neurite attraction, and neuronal survival of SGNs in vitro was evaluated by employing cultures of organotypic explant and dissociated neuron from postnatal rats. Our data indicated that ANP could support and attract neurite outgrowth of SGNs and possess a high capacity to improve neuronal survival of SGNs against glutamate-induced excitotoxicity by triggering the NPR-A/cGMP/PKG pathway. The neuroregenerative and neuroprotective effects of ANP/NPRA/cGMP/PKG-dependent signaling on SGNs would represent an attractive therapeutic candidate for hearing impairment.
Collapse
Affiliation(s)
- Fei Sun
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke Zhou
- Department of Laboratory Medicine, Institute of Clinical Laboratory Medicine of PLA, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ke-Yong Tian
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Xin-Yu Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Wei Liu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, The Affiliated Children Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Cui-Ping Zhong
- Department of Otolaryngology-Head and Neck Surgery, The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Jian-Hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Ding-Jun Zha
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
41
|
Yang Q, Shi H, Quan Y, Chen Q, Li W, Wang L, Wang Y, Ji Z, Yin SK, Shi HB, Xu H, Gao WQ. Stepwise Induction of Inner Ear Hair Cells From Mouse Embryonic Fibroblasts via Mesenchymal- to-Epithelial Transition and Formation of Otic Epithelial Cells. Front Cell Dev Biol 2021; 9:672406. [PMID: 34222247 PMCID: PMC8248816 DOI: 10.3389/fcell.2021.672406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/17/2021] [Indexed: 11/30/2022] Open
Abstract
Although embryonic stem cells or induced pluripotent stem cells are able to differentiate into inner ear hair cells (HCs), they have drawbacks limiting their clinical application, including a potential risk of tumourigenicity. Direct reprogramming of fibroblasts to inner ear HCs could offer an alternative solution to this problem. Here, we present a stepwise guidance protocol to induce mouse embryonic fibroblasts to differentiate into inner ear HC-like cells (HCLs) via mesenchymal-to-epithelial transition and then acquisition of otic sensory epithelial cell traits by overexpression of three key transcription factors. These induced HCLs express multiple HC-specific proteins, display protrusions reminiscent of ciliary bundle structures, respond to voltage stimulation, form functional mechanotransduction channels, and exhibit a transcriptional profile of HC signature. Together, our work provides a new method to produce functional HCLs in vitro, which may have important implications for studies of HC development, drug discovery, and cell replacement therapy for hearing loss.
Collapse
Affiliation(s)
- Qiong Yang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haosong Shi
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Yizhou Quan
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Chen
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Wang Li
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Li Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yonghui Wang
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhongzhong Ji
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Shan-Kai Yin
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Bo Shi
- Department of Otorhinolaryngology, The Sixth People’s Hospital of Shanghai, Shanghai Jiao Tong University, Shanghai, China
| | - Huiming Xu
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei-Qiang Gao
- State Key Laboratory of Oncogenes and Related Genes, Renji-Med X Stem Cell Research Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- School of Biomedical Engineering and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
42
|
Ding D, Jiang H, Manohar S, Liu X, Li L, Chen GD, Salvi R. Spatiotemporal Developmental Upregulation of Prestin Correlates With the Severity and Location of Cyclodextrin-Induced Outer Hair Cell Loss and Hearing Loss. Front Cell Dev Biol 2021; 9:643709. [PMID: 34109172 PMCID: PMC8181405 DOI: 10.3389/fcell.2021.643709] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/08/2021] [Indexed: 11/24/2022] Open
Abstract
2-Hyroxypropyl-beta-cyclodextrin (HPβCD) is being used to treat Niemann-Pick C1, a fatal neurodegenerative disease caused by abnormal cholesterol metabolism. HPβCD slows disease progression, but unfortunately causes severe, rapid onset hearing loss by destroying the outer hair cells (OHC). HPβCD-induced damage is believed to be related to the expression of prestin in OHCs. Because prestin is postnatally upregulated from the cochlear base toward the apex, we hypothesized that HPβCD ototoxicity would spread from the high-frequency base toward the low-frequency apex of the cochlea. Consistent with this hypothesis, cochlear hearing impairments and OHC loss rapidly spread from the high-frequency base toward the low-frequency apex of the cochlea when HPβCD administration shifted from postnatal day 3 (P3) to P28. HPβCD-induced histopathologies were initially confined to the OHCs, but between 4- and 6-weeks post-treatment, there was an unexpected, rapid and massive expansion of the lesion to include most inner hair cells (IHC), pillar cells (PC), peripheral auditory nerve fibers, and spiral ganglion neurons at location where OHCs were missing. The magnitude and spatial extent of HPβCD-induced OHC death was tightly correlated with the postnatal day when HPβCD was administered which coincided with the spatiotemporal upregulation of prestin in OHCs. A second, massive wave of degeneration involving IHCs, PC, auditory nerve fibers and spiral ganglion neurons abruptly emerged 4–6 weeks post-HPβCD treatment. This secondary wave of degeneration combined with the initial OHC loss results in a profound, irreversible hearing loss.
Collapse
Affiliation(s)
- Dalian Ding
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Haiyan Jiang
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Senthilvelan Manohar
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Xiaopeng Liu
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Li Li
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Guang-Di Chen
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| | - Richard Salvi
- Center for Hearing and Deafness, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
43
|
Fu X, An Y, Wang H, Li P, Lin J, Yuan J, Yue R, Jin Y, Gao J, Chai R. Deficiency of Klc2 Induces Low-Frequency Sensorineural Hearing Loss in C57BL/6 J Mice and Human. Mol Neurobiol 2021; 58:4376-4391. [PMID: 34014435 DOI: 10.1007/s12035-021-02422-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022]
Abstract
The transport system in cochlear hair cells (HCs) is important for their function, and the kinesin family of proteins transports numerous cellular cargos via the microtubule network in the cytoplasm. Here, we found that Klc2 (kinesin light chain 2), the light chain of kinesin-1 that mediates cargo binding and regulates kinesin-1 motility, is essential for cochlear function. We generated mice lacking Klc2, and they suffered from low-frequency hearing loss as early as 1 month of age. We demonstrated that deficiency of Klc2 resulted in abnormal transport of mitochondria and the down-regulation of the GABAA receptor family. In addition, whole-genome sequencing (WGS) of patient showed that KLC2 was related to low-frequency hearing in human. Hence, to explore therapeutic approaches, we developed adeno-associated virus containing the Klc2 wide-type cDNA sequence, and Klc2-null mice delivered virus showed apparent recovery, including decreased ABR threshold and reduced out hair cell (OHC) loss. In summary, we show that the kinesin transport system plays an indispensable and special role in cochlear HC function in mice and human and that mitochondrial localization is essential for HC survival.
Collapse
Affiliation(s)
- Xiaolong Fu
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China.,College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yachun An
- School of Life Science, Shandong University, Qingdao, China
| | - Hongyang Wang
- College of Otolaryngology, Head and Neck Surgery, Institute of Otolaryngology, Chinese PLA General Hospital, Beijing, China
| | - Peipei Li
- School of Life Science, Shandong University, Qingdao, China
| | - Jing Lin
- Waksman Institute, the State University of New Jersey, RutgersNew Brunswick, NJ, USA
| | - Jia Yuan
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Rongyu Yue
- Department of Otolaryngology-Head and Neck Surgery, Provincial Hospital Affiliated To Shandong University, Jinan, China
| | - Yecheng Jin
- School of Life Science, Shandong University, Qingdao, China
| | - Jiangang Gao
- College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| | - Renjie Chai
- State Key Laboratory of Bioelectronics, School of Life Sciences and Technology, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China. .,College of Laboratory Animal & Shandong Laboratory Animal Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China. .,Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Science, Beijing, China.
| |
Collapse
|
44
|
肖 丽, 柳 铖, 夏 俍, 冯 艳. [Development of novel drug carrier via round window membrane]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2021; 35:380-384. [PMID: 33794643 PMCID: PMC10128451 DOI: 10.13201/j.issn.2096-7993.2021.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 11/12/2022]
Abstract
As isolated anatomical position, limited labyrinthine artery supply, and blood-labyrinth barrier hampers systemic drug delivery to the inner ear. The efficient concentration of drug treatment is unsatisfactory and there's possible side effects after systemic administration. Intratympanic injection of drug can bypass the blood-labyrinth and permeated to the hair cells or synaptic area via the round-or oval window of the cochlea. Efficacy and safety of pharmacotherapy has become increasingly relied on the inner ear delivery carrier system. The goal of this review focus on the anatomical barrier that need to be overcome in the intratympanic applications, the improvement of drug retention and specific targets, and the safety of novel drug carriers, these emerging strategies of local drug delivery promise novel and better guidance for the clinical application.
Collapse
Affiliation(s)
- 丽丽 肖
- 上海交通大学附属第六人民医院耳鼻咽喉头颈外科 上海交通大学耳鼻咽喉科研究所 上海市睡眠呼吸障碍疾病重点实验室(上海,200233)
| | - 铖棋 柳
- 上海交通大学附属第六人民医院耳鼻咽喉头颈外科 上海交通大学耳鼻咽喉科研究所 上海市睡眠呼吸障碍疾病重点实验室(上海,200233)
| | - 俍 夏
- 上海交通大学附属第六人民医院耳鼻咽喉头颈外科 上海交通大学耳鼻咽喉科研究所 上海市睡眠呼吸障碍疾病重点实验室(上海,200233)
| | - 艳梅 冯
- 上海交通大学附属第六人民医院耳鼻咽喉头颈外科 上海交通大学耳鼻咽喉科研究所 上海市睡眠呼吸障碍疾病重点实验室(上海,200233)
| |
Collapse
|
45
|
Iyer AA, Groves AK. Transcription Factor Reprogramming in the Inner Ear: Turning on Cell Fate Switches to Regenerate Sensory Hair Cells. Front Cell Neurosci 2021; 15:660748. [PMID: 33854418 PMCID: PMC8039129 DOI: 10.3389/fncel.2021.660748] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/08/2021] [Indexed: 12/15/2022] Open
Abstract
Non-mammalian vertebrates can restore their auditory and vestibular hair cells naturally by triggering the regeneration of adjacent supporting cells. The transcription factor ATOH1 is a key regulator of hair cell development and regeneration in the inner ear. Following the death of hair cells, supporting cells upregulate ATOH1 and give rise to new hair cells. However, in the mature mammalian cochlea, such natural regeneration of hair cells is largely absent. Transcription factor reprogramming has been used in many tissues to convert one cell type into another, with the long-term hope of achieving tissue regeneration. Reprogramming transcription factors work by altering the transcriptomic and epigenetic landscapes in a target cell, resulting in a fate change to the desired cell type. Several studies have shown that ATOH1 is capable of reprogramming cochlear non-sensory tissue into cells resembling hair cells in young animals. However, the reprogramming ability of ATOH1 is lost with age, implying that the potency of individual hair cell-specific transcription factors may be reduced or lost over time by mechanisms that are still not clear. To circumvent this, combinations of key hair cell transcription factors have been used to promote hair cell regeneration in older animals. In this review, we summarize recent findings that have identified and studied these reprogramming factor combinations for hair cell regeneration. Finally, we discuss the important questions that emerge from these findings, particularly the feasibility of therapeutic strategies using reprogramming factors to restore human hearing in the future.
Collapse
Affiliation(s)
- Amrita A. Iyer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
| | - Andrew K. Groves
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Program in Genetics & Genomics, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
46
|
Zhao Z, Han Z, Naveena K, Lei G, Qiu S, Li X, Li T, Shi X, Zhuang W, Li Y, Qiao Y, Liu H. ROS-Responsive Nanoparticle as a Berberine Carrier for OHC-Targeted Therapy of Noise-Induced Hearing Loss. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7102-7114. [PMID: 33528239 DOI: 10.1021/acsami.0c21151] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Overproduction of reactive oxygen species (ROS) and inflammation are two key pathogeneses of noise-induced hearing loss (NIHL), which leads to outer hair cell (OHC) damage and hearing loss. In this work, we successfully developed ROS-responsive nanoparticles as berberine (BBR) carriers (PL-PPS/BBR) for OHC-targeted therapy of NIHL: Prestin-targeting peptide 2 (PrTP2)-modified nanoparticles (PL-PPS/BBR), which effectively accumulated in OHC areas, and poly(propylene sulfide)120 (PPS120), which scavenged ROS and converted to poly(propylene sulfoxide)120 in a ROS environment to disintegrate and provoke the rapid release of BBR with anti-inflammatory and antioxidant effects. In this study, satisfactory anti-inflammatory and antioxidant effects of PL-PPS/BBR were confirmed. Immunofluorescence and scanning electron microscopy (SEM) images showed that PL-PPS/BBR effectively accumulated in OHCs and protected the morphological integrity of OHCs. The auditory brainstem response (ABR) results demonstrated that PL-PPS/BBR significantly improved hearing in NIHL guinea pigs after noise exposure. This work suggested that PL-PPS/BBR may be a new potential treatment for noise-associated injury with clinical application.
Collapse
Affiliation(s)
- Zeqi Zhao
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221002, PR China
| | | | - Konduru Naveena
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Guanxiong Lei
- Key Laboratory of Medical Imaging and Artifical Intelligence of Hunan Province, Xiangnan University, Chenzhou 423000, PR China
- Clinical College, Xiangnan University, Chenzhou 423000, PR China
| | - Shiwei Qiu
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xuanyi Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| | - Ting Li
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Xi Shi
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Wei Zhuang
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yalan Li
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Yuehua Qiao
- Institute of Audiology and Balance Science, Xuzhou Medical University, Xuzhou 221002, PR China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
- Artificial Auditory Laboratory of Jiangsu Province, Xuzhou Medical University, Xuzhou 221002, PR China
| | - Hongmei Liu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou 221002, PR China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221002, PR China
| |
Collapse
|
47
|
Ding N, Lee S, Lieber-Kotz M, Yang J, Gao X. Advances in genome editing for genetic hearing loss. Adv Drug Deliv Rev 2021; 168:118-133. [PMID: 32387678 DOI: 10.1016/j.addr.2020.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 02/07/2023]
Abstract
According to the World Health Organization, hearing loss affects over 466 million people worldwide and is the most common human sensory impairment. It is estimated that genetic factors contribute to the causation of approximately 50% of congenital hearing loss. Yet, curative approaches to reversing or preventing genetic hearing impairment are still limited. The clustered regularly interspaced short palindromic repeats-associated protein 9 (CRISPR-Cas9) systems enable programmable and targeted gene editing in highly versatile manners and offer new gene therapy strategies for genetic hearing loss. Here, we summarize the most common deafness-associated genes, illustrate recent strategies undertaken by using CRISPR-Cas9 systems for targeted gene editing and further compare the CRISPR strategies to non-CRISPR gene therapies. We also examine the merits of different vehicles and delivery forms of genome editing agents. Lastly, we describe the development of animal models that could facilitate the eventual clinical applications of the CRISPR technology to the treatment of genetic hearing diseases.
Collapse
|
48
|
Noise Induced Hearing Loss and Tinnitus-New Research Developments and Remaining Gaps in Disease Assessment, Treatment, and Prevention. Brain Sci 2020; 10:brainsci10100732. [PMID: 33066210 PMCID: PMC7602100 DOI: 10.3390/brainsci10100732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/09/2020] [Accepted: 10/10/2020] [Indexed: 01/10/2023] Open
Abstract
Long-term noise exposure often results in noise induced hearing loss (NIHL). Tinnitus, the generation of phantom sounds, can also result from noise exposure, although understanding of its underlying mechanisms are limited. Recent studies, however, are shedding light on the neural processes involved in NIHL and tinnitus, leading to potential new and innovative treatments. This review focuses on the assessment of NIHL, available treatments, and development of new pharmacologic and non-pharmacologic treatments based on recent studies of central auditory plasticity and adaptive changes in hearing. We discuss the mechanisms and maladaptive plasticity of NIHL, neuronal aspects of tinnitus triggers, and mechanisms such as tinnitus-associated neural changes at the cochlear nucleus underlying the generation of tinnitus after noise-induced deafferentation. We include observations from recent studies, including our own studies on associated risks and emerging treatments for tinnitus. Increasing knowledge of neural plasticity and adaptive changes in the central auditory system suggest that NIHL is preventable and transient abnormalities may be reversable, although ongoing research in assessment and early detection of hearing difficulties is still urgently needed. Since no treatment can yet reverse noise-related damage completely, preventative strategies and increased awareness of hearing health are essential.
Collapse
|
49
|
Durán-Alonso MB. Stem cell-based approaches: Possible route to hearing restoration? World J Stem Cells 2020; 12:422-437. [PMID: 32742560 PMCID: PMC7360988 DOI: 10.4252/wjsc.v12.i6.422] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/08/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Disabling hearing loss is the most common sensorineural disability worldwide. It affects around 466 million people and its incidence is expected to rise to around 900 million people by 2050, according to World Health Organization estimates. Most cases of hearing impairment are due to the degeneration of hair cells (HCs) in the cochlea, mechano-receptors that transduce incoming sound information into electrical signals that are sent to the brain. Damage to these cells is mainly caused by exposure to aminoglycoside antibiotics and to some anti-cancer drugs such as cisplatin, loud sounds, age, infections and genetic mutations. Hearing deficits may also result from damage to the spiral ganglion neurons that innervate cochlear HCs. Differently from what is observed in avian and non-mammalian species, there is no regeneration of missing sensory cell types in the adult mammalian cochlea, what makes hearing loss an irreversible process. This review summarizes the research that has been conducted with the aim of developing cell-based strategies that lead to sensory cell replacement in the adult cochlea and, ultimately, to hearing restoration. Two main lines of research are discussed, one directed toward the transplantation of exogenous replacement cells into the damaged tissue, and another that aims at reactivating the regenerative potential of putative progenitor cells in the adult inner ear. Results from some of the studies that have been conducted are presented and the advantages and drawbacks of the various approaches discussed.
Collapse
|
50
|
Richardson RT, Ibbotson MR, Thompson AC, Wise AK, Fallon JB. Optical stimulation of neural tissue. Healthc Technol Lett 2020; 7:58-65. [PMID: 32754339 PMCID: PMC7353819 DOI: 10.1049/htl.2019.0114] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 05/08/2020] [Accepted: 05/15/2020] [Indexed: 12/23/2022] Open
Abstract
Electrical stimulation has been used for decades in devices such as pacemakers, cochlear implants and more recently for deep brain and retinal stimulation and electroceutical treatment of disease. However, current spread from the electrodes limits the precision of neural activation, leading to a low quality therapeutic outcome or undesired side-effects. Alternative methods of neural stimulation such as optical stimulation offer the potential to deliver higher spatial resolution of neural activation. Direct optical stimulation is possible with infrared light, while visible light can be used to activate neurons if the neural tissue is genetically modified with a light sensitive ion channel. Experimentally, both methods have resulted in highly precise stimulation with little spread of activation at least in the cochlea, each with advantages and disadvantages. Infrared neural stimulation does not require modification of the neural tissue, but has very high power requirements. Optogenetics can achieve precision of activation with lower power, but only in conjunction with targeted insertion of a light sensitive ion channel into the nervous system via gene therapy. This review will examine the advantages and limitations of optical stimulation of neural tissue, using the cochlea as an exemplary model and recent developments for retinal and deep brain stimulation.
Collapse
Affiliation(s)
- Rachael Theresa Richardson
- Bionics Institute, Melbourne 3002, Australia.,University of Melbourne, Medical Bionics Department, Melbourne, 3002, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), Melbourne, 3002, Australia
| | - Michael R Ibbotson
- National Vision Research Institute, Australian College of Optometry, and Department of Optometry and Vision Science, University of Melbourne, Melbourne, Australia
| | | | - Andrew K Wise
- Bionics Institute, Melbourne 3002, Australia.,University of Melbourne, Medical Bionics Department, Melbourne, 3002, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), Melbourne, 3002, Australia
| | - James B Fallon
- Bionics Institute, Melbourne 3002, Australia.,University of Melbourne, Medical Bionics Department, Melbourne, 3002, Australia.,University of Melbourne, Department of Surgery (Otolaryngology), Melbourne, 3002, Australia
| |
Collapse
|