1
|
Wang XY, Liu F, Wang QT, Li SZ, Ye YZ, Chen T, Cai BC. Rhapontin activates nuclear factor erythroid 2-related factor 2 to ameliorate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced gastrointestinal dysfunction in Parkinson's disease mice. World J Gastroenterol 2025; 31:104875. [DOI: 10.3748/wjg.v31.i15.104875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/24/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD)-a progressive neurodegenerative disorder-is characterized by motor and gastrointestinal dysfunction. The exploration of novel therapeutic strategies for PD is vital.
AIM To investigate the potential mechanism of action of rhapontin-a natural compound with known antioxidant and anti-inflammatory properties-in the context of PD.
METHODS Network pharmacology was used to predict the targets and mechanisms of action of rhapontin in PD. Behavioral tests and tyrosine hydroxylase immunofluorescence analysis were used to assess the effect of rhapontin on symptoms and pathology in MPTP-induced mice. Interleukin (IL)-6, IL-1β, tumor necrosis factor (TNF)-α, and IL-10 levels in tissues were measured using an enzyme-linked immunosorbent assay (ELISA). Additionally, nuclear factor erythroid 2-related factor 2 (NRF2) activation was confirmed using western blotting.
RESULTS NRF2 was predicted to be the key transcription factor underlying the therapeutic effects of rhapontin in PD, and its anti-PD action may be associated with its anti-inflammatory and antioxidant properties. Rhapontin ameliorated the loss of dopaminergic neurons and gastrointestinal dysfunction in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mice by activating NRF2. Additionally, rhapontin treatment significantly decreased pro-inflammatory cytokines (IL-6, TNF-α, IL-1β) in the substantia nigra, striatum, and colon, whereas it increased anti-inflammatory cytokine (IL-10) levels only in the colon, indicating the involvement of gut–brain axis in its neuroprotective potential. Finally, NRF2 was identified as a key transcription factor activated by rhapontin, particularly in the colon.
CONCLUSION We elucidated the effects of rhapontin in MPTP-induced PD mouse models using a combination of network pharmacology analysis, behavioral assessments, immunofluorescence, ELISA, and Western blotting. Our findings revealed the multifaceted role of rhapontin in ameliorating PD through its anti-inflammatory and antioxidant properties, particularly by activating NRF2, paving the way for future research into targeted therapies for PD.
Collapse
Affiliation(s)
- Xin-Yu Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Fang Liu
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Qi-Tong Wang
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Shu-Zhu Li
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Yu-Zhao Ye
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Tao Chen
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| | - Ben-Chi Cai
- Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou 570100, Hainan Province, China
| |
Collapse
|
2
|
Ekwudo MN, Gubert C, Hannan AJ. The microbiota-gut-brain axis in Huntington's disease: pathogenic mechanisms and therapeutic targets. FEBS J 2025; 292:1282-1315. [PMID: 38426291 PMCID: PMC11927060 DOI: 10.1111/febs.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/08/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
Huntington's disease (HD) is a currently incurable neurogenerative disorder and is typically characterized by progressive movement disorder (including chorea), cognitive deficits (culminating in dementia), psychiatric abnormalities (the most common of which is depression), and peripheral symptoms (including gastrointestinal dysfunction). There are currently no approved disease-modifying therapies available for HD, with death usually occurring approximately 10-25 years after onset, but some therapies hold promising potential. HD subjects are often burdened by chronic diarrhea, constipation, esophageal and gastric inflammation, and a susceptibility to diabetes. Our understanding of the microbiota-gut-brain axis in HD is in its infancy and growing evidence from preclinical and clinical studies suggests a role of gut microbial population imbalance (gut dysbiosis) in HD pathophysiology. The gut and the brain can communicate through the enteric nervous system, immune system, vagus nerve, and microbiota-derived-metabolites including short-chain fatty acids, bile acids, and branched-chain amino acids. This review summarizes supporting evidence demonstrating the alterations in bacterial and fungal composition that may be associated with HD. We focus on mechanisms through which gut dysbiosis may compromise brain and gut health, thus triggering neuroinflammatory responses, and further highlight outcomes of attempts to modulate the gut microbiota as promising therapeutic strategies for HD. Ultimately, we discuss the dearth of data and the need for more longitudinal and translational studies in this nascent field. We suggest future directions to improve our understanding of the association between gut microbes and the pathogenesis of HD, and other 'brain and body disorders'.
Collapse
Affiliation(s)
- Millicent N. Ekwudo
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Carolina Gubert
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
| | - Anthony J. Hannan
- Florey Institute of Neuroscience and Mental HealthUniversity of MelbourneParkvilleAustralia
- Department of Anatomy and PhysiologyUniversity of MelbourneParkvilleAustralia
| |
Collapse
|
3
|
Cespuglio R, Gorlova A, Zabegalov K, Chaprov K, Svirin E, Sitdikova K, Burova A, Shulgin B, Lebedeva K, Deikin AV, Morozov S, Strekalova T. SERT-Deficient Mice Fed Western Diet Reveal Altered Metabolic and Pro-Inflammatory Responses of the Liver: A Link to Abnormal Behaviors. FRONT BIOSCI-LANDMRK 2025; 30:26778. [PMID: 39862090 DOI: 10.31083/fbl26778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/15/2024] [Accepted: 11/28/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND The inheritance of the short SLC6A4 allele, encoding the serotonin transporter (SERT) in humans, increases susceptibility to neuropsychiatric and metabolic disorders, with aging and female sex further exacerbating these conditions. Both central and peripheral mechanisms of the compromised serotonin (5-HT) system play crucial roles in this context. Previous studies on SERT-deficient (Sert-/-) mice, which model human SERT deficiency, have demonstrated emotional and metabolic disturbances, exacerbated by exposure to a high-fat Western diet (WD). Growing evidence suggests the significance of hepatic regulatory mechanisms in the neurobiology of central nervous system disorders, supporting the 'liver-brain' concept. However, the relationship between aberrant behavior and hepatic alterations under conditions of SERT deficiency remains poorly investigated. METHODS One-year-old female Sert-/- mice and their wild-type (WT) littermates were subjected to a control diet (CD) or the WD for a duration of three weeks. The WD had a higher caloric content and was characterized by an elevated saturated fat content (21%) compared to the CD (4.5%) and contained 0.2% cholesterol. Mice were evaluated for anxiety-like behavior, exploration and locomotor activity in the open field test, as well as glucose tolerance and histological indicators of hepatic steatosis. Hepatic pro-inflammatory and metabolism-related gene expression and markers of nitrosative stress, were analyzed utilizing real-time polymerase chain reaction (RT-PCR) and correlated with behavioral and histological outcomes. RESULTS In comparison to unchallenged mice, Sert-/-/WD mutants, but not the WT/WD group, had increased locomotion and anxiety-like behavior, increased hepatic steatosis, and elevated expression of insulin receptor B and pro-inflammatory cytokines interleukin-1β (Il-1β) and Tnf, as well as decreased expression of leptin receptor B. The two genotypes displayed distinct gene expression patterns of nitric oxide (NO)-related molecules inducible NO synthase (iNos) and arginase (Arg2), insulin receptor-related signaling factors: cluster of differentiation 36 (Cd36), ecto-nucleotide pyrophosphatase/phosphodiesterase (Enpp), protein tyrosine phosphatase N1 (Ptpn1), cytochrome P450 omega-hydroxylase 4A14 (Cyp4a14), acyl-CoA synthetase 1 (Acsl1) and phosphatase and tensin homolog (Pten). Furthermore, there were profound differences in correlations between molecular, histological, and behavioral measurements across the two genotypes. CONCLUSIONS Our findings suggest that the genetic deficiency of SERT results in abnormal hepatic pro-inflammatory and metabolic adaptations in response to WD. The significant correlations observed between behavioral measures and pro-inflammatory and metabolic alterations in WD-fed mice suggest the importance of liver-brain interactions and their role in the aberrant behaviors exhibited by Sert-/- mutants. This study presents the first evidence that altered liver functions are associated with pathological behaviors arising from genetic SERT deficiency.
Collapse
Affiliation(s)
- Raymond Cespuglio
- Neuroscience Research Center of Lyon, Claude-Bernard Lyon-1 University, 69675 Bron, France
| | - Anna Gorlova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | | | - Kirill Chaprov
- National Laboratory of Astana, Nazarbaev University, 010000 Astana, Kazakhstan
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, 142432 Chernogolovka, Russia
| | - Evgeniy Svirin
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Kseniia Sitdikova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Alisa Burova
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Boris Shulgin
- Laboratory of Engineering Profile Physical and Chemical Methods of Analysis, Korkyt Ata Kyzylorda State University, 120014 Kyzylorda, Kazakhstan
- Department of Normal Physiology, Sechenov University, 117198 Moscow, Russia
| | - Ksenia Lebedeva
- Department of Normal Physiology, Sechenov University, 117198 Moscow, Russia
| | - Alexei V Deikin
- Laboratory of Genetic Technology and gene editing for Biomedicine and Veterinary, National Research Belgorod state University, 308015 Belgorod, Russia
| | - Sergey Morozov
- Laboratory of Cognitive Dysfunctions, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia
| | - Tatyana Strekalova
- Division of Molecular Psychiatry, Center of Mental Health, University of Hospital Würzburg, 97080 Würzburg, Germany
- Maastricht University, Department of Psychiatry and Neuropsychology, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Jin X, Huo J, Yao Y, Li R, Sun M, Li J, Wu Z. A multi-dimensional validation strategy of pharmacological effects of Radix Isatidis Mixtures against the co-infection of Mycoplasma gallisepticum and Escherichia coli in poultry. Poult Sci 2025; 104:104576. [PMID: 39616681 PMCID: PMC11648751 DOI: 10.1016/j.psj.2024.104576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 11/21/2024] [Indexed: 01/25/2025] Open
Abstract
Natural drugs possess exceptional pharmacological properties, yet their development is often hindered by a lack of clarity regarding the mechanisms of their pharmacological actions. Building on our previous research, we employed a co-infection model with Mycoplasma gallisepticum (MG) and Escherichia coli (E. coli) to investigate the pharmacological action of Radix Isatidis Mixtures (RIM). To further demonstrate the various mechanisms underlying the pharmacological effects of RIM, we conducted a validation study focusing on gene expression, protein interactions, metabolic pathways, and molecular docking. Through a multi-omics joint analysis network, we identified key targets and metabolites associated with co-infection and conducted targeted verification experiments with RIM aqueous extracts. The experimental results indicated that, compared to the co-infection group, the RIM treatment group significantly modulated the expression of select genes and proteins, particularly MMP2 and TLR4, with a high level of statistical significance (p < 0.01). At the metabolic level, the treatment group exhibited significantly reduced expression levels of Dopamine and γ-Aminobutyric acid. Notably, the molecular docking results highlighted compounds with the most favorable binding affinities: Salvianolic acid A (-10.1 kcal/mol), Licorice (-9.3 kcal/mol), and Isoglycyrrhiza (-8.7 kcal/mol). In conclusion, our multi-level experiments demonstrated that RIM possesses the characteristics of multi-pathway and multi-target treatment for co-infection.
Collapse
Affiliation(s)
- Xiaodi Jin
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Jinhai Huo
- Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, PR China
| | - Yecheng Yao
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Rui Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Mengqing Sun
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Jichang Li
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China
| | - Zhiyong Wu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Xiangfang District, Harbin 150030, PR China; Institute of Chinese Materia Medica, Heilongjiang Academy of Chinese Medicine Sciences, Harbin 150036, PR China.
| |
Collapse
|
5
|
Cheng H, Liu J, Zhang D, Wu J, Wu J, Zhou Y, Tan Y, Feng W, Peng C. Natural products: Harnessing the power of gut microbiota for neurological health. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156019. [PMID: 39305747 DOI: 10.1016/j.phymed.2024.156019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/19/2024] [Accepted: 09/01/2024] [Indexed: 12/01/2024]
Abstract
BACKGROUND Neurological diseases are the primary cause of disability and death and impose substantial financial burdens. However, existing treatments only relieve symptoms and may cause many adverse effects. Natural products are a promising source of neurological therapeutic agents due to their excellent neuroprotective effect and safety. The gut microbiota has an essential impact on maintaining brain homeostasis via the gut-brain axis. Multiple investigations show that natural products offer neuroprotective effects by regulating gut microbiota-driven signaling networks. OBJECTIVES This review aims to provide a systematic review of how natural products promote neurological health by harnessing the power of gut microbiota. METHODS The pre-January 1, 2024 literature was gathered from several databases, including Scopus, PubMed, Google Scholar, and Web of Science, utilizing appropriate keywords. The gathered publications underwent a review process and were classified based on their study content, specifically focusing on the impact of natural products on gut microbiota and neurological health. RESULTS Here, we review how natural products promote neurological health by regulating the gut microbiota-brain axis. Specifically, we focus on the following areas. (1) Altering microorganism community structure, including increasing α-diversity and altering β-diversity. (2) Regulating the population of certain bacteria, including enriching beneficial microorganisms Akkermansia and Bifidobacterium, and inhibiting potentially hazardous microorganisms Bilophila, Klebsiella, and Helicobacter. (3) Regulating microbial neuroactive metabolites levels, including short-chain fatty acids, tryptophan and its derivatives, trimethylamine N-oxide, dopa/dopamine, γ-aminobutyric acid, and lipopolysaccharide. Furthermore, we review how natural products promote neurological health by regulating intestinal barrier homeostasis. CONCLUSION Natural products promote neurological health by harnessing the power of gut microbiota. This review will contribute to understanding how natural products promote neurological health by orchestrating the gut microbiota-brain axis.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinlu Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China; School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| |
Collapse
|
6
|
Chen J, Mei MS, Yu Y, Zhao Y, Gong H, Chen W, Qiu B, Shi S, Dilixiati M, Wang S, Wang H. Elegant approach to intervention of homogalacturonan from the fruits of Ficus pumila L. in colitis: Unraveling the role of methyl esters and acetyl groups. Int J Biol Macromol 2024; 283:137793. [PMID: 39557266 DOI: 10.1016/j.ijbiomac.2024.137793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/07/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Oral administration of homogalacturonan (HG) has shown significant potential in anti-colitis activity, yet the therapeutic efficacy of naturally sourced HG still requires enhancement. Herein, HG from the fruits of Ficus pumila L. was modified by chemical methods and the intervention effect of modified HG with different degrees of methyl-esterification (DM) and acetylation (DA) on dextran sulfate sodium-induced colitis in mice was explored. Our results indicated that low-DM HG (DM3 and DM25) primarily mitigated colitis by reducing inflammation (TNF-α, IL-1β, IL-17, and IL-6), while high-DM HG (DM54 and DM94) primarily repaired the intestinal barrier. These effects may be attributed to the differential regulation of gut microbiota by HG with varying DM, such as Lachnospiraceae_NK4A136_group, Lactobacillus, Mucispirillum, Escherichia-Shigella, Bifidobacterium, and Bacteroides. Increased DA reduced the solubility of HG, showing limited anti-inflammatory response but unique advantages in intestinal barrier repair and microbiome regulation (Bifidobacterium, Candidatus_Saccharimonas, Lachnospiraceae_NK4A136_group, Mucispirillum, and Escherichia-Shigella). Furthermore, various structural parameters and substitution degrees showed no significant impact on HG's regulation of oxidative stress reactions. This study emphasized the importance of substituent effect in determining HG's functional role, providing a robust foundation for the design and development of functional polysaccharides for the prevention of intestinal inflammation and other related conditions.
Collapse
Affiliation(s)
- Jie Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Ming-Shun Mei
- School of Chemical Science and Engineering, Shanghai Key Laboratory of Chemical Assessment and Sustainability, Tongji University, Shanghai 200092, China
| | - Yue Yu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Yonglin Zhao
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Huan Gong
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Weihao Chen
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Baoyu Qiu
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Songshan Shi
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China
| | - Munisa Dilixiati
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China
| | - Shunchun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| | - Huijun Wang
- The MOE Key Laboratory for Standardization of Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, PR China.
| |
Collapse
|
7
|
Moralev A, Zenkova MA, Markov AV. Complex Inhibitory Activity of Pentacyclic Triterpenoids against Cutaneous Melanoma In Vitro and In Vivo: A Literature Review and Reconstruction of Their Melanoma-Related Protein Interactome. ACS Pharmacol Transl Sci 2024; 7:3358-3384. [PMID: 39539268 PMCID: PMC11555519 DOI: 10.1021/acsptsci.4c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/13/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
Pentacyclic triterpenoids (PTs) are a class of plant metabolites with a wide range of pharmacological activities, including strong antitumor potential against skin malignancies. By acting on multiple signaling pathways that control key cellular processes, PTs are able to exert complex effects on melanoma progression in vitro and in vivo. In this review, we have analyzed the works published in the past decade and devoted to the effects of PTs, both natural and semisynthetic, on cutaneous melanoma pathogenesis, including not only their direct action on melanoma cells but also their influence on the tumor microenvironment and abberant melanogenesis, often associated with melanoma aggressiveness. Special attention will be paid to the molecular basis of the pronounced antimelanoma potency of PTs, including a detailed consideration of the pathways sensitive to PTs in melanoma cells, as well as the reconstruction of the melanoma-related protein interactome of PTs using a network pharmacology approach based on previously published experimentally verified protein targets of PTs. The information collected on the primary targets of PTs was compiled in the Protein Interactome of PTs (PIPTs) database, freely available at http://www.pipts-db.ru/, which can be used to further optimize the mechanistic studies of PTs in the context of melanoma and other malignancies. By summarizing recent research findings, this review provides valuable information to scientists working in the fields related to the evaluation of melanoma pathogenesis and development of PTs-based drug candidates.
Collapse
Affiliation(s)
- Arseny
D. Moralev
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| | - Andrey V. Markov
- Institute of Chemical Biology and Fundamental
Medicine, Siberian Branch of the Russian
Academy of Sciences, 630090, Lavrent’ev avenue 8, Novosibirsk, Russia
| |
Collapse
|
8
|
Du S, Wang Z, Zhu H, Tang Z, Li Q. Flavonoids attenuate inflammation of HGF and HBMSC while modulating the osteogenic differentiation based on microfluidic chip. J Transl Med 2024; 22:992. [PMID: 39488714 PMCID: PMC11531701 DOI: 10.1186/s12967-024-05808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024] Open
Abstract
BACKGROUND When inflammation occurs in periodontal tissues, a dynamic cellular crosstalk interacts between gingival fibroblasts and bone marrow mesenchymal stem cells (BMSCs), which plays a crucial role in the biological behaviour and differentiation of the cells. Recently, flavonoids are increasingly recognized for their therapeutic potential in modulating inflammation and osteogenic differentiation. Owing to their varied molecular structures and mechanisms, there are more needs that flavonoid compounds should be identified by extensive screening. However, current drug research mostly relies on static, single-type cell cultures. In this study, an innovative bionic microfluidic chip system tailored for both soft and hard tissues was developed to screen for flavonoids suitable for treating periodontitis. METHODS This study developed a microfluidic system that bionically simulates the soft and hard structures of periodontal tissues. Live/dead staining, reactive oxygen species (ROS) staining, and RT-qPCR analysis were employed. These techniques evaluated the effects of flavonoid compounds on the levels of inflammatory factors and ROS contents in HGF and HBMSC under LPS stimulation. Additionally, the impact of these compounds on osteogenic induction in HBMSC and the exploration of the underlying mechanisms were assessed. RESULTS The microfluidic chip used in this study features dual chambers separated by a porous membrane, allowing cellular signal communication via bioactive factors secreted by cells in both layers under perfusion. The inflammatory response within the chip under LPS stimulation was lower compared to individual static cultures of HGF and HBMSC. The selected flavonoids-myricetin, catechin, and quercetin-significantly reduced cellular inflammation, decreased ROS levels, and enhanced osteogenic differentiation of BMSCs. Additionally, fisetin, silybin, and icariside II also demonstrated favorable outcomes in reducing inflammation, lowering ROS levels, and promoting osteogenic differentiation through the Wnt/β-catenin pathway. CONCLUSIONS The bionic microfluidic chip system provides enhanced capabilities for drug screening and evaluation, delivering a more precise assessment of drug efficacy and safety compared to traditional in vitro methods. This study demonstrates the efficacy of flavonoids in influencing osteogenic processes in BMSCs primarily through the Wnt/β-catenin pathway. These results uncover the potential of flavonoids as therapeutic medicine for treating periodontitis, meriting further research and development.
Collapse
Affiliation(s)
- Sa Du
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhongyu Wang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Huilin Zhu
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China
| | - Zhihui Tang
- Second Clinical Division, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| | - Qing Li
- Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, No. 22, Zhongguancun South Avenue, Haidian District, Beijing, 100081, People's Republic of China.
| |
Collapse
|
9
|
Wei Z, Turak A, Li B, Aisa HA. Guaianolide sesquiterpene lactones from Cichorium glandulosum and their anti-neuroinflammation activities. PHYTOCHEMISTRY 2024; 226:114223. [PMID: 39032793 DOI: 10.1016/j.phytochem.2024.114223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Eight undescribed guaianolide sesquiterpene lactones cicholosumins A-H and twelve known ones were isolated from the aerial parts of Cichorium glandulosum Boiss et Huet. Their structures were established by 1D and 2D NMR spectroscopic data, electronic circular dichroism, quantum chemical calculations and single crystal X-ray diffraction analysis. Compounds 9α-hydroxy-3-deoxyzaluzanin C, epi-8α-angeloyloxycichoralexin, 8-O-methylsenecioylaustricin and lactucin showed strong anti-neuroinflammation activity with IC50 values of 1.69 ± 0.11, 1.08 ± 0.23, 1.67 ± 0.28 and 1.82 ± 0.27 μM, respectively. The mechanism research indicated that epi-8α-angeloyloxycichoralexin inhibited neuroinflammation through the NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Zheyang Wei
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Ablajan Turak
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China
| | - Bo Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and the Key Laboratory of Plant Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; College of Pharmacy, Xinjiang Medical University, Urumqi, 830011, China.
| |
Collapse
|
10
|
Han X, Vollmer D, Yan X, Zhang Y, Zang M, Zhang C, Sherwin CM, Enioutina EY. Immunomodulatory Effects of Modified Colostrum, Whey, and Their Combination With Other Natural Products: Effects on Natural Killer Cells. CURRENT THERAPEUTIC RESEARCH 2024; 101:100750. [PMID: 39670221 PMCID: PMC11637189 DOI: 10.1016/j.curtheres.2024.100750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/30/2024] [Indexed: 12/14/2024]
Abstract
Objectives Natural killer (NK) cells are important immune system effector cells providing innate defenses against intracellular infections, including viral infections, immune surveillance, and cancer immunoediting. The primary purpose of this study was to investigate whether modified ultra-filtrated colostrum (UC) and hydrolyzed whey (W) products or their combinations with other natural products with reported immunomodulatory properties will stimulate NK cell cytotoxic activity by activation of granzyme B and IFN-γ production. Methods The ability of study products to stimulate the cytotoxic activity of human-purified CD56+ NK cells and the production of granzyme B and IFN-γ by activated NK cells was evaluated in the cytotoxic assay. Results All study products significantly increased NK-cell cytotoxic activity at an E: T ratio of 20:1. Treatment of cells with UC had a maximal cytotoxic effect at the minimal dose of 10 µg/ml, which exceeded the cytotoxic activity of IL-2. In contrast, the addition of egg yolk (CE) or CE + botanical blend (CEB) to UC resulted in a dose-dependent cytotoxic response with a maximal response at 1000 µg/ml. The maximal activity of blend products was comparable to UC activity. W exerted minimal stimulatory activity on NK cells. The magnitude of granzyme B and IFN-γ production was closely associated with the cytotoxic activity of NK cells stimulated with the study products. Conclusions All study products demonstrated stimulatory activity on NK cells, with UC having a maximal effect on NK cell cytotoxicity. The study products can be used as dietary supplements to support NK cell activity in healthy individuals.
Collapse
Affiliation(s)
| | | | - Xuefei Yan
- Crown Bioscience Inc., Science & Technology Innovation Park, Taicang, Jiangsu Province, P.R. China
| | - Yahong Zhang
- Crown Bioscience Inc., Science & Technology Innovation Park, Taicang, Jiangsu Province, P.R. China
| | - Mingfa Zang
- Crown Bioscience Inc., Science & Technology Innovation Park, Taicang, Jiangsu Province, P.R. China
| | - Chenfei Zhang
- Crown Bioscience Inc., Science & Technology Innovation Park, Taicang, Jiangsu Province, P.R. China
| | - Catherine M. Sherwin
- Department of Pediatrics, Wright State University Boonshoft School of Medicine/Dayton Children's Hospital, Dayton, Ohio
| | - Elena Y. Enioutina
- Division of Clinical Pharmacology, Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
11
|
Xu K, Wang M, Wang H, Zhao S, Tu D, Gong X, Li W, Liu X, Zhong L, Chen J, Xie P. HMGB1/STAT3/p65 axis drives microglial activation and autophagy exert a crucial role in chronic Stress-Induced major depressive disorder. J Adv Res 2024; 59:79-96. [PMID: 37321346 PMCID: PMC11081938 DOI: 10.1016/j.jare.2023.06.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 05/04/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
INTRODUCTION Neuroinflammation and autophagy are implicated in stress-related major depressive disorder (MDD), but the underlying molecular mechanisms remain largely unknown. OBJECTIVES Here, we identified that MDD regulated by HMGB1/STAT3/p65 axis mediated microglial activation and autophagy for the first time. Further investigations were performed to uncover the effects of this axis on MDD in vivo and in vitro. METHODS Bioinformatics analyses were used to re-analysis the transcriptome data from the dorsolateral prefrontal cortex (dlPFC) of post-mortem male MDD patients. The expression level of HMGB1 and its correlation with depression symptoms were explored in MDD clinical patients and chronic social defeat stress (CSDS)-induced depression model mice. Specific adeno-associated virus and recombinant (r)HMGB1 injection into the medial PFC (mPFC) of mice, and pharmacological inhibitors with rHMGB1 in two microglial cell lines exposed to lipopolysaccharide were used to analyze the effects of HMGB1/STAT3/p65 axis on MDD. RESULTS The differential expression of genes from MDD patients implicated in microglial activation and autophagy regulated by HMGB1/STAT3/p65 axis. Serum HMGB1 level was elevated in MDD patients and positively correlated with symptom severity. CSDS not only induced depression-like states in mice, but also enhanced microglial reactivity, autophagy as well as activation of the HMGB1/STAT3/p65 axis in mPFC. The expression level of HMGB1 was mainly increased in the microglial cells of CSDS-susceptible mice, which also correlated with depressive-like behaviors. Specific HMGB1 knockdown produced a depression-resilient phenotype and suppressed the associated microglial activation and autophagy effects of CSDS-induced. The effects induced by CSDS were mimicked by exogenous administration of rHMGB1 or specific overexpression of HMGB1, while blocked by STAT3 inhibitor or p65 knockdown. In vitro, inhibition of HMGB1/STAT3/p65 axis prevented lipopolysaccharide-induced microglial activation and autophagy, while rHMGB1 reversed these changes. CONCLUSION Our study established the role of microglial HMGB1/STAT3/p65 axis in mPFC in mediating microglial activation and autophagy in MDD.
Collapse
Affiliation(s)
- Ke Xu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingyang Wang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Haiyang Wang
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China
| | - Shuang Zhao
- Department of Pathophysiology, Chongqing Medical University, Chongqing 400016, China
| | - Dianji Tu
- Department of Clinical Laboratory, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, China
| | - Xue Gong
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Wenxia Li
- National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaolei Liu
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China
| | - Lianmei Zhong
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| | - Jianjun Chen
- Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, China.
| | - Peng Xie
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China; National Health Commission Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
12
|
Ying Y, Song LY, Pang WL, Zhang SQ, Yu JZ, Liang PT, Li TG, Sun Y, Wang YY, Yan JY, Yang ZS. Astragalus polysaccharide protects experimental colitis through an aryl hydrocarbon receptor-dependent autophagy mechanism. Br J Pharmacol 2024; 181:681-697. [PMID: 37653584 DOI: 10.1111/bph.16229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 09/02/2023] Open
Abstract
BACKGROUND AND PURPOSE Disruption of intestinal barriers plays a vital role in the pathogenesis of colitis. The aryl hydrocarbon receptor (AhR) is a recognition sensor that mediates intestinal immune homeostasis and minimizes intestinal inflammation. Astragalus polysaccharide (APS) exerts pharmacological actions in colitis; however, the mechanism has not been elucidated. We investigated whether APS protects through AhR-dependent autophagy. EXPERIMENTAL APPROACH The symptoms of dextran sulfate sodium (DSS)-induced colitis in mice involving intestinal barrier function and inflammatory injury were evaluated after APS administration. Intestinal-specific Becn1 conditional knockout (Becn1 cKO) mice were constructed and compared with wild-type mice. Autophagy and the effects of APS were investigated after the deactivation of AhRs. The relationship between APS-induced AhRs and autophagic Becn1 was investigated using a dual-luciferase reporter system and chromatin immunoprecipitation (ChIP)-quantitative polymerase chain reaction assay. Caco-2 cells were used to investigate inflammatory responses and AhR-dependent autophagy. KEY RESULTS APS improved intestinal barrier function in inflammatory injury in colitis mice. APS triggered autophagic flow; however, knockout of Becn1 in the gut increased susceptibility to colitis, leading to diminished epithelial barrier function and severe intestinal inflammation, impairing the protective effects of APS. Mechanistically, APS-triggered autophagy depends on AhR expression. Activated AhR binds to the promoter Becn1 to operate transcription of genes involved in anti-inflammation and intestinal barrier repair, while deactivation of AhR correlated with intestinal inflammation and the therapeutic function of APS. CONCLUSIONS AND IMPLICATIONS APS protects colitis mice by targeting autophagy, especially as the AhR stimulates the repair of damaged intestinal barrier functions.
Collapse
Affiliation(s)
- Yi Ying
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Li-Yun Song
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Wen-Lin Pang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Si-Qi Zhang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jing-Ze Yu
- The Key Laboratory of Molecular Epigenetics of MOE, Institute of Genetics and Cytology, Northeast Normal University, Changchun, Jilin, China
| | - Peng-Tao Liang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Tian-Gang Li
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yi Sun
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Yin-Ying Wang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Jin-Yuan Yan
- Central Laboratory, Kunming Medical University Second Hospital, Kunming, Yunnan, China
| | - Zhong-Shan Yang
- Yunnan Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
13
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
14
|
Canet G, Zussy C, Hernandez C, Maurice T, Desrumaux C, Givalois L. The pathomimetic oAβ25–35 model of Alzheimer's disease: Potential for screening of new therapeutic agents. Pharmacol Ther 2023; 245:108398. [PMID: 37001735 DOI: 10.1016/j.pharmthera.2023.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
Alzheimer's disease (AD) is the most common form of dementia in the elderly, currently affecting more than 40 million people worldwide. The two main histopathological hallmarks of AD were identified in the 1980s: senile plaques (composed of aggregated amyloid-β (Aβ) peptides) and neurofibrillary tangles (composed of hyperphosphorylated tau protein). In the human brain, both Aβ and tau show aggregation into soluble and insoluble oligomers. Soluble oligomers of Aβ include their most predominant forms - Aβ1-40 and Aβ1-42 - as well as shorter peptides such as Aβ25-35 or Aβ25-35/40. Most animal models of AD have been developed using transgenesis, based on identified human mutations. However, these familial forms of AD represent less than 1% of AD cases. In this context, the idea emerged in the 1990s to directly inject the Aβ25-35 fragment into the rodent brain to develop an acute model of AD that could mimic the disease's sporadic forms (99% of all cases). This review aims to: (1) summarize the biological activity of Aβ25-35, focusing on its impact on the main structural and functional alterations observed in AD (cognitive deficits, APP misprocessing, tau system dysfunction, neuroinflammation, oxidative stress, cholinergic and glutamatergic alterations, HPA axis dysregulation, synaptic deficits and cell death); and (2) confirm the interest of this pathomimetic model in AD research, as it has helped identify and characterize many molecules (marketed, in clinical development, and in preclinical testing), and to the development of alternative approaches for AD prevention and therapy. Today, the Aβ25-35 model appears as a first-intent choice model to rapidly screen the symptomatic or neuroprotective potencies of new compounds, chemical series, or innovative therapeutic strategies.
Collapse
|
15
|
Purification and Characterization of Bioactive Metabolite from Streptomyces monomycini RVE129 Derived from the Rift Valley Soil of Hawassa, Ethiopia. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7141313. [PMID: 36582599 PMCID: PMC9794429 DOI: 10.1155/2022/7141313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/10/2022] [Accepted: 11/16/2022] [Indexed: 12/24/2022]
Abstract
Streptomyces species have produced a variety of bioactive secondary metabolites with intriguing antimicrobial and anticancer properties. In this study, the bioactive compound obtained from the potent strain RVE129 was purified and characterized. Its bioactivity against various pathogens and its cytotoxicity toward the human cervical cancer (HeLa) cell were also examined. The strain was previously isolated from unexplored areas of the rift valley soil of Hawassa (Ethiopia) and identified by phenotypic characteristics and complete sequencing of the 16S rRNA gene and found to be closely related to Streptomyces monomycini strain NRRL B-24309 (99.65%); accession no. (ON786620). The active fraction undergoes bioassay-guided purification using the TLC method after being extracted by ethyl acetate. Then, it was subjected to physicochemical and structural characteristics using UV-Vis, FTIR, and NMR spectroscopic methods. A minimum inhibitory concentration of the purified antibiotic was achieved by the broth microdilution method. The cytotoxicity of HeLa cells was determined using the 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The acquired data from spectroscopic studies was compared with that of the reported natural compounds in data bases and found to be the known antibiotic, setamycin. The antibiotic (RVE-02) showed a broad spectrum of bioactivity against both Gram-positive and Gram-negative bacteria, with MIC values that ranged from 1.97 to 125 μg/ml. The bioactivity results also demonstrated antiproliferation and morphological change in HeLa cells with an IC50 value of 24.30μg/ml of antibiotic. The antibiotic, obtained from S. monomycini RVE129, could be a potential candidate to combat pathogens including drug-resistant S. aureus. Further, the effect on HeLa cells suggests that it could be a prominent cancer chemotherapeutic agent.
Collapse
|
16
|
Impact of broad-spectrum antibiotics on the gut-microbiota-spleen-brain axis. Brain Behav Immun Health 2022; 27:100573. [PMID: 36583066 PMCID: PMC9793168 DOI: 10.1016/j.bbih.2022.100573] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The spleen is a key immune-related organ that plays a role in communication between the brain and the immune system through the brain-spleen axis and brain-gut-microbiota axis. However, how the gut microbiota affects spleen and brain function remains unclear. Here, we investigated whether microbiome depletion induced by administration of an antibiotic cocktail (ABX) affects spleen and brain function. Treatment with ABX for 14 days resulted in a significant decrease in spleen weight and significant alterations in splenic functions, including the percentage of neutrophils, NK cells, macrophages, and CD8+ T cells. Furthermore, ABX treatment resulted in the depletion of a large portion of the gut microbiota. Untargeted metabolomics analysis showed that ABX treatment caused alterations in the levels of certain compounds in the plasma, spleen, and brain. Moreover, ABX treatment decreased the expression of microglia marker Iba1 in the cerebral cortex. Interestingly, correlations were found between the abundance of different microbiome components and metabolites in various tissues, as well as splenic cell populations and spleen weight. These findings suggest that ABX-induced microbiome depletion and altered metabolite levels may affect spleen and brain function through the gut-microbiota-spleen-brain axis.
Collapse
|
17
|
Chen P, Zhang J, Wang C, Chai YH, Wu AG, Huang NY, Wang L. The pathogenesis and treatment mechanism of Parkinson's disease from the perspective of traditional Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 100:154044. [PMID: 35338993 DOI: 10.1016/j.phymed.2022.154044] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/26/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is the second most common neurodegenerative disease with no treatment currently available to modify its progression. Traditional Chinese medicine (TCM) has gained attention for its unique theoretical basis and clinical effects. Many studies have reported on the clinical effects and pharmacological mechanisms of Chinese herbs in PD. However, few studies have focused on the treatment mechanisms of anti-PD TCM drugs from the perspective of TCM itself. PURPOSE To elaborate the treatment mechanisms of anti-PD TCM drugs in the perspective of TCM. METHODS We performed a literature survey using traditional books of Chinese medicine and online scientific databases including PubMed, Web of Science, Google Scholar, China National Knowledge Infrastructure (CNKI), and others up to July 2021. RESULTS TCM theory states that PD is caused by a dysfunction of the zang-fu organs (liver, spleen, kidney, and lung) and subsequent pathogenic factors (wind, fire, phlegm, and blood stasis). Based on the pathogenesis, removing pathogenic factors and restoring visceral function are two primary treatment principles for PD in TCM. The former includes dispelling wind, clearing heat, resolving phlegm, and promoting blood circulation, while the latter involves nourishing the liver and kidney and strengthening the spleen. The anti-PD mechanisms of the active ingredients of TCM compounds and herbs at different levels include anti-apoptosis, anti-inflammation, and anti-oxidative stress, as well as the restoration of mitochondrial function and the regulation of autophagy and neurotransmitters. CONCLUSION Chinese herbs and prescriptions can be used to treat PD by targeting multiple pharmacological mechanisms.
Collapse
Affiliation(s)
- Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China; Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Jie Zhang
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - Chen Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, Guangdong, China
| | - Yi-Hui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
| | - An-Guo Wu
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Ning-Yu Huang
- Accreditation Center of Traditional Chinese Medicine Physician, National Administration of Traditional Chinese Medicine, Beijing, China.
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
18
|
Wu D, Chen S, Ye X, Ahmadi S, Hu W, Yu C, Zhu K, Cheng H, Linhardt RJ, He Q. Protective effects of six different pectic polysaccharides on DSS-induced IBD in mice. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
19
|
Kirchweger B, Klein-Junior LC, Pretsch D, Chen Y, Cretton S, Gasper AL, Heyden YV, Christen P, Kirchmair J, Henriques AT, Rollinger JM. Azepine-Indole Alkaloids From Psychotria nemorosa Modulate 5-HT 2A Receptors and Prevent in vivo Protein Toxicity in Transgenic Caenorhabditis elegans. Front Neurosci 2022; 16:826289. [PMID: 35360162 PMCID: PMC8963987 DOI: 10.3389/fnins.2022.826289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022] Open
Abstract
Nemorosine A (1) and fargesine (2), the main azepine-indole alkaloids of Psychotria nemorosa, were explored for their pharmacological profile on neurodegenerative disorders (NDs) applying a combined in silico-in vitro-in vivo approach. By using 1 and 2 as queries for similarity-based searches of the ChEMBL database, structurally related compounds were identified to modulate the 5-HT2A receptor; in vitro experiments confirmed an agonistic effect for 1 and 2 (24 and 36% at 10 μM, respectively), which might be linked to cognition-enhancing properties. This and the previously reported target profile of 1 and 2, which also includes BuChE and MAO-A inhibition, prompted the evaluation of these compounds in several Caenorhabditis elegans models linked to 5-HT modulation and proteotoxicity. On C. elegans transgenic strain CL4659, which expresses amyloid beta (Aβ) in muscle cells leading to a phenotypic paralysis, 1 and 2 reduced Aβ proteotoxicity by reducing the percentage of paralyzed worms to 51%. Treatment of the NL5901 strain, in which α-synuclein is yellow fluorescent protein (YFP)-tagged, with 1 and 2 (10 μM) significantly reduced the α-synuclein expression. Both alkaloids were further able to significantly extend the time of metallothionein induction, which is associated with reduced neurodegeneration of aged brain tissue. These results add to the multitarget profiles of 1 and 2 and corroborate their potential in the treatment of NDs.
Collapse
Affiliation(s)
- Benjamin Kirchweger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Luiz C. Klein-Junior
- School of Health Sciences, Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Dagmar Pretsch
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| | - Ya Chen
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Sylvian Cretton
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - André L. Gasper
- Herbarium Dr. Roberto Miguel Klein, Department of Natural Sciences, Universidade Regional de Blumenau (FURB), Blumenau, Brazil
| | - Yvan Vander Heyden
- Department of Analytical Chemistry, Applied Chemometrics and Molecular Modeling, Center for Pharmaceutical Research (CePhaR), Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Philippe Christen
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Johannes Kirchmair
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Amélia T. Henriques
- Laboratory of Pharmacognosy and Quality Control of Phytomedicines, Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Judith M. Rollinger
- Department of Pharmaceutical Sciences, Division of Pharmacognosy, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Wang N, Li R, Feng B, Cheng Y, Guo Y, Qian H. Chicoric Acid Prevents Neuroinflammation and Neurodegeneration in a Mouse Parkinson’s Disease Model: Immune Response and Transcriptome Profile of the Spleen and Colon. Int J Mol Sci 2022; 23:ijms23042031. [PMID: 35216146 PMCID: PMC8874631 DOI: 10.3390/ijms23042031] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 02/05/2023] Open
Abstract
Chicoric acid (CA), a polyphenolic acid compound extracted from chicory and echinacea, possesses antiviral, antioxidative and anti-inflammatory activities. Growing evidence supports the pivotal roles of brain–spleen and brain–gut axes in neurodegenerative diseases, including Parkinson’s disease (PD), and the immune response of the spleen and colon is always the active participant in the pathogenesis and development of PD. In this study, we observe that CA prevented dopaminergic neuronal lesions, motor deficits and glial activation in PD mice, along with the increment in striatal brain-derived neurotrophic factor (BDNF), dopamine (DA) and 5-hydroxyindoleacetic acid (5-HT). Furthermore, CA reversed the level of interleukin-17(IL-17), interferon-gamma (IFN-γ) and transforming growth factor-beta (TGF-β) of PD mice, implicating its regulatory effect on the immunological response of spleen and colon. Transcriptome analysis revealed that 22 genes in the spleen (21 upregulated and 1 downregulated) and 306 genes (190 upregulated and 116 downregulated) in the colon were significantly differentially expressed in CA-pretreated mice. These genes were functionally annotated with GSEA, GO and KEGG pathway enrichment, providing the potential target genes and molecular biological mechanisms for the modulation of CA on the spleen and gut in PD. Remarkably, CA restored some gene expressions to normal level. Our results highlighted that the neuroprotection of CA might be associated with the manipulation of CA on brain–spleen and brain–gut axes in PD.
Collapse
Affiliation(s)
- Ning Wang
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
| | - Rui Li
- Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Bainian Feng
- School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China;
| | - Yuliang Cheng
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
| | - Yahui Guo
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
- Correspondence: (Y.G.); (H.Q.)
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (N.W.); (Y.C.)
- Correspondence: (Y.G.); (H.Q.)
| |
Collapse
|
21
|
Brain Research Bulletin Special Issue: Brain–body communication in health and diseases Brain–spleen axis in health and diseases: a review and future perspective. Brain Res Bull 2022; 182:130-140. [PMID: 35157987 DOI: 10.1016/j.brainresbull.2022.02.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 02/06/2023]
|
22
|
Sun X, Zhang Y, Zhou Y, Lian X, Yan L, Pan T, Jin T, Xie H, Liang Z, Qiu W, Wang J, Li Z, Zhu F, Sui X. NPCDR: natural product-based drug combination and its disease-specific molecular regulation. Nucleic Acids Res 2021; 50:D1324-D1333. [PMID: 34664659 PMCID: PMC8728151 DOI: 10.1093/nar/gkab913] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/16/2021] [Accepted: 09/25/2021] [Indexed: 01/15/2023] Open
Abstract
Natural product (NP) has a long history in promoting modern drug discovery, which has derived or inspired a large number of currently prescribed drugs. Recently, the NPs have emerged as the ideal candidates to combine with other therapeutic strategies to deal with the persistent challenge of conventional therapy, and the molecular regulation mechanism underlying these combinations is crucial for the related communities. Thus, it is urgently demanded to comprehensively provide the disease-specific molecular regulation data for various NP-based drug combinations. However, no database has been developed yet to describe such valuable information. In this study, a newly developed database entitled ‘Natural Product-based Drug Combination and Its Disease-specific Molecular Regulation (NPCDR)’ was thus introduced. This database was unique in (a) providing the comprehensive information of NP-based drug combinations & describing their clinically or experimentally validated therapeutic effect, (b) giving the disease-specific molecular regulation data for a number of NP-based drug combinations, (c) fully referencing all NPs, drugs, regulated molecules/pathways by cross-linking them to the available databases describing their biological or pharmaceutical characteristics. Therefore, NPCDR is expected to have great implications for the future practice of network pharmacology, medical biochemistry, drug design, and medicinal chemistry. This database is now freely accessible without any login requirement at both official (https://idrblab.org/npcdr/) and mirror (http://npcdr.idrblab.net/) sites.
Collapse
Affiliation(s)
- Xueni Sun
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Xichen Lian
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lili Yan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Pan
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Ting Jin
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Han Xie
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Zimao Liang
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenqi Qiu
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Jianxin Wang
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Zhaorong Li
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.,Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Xinbing Sui
- School of Pharmacy and Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
23
|
Zhang C, Zhao M, Wang B, Su Z, Guo B, Qin L, Zhang W, Zheng R. The Nrf2-NLRP3-caspase-1 axis mediates the neuroprotective effects of Celastrol in Parkinson's disease. Redox Biol 2021; 47:102134. [PMID: 34600334 PMCID: PMC8487081 DOI: 10.1016/j.redox.2021.102134] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disorder that is characterized by motor symptoms as a result of a loss of dopaminergic neurons in the substantia nigra pars compacta (SNc), accompanied by chronic neuroinflammation, oxidative stress, formation of α-synuclein aggregates. Celastrol, a potent anti-inflammatory and anti-oxidative pentacyclic triterpene, has emerged as a neuroprotective agent. However, the mechanisms by which celastrol is neuroprotective in PD remain elusive. Here we show that celastrol protects against dopamine neuron loss, mitigates neuroinflammation, and relieves motor deficits in MPTP-induced PD mouse model and AAV-mediated human α-synuclein overexpression PD model. Whole-genome deep sequencing analysis revealed that Nrf2, NLRP3 and caspase-1 in SNc may be associated with the neuroprotective actions of celastrol in PD. By using multiple genetically modified mice (Nrf2-KO, NLRP3-KO and Caspase-1-KO), we identified that celastrol inhibits NLRP3 inflammasome activation, relieves motor deficits and nigrostriatal dopaminergic degeneration through Nrf2-NLRP3-caspase-1 pathway. Taken together, these findings suggest that Nrf2-NLRP3-caspase-1 axis may serve as a key target of celastrol in PD treatment, and highlight the favorable properties of celastrol for neuroprotection, making celastrol as a promising disease-modifying agent for PD.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Miao Zhao
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Bingwei Wang
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Zhijie Su
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Bingbing Guo
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Lihua Qin
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Weiguang Zhang
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China
| | - Ruimao Zheng
- Department of Anatomy, Histology and Embryology, Health Science Center, Peking University, Beijing, China; Neuroscience Research Institute, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education, Peking University, Beijing, China; Key Laboratory for Neuroscience of National Health Commission, Peking University, Beijing, China.
| |
Collapse
|
24
|
Zeng W, Wu AG, Zhou XG, Khan I, Zhang RL, Lo HH, Qu LQ, Song LL, Yun XY, Wang HM, Chen J, Ng JPL, Ren F, Yuan SY, Yu L, Tang Y, Huang GX, Wong VKW, Chung SK, Mok SWF, Qin DL, Sun HL, Liu L, Hsiao WLW, Law BYK. Saponins isolated from Radix polygalae extent lifespan by modulating complement C3 and gut microbiota. Pharmacol Res 2021; 170:105697. [PMID: 34062240 DOI: 10.1016/j.phrs.2021.105697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
With the increase in human lifespan, population aging is one of the major problems worldwide. Aging is an irreversible progressive process that affects humans via multiple factors including genetic, immunity, cellular oxidation and inflammation. Progressive neuroinflammation contributes to aging, cognitive malfunction, and neurodegenerative diseases. However, precise mechanisms or drugs targeting age-related neuroinflammation and cognitive impairment remain un-elucidated. Traditional herbal plants have been prescribed in many Asian countries for anti-aging and the modulation of aging-related symptoms. In general, herbal plants' efficacy is attributed to their safety and polypharmacological potency via the systemic manipulation of the body system. Radix polygalae (RP) is a herbal plant prescribed for anti-aging and the relief of age-related symptoms; however, its active components and biological functions remained un-elucidated. In this study, an active methanol fraction of RP containing 17 RP saponins (RPS), was identified. RPS attenuates the elevated C3 complement protein in aged mice to a level comparable to the young control mice. The active RPS also restates the aging gut microbiota by enhancing beneficial bacteria and suppressing harmful bacteria. In addition, RPS treatment improve spatial reference memory in aged mice, with the attenuation of multiple molecular markers related to neuroinflammation and aging. Finally, the RPS improves the behavior and extends the lifespan of C. elegans, confirming the herbal plant's anti-aging ability. In conclusion, through the mouse and C. elegas models, we have identified the beneficial RPS that can modulate the aging process, gut microbiota diversity and rectify several aging-related phenotypes.
Collapse
Affiliation(s)
- Wu Zeng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Department of Center for Neuro-metabolism and Regeneration Research, Bioland Laboratory, Guangzhou, China
| | - An Guo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Xiao-Gang Zhou
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Imran Khan
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Rui Long Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hang Hong Lo
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Li Qun Qu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Lin Lin Song
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Xiao Yun Yun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Hui Miao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jerome P L Ng
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Si Yu Yuan
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lu Yu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Yong Tang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau; Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Guo Xin Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Vincent Kam Wai Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Sookja Kim Chung
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Simon Wing Fai Mok
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Da Lian Qin
- Sichuan Key Medical Laboratory of New Drug Discovery and Drug Ability Evaluation, Key Laboratory of Medical Electrophysiology of Ministry of Education, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Hua Lin Sun
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau
| | - Liang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - W L Wendy Hsiao
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| | - Betty Yuen Kwan Law
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau.
| |
Collapse
|
25
|
Gao C, Liu C, Chen Y, Wang Q, Hao Z. Protective effects of natural products against drug-induced nephrotoxicity: A review in recent years. Food Chem Toxicol 2021; 153:112255. [PMID: 33989732 DOI: 10.1016/j.fct.2021.112255] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/03/2021] [Accepted: 05/05/2021] [Indexed: 12/17/2022]
Abstract
Drug-induced nephrotoxicity (DIN) is a major cause of kidney damage and is associated with high mortality and morbidity, which limits the clinical use of certain therapeutic or diagnostic agents, such as antineoplastic drugs, antibiotics, immunosuppressive agents, non-steroidal anti-inflammatory drugs (NSAIDs), and contrast agents. However, in recent years, a number of studies have shown that many natural products (NPs), including phytochemicals, various plants extracts, herbal formulas, and NPs derived from animals, confer protective effects against DIN through multi-targeting therapeutic mechanisms, such as inhibition of oxidative stress, inflammation, apoptosis, fibrosis, and necroptosis, regulation of autophagy, maintenance of cell polarity, etc., by regulating multiple signaling pathways and novel molecular targets. In this review, we summarize and discuss the protective effects and mechanisms underlying the action of NPs against DIN found in recent years, which will contribute to the development of promising renal protective agents.
Collapse
Affiliation(s)
- Chen Gao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Chang Liu
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yuwei Chen
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Qingtao Wang
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi, 830052, China
| | - Zhihui Hao
- Innovation Center for Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
26
|
Therapeutic applications and biological activities of bacterial bioactive extracts. Arch Microbiol 2021; 203:4755-4776. [PMID: 34370077 PMCID: PMC8349711 DOI: 10.1007/s00203-021-02505-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/24/2021] [Accepted: 07/27/2021] [Indexed: 02/07/2023]
Abstract
Bacteria are rich in a wide variety of secondary metabolites, such as pigments, alkaloids, antibiotics, and others. These bioactive microbial products serve a great application in human and animal health. Their molecular diversity allows these natural products to possess several therapeutic attributes and biological functions. That's why the current natural drug industry focuses on uncovering all the possible ailments and diseases that could be combated by bacterial extracts and their secondary metabolites. In this paper, we review the major utilizations of bacterial natural products for the treatment of cancer, inflammatory diseases, allergies, autoimmune diseases, infections and other diseases that threaten public health. We also elaborate on the identified biological activities of bacterial secondary metabolites including antibacterial, antifungal, antiviral and antioxidant activities all of which are essential nowadays with the emergence of drug-resistant microbial pathogens. Throughout this review, we discuss the possible mechanisms of actions in which bacterial-derived biologically active molecular entities could possess healing properties to inspire the development of new therapeutic agents in academia and industry.
Collapse
|