1
|
Yao GS, Dai JS, Fu LM, Lin J, Tan ZP, Dai L, Chen W, Luo JH, Wei JH. Development and validation of hierarchical signature for precision individualized therapy based on the landscape associated with necroptosis in clear cell renal cell carcinoma. Front Pharmacol 2025; 16:1470145. [PMID: 40255563 PMCID: PMC12006085 DOI: 10.3389/fphar.2025.1470145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/04/2025] [Indexed: 04/22/2025] Open
Abstract
Background Increasing evidence is showing that necroptosis has unique clinical significance in the occurrence and development of multiple diseases. Here, we systematically evaluate the role of necroptosis in clear cell renal cell carcinoma (ccRCC) and analyze its regulatory patterns. Methods First, we evaluated the expression and enrichment of necroptotic factors in ccRCC using gene set enrichment analysis (GSEA) and survival analysis in the expression profile from The Cancer Genome Atlas (TCGA) to demonstrate the overall mutation of necroptotic pathway genes. Then, we used unsupervised clustering to divide the samples into two subtypes related to necroptosis with significant differences in overall survival (OS) and subsequently detected the differentially expressed genes (DEGs) between them. Based on this, we constructed the necroptosis scoring system (NSS), which also performed outstandingly in hierarchical data. Finally, we analyzed the association between NSS and clinical parameters, immune infiltration, and the efficacy of immunotherapy containing immune checkpoint inhibitors (ICIs), and we suggested potential therapeutic strategies. Results We screened 97 necroptosis-related genes and demonstrated that they were dysregulated in ccRCC. Using Cox analysis and least absolute shrinkage and selection operator (LASSO) regression, a prognostic prediction signature of seven genes was built. Receiver operating characteristic (ROC) curves and Kaplan-Meier (KM) analyses both showed that the model was accurate, and univariate/multivariate Cox analysis showed that as an independent prognostic factor, the higher the risk score, the poorer the survival outcome. Furthermore, the predicted scores based on the signature were observably associated with immune cell infiltration and the mutation of specific genes. In addition, the risk score could potentially predict patients' responsiveness to different chemotherapy regimens. Specifically, Nivolumab is more effective for patients with higher scores. Conclusion The necroptosis-related signature we constructed can accurately predict the prognosis of ccRCC patients and further provide clues for targeted, individualized therapy.
Collapse
Affiliation(s)
- Gao-Sheng Yao
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jun-Shang Dai
- Department of Obstetrics and Gynaecology, The Chinese University of Hong Kong, Shatin, Hong Kong Special Administrative Region, China
- Department of Obstetrics and Gynecology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Liang-Min Fu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China
| | - Juan Lin
- Department of Pediatrics, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi-Ping Tan
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Lei Dai
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jun-Hang Luo
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Institute of Precision Medicine, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jin-Huan Wei
- Department of Urology, Sun Yat-Sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Du B, Fu Q, Yang Q, Yang Y, Li R, Yang X, Yang Q, Li S, Tian J, Liu H. Different types of cell death and their interactions in myocardial ischemia-reperfusion injury. Cell Death Discov 2025; 11:87. [PMID: 40044643 PMCID: PMC11883039 DOI: 10.1038/s41420-025-02372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/10/2025] [Accepted: 02/21/2025] [Indexed: 03/09/2025] Open
Abstract
Myocardial ischemia-reperfusion (I/R) injury is a multifaceted process observed in patients with coronary artery disease when blood flow is restored to the heart tissue following ischemia-induced damage. Cardiomyocyte cell death, particularly through apoptosis, necroptosis, autophagy, pyroptosis, and ferroptosis, is pivotal in myocardial I/R injury. Preventing cell death during the process of I/R is vital for improving ischemic cardiomyopathy. These multiple forms of cell death can occur simultaneously, interact with each other, and contribute to the complexity of myocardial I/R injury. In this review, we aim to provide a comprehensive summary of the key molecular mechanisms and regulatory patterns involved in these five types of cell death in myocardial I/R injury. We will also discuss the crosstalk and intricate interactions among these mechanisms, highlighting the interplay between different types of cell death. Furthermore, we will explore specific molecules or targets that participate in different cell death pathways and elucidate their mechanisms of action. It is important to note that manipulating the molecules or targets involved in distinct cell death processes may have a significant impact on reducing myocardial I/R injury. By enhancing researchers' understanding of the mechanisms and interactions among different types of cell death in myocardial I/R injury, this review aims to pave the way for the development of novel interventions for cardio-protection in patients affected by myocardial I/R injury.
Collapse
Affiliation(s)
- Bingxin Du
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qiang Fu
- Department of Chinese Formulae, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qin Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yeying Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Rui Li
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingrong Yang
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shuo Li
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China
| | - Jinwei Tian
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Huibin Liu
- Department of Pharmacy, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
- Heilongjiang Provincial Key Laboratory of Panvascular Disease, Harbin, China.
| |
Collapse
|
3
|
Shi H, Marchi RC, Sadler PJ. Advances in the Design of Photoactivatable Metallodrugs: Excited State Metallomics. Angew Chem Int Ed Engl 2025; 64:e202423335. [PMID: 39806815 DOI: 10.1002/anie.202423335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Indexed: 01/16/2025]
Abstract
Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important. Photoactivatable metallodrugs are classified here as photocatalysts, photorelease agents and ligand-activated agents. Their activation wavelengths, cellular mechanisms of action, experimental and theoretical metallomics of excited states and photoproducts are discussed to explore new strategies for the design and investigation of photoactivatable metallodrugs. These photoactivatable metallodrugs have potential in clinical applications of Photodynamic Therapy (PDT), Photoactivated Chemotherapy (PACT) and Photothermal Therapy (PTT).
Collapse
Affiliation(s)
- Huayun Shi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
- State Key Laboratory of Vaccines for Infectious Diseases, Center for Molecular Imaging and Translational Medicine, Xiang An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, China
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen, 361102, China
| | - Rafael C Marchi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Peter J Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
4
|
Yu P, Xiao L, Hu K, Ling J, Chen Y, Liang R, Liu X, Zhang D, Liu Y, Weng T, Jiang H, Zhang J, Wang W. Comprehensive exploration of programmed cell death landscape in lung adenocarcinoma combining multi-omic analysis and experimental verification. Sci Rep 2025; 15:5364. [PMID: 39948103 PMCID: PMC11825851 DOI: 10.1038/s41598-025-87982-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025] Open
Abstract
The mortality and therapeutic failure in lung adenocarcinoma (LUAD) are mainly resulted from the wide metastasis and chemotherapy resistance. Up to now, accurate and stable predictive prognostic indicator for revealing the progress and novel therapeutic strategies of LUAD is infrequent, nonetheless. Diversified programmed cell death (PCD) has been widely confirmed that participated in the occurrence and development of various malignant tumors, respectively. In this research, we integrated fourteen types of PCD, bulk multi-omic data from TCGA-LUAD and other cohorts in gene expression omnibus (GEO) and clinical LUAD patients to develop our analysis. Consequently, pivotal fourteen PCD genes, especially CAMP, CDK5R1, CTSW, DAPK2, GAB2, GAPDH, GATA2, HGF, MAPT, NAPSA, NUPR1, PIK3CG, PLA2G3, and SLC7A11, were utilized to establish the prognostic signature, namely cell death index (CDI). The validation in several external cohorts indicated that CDI can be regarded as a potential risk factor of LUAD patients. Combined with other common clinical information, a nomogram with potential predictive ability was constructed. Besides, according to the CDI signature, the tumor microenvironment (TME) and sensitivity to some potential chemotherapeutic drugs were further and deeply explored. Notably, verification and functional experiments further demonstrated the remarkable correlation between CDI and unfold protein response. Given all the above, a novel CDI gene signature was indicated to predict the prognosis and exploit precision therapeutic strategies of LUAD patients.
Collapse
Affiliation(s)
- Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Leyang Xiao
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Kaibo Hu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- The Second Clinical Medical College, Nanchang University, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ruiqi Liang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinyu Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, USA
| | - Deju Zhang
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Yuzhen Liu
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Tongchun Weng
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Hongfa Jiang
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wuming Wang
- Department of Thoracic Surgery, Jiangxi Provincial Chest Hospital, Nanchang, China.
| |
Collapse
|
5
|
Yao K, Shi Z, Zhao F, Tan C, Zhang Y, Fan H, Wang Y, Li X, Kong J, Wang Q, Li D. RIPK1 in necroptosis and recent progress in related pharmaceutics. Front Immunol 2025; 16:1480027. [PMID: 40007541 PMCID: PMC11850271 DOI: 10.3389/fimmu.2025.1480027] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
Necroptosis is a programmed form of cell death. Receptor-interacting serine/threonine protein kinase l (RIPK1) is a crucial protein kinase that regulates the necroptosis pathway. Increased expression of death receptor family ligands such as tumor necrosis factor (TNF) increases the susceptibility of cells to apoptosis and necroptosis. RIPK1, RIPK3, and mixed-lineage kinase-like domain (MLKL) proteins mediate necrosis. RIPK1-mediated necroptosis further promotes cell death and inflammation in the pathogenesis of liver injury, skin diseases, and neurodegenerative diseases. The N-terminal kinase domain of RIPK1 is significant in the induction of cell death and can be used as a vital drug target for inhibitors. In this paper, we outline the pathways of necroptosis and the role RIPK1 plays in them and suggest that targeting RIPK1 in therapy may help to inhibit multiple cell death pathways.
Collapse
Affiliation(s)
- Kunhou Yao
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhihao Shi
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Fengya Zhao
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Cong Tan
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Yixin Zhang
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Hao Fan
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Yingzhe Wang
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Xingwang Li
- Department of General Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Jun Kong
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Qun Wang
- School of Basic Medicine, Henan University, Kaifeng, China
| | - Dingxi Li
- Department of Gynaecology, The Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
6
|
Wang Z, Wu C, Yin D, Dou K. Ferroptosis: mechanism and role in diabetes-related cardiovascular diseases. Cardiovasc Diabetol 2025; 24:60. [PMID: 39920799 PMCID: PMC11806630 DOI: 10.1186/s12933-025-02614-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/24/2025] [Indexed: 02/09/2025] Open
Abstract
Cardiovascular diseases represent the principal cause of death and comorbidity among people with diabetes. Ferroptosis, an iron-dependent non-apoptotic regulated cellular death characterized by lipid peroxidation, is involved in the pathogenesis of diabetic cardiovascular diseases. The susceptibility to ferroptosis in diabetic hearts is possibly related to myocardial iron accumulation, abnormal lipid metabolism and excess oxidative stress under hyperglycemia conditions. Accumulating evidence suggests ferroptosis can be the therapeutic target for diabetic cardiovascular diseases. This review summarizes ferroptosis-related mechanisms in the pathogenesis of diabetic cardiovascular diseases and novel therapeutic choices targeting ferroptosis-related pathways. Further study on ferroptosis-mediated cardiac injury can enhance our understanding of the pathophysiology of diabetic cardiovascular diseases and provide more potential therapeutic choices.
Collapse
Affiliation(s)
- Ziyi Wang
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chao Wu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Yin
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Kefei Dou
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Cardiometabolic Medicine Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
7
|
San W, Zhou Q, Shen D, Cao D, Chen Y, Meng G. Roles of retinoic acid-related orphan receptor α in high glucose-induced cardiac fibroblasts proliferation. Front Pharmacol 2025; 16:1539690. [PMID: 39950114 PMCID: PMC11821935 DOI: 10.3389/fphar.2025.1539690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 02/16/2025] Open
Abstract
Diabetic cardiomyopathy, characterized by myocardial fibrosis, is a common complication of diabetes. Retinoic acid-related orphan receptor α (RORα) participates in various pathological and physiological cardiovascular processes. The current research aims to elucidate the roles and mechanisms of RORα in high glucose induced cardiac fibroblasts proliferation. Primary neonatal cardiac fibroblasts were isolated from Sprague-Dawley rats, and pre-administrated with RORα antagonist SR3335 (20 µM) or RORα agonist SR1078 (10 µM) followed by the stimulation with normal glucose (5.5 mM) or high glucose (33.3 mM) respectively. Lactate Dehydrogenase (LDH) release into culture medium, cellular adenosine-triphosphate (ATP), and cell number were detected. Expressions of Collagen I, Collagen III, proliferating cell nuclear antigen (PCNA), α-smooth muscle actin (α-SMA), receptor-interacting protein kinase 1 (RIPK1) and receptor-interacting protein kinase 3 (RIPK3) were evaluated. The extent of oxidative stress was also assessed. Our study found that high glucose elevated LDH release, reduced cellular ATP production, increased cells numbers, elevated expression of Collagen I, Collagen III, PCNA, α-SMA, RIPK1 and RIPK3, decreased mitochondrial membrane potential, strengthened intensity of dihydroethidium (DHE) and MitoSOX fluorescence. Above effects were all further exacerbated by SR3335 but significantly reversed by SR1078. In conclusion, RORα antagonist SR3335 promoted cell injury and proliferation, enhanced collagen synthesis, facilitated oxidative stress and necroptosis in cardiac fibroblasts with high glucose stimulation, whereas RORα agonist SR1078 showed opposing effects. Our study proposed RORα as a novel target against high glucose-induced cardiac fibroblasts proliferation, which is beneficial to clarify ideal therapeutic implication for diabetic cardiomyopathy.
Collapse
Affiliation(s)
| | | | | | | | - Yun Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Guoliang Meng
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|
8
|
Levente Petró J, Bana P, Linke N, Eszter Szabó J, Katalin Szalai K, Kálomista I, Gábor Vass C, Hornyánszky G, Greiner I, Éles J. Harnessing dual-mode RIPK1 ligands for cross-species anti-necroptosis inhibitor compounds. Bioorg Med Chem Lett 2024; 113:129970. [PMID: 39306047 DOI: 10.1016/j.bmcl.2024.129970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) has a crucial role in cell death and inflammation. A promising approach to develop novel inhibitors of RIPK1 mediated necroptosis is to mix the different binding modes of the known RIPK1 inhibitors into one molecule. Herein we report the synthesis and biological evaluation of novel mixed type inhibitors. Using Eclitasertib as a starting point, and applying our previous, published knowledge regarding cyclic malonamides, we successfully identified a library of active compounds. The active enantiomer of the most balanced and promising compound was subjected to pharmacokinetics and in vivo hypothermia study in mice.
Collapse
Affiliation(s)
- József Levente Petró
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary; Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Péter Bana
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - Nikolett Linke
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - Judit Eszter Szabó
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | | | - Ildikó Kálomista
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - Csaba Gábor Vass
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - István Greiner
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - János Éles
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| |
Collapse
|
9
|
Liu Y, You H, Li H, Zhang C, Guo H, Huang X, Zhang Q, Zhang X, Ma C, Wang Y, Li T, Ji W, Kang Z, Zhang H. TaNAC1 boosts powdery mildew resistance by phosphorylation-dependent regulation of TaSec1a and TaCAMTA4 via PP2Ac/CDPK20. THE NEW PHYTOLOGIST 2024; 244:635-653. [PMID: 39183373 DOI: 10.1111/nph.20070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 07/01/2024] [Indexed: 08/27/2024]
Abstract
The integrity of wheat (Triticum aestivum) production is increasingly jeopardized by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), particularly amid the vicissitudes of climate change. Here, we delineated the role of a wheat transcription factor, TaNAC1, which precipitates cellular apoptosis and fortifies resistance against Bgt. Utilizing BiFC, co-immunoprecipitation, protein quantification, luciferase report assays, we determined that cytoplasmic TaNAC1-7A undergoes phosphorylation at the S184/S258 sites by TaCDPK20, facilitating its nuclear translocation. This migration appears to prime further phosphorylation by TaMPK1, thereby enhancing transcriptional regulatory activity. Notably, the apoptotic activity of phosphorylated TaNAC1-7A is negatively modulated by the nuclear protein phosphatase PP2Ac. Furthermore, activation of TaNAC1 phosphorylation initiates transcription of downstream genes TaSec1a and TaCAMTA4, through binding to the C[T/G]T[N7]A[A/C]G nucleic acid motif. Suppression of TaNAC1, TaCDPK20, and TaMPK1 in wheat compromises its resistance to Bgt strain E09, whereas overexpression of TaNAC1 and silencing of PP2Ac markedly elevate resistance levels. Our results reveal the pivotal role of TaNAC1 in basal resistance which is mediated by its effects on homotypic fusion, vacuolar protein sorting, and the expression of defense-related genes. The findings highlight the potential through targeting TaNAC1 and its regulators as a strategy for improving wheat's resistance to fungal pathogens.
Collapse
Affiliation(s)
- Yuanming Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hongguang You
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hanping Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chujun Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huan Guo
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xueling Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qiong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiangyu Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chuang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tingdong Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanquan Ji
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
10
|
Li S, Ma L, Li X, Jiang Y, Luo Z, Yin F, Zhang Y, Chen Y, Wan S, Zhou H, Kong L, Wang X. Discovery of Covalent MLKL PROTAC Degraders via Optimization of a Theophylline Derivative Ligand for Treating Necroptosis. J Med Chem 2024; 67:15353-15372. [PMID: 39180479 DOI: 10.1021/acs.jmedchem.4c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
Abstract
Mixed lineage kinase domain-like pseudokinase (MLKL) initiates necroptosis and could serve as a therapeutic target related to a series of human diseases. Proteolysis-targeting chimeras (PROTACs) are useful tools for degrading pathological proteins and blocking disease processes. Using computer-aided modeling and molecular dynamics simulations, we developed a series of covalent MLKL PROTACs by linking and optimizing a theophylline derivative that covalently targets MLKL. Via structure-activity relationship studies, MP-11 was identified as a potent MLKL PROTAC degrader. Furthermore, MP-11 showed lower toxicity than the original MLKL ligand, exhibiting nanomolar-scale antinecroptotic activity on human cell lines. Xenograft model studies showed that MP-11 effectively degraded MLKL in vivo. Importantly, our study demonstrates that the covalent binding strategy is an effective approach for designing MLKL-targeting PROTACs, serving as a model for developing PROTACs to treat future necroptosis-related human diseases.
Collapse
Affiliation(s)
- Shang Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Liangliang Ma
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xinxin Li
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yuhan Jiang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Zhongwen Luo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Fucheng Yin
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yonglei Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yifan Chen
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Siyuan Wan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Han Zhou
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaobing Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
11
|
Shi Y, Liu J, Hou M, Tan Z, Chen F, Zhang J, Liu Y, Leng Y. Ursolic acid improves necroptosis via STAT3 signaling in intestinal ischemia/reperfusion injury. Int Immunopharmacol 2024; 138:112463. [PMID: 38971110 DOI: 10.1016/j.intimp.2024.112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/29/2024] [Accepted: 06/07/2024] [Indexed: 07/08/2024]
Abstract
Intestinal ischemia/reperfusion injury (IRI) poses a serious threat to human survival and quality of life with high mortality and morbidity rates. The current absence of effective treatments for intestinal IRI highlights the urgent need to identify new therapeutic targets. Ursolic acid (UA), a pentacyclic triterpene natural compound, has been shown to possess various pharmacological properties including intestinal protection. However, its potential protective efficacy on intestinal IRI remains elusive. This study aimed to investigate the effect of UA on intestinal IRI and explore the underlying mechanisms. To achieve this, we utilized network pharmacology to analyze the mechanism of UA in intestinal IRI and assessed UA's effects on intestinal IRI using a mouse model of superior mesenteric artery occlusion/reperfusion and an in vitro model of oxygen-glucose deprivation and reperfusion-induced IEC-6 cells. Our results demonstrated that UA improved necroptosis through the RIP1/RIP3/MLKL pathway, reduced necroinflammation via the HMGB1/TLR4/NF-κB pathway, attenuated morphological damage, and enhanced intestinal barrier function. Furthermore, UA pretreatment downregulated the phosphorylation level of signal transducer and activator of transcription 3 (STAT3). The effects of UA were attenuated by the STAT3 agonist Colivelin. In conclusion, our study suggests that UA can improve intestinal IRI by inhibiting necroptosis in enterocytes via the suppression of STAT3 activation. These results provide a theoretical basis for UA treatment of intestinal IRI and related clinical diseases.
Collapse
Affiliation(s)
- Yajing Shi
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710000, PR China
| | - Jie Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Min Hou
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Zhiguo Tan
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Feng Chen
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Jianmin Zhang
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China
| | - Yongqiang Liu
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China
| | - Yufang Leng
- The First School of Clinical Medicine of Lanzhou University, Lanzhou, 730000, PR China; Department of Anesthesiology, the First Hospital of Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
12
|
Xia X, Li J, Yu J, Ren P, Liu M, Hou J, Teng Z, Wang L, Zhang X, Bai Y. Modulatory effects of necroptosis: A potential preventive approach to control diseases in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 152:109802. [PMID: 39096982 DOI: 10.1016/j.fsi.2024.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Necroptosis is a caspase-independent programmed cell death process characterized by morphological similarities to necrosis and the potential to cause significant inflammatory reactions. The initiation, execution, and inhibition of necroptosis involve a complex interplay of various signaling proteins. When death receptors bind to ligands, necroptosis is triggered through the receptor-interacting serine/threonine-protein kinase 1 (RIPK1)/RIPK3/Mixed Lineage Kinase Domain-Like (MLKL) axis, leading to inflammatory reactions in the surrounding tissues. This process encompasses numerous physiological regulatory mechanisms and contributes to the development and progression of certain diseases. The mechanisms of necroptosis were not well conserved across terrestrial and aquatic organisms, with differences in some components and functions. Given the significant challenges that aquatic animal diseases pose to aquaculture, research interest in necroptosis has surged recently, particularly in studies focusing on fish. Understanding necroptosis in fish can lead to interventions that offer potential breakthroughs in disease inhibition and fish health improvement.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China.
| | - Jingjing Li
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China
| | - Jing Yu
- Qingdao Ahreal Biotechnology Co., LTD, Qingdao, 266000, Shandong, PR China
| | - Pengfei Ren
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China
| | - Mingcheng Liu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China
| | - Jie Hou
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China
| | - Zhanwei Teng
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China
| | - Xiulin Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, Henan, PR China
| | - Yilin Bai
- Laboratory of Indigenous Cattle Germplasm Innovation, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, PR China.
| |
Collapse
|
13
|
Yang H, Sun J, Sun A, Wei Y, Xie W, Xie P, Zhang L, Zhao L, Huang Y. Podocyte programmed cell death in diabetic kidney disease: Molecular mechanisms and therapeutic prospects. Biomed Pharmacother 2024; 177:117140. [PMID: 39018872 DOI: 10.1016/j.biopha.2024.117140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 06/28/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
Diabetic kidney disease (DKD) is the primary cause of chronic kidney and end-stage renal disease. Glomerular podocyte loss and death are pathological hallmarks of DKD, and programmed cell death (PCD) in podocytes is crucial in DKD progression. PCD involves apoptosis, autophagy, ferroptosis, pyroptosis, and necroptosis. During DKD, PCD in podocytes is severely impacted and primarily characterized by accelerated podocyte apoptosis and suppressed autophagy. These changes lead to a gradual decrease in podocyte numbers, impairing the glomerular filtration barrier function and accelerating DKD progression. However, research on the interactions between the different types of PCD in podocytes is lacking. This review focuses on the novel roles and mechanisms of PCD in the podocytes of patients with DKD. Additionally, we summarize clinical drugs capable of regulating podocyte PCD, present challenges and prospects faced in developing drugs related to podocyte PCD and suggest that future research should further explore the detailed mechanisms of podocyte PCD and interactions among different types of PCD.
Collapse
Affiliation(s)
- Haoyu Yang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Jun Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Aru Sun
- Changchun University of Chinese Medicine, Changchun 130117, China
| | - Yu Wei
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Weinan Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Pengfei Xie
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Lili Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Linhua Zhao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yishan Huang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; China-Japan Friendship Hospital, Beijing 100029, China.
| |
Collapse
|
14
|
Yang Z, Feng R, Zhao H. Cuproptosis and Cu: a new paradigm in cellular death and their role in non-cancerous diseases. Apoptosis 2024:10.1007/s10495-024-01993-y. [PMID: 39014119 DOI: 10.1007/s10495-024-01993-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Cuproptosis, a newly characterized form of regulated cell death driven by copper accumulation, has emerged as a significant mechanism underlying various non-cancerous diseases. This review delves into the complex interplay between copper metabolism and the pathogenesis of conditions such as Wilson's disease (WD), neurodegenerative disorders, and cardiovascular pathologies. We examine the molecular mechanisms by which copper dysregulation induces cuproptosis, highlighting the pivotal roles of key copper transporters and enzymes. Additionally, we evaluate the therapeutic potential of copper chelation strategies, which have shown promise in experimental models by mitigating copper-induced cellular damage and restoring physiological homeostasis. Through a comprehensive synthesis of recent advancements and current knowledge, this review underscores the necessity of further research to translate these findings into clinical applications. The ultimate goal is to harness the therapeutic potential of targeting cuproptosis, thereby improving disease management and patient outcomes in non-cancerous conditions associated with copper dysregulation.
Collapse
Affiliation(s)
- Zhibo Yang
- Department of Neurosurgery, 3201 Hospital of Xi'an Jiaotong University Health Science Center, Hanzhong, 723000, Shaanxi, China
| | - Ridong Feng
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine (FAHZU), 79 Qingchun Rd., Shangcheng District, Hangzhou, 330100, Zhejiang, China
| | - Hai Zhao
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266005, Shandong, China.
| |
Collapse
|
15
|
Zhang B, Wu H, Zhang J, Cong C, Zhang L. The study of the mechanism of non-coding RNA regulation of programmed cell death in diabetic cardiomyopathy. Mol Cell Biochem 2024; 479:1673-1696. [PMID: 38189880 DOI: 10.1007/s11010-023-04909-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/25/2023] [Indexed: 01/09/2024]
Abstract
Diabetic cardiomyopathy (DCM) represents a distinct myocardial disorder elicited by diabetes mellitus, characterized by aberrations in myocardial function and structural integrity. This pathological condition predominantly manifests in individuals with diabetes who do not have concurrent coronary artery disease or hypertension. An escalating body of scientific evidence substantiates the pivotal role of programmed cell death (PCD)-encompassing apoptosis, autophagy, pyroptosis, ferroptosis, and necroptosis-in the pathogenic progression of DCM, thereby emerging as a prospective therapeutic target. Additionally, numerous non-coding RNAs (ncRNAs) have been empirically verified to modulate the biological processes underlying programmed cell death, consequently influencing the evolution of DCM. This review systematically encapsulates prevalent types of PCD manifest in DCM as well as nascent discoveries regarding the regulatory influence of ncRNAs on programmed cell death in the pathogenesis of DCM, with the aim of furnishing novel insights for the furtherance of research in PCD-associated disorders relevant to DCM.
Collapse
Affiliation(s)
- Bingrui Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Hua Wu
- Tai'an Special Care Hospital Clinical Laboratory Medical Laboratory Direction, Tai'an, 271000, Shandong, China
| | - Jingwen Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Cong Cong
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, Jinan, 250014, Shandong, China
| | - Lin Zhang
- Tai'an Hospital of Chinese Medicine Cardiovascular Department Cardiovascular Disease Research, No.216, Yingxuan Street, Tai'an, 271000, Shandong, China.
| |
Collapse
|
16
|
Su Z, Liu Y, Zhang W, Liang W, Chen Y, Cao J, Liu Y, Zheng Y, Li Q. Endoplasmic reticulum stress-induced necroptosis promotes cochlear inflammation: Implications for age-related hearing loss. Exp Gerontol 2024; 189:112401. [PMID: 38490286 DOI: 10.1016/j.exger.2024.112401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/11/2024] [Accepted: 03/11/2024] [Indexed: 03/17/2024]
Abstract
Age-related hearing loss (ARHL) is the most common sensory disorder associated with human aging. Chronic inflammation is supposed to be an important contributor to ARHL. Yet, the underlying mechanisms of developing cochlear inflammation are still not well understood. In this study, we found that the inflammation, endoplasmic reticulum (ER) stress and necroptosis signalings are activated in the cochlea of aged C57BL/6 mice. ER stress activator tunicamycin (TM) induced necroptosis in cochlear HEI-OC1 cells and cochlear explants, while necroptosis inhibitors protected cochlear cells from ER stress-induced cell death. The antioxidants inhibited necroptosis and protected HEI-OC1 cells from TM insults. Necroptotic HEI-OC1 cells promoted the activation of the co-cultured macrophages via Myd88 signaling. Moreover, necroptosis inhibitor protected from TM-induced hearing loss, and inhibited inflammation in C57BL/6 mice. These findings suggest that ER stress-induced necroptosis promotes cochlear inflammation and hearing loss. Targeting necroptosis serves as a potential approach for the treatment of cochlear inflammation and ARHL.
Collapse
Affiliation(s)
- Zhongwu Su
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Liu
- Department of Otolaryngology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Weijian Zhang
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenhui Liang
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yuyan Chen
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinyuan Cao
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yu Liu
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yiqing Zheng
- Department of Otolaryngology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Qi Li
- Department of Otolaryngology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Wu Q, Cao J, Liu X, Zhu X, Huang C, Wang X, Song Y. Micro(nano)-plastics exposure induced programmed cell death and corresponding influence factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171230. [PMID: 38402958 DOI: 10.1016/j.scitotenv.2024.171230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/30/2024] [Accepted: 02/22/2024] [Indexed: 02/27/2024]
Abstract
Plastic products have played an indispensable role in our daily lives for several decades, primarily due to their cost-effectiveness and unmatched convenience. Nevertheless, recent developments in nanotechnology have propelled our attention toward a distinct category of plastic fine particulates known as micro(nano)-plastics (MPs/NPs). The investigation of the cytotoxic effects of MPs/NPs has emerged as a central and burgeoning area of research in environmental toxicology and cell biology. In the scope of this comprehensive review, we have meticulously synthesized recent scientific inquiries to delve into the intricate interplay between MPs/NPs and programmed cell death mechanisms, which encompass a range of highly regulated processes. First, the signaling pathways and molecular mechanisms of different programmed death modalities induced by MPs/NPs were elaborated, including apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. The causes of different programmed deaths induced by MPs/NPs, such as size, surface potential, functional group modification, aging, biological crown, and co-exposure of MPs/NPs are further analyzed. In contrast, the various cellular programmed death modes induced by MPs/NPs are not alone most of the time, and lastly, the connections between different cellular programmed death modes induced by MPs/NPs, such as interconversion, mutual promotion, and mutual inhibition, are explained. Our primary objective is to unveil the multifaceted toxicological implications of MPs/NPs on the intricate web of cellular fate and biological homeostasis. This endeavor not only broadens our understanding of the potential risks associated with MPs/NPs exposure but also underscores the urgent need for comprehensive risk assessments and regulatory measures in the context of environmental health.
Collapse
Affiliation(s)
- Qingchun Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuting Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunfeng Huang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
18
|
Zhu J, Li J, Yang K, Chen Y, Wang J, He Y, Shen K, Wang K, Shi T, Chen W. NR4A1 depletion inhibits colorectal cancer progression by promoting necroptosis via the RIG-I-like receptor pathway. Cancer Lett 2024; 585:216693. [PMID: 38301909 DOI: 10.1016/j.canlet.2024.216693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/15/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Necroptosis is a regulated necrotic cell death mechanism and plays a crucial role in the progression of cancers. However, the potential role and mechanism of necroptosis in colorectal cancer (CRC) has not been fully elucidated. In this study, we found that nuclear receptor subfamily 4 group A member 1 (NR4A1) was highly expressed in CRC cells treated with TNF-α, Smac mimetic, and z-VAD-FMK (TSZ). The depletion of NR4A1 significantly enhanced the sensitivity of CRC cells to TSZ-induced necroptosis, while NR4A1 overexpression suppressed these effects, as evidenced by the LDH assay, flow cytometry analysis of cell death, PI staining, and expression analysis of necrosome complexes (RIPK1, RIPK3, and MLKL). Moreover, NR4A1 deficiency made HT29 xenograft tumors sensitive to necroptotic cell death in vivo. Mechanistically, NR4A1 depletion promoted necroptosis activation in CRC through the RIG-I-like receptor pathway by interacting with DDX3. Importantly, the RIG-I pathway agonist poly(I:C) or inhibitor cFP abolished the effects of NR4A1 overexpression or suppression on necroptosis in CRC cells. Moreover, we observed that NR4A1 was highly expressed in CRC tissues and was associated with a poor prognosis. In conclusion, our results suggest that NR4A1 plays a critical role in modulating necroptosis in CRC cells and provide a new therapeutic target for CRC.
Collapse
Affiliation(s)
- Jinghan Zhu
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Juntao Li
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kexi Yang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Gastroenterology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Jiayu Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuxin He
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kanger Shen
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Kun Wang
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tongguo Shi
- Jiangsu Institute of Clinical Immunology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Weichang Chen
- Jiangsu Key Laboratory of Clinical Immunology, Soochow University, Suzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
19
|
Chesnokov MS, Mamedova AR, Zhivotovsky B, Kopeina GS. A matter of new life and cell death: programmed cell death in the mammalian ovary. J Biomed Sci 2024; 31:31. [PMID: 38509545 PMCID: PMC10956231 DOI: 10.1186/s12929-024-01017-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND The mammalian ovary is a unique organ that displays a distinctive feature of cyclic changes throughout the entire reproductive period. The estrous/menstrual cycles are associated with drastic functional and morphological rearrangements of ovarian tissue, including follicular development and degeneration, and the formation and subsequent atrophy of the corpus luteum. The flawless execution of these reiterative processes is impossible without the involvement of programmed cell death (PCD). MAIN TEXT PCD is crucial for efficient and careful clearance of excessive, depleted, or obsolete ovarian structures for ovarian cycling. Moreover, PCD facilitates selection of high-quality oocytes and formation of the ovarian reserve during embryonic and juvenile development. Disruption of PCD regulation can heavily impact the ovarian functions and is associated with various pathologies, from a moderate decrease in fertility to severe hormonal disturbance, complete loss of reproductive function, and tumorigenesis. This comprehensive review aims to provide updated information on the role of PCD in various processes occurring in normal and pathologic ovaries. Three major events of PCD in the ovary-progenitor germ cell depletion, follicular atresia, and corpus luteum degradation-are described, alongside the detailed information on molecular regulation of these processes, highlighting the contribution of apoptosis, autophagy, necroptosis, and ferroptosis. Ultimately, the current knowledge of PCD aberrations associated with pathologies, such as polycystic ovarian syndrome, premature ovarian insufficiency, and tumors of ovarian origin, is outlined. CONCLUSION PCD is an essential element in ovarian development, functions and pathologies. A thorough understanding of molecular mechanisms regulating PCD events is required for future advances in the diagnosis and management of various disorders of the ovary and the female reproductive system in general.
Collapse
Affiliation(s)
- Mikhail S Chesnokov
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Centro Nacional de Investigaciones Oncológicas, Madrid, Spain
| | - Aygun R Mamedova
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Boris Zhivotovsky
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.
| | - Gelina S Kopeina
- Faculty of Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
20
|
Petró JL, Bényei G, Bana P, Linke N, Horti F, Szabó JE, Szalai KK, Hornyánszky G, Greiner I, Éles J. Design, synthesis and biological evaluation of novel cyclic malonamide derivatives as selective RIPK1 inhibitors. Bioorg Med Chem Lett 2024; 100:129643. [PMID: 38316369 DOI: 10.1016/j.bmcl.2024.129643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/15/2024] [Accepted: 01/31/2024] [Indexed: 02/07/2024]
Abstract
Receptor-interacting serine/threonine-protein kinase 1 (RIPK1) plays a key role in cell death and inflammation. RIPK1 is a well-established therapeutic target, due to the presence of a unique kinase-regulating allosteric pocket, which enables selective inhibition. Herein we used GSK2982772 as our starting point in our discovery campaign. Applying isosteric replacement, we successfully identified the malonamide scaffold, instead of the well-established serine template. Further structural optimization led to the design and synthesis of a series of analog inhibitors. The enantiomers of the most promising compound were tested on 97 different kinases. The active enantiomer proved to be kinase selective.
Collapse
Affiliation(s)
- József Levente Petró
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary.
| | - Gyula Bényei
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - Péter Bana
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - Nikolett Linke
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - Ferenc Horti
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - Judit Eszter Szabó
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | | | - Gábor Hornyánszky
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 8 Budafoki Street, Budapest H-1111, Hungary
| | - István Greiner
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| | - János Éles
- Chemical Works of Gedeon Richter Plc, 30-32 Gyömrői Street, Budapest H-1103, Hungary
| |
Collapse
|
21
|
Aurori M, Niculae M, Hanganu D, Pall E, Cenariu M, Vodnar DC, Fiţ N, Andrei S. The Antioxidant, Antibacterial and Cell-Protective Properties of Bioactive Compounds Extracted from Rowanberry ( Sorbus aucuparia L.) Fruits In Vitro. PLANTS (BASEL, SWITZERLAND) 2024; 13:538. [PMID: 38498559 PMCID: PMC10892614 DOI: 10.3390/plants13040538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/20/2024]
Abstract
Considering that Sorbus aucuparia fruits have been underutilized despite their tremendous potential, this study aimed to correlate the in vitro antioxidant, antibacterial and cell-protective abilities of fruit extracts derived from Sorbus aucuparia Romanian cultivars with their phytochemical composition. Therefore, following the preparation of ethanolic and carotenoid extracts, phytochemical screening was performed using UV-Vis and HPLC-DAD-ESI-MS methods. The antioxidant activity was analyzed using DPPH and FRAP tests. As the results revealed high contents of bioactive compounds (polyphenols 1.11 mg GAE/g DM, flavonoids 430.06 µg QE/g DM and carotenoids 95.68 µg/g DM) and an important antiradical action (DPPH 24.51 mg/mL and FRAP 0.016 µM TE/mL), we chose to further examine the fruits' biological properties. The antibacterial capacity was assessed employing agar well diffusion and broth microdilution techniques, with fruits displaying an intense activity against MSSA, MRSA and Enterococcus faecalis, but also E. coli and Pseudomonas aeruginosa. The cell-protective activity was analyzed on gentamicin-stressed renal cells, through MTT and Annexin V-FITC assays. Importantly, a significant increase in viability was registered on stressed cells following extract administration in low doses; nevertheless, viability was noticed to decline when exposed to elevated concentrations, potentially due to the cumulative actions of the extract and gentamicin. These findings offer novel light on the antibacterial activity of Sorbus aucuparia Romanian cultivars, as well as their cell-protective ability in renal cell injury.
Collapse
Affiliation(s)
- Mara Aurori
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Mihaela Niculae
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.N.); (E.P.); (M.C.)
| | - Daniela Hanganu
- Department of Pharmacognosy, Faculty of Pharmacy, University of Medicine and Pharmacy “Iuliu Haţieganu”, 400372 Cluj-Napoca, Romania;
| | - Emoke Pall
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.N.); (E.P.); (M.C.)
| | - Mihai Cenariu
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (M.N.); (E.P.); (M.C.)
| | - Dan Cristian Vodnar
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Nicodim Fiţ
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| | - Sanda Andrei
- Department of Preclinical Sciences, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania;
| |
Collapse
|
22
|
Shilovsky GA, Putyatina TS, Markov AV. Evolution of Longevity in Tetrapods: Safety Is More Important than Metabolism Level. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:322-340. [PMID: 38622099 DOI: 10.1134/s0006297924020111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 04/17/2024]
Abstract
Various environmental morphological and behavioral factors can determine the longevity of representatives of various taxa. Long-lived species develop systems aimed at increasing organism stability, defense, and, ultimately, lifespan. Long-lived species to a different extent manifest the factors favoring longevity (gerontological success), such as body size, slow metabolism, activity of body's repair and antioxidant defense systems, resistance to toxic substances and tumorigenesis, and presence of neotenic features. In continuation of our studies of mammals, we investigated the characteristics that distinguish long-lived ectotherms (crocodiles and turtles) and compared them with those of other ectotherms (squamates and amphibians) and endotherms (birds and mammals). We also discussed mathematical indicators used to assess the predisposition to longevity in different species, including standard indicators (mortality rate, maximum lifespan, coefficient of variation of lifespan) and their derivatives. Evolutionary patterns of aging are further explained by the protective phenotypes and life history strategies. We assessed the relationship between the lifespan and various studied factors, such as body size and temperature, encephalization, protection of occupied ecological niches, presence of protective structures (for example, shells and osteoderms), and environmental temperature, and the influence of these factors on the variation of the lifespan as a statistical parameter. Our studies did not confirm the hypothesis on the metabolism level and temperature as the most decisive factors of longevity. It was found that animals protected by shells (e.g., turtles with their exceptional longevity) live longer than species that have poison or lack such protective adaptations. The improvement of defense against external threats in long-lived ectotherms is consistent with the characteristics of long-lived endotherms (for example, naked mole-rats that live in underground tunnels, or bats and birds, whose ability to fly is one of the best defense mechanisms).
Collapse
Affiliation(s)
- Gregory A Shilovsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, 127051, Russia
| | - Tatyana S Putyatina
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexander V Markov
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
23
|
Mei X, Zhang Y, Wang S, Wang H, Chen R, Ma K, Yang Y, Jiang P, Feng Z, Zhang C, Zhang Z. Necroptosis in Pneumonia: Therapeutic Strategies and Future Perspectives. Viruses 2024; 16:94. [PMID: 38257794 PMCID: PMC10818625 DOI: 10.3390/v16010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Pneumonia remains a major global health challenge, necessitating the development of effective therapeutic approaches. Recently, necroptosis, a regulated form of cell death, has garnered attention in the fields of pharmacology and immunology for its role in the pathogenesis of pneumonia. Characterized by cell death and inflammatory responses, necroptosis is a key mechanism contributing to tissue damage and immune dysregulation in various diseases, including pneumonia. This review comprehensively analyzes the role of necroptosis in pneumonia and explores potential pharmacological interventions targeting this cell death pathway. Moreover, we highlight the intricate interplay between necroptosis and immune responses in pneumonia, revealing a bidirectional relationship between necrotic cell death and inflammatory signaling. Importantly, we assess current therapeutic strategies modulating necroptosis, encompassing synthetic inhibitors, natural products, and other drugs targeting key components of the programmed necrosis pathway. The article also discusses challenges and future directions in targeting programmed necrosis for pneumonia treatment, proposing novel therapeutic strategies that combine antibiotics with necroptosis inhibitors. This review underscores the importance of understanding necroptosis in pneumonia and highlights the potential of pharmacological interventions to mitigate tissue damage and restore immune homeostasis in this devastating respiratory infection.
Collapse
Affiliation(s)
- Xiuzhen Mei
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Yuchen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Shu Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Hui Wang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Rong Chen
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| | - Ke Ma
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yue Yang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ping Jiang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhixin Feng
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
- Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chao Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenzhen Zhang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou 225300, China
| |
Collapse
|
24
|
Xie Y, Zhao G, Lei X, Cui N, Wang H. Advances in the regulatory mechanisms of mTOR in necroptosis. Front Immunol 2023; 14:1297408. [PMID: 38164133 PMCID: PMC10757967 DOI: 10.3389/fimmu.2023.1297408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/01/2023] [Indexed: 01/03/2024] Open
Abstract
The mammalian target of rapamycin (mTOR), an evolutionarily highly conserved serine/threonine protein kinase, plays a prominent role in controlling gene expression, metabolism, and cell death. Programmed cell death (PCD) is indispensable for maintaining homeostasis by removing senescent, defective, or malignant cells. Necroptosis, a type of PCD, relies on the interplay between receptor-interacting serine-threonine kinases (RIPKs) and the membrane perforation by mixed lineage kinase domain-like protein (MLKL), which is distinguished from apoptosis. With the development of necroptosis-regulating mechanisms, the importance of mTOR in the complex network of intersecting signaling pathways that govern the process has become more evident. mTOR is directly responsible for the regulation of RIPKs. Autophagy is an indirect mechanism by which mTOR regulates the removal and interaction of RIPKs. Another necroptosis trigger is reactive oxygen species (ROS) produced by oxidative stress; mTOR regulates necroptosis by exploiting ROS. Considering the intricacy of the signal network, it is reasonable to assume that mTOR exerts a bifacial effect on necroptosis. However, additional research is necessary to elucidate the underlying mechanisms. In this review, we summarized the mechanisms underlying mTOR activation and necroptosis and highlighted the signaling pathway through which mTOR regulates necroptosis. The development of therapeutic targets for various diseases has been greatly advanced by the expanding knowledge of how mTOR regulates necroptosis.
Collapse
Affiliation(s)
- Yawen Xie
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guoyu Zhao
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xianli Lei
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
25
|
Xuan X, Zhang S. Targeting the programmed cell death (PCD) signaling mechanism with natural substances for the treatment of diabetic cardiomyopathy (DCM). Phytother Res 2023; 37:5495-5508. [PMID: 37622685 DOI: 10.1002/ptr.7992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 08/26/2023]
Abstract
Diabetic cardiomyopathy (DCM) is one of the severe complications of diabetes, characterized by structural and functional abnormalities in the hearts of diabetic patients without hypertension, coronary heart disease, or valvular heart disease. DCM can progress to heart failure, which is a significant cause of death in diabetic patients, but currently, there is no effective treatment available. Programmed cell death (PCD) is a genetically regulated form of cell death that includes apoptosis, autophagy, necroptosis, ferroptosis, and pyroptosis. PCD is essential for tissue homeostasis and normal development of the body. DCM is a complex condition, and abnormalities in the cascade of PCD signaling have been observed in its pathological process, suggesting that targeting PCD could be a potential therapeutic strategy. Studies have shown that natural substances can effectively modulate PCD to intervene in the treatment of DCM, and their use is safe. This review explores the role of different forms of PCD in the pathogenesis of DCM and summarizes the research progress in targeting PCD with natural substances to treat DCM. It can serve as a basis for further research and drug development to provide new treatment strategies for DCM patients.
Collapse
Affiliation(s)
- Xiaoyu Xuan
- First School of Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shiliang Zhang
- Department of Cardiology, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
26
|
Barar E, Shi J. Genome, Metabolism, or Immunity: Which Is the Primary Decider of Pancreatic Cancer Fate through Non-Apoptotic Cell Death? Biomedicines 2023; 11:2792. [PMID: 37893166 PMCID: PMC10603981 DOI: 10.3390/biomedicines11102792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a solid tumor characterized by poor prognosis and resistance to treatment. Resistance to apoptosis, a cell death process, and anti-apoptotic mechanisms, are some of the hallmarks of cancer. Exploring non-apoptotic cell death mechanisms provides an opportunity to overcome apoptosis resistance in PDAC. Several recent studies evaluated ferroptosis, necroptosis, and pyroptosis as the non-apoptotic cell death processes in PDAC that play a crucial role in the prognosis and treatment of this disease. Ferroptosis, necroptosis, and pyroptosis play a crucial role in PDAC development via several signaling pathways, gene expression, and immunity regulation. This review summarizes the current understanding of how ferroptosis, necroptosis, and pyroptosis interact with signaling pathways, the genome, the immune system, the metabolism, and other factors in the prognosis and treatment of PDAC.
Collapse
Affiliation(s)
- Erfaneh Barar
- Liver and Pancreatobiliary Diseases Research Center, Digestive Disease Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Jiaqi Shi
- Department of Pathology & Clinical Labs, Rogel Cancer Center, Center for RNA Biomedicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
27
|
Chen Q, Wu J, Li X, Ye Z, Yang H, Mu L. Amphibian-Derived Natural Anticancer Peptides and Proteins: Mechanism of Action, Application Strategies, and Prospects. Int J Mol Sci 2023; 24:13985. [PMID: 37762285 PMCID: PMC10530844 DOI: 10.3390/ijms241813985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 09/29/2023] Open
Abstract
Cancer is one of the major diseases that seriously threaten human life. Traditional anticancer therapies have achieved remarkable efficacy but have also some unavoidable side effects. Therefore, more and more research focuses on highly effective and less-toxic anticancer substances of natural origin. Amphibian skin is rich in active substances such as biogenic amines, alkaloids, alcohols, esters, peptides, and proteins, which play a role in various aspects such as anti-inflammatory, immunomodulatory, and anticancer functions, and are one of the critical sources of anticancer substances. Currently, a range of natural anticancer substances are known from various amphibians. This paper aims to review the physicochemical properties, anticancer mechanisms, and potential applications of these peptides and proteins to advance the identification and therapeutic use of natural anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | - Hailong Yang
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| | - Lixian Mu
- Faculty of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China
| |
Collapse
|
28
|
Yu S, Xiao H, Ma L, Zhang J, Zhang J. Reinforcing the immunogenic cell death to enhance cancer immunotherapy efficacy. Biochim Biophys Acta Rev Cancer 2023; 1878:188946. [PMID: 37385565 DOI: 10.1016/j.bbcan.2023.188946] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Immunogenic cell death (ICD) has been a revolutionary modality in cancer treatment since it kills primary tumors and prevents recurrent malignancy simultaneously. ICD represents a particular form of cancer cell death accompanied by production of damage-associated molecular patterns (DAMPs) that can be recognized by pattern recognition receptors (PRRs), which enhances infiltration of effector T cells and potentiates antitumor immune responses. Various treatment methods can elicit ICD involving chemo- and radio-therapy, phototherapy and nanotechnology to efficiently convert dead cancer cells into vaccines and trigger the antigen-specific immune responses. Nevertheless, the efficacy of ICD-induced therapies is restrained due to low accumulation in the tumor sites and damage of normal tissues. Thus, researchers have been devoted to overcoming these problems with novel materials and strategies. In this review, current knowledge on different ICD modalities, various ICD inducers, development and application of novel ICD-inducing strategies are summarized. Moreover, the prospects and challenges are briefly outlined to provide reference for future design of novel immunotherapy based on ICD effect.
Collapse
Affiliation(s)
- Sihui Yu
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyang Xiao
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Li Ma
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Jiawen Zhang
- Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China; Reproductive Medicine Center, Department of Obstetrics and Gynecology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Jiarong Zhang
- Department of Obstetrics and Gynecology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
29
|
Zhang J, Qian J, Zhang W, Chen X. The pathophysiological role of receptor-interacting protein kinase 3 in cardiovascular disease. Biomed Pharmacother 2023; 165:114696. [PMID: 37329707 DOI: 10.1016/j.biopha.2023.114696] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023] Open
Abstract
Recent studies have found that receptor interacting protein kinase 3 (RIPK3) can mediate CaMK Ⅱ phosphorylation and oxidation, open mitochondrial permeability transition pore (mPTP), and induce myocardial necroptosis. The increased expression or phosphorylation of RIPK3 is one of the important markers of necroptosis; Inhibition of CaMK Ⅱ phosphorylation or oxidation significantly reduces RIPK3 mediated myocardial necroptosis; Studies have shown that necroptosis plays an important role in the occurrence and development of cardiovascular diseases; Using the selective inhibitor GSK '872 of RIPK3 can effectively inhibit the occurrence and development of cardiovascular diseases, and can reverse cardiovascular and cardiac dysfunction caused by overexpression of RIPK3. In this review, we provide a brief overview of the current knowledge on RIPK3 in mediating necroptosis, inflammatory response, and oxidative stress, and discussed the role of RIPK3 in cardiovascular diseases such as atherosclerosis, myocardial ischaemia, myocardial infarction, and heart failure.
Collapse
Affiliation(s)
- Jingjing Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China
| | - Jianan Qian
- School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China
| | - Wei Zhang
- School of Medicine, Nantong University, Nantong, Jiangsu 226001, China; School of Pharmacy, Nantong University, Nantong, Jiangsu 226001, China.
| | - Xianfen Chen
- Department of Pharmacy, Nantong First People's Hospital, the Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China.
| |
Collapse
|
30
|
Shen S, Shao Y, Li C. Different types of cell death and their shift in shaping disease. Cell Death Discov 2023; 9:284. [PMID: 37542066 PMCID: PMC10403589 DOI: 10.1038/s41420-023-01581-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/16/2023] [Accepted: 07/26/2023] [Indexed: 08/06/2023] Open
Abstract
Cell death is the irreversible stop of life. It is also the basic physiological process of all organisms which involved in the embryonic development, organ maintenance and autoimmunity of the body. In recent years, we have gained more comprehension of the mechanism in cell death and have basically clarified the different types of "programmed cell death", such as apoptosis, necroptosis, autophagy, and pyroptosis, and identified some key genes in these processes. However, in these previous studies, the conversion between different cell death modes and their application in diseases are rarely explored. To sum up, although many valued discoveries have been discovered in the field of cell death in recent years, there are still many unknown problems to be solved in this field. Facts have proved that cell death is a very complex game, and a series of core players have the ability to destroy the delicate balance of the cell environment, from survival to death, from anti-inflammatory to pro-inflammatory. With the thorough research of the complex regulatory mechanism of cell death, there will certainly be exciting new research in this field in the next few years. The sake of this paper is to emphasize the complex mechanism of overturning the balance between different cell fates and provide relevant theoretical basis for the connection between cell death transformation and disease treatment in the future.
Collapse
Affiliation(s)
- Sikou Shen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Yina Shao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
31
|
Zhang Y, Zhang Y, Zang J, Li Y, Wu X. Pharmaceutical Therapies for Necroptosis in Myocardial Ischemia-Reperfusion Injury. J Cardiovasc Dev Dis 2023; 10:303. [PMID: 37504559 PMCID: PMC10380972 DOI: 10.3390/jcdd10070303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/28/2023] [Accepted: 07/14/2023] [Indexed: 07/29/2023] Open
Abstract
Cardiovascular disease morbidity/mortality are increasing due to an aging population and the rising prevalence of diabetes and obesity. Therefore, innovative cardioprotective measures are required to reduce cardiovascular disease morbidity/mortality. The role of necroptosis in myocardial ischemia-reperfusion injury (MI-RI) is beyond doubt, but the molecular mechanisms of necroptosis remain incompletely elucidated. Growing evidence suggests that MI-RI frequently results from the superposition of multiple pathways, with autophagy, ferroptosis, and CypD-mediated mitochondrial damage, and necroptosis all contributing to MI-RI. Receptor-interacting protein kinases (RIPK1 and RIPK3) as well as mixed lineage kinase domain-like pseudokinase (MLKL) activation is accompanied by the activation of other signaling pathways, such as Ca2+/calmodulin-dependent protein kinase II (CaMKII), NF-κB, and JNK-Bnip3. These pathways participate in the pathological process of MI-RI. Recent studies have shown that inhibitors of necroptosis can reduce myocardial inflammation, infarct size, and restore cardiac function. In this review, we will summarize the molecular mechanisms of necroptosis, the links between necroptosis and other pathways, and current breakthroughs in pharmaceutical therapies for necroptosis.
Collapse
Affiliation(s)
- Yinchang Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yantao Zhang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Jinlong Zang
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| | - Xiangyang Wu
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou University, Lanzhou 730030, China
| |
Collapse
|
32
|
Guo X, Li R, Cui J, Hu C, Yu H, Ren L, Cheng Y, Jiang J, Ding X, Wang L. Induction of RIPK3/MLKL-mediated necroptosis by Erigeron breviscapus injection exhibits potent antitumor effect. Front Pharmacol 2023; 14:1219362. [PMID: 37397499 PMCID: PMC10311648 DOI: 10.3389/fphar.2023.1219362] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 06/05/2023] [Indexed: 07/04/2023] Open
Abstract
Colorectal cancer (CRC) is the second leading cause of tumor-related deaths worldwide. Resistance of tumor cells to drug-induced apoptosis highlights the need for safe and effective antitumor alternatives. Erigeron breviscapus (Dengzhanxixin in China) injection (EBI), extracted from the natural herb Erigeron breviscapus (Vant.) Hand.-Mazz (EHM), has been widely used in clinical practice for cardiovascular diseases. Recent studies have suggested that EBI's main active ingredients exhibit potential antitumor effects. This study aims to explore the anti-CRC effect of EBI and elucidate the underlying mechanism. The anti-CRC effect of EBI was evaluated in vitro using CCK-8, flow cytometry, and transwell analysis, and in vivo through a xenograft mice model. RNA sequencing was utilized to compare the differentially expressed genes, and the proposed mechanism was verified through in vitro and in vivo experiments. Our study demonstrates that EBI significantly inhibits the proliferation of three human CRC cell lines and effectively suppresses the migration and invasion of SW620 cells. Moreover, in the SW620 xenograft mice model, EBI markedly retards tumor growth and lung metastasis. RNA-seq analysis revealed that EBI might exert antitumor effects by inducing necroptosis of tumor cells. Additionally, EBI activates the RIPK3/MLKL signaling pathway, a classical pathway of necroptosis and greatly promotes the generation of intracellular ROS. Furthermore, the antitumor effect of EBI on SW620 is significantly alleviated after the pretreatment of GW806742X, the MLKL inhibitor. Our findings suggest that EBI is a safe and effective inducer of necroptosis for CRC treatment. Notably, necroptosis is a non-apoptotic programmed cell death pathway that can effectively circumvent resistance to apoptosis, which provides a novel approach for overcoming tumor drug resistance.
Collapse
Affiliation(s)
- Xiuping Guo
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rui Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinjin Cui
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Chujuan Hu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Haoyang Yu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Ling Ren
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yangyang Cheng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiandong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Xiao Ding
- State Key Laboratory of Phytochemistry and Plant Resource in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Lulu Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
33
|
He J, Zhou W, Zhang M. Prognostic characterization of the pyroptosis-related subtypes and tumor microenvironment infiltration in glioma. Cancer Biomark 2023:CBM220362. [PMID: 37248887 DOI: 10.3233/cbm-220362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
BACKGROUND Pyroptosis could regulate tumor cell trafficking, invasion, and metastasis, as well as the tumor microenvironment (TME). However, prognostic characteristics of pyroptosis-related genes (PRGs) and their effect on the progression of glioma remain insufficient. METHODS The genetic, transcriptional, and survival data of patients with glioma used for bioinformatic analysis were obtained from the Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) databases. RESULTS Screening of two different molecular subtypes revealed that PRG variations were associated with characteristics of TME cell infiltration, clinicopathological characteristics, and prognosis of patients with glioma. After Cox regression of differentially expressed genes, a risk score for predicting overall survival (OS) and progression-free survival (PFS) were calculated. Its predictive accuracy in patients with glioma was validated. The high-risk group of PRG signature had a poorer OS than the low-risk group (training cohort, P< 0.001; validation cohort, P< 0.001). A high risk score implies more immune cell infiltration and better immunotherapy response to immune checkpoint blockers. In addition, the differential expression of three pyroptosis-pairs in tumor and normal tissues was identified. Furthermore, the risk score was significantly associated with chemotherapeutic drug sensitivity and cancer stem cell (CSC) index. Subsequently, a highly accurate nomogram was established to facilitate applicability in the preliminary clinical application of risk score. CONCLUSION Our findings may provide the basis for future research targeting pyroptosis in glioma and evaluation of prognosis and development of more effective immunotherapy strategies.
Collapse
|
34
|
Guo J, Zou Y, Huang L. Nano Delivery of Chemotherapeutic ICD Inducers for Tumor Immunotherapy. SMALL METHODS 2023; 7:e2201307. [PMID: 36604976 DOI: 10.1002/smtd.202201307] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Indexed: 05/17/2023]
Abstract
Immunogenic cell death (ICD, also known as immunogenic apoptosis) of malignant cells is confirmed to activate the host immune system to prevent, control, and eliminate tumors. Recently, a range of chemotherapeutic drugs have been repurposed as ICD inducers and applied for tumor immunotherapy. However, several hurdles to the widespread application of chemotherapeutic ICD inducers remain, namely poor water solubility, short blood circulation, non-specific tissue distribution, and severe toxicity. Recent advances in nanotechnology and pharmaceutical formulation foster the development of nano drug delivery systems to tackle the aforementioned hurdles and expedite safe, effective, and specific delivery. This review will describe delivery barriers to chemical ICD inducers and highlight recent nanoformulations for these drugs in tumor immunotherapy.
Collapse
Affiliation(s)
- Jianfeng Guo
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Yifang Zou
- School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC, 27599, USA
| |
Collapse
|
35
|
Yao HF, Xu DP, Zheng JH, Xu Y, Jia QY, Zhu YH, Yang J, He RZ, Ma D, Yang MW, Fu XL, Liu DJ, Huo YM, Yang JY, Zhang JF. Analysis of cuproptosis-related lncRNA signature for predicting prognosis and tumor immune microenvironment in pancreatic cancer. Apoptosis 2023:10.1007/s10495-023-01843-3. [PMID: 37079192 DOI: 10.1007/s10495-023-01843-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 04/21/2023]
Abstract
Pancreatic cancer (PC) is a highly malignant digestive tract tumor, with a dismal 5-year survival rate. Recently, cuproptosis was found to be copper-dependent cell death. This work aims to establish a cuproptosis-related lncRNA signature which could predict the prognosis of PC patients and help clinical decision-making. Firstly, cuproptosis-related lncRNAs were identified in the TCGA-PAAD database. Next, a cuproptosis-related lncRNA signature based on five lncRNAs was established. Besides, the ICGC cohort and our samples from 30 PC patients served as external validation groups to verify the predictive power of the risk signature. Then, the expression of CASC8 was verified in PC samples, scRNA-seq dataset CRA001160, and PC cell lines. The correlation between CASC8 and cuproptosis-related genes was validated by Real-Time PCR. Additionally, the roles of CASC8 in PC progression and immune microenvironment characterization were explored by loss-of-function assay. As showed in the results, the prognosis of patients with higher risk scores was prominently worse than that with lower risk scores. Real-Time PCR and single cell analysis suggested that CASC8 was highly expressed in pancreatic cancer and related to cuproptosis. Additionally, gene inhibition of CASC8 impacted the proliferation, apoptosis and migration of PC cells. Furthermore, CASC8 was demonstrated to impact the expression of CD274 and several chemokines, and serve as a key indicator in tumor immune microenvironment characterization. In conclusion, the cuproptosis-related lncRNA signature could provide valuable indications for the prognosis of PC patients, and CASC8 was a candidate biomarker for not only predicting the progression of PC patients but also their antitumor immune responses.
Collapse
Affiliation(s)
- Hong-Fei Yao
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Da-Peng Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jia-Hao Zheng
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yu Xu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Qin-Yuan Jia
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yu-Heng Zhu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Jian Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Rui-Zhe He
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Ding Ma
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Min-Wei Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Xue-Liang Fu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - De-Jun Liu
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Yan-Miao Huo
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Jian-Yu Yang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Jun-Feng Zhang
- State Key Laboratory of Oncogenes and Related Genes, Department of Biliary-Pancreatic Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
36
|
Gupta R, Kumari S, Tripathi R, Ambasta RK, Kumar P. Unwinding the modalities of necrosome activation and necroptosis machinery in neurological diseases. Ageing Res Rev 2023; 86:101855. [PMID: 36681250 DOI: 10.1016/j.arr.2023.101855] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/09/2022] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Necroptosis, a regulated form of cell death, is involved in the genesis and development of various life-threatening diseases, including cancer, neurological disorders, cardiac myopathy, and diabetes. Necroptosis initiates with the formation and activation of a necrosome complex, which consists of RIPK1, RIPK2, RIPK3, and MLKL. Emerging studies has demonstrated the regulation of the necroptosis cell death pathway through the implication of numerous post-translational modifications, namely ubiquitination, acetylation, methylation, SUMOylation, hydroxylation, and others. In addition, the negative regulation of the necroptosis pathway has been shown to interfere with brain homeostasis through the regulation of axonal degeneration, mitochondrial dynamics, lysosomal defects, and inflammatory response. Necroptosis is controlled by the activity and expression of signaling molecules, namely VEGF/VEGFR, PI3K/Akt/GSK-3β, c-Jun N-terminal kinases (JNK), ERK/MAPK, and Wnt/β-catenin. Herein, we briefly discussed the implication and potential of necrosome activation in the pathogenesis and progression of neurological manifestations, such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, traumatic brain injury, and others. Further, we present a detailed picture of natural compounds, micro-RNAs, and chemical compounds as therapeutic agents for treating neurological manifestations.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Smita Kumari
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rahul Tripathi
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), India.
| |
Collapse
|
37
|
Liu J, Yang Y, Zeng Y, Qin X, Guo L, Liu W. Exploring the mechanism of physcion-1-O-β-D-monoglucoside against acute lymphoblastic leukaemia based on network pharmacology and experimental validation. Heliyon 2023; 9:e14009. [PMID: 36923879 PMCID: PMC10008983 DOI: 10.1016/j.heliyon.2023.e14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/26/2023] Open
Abstract
Objective To explore the mechanism of PG against acute lymphoblastic leukaemia (ALL) by network pharmacology and experimental verification in vitro. Methods First, the biological activity of PG against B-ALL was determined by CCK-8 and flow cytometry. Then, the potential targets of PG were obtained from the PharmMapper database. ALL-related genes were collected from the GeneCards, OMIM and PharmGkb databases. The two datasets were intersected to obtain the target genes of PG in ALL. Then, protein interaction networks were constructed using the STRING database. The key targets were obtained by topological analysis of the network with Cytoscape 3.8.0 software. In addition, the mechanism of PG in ALL was confirmed by protein‒protein interaction, gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Furthermore, molecular docking was carried out by AutoDock Vina. Finally, Western blotting was performed to confirm the effect of PG on NALM6 cells. Results PG inhibited the proliferation of NALM6 cells. A total of 174 antileukaemic targets of PG were obtained by network pharmacology. The key targets included AKT1, MAPK14, EGFR, ESR1, LCK, PTPN11, RHOA, IGF1, MDM2, HSP90AA1, HRAS, SRC and JAK2. Enrichment analysis found that PG had antileukaemic effects by regulating key targets such as MAPK signalling, and PG had good binding activity with MAPK14 protein (-8.9 kcal/mol). PG could upregulate the expression of the target protein p-P38, induce cell cycle arrest, and promote the apoptosis of leukaemia cells. Conclusion MAPK14 was confirmed to be one of the key targets and pathways of PG by network pharmacology and molecular experiments.
Collapse
Key Words
- AKT1, Protein Kinase B α
- Acute lymphoblastic leukaemia
- B-ALL, B-acute lymphoblastic leukemia
- CDK2, Cyclin-dependent kinase 2
- Cleaved PARP, Cleaved Poly ADP-Ribose Polymerase
- DMSO, Dimethyl sulfoxide
- Experimental validation
- GO, Gene Ontology
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MAPK14
- MAPK14, Mitogen-activated protein kinase
- Network pharmacology
- OMIM, Online Mendelian Inheritance in Man
- PG, Physcion-1-O-β-D-monoglucoside
- PPI, Protein-protein interaction
- Physcion-1-O-β-D-monoglucoside
- RIPA, Radio-Immunoprecipitation Assay
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Yan Yang
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Yan Zeng
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Xiang Qin
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Ling Guo
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| | - Wenjun Liu
- Department of Pediatrics, Children Hematological Oncology and Birth Defects Laboratory, The Affiliated Hospital of Southwest Medical University, Sichuan Clinical Research Center for Birth Defects, Luzhou, Sichuan, 646000, China
| |
Collapse
|
38
|
Zhang YY, Tian J, Peng ZM, Liu B, Peng YW, Zhang XJ, Hu ZY, Luo XJ, Peng J. Caspofungin Suppresses Brain Cell Necroptosis in Ischemic Stroke Rats via Up-Regulation of Pellino3. Cardiovasc Drugs Ther 2023; 37:9-23. [PMID: 34495409 DOI: 10.1007/s10557-021-07231-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE Pellino3, an ubiquitin E3 ligase, prevents the formation of the death-induced signaling complex in response to TNF-α by targeting receptor-interacting protein kinase 1 (RIPK1), and bioinformatics analysis predicted an interaction between Pellino3 and caspofungin, a common antifungal drug used in clinics. This study aimed to explore the effect of caspofungin on brain injury in ischemic stroke and the underlying mechanisms. METHODS Ischemic stroke injury was induced in Sprague Dawley rats by occlusion of the middle cerebral artery (MCA) for 2 h, followed by 24 h reperfusion. PC12 cells were deprived of both oxygen and glucose for 8 h and then were cultured for 24 h with oxygen and glucose to mimic an ischemic stroke in vitro. RESULTS Animal experiments showed brain injury (increase in neurological deficit score and infarct volume) concomitant with a downregulation of Pellino3, a decreased ubiquitination of RIPK1, and an up-regulation of necroptosis-associated proteins [RIPK1, RIPK3, mixed lineage kinase domain-like protein (MLKL), p-RIPK1, p-RIPK3, and p-MLKL]. Administration of caspofungin (6 mg/kg, i.m.) at 1 h and 6 h after ischemia significantly improved neurological function, reduced infarct volume, up-regulated Pellino3 levels, increased RIPK1 ubiquitination, and down-regulated protein levels of RIPK1, p-RIPK1, p-RIPK3, and p-MLKL. PC12 cells deprived of oxygen/glucose developed signs of cellular injury (LDH release and necroptosis) concomitant with downregulation of Pellino3, decreased ubiquitination of RIPK1, and elevated necroptosis-associated proteins. These changes were reversed by overexpression of Pellino3. CONCLUSION We conclude that Pellino3 has an important role in counteracting necroptosis via ubiquitination of RIPK1 and caspofungin can suppress the brain cell necroptosis in ischemic stroke through upregulation of Pellino3.
Collapse
Affiliation(s)
- Yi-Yue Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Jing Tian
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zi-Mei Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Bin Liu
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Ya-Wei Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Xiao-Jie Zhang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China
| | - Zhong-Yang Hu
- Department of Neurology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xiu-Ju Luo
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, 410013, China.
| | - Jun Peng
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China.
| |
Collapse
|
39
|
Cao K, Su F, Shan X, Jiang X, Ni Z, Chen Y. Necroptosis-related lncRNAs: establishment of a gene module and distinction between the cold and hot tumors in glioma. Front Oncol 2023; 13:1087117. [PMID: 37152037 PMCID: PMC10160458 DOI: 10.3389/fonc.2023.1087117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Background Gliomas are the most common primary tumors of the central nervous system and portend a poor prognosis. The efficacy of emerging and promising immunotherapies varies significantly among individuals. Distinction and transformation of cold and hot tumors may improve the antitumor efficacy of immunotherapy. Methods and Results In this study, we constructed a necroptosis-related lncRNA module based on public databases. The association of this module with survival was assessed using the Cox regression, Kaplan-Meier survival analysis, and nomogram, external validation was also conducted in another public database. Furthermore, we performed gene set enrichment analysis (GSEA), immune checkpoint and tumor microenvironment analysis, and in vitro qRT-PCR validation. Finally, we clustered all samples into 2 clusters based on the expression of model lncRNAs and identified cluster 1 as cold tumors with fewer infiltrating T cells. Conclusions Identifying cold and hot tumors by necroptosis-related lncRNAs can help available immunotherapeutic strategies to achieve efficacy in the precise treatment of individuals. Prior treatment failure can be overcome by targeting necroptosis-related lncRNAs.
Collapse
Affiliation(s)
- Kangxi Cao
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| | - Fengbo Su
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
| | - Xuchun Shan
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Xingyu Jiang
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Zhaohui Ni
- Department of Pathogenobiology, The Key Laboratory of Zoonosis, Chinese Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Zhaohui Ni, ; Yan Chen,
| | - Yan Chen
- Department of Neurosurgery, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Zhaohui Ni, ; Yan Chen,
| |
Collapse
|
40
|
Wang H, Li J, Zi X, Yuan X. Comprehensive analysis of cuproptosis-related genes on bladder cancer prognosis, tumor microenvironment invasion, and drug sensitivity. Front Oncol 2023; 13:1116305. [PMID: 36895470 PMCID: PMC9989218 DOI: 10.3389/fonc.2023.1116305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 02/25/2023] Open
Abstract
Cuproptosis, a newly discovered form of programmed cell death, plays a vital role in the occurrence and development of tumors. However, the role of cuproptosis in the bladder cancer tumor microenvironment remains unclear. In this study, we developed a method for predicting the prognostic outcomes and guiding the treatment selection for patients with bladder cancer. We obtained 1001 samples and survival data points from The Cancer Genome Atlas database and Gene Expression Omnibus database. Using cuproptosis-related genes (CRGs) identified in previous studies, we analyzed CRG transcriptional changes and identified two molecular subtypes, namely high- and low-risk patients. The prognostic features of eight genes (PDGFRB, COMP, GREM1, FRRS1, SDHD, RARRES2, CRTAC1, and HMGCS2) were determined. The CRG molecular typing and risk scores were correlated with clinicopathological features, prognosis, tumor microenvironment cell infiltration characteristics, immune checkpoint activation, mutation burden, and chemotherapy drug sensitivity. Additionally, we constructed an accurate nomogram to improve the clinical applicability of the CRG_score. qRT-PCR was used to detect the expression levels of eight genes in bladder cancer tissues, and the results were consistent with the predicted results. These findings may help us to understand the role of cuproptosis in cancer and provide new directions for the design of personalized treatment and prediction of survival outcomes in patients with bladder cancer.
Collapse
Affiliation(s)
- Honglei Wang
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China.,Heilongjiang Key Laboratory of Scientific Research in Urology, Fourth Hospital of Harbin Medical University, Harbin, China.,National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Jinqiao Li
- Heilongjiang Key Laboratory of Scientific Research in Urology, Fourth Hospital of Harbin Medical University, Harbin, China.,National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China
| | - Xiaolin Zi
- Department of Medical Oncology, Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xueli Yuan
- National Health Commission (NHC) Key Laboratory of Molecular Probes and Targeted Diagnosis and Therapy, Harbin Medical University, Harbin, China.,Department of Medical Oncology, Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
41
|
Onal T, Ozgul-Onal M, Chefetz I. Mixed lineage kinase domain-like pseudokinase: Conventional (necroptosis) and unconventional (necroptosis-independent) functions and features. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:225-243. [PMID: 36858737 DOI: 10.1016/bs.apcsb.2022.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mixed lineage kinase domain-like pseudokinase (MLKL) is the terminal and indispensable mediator of necroptosis. Necroptosis, also known as programmed cell necrosis, is a caspase-independent cell death mechanism involved in various pathologic and inflammatory processes. Triggering necroptosis could be an alternative approach in treating apoptosis-resistant cancer cells to prevent recurrent disease. In addition to its function in necroptosis, MLKL plays a role as a regulator in many cellular processes independent of necroptosis. A better understanding of the intracellular function of MLKL and its role in various diseases and pathologic conditions is needed to enable discovery of new targeted therapies. Various necroptosis-dependent and independent functions of MLKL are reviewed in this chapter, with a focus on functions of MLKL in necroptosis, autophagy, inflammation, tissue regeneration, and endosomal trafficking.
Collapse
Affiliation(s)
- Tuna Onal
- Faculty of Medicine, Department of Histology and Embryology, Bandirma Onyedi Eylul University, Balikesir, Turkey; The Hormel Institute, University of Minnesota, Austin, MN, United States
| | - Melike Ozgul-Onal
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Faculty of Medicine, Department of Histology and Embryology, Mugla Sitki Kocman University, Mugla, Turkey
| | - Ilana Chefetz
- The Hormel Institute, University of Minnesota, Austin, MN, United States; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States; Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States; Department of Obstetrics, Gynecology and Women's Health, University of Minnesota, Minneapolis, MN, United States.
| |
Collapse
|
42
|
Zhang C, Bai J, Yang Y, Wang X, Liu W, Hou S, Ai Z, Xia Q, Shao L. Construction of prediction model for prognosis of uterine corpus endometrial carcinoma based on pyroptosis gene. Clin Transl Oncol 2022; 25:1413-1424. [PMID: 36520385 DOI: 10.1007/s12094-022-03037-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022]
Abstract
PURPOSE To assess the expression of genes that are relevant to pyroptosis and the relationship between these genes and prognosis in uterine corpus endometrial carcinoma (UCEC). METHODS The research identifies 16 pyroptosis regulators with different expressions in normal endometrium and UCEC. In accordance with the differentially expressed genes (DEGs), the various kinds of UCEC are classified into two sub-types. With the help of the Cancer Genome Atlas (TCGA), the prognostic value of all pyroptosis-related genes for survival was assessed, and a multigene model has constructed accordingly. Ten genes were modeled by applying the minimum criteria for determining risk score selection (LASSO) Cox regression method. Meanwhile, by referring to the TCGA atlas, UCEC patients were divided into the high- and low-risk subgroups. The effects of the gene with significant differences on the proliferation of two cancer cells were also verified. RESULTS The survival rate of UCEC cases with higher risk was higher than that with lower risk (P < 0.001). Through the median risk score of TCGA atlas, UCEC cases were ranked as patients with higher risk and patients with lower risk. The low risk has a significant relationship with the prolongation of overall survival (OS) (p = 0.001) in the low-risk subgroup. Moreover, the KEGG and gene ontology (GO) enrichment models indicated that among the patients in the high-risk subgroup, their immune-related genes were concentrated but with decreased immune status. CONCLUSION The apoptosis-related genes are crucial for the immunity of tumors and may forecast the prognosis of UCEC.
Collapse
|
43
|
Non-coding RNAs in breast cancer: Implications for programmed cell death. Cancer Lett 2022; 550:215929. [DOI: 10.1016/j.canlet.2022.215929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/23/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022]
|
44
|
A Glimpse of necroptosis and diseases. Biomed Pharmacother 2022; 156:113925. [DOI: 10.1016/j.biopha.2022.113925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/24/2022] Open
|
45
|
Ferroptosis, necroptosis, and pyroptosis in the tumor microenvironment: Perspectives for immunotherapy of SCLC. Semin Cancer Biol 2022; 86:273-285. [PMID: 35288298 DOI: 10.1016/j.semcancer.2022.03.009] [Citation(s) in RCA: 150] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023]
Abstract
Small cell lung cancer (SCLC) is an aggressive form of lung cancer characterized by dismal prognosis. Although SCLC may initially respond well to platinum-based chemotherapy, it ultimately relapses and is almost universally resistant to this treatment. Immune checkpoint inhibitors (ICIs) have been approved as the first- and third-line therapeutic regimens for extensive-stage or relapsed SCLC, respectively. Despite this, only a minority of patients with SCLC respond to ICIs partly due to a lack of tumor-infiltrating lymphocytes (TILs). Transforming the immune "cold" tumors into "hot" tumors that are more likely to respond to ICIs is the main challenge for SCLC therapy. Ferroptosis, necroptosis, and pyroptosis represent the newly discovered immunogenic cell death (ICD) forms. Promoting ICD may alter the tumor microenvironment (TME) and the influx of TILs, and combination of their inducers and ICIs plays a synergistical role in enhancing antitumor effects. Nevertheless, the combination of the above two modalities has not been systematically discussed in SCLC therapy. In the present review, we summarize the roles of distinct ICD mechanisms on antitumor immunity and recent advances of ferroptosis-, necroptosis- and pyroptosis-inducing agents, and present perspectives on these cell death mechanisms in immunotherapy of SCLC.
Collapse
|
46
|
Roles of RIPK3 in necroptosis, cell signaling, and disease. Exp Mol Med 2022; 54:1695-1704. [PMID: 36224345 PMCID: PMC9636380 DOI: 10.1038/s12276-022-00868-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 08/01/2022] [Indexed: 12/29/2022] Open
Abstract
Receptor-interacting protein kinase-3 (RIPK3, or RIP3) is an essential protein in the "programmed" and "regulated" cell death pathway called necroptosis. Necroptosis is activated by the death receptor ligands and pattern recognition receptors of the innate immune system, and the findings of many reports have suggested that necroptosis is highly significant in health and human disease. This significance is largely because necroptosis is distinguished from other modes of cell death, especially apoptosis, in that it is highly proinflammatory given that cell membrane integrity is lost, triggering the activation of the immune system and inflammation. Here, we discuss the roles of RIPK3 in cell signaling, along with its role in necroptosis and various pathways that trigger RIPK3 activation and cell death. Lastly, we consider pathological situations in which RIPK3/necroptosis may play a role.
Collapse
|
47
|
Pan S, Hu B, Sun J, Yang Z, Yu W, He Z, Gao X, Song J. Identification of cross-talk pathways and ferroptosis-related genes in periodontitis and type 2 diabetes mellitus by bioinformatics analysis and experimental validation. Front Immunol 2022; 13:1015491. [PMID: 36248844 PMCID: PMC9556735 DOI: 10.3389/fimmu.2022.1015491] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/13/2022] [Indexed: 11/26/2022] Open
Abstract
Purpose There is a bidirectional relationship between periodontitis and type 2 diabetes mellitus (T2DM). The aim of this study was to further explore the pathogenesis of this comorbidity, screen out ferroptosis-related genes involved in the pathological process, and predict potential drug targets to develop new therapeutic strategies. Methods Common cross-talk genes were identified from periodontitis datasets (GSE16134, GSE10334 and GSE106090) and T2DM databases (DisGeNET and GeneCard). Then, GO and KEGG enrichment analyses, PPI network analysis and hub gene identification were performed. The association between ferroptosis and periodontitis with T2DM was investigated by Pearson correlation analysis. Core ferroptosis-related cross-talk genes were identified and verified by qRT-PCR. Potential drugs targeting these core genes were predicted via DGIDB. Results In total, 67 cross-talk genes and two main signalling pathways (immuno-inflammatory pathway and AGE-RAGE signalling pathway) were identified. Pearson correlation analysis indicated that ferroptosis served as a crucial target in the pathological mechanism and treatment of periodontitis with T2DM. IL-1β, IL-6, NFE2L2 and ALOX5 were identified as core ferroptosis-related genes and the qRT-PCR detection results were statistically different. In total, 13 potential drugs were screened out, among which, Echinacea and Ibudilast should be developed first. Conclusions This study contributes to a deeper understanding of the common pathogenesis of periodontitis and T2DM and provides new insights into the role of ferroptosis in this comorbidity. In addition, two drugs with potential clinical application value were identified. The potential utility of these drugs requires further experimental investigation.
Collapse
Affiliation(s)
- Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Bo Hu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Jicheng Sun
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zun Yang
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Wenliang Yu
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Zangmin He
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Jinlin Song, ; Xiang Gao,
| | - Jinlin Song
- College of Stomatology, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- *Correspondence: Jinlin Song, ; Xiang Gao,
| |
Collapse
|
48
|
Chen M, Wu GB, Hua S, Zhao ZF, Li HJ, Luo M. Identification and validation of a prognostic model of necroptosis-related lncRNAs in hepatocellular carcinoma. Front Genet 2022; 13:907859. [PMID: 36246594 PMCID: PMC9557293 DOI: 10.3389/fgene.2022.907859] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/05/2022] [Indexed: 11/27/2022] Open
Abstract
Background: The study focused on establishing a prognostic survival model with six necroptosis-related lncRNAs to predict overall survival (OS) in patients with hepatocellular carcinoma (HCC). Methods: The data of gene expression and clinical information of HCC patients were obtained from The Cancer Genome Atlas (TCGA). Cox regression with LASSO was used for constructing a necroptosis-related lncRNA survival model, which we further validated with qRT-PCR in vitro. The relative bioinformatics analysis and consensus cluster analysis were performed based on six differentially expressed lncRNAs. Results: The survival prognostic model was constructed by using data from TCGA. Receiver operating characteristic (ROC) curves showed a good survival prediction by this model. GSEA showed that several signaling pathways were related to HCC progression. Immune-related functional analysis showed that aDCs, macrophages, Th2 cells, and Tregs have stronger correlation with the high-risk group. The consensus cluster analysis further validated the 6-lncRNA prognostic model. Conclusion: A novel 6-lncRNA (AL606489.1, NRAV, LINC02870, DUXAP8, “ZFPM2-AS1,” and AL031985.3) prognostic model had an accurately predictive power in HCC prognosis, which might be worthy of clinical application.
Collapse
Affiliation(s)
- Min Chen
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang-Bo Wu
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shan Hua
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi-Feng Zhao
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Jie Li
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hong-Jie Li, ; Meng Luo,
| | - Meng Luo
- Department of General Surgery, Shanghai Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Hong-Jie Li, ; Meng Luo,
| |
Collapse
|
49
|
Li H, Chang X, Wang H, Peng B, Wang J, Zhang P, Zhang L. Identification of a prognostic index system and tumor immune infiltration characterization for lung adenocarcinoma based on mRNA molecular of pyroptosis. Front Med (Lausanne) 2022; 9:934835. [PMID: 36186792 PMCID: PMC9520088 DOI: 10.3389/fmed.2022.934835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background and purpose Pyroptosis is a form of programmed cell death, which plays an important role in tumorigenesis, progression, and regulation of the tumor microenvironment. It can affect lung adenocarcinoma (LUAD) progression. This study aimed to construct a pyroptosis-related mRNA prognostic index (PRMPI) for LUAD and clarify the tumor microenvironment infiltration characterization of LUAD. Materials and methods We performed a univariate Cox regression analysis for pyroptosis-related mRNAs in the TCGA cohort. Then, we used LASSO Cox regression to establish a PRMPI. The quantitative real time polymerase chain reaction (qRT-PCR) was used to quantify the relative expression of pyroptosis-related mRNAs. The CPTAC cohort was used to confirm the stability and wide applicability of the PRMPI. The single-sample gene set enrichment analysis (ssGSEA) was performed to assess the tumor microenvironment infiltration characterization. Results A total of 36 pyroptosis-related mRNAs were identified. The PRMPI was established based on five pyroptosis-related mRNAs. The expression patterns of these mRNAs were verified in LUAD samples from our medical center by qRT-PCR. High-PRMPI patients had worse overall survival than low-PRMPI patients. The result was validated in the CPTAC cohort. The comprehensive analysis indicated that the high-PRMPI patients exhibited lower immune activity, more aggressive immunophenotype, lower expression of immune checkpoint molecule, higher TP53 mutation rate, and higher tumor stemness than low-PRMPI patients. Low-PRMPI patients may be more sensitive to immunotherapy, while high-PRMPI patients may benefit more from chemotherapy and targeted therapy. Conclusions The PRMPI may be a promising biomarker to predict the prognosis, tumor microenvironment infiltration characterization, and the response to adjuvant therapy in LUAD.
Collapse
Affiliation(s)
- Huawei Li
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haiyan Wang
- Department of Pediatrics, 83 Group Military Hospital of People’s Liberation Army, Xinxiang, Henan, China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jun Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Pengfei Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- *Correspondence: Linyou Zhang,
| |
Collapse
|
50
|
Qin R, You FM, Zhao Q, Xie X, Peng C, Zhan G, Han B. Naturally derived indole alkaloids targeting regulated cell death (RCD) for cancer therapy: from molecular mechanisms to potential therapeutic targets. J Hematol Oncol 2022; 15:133. [PMID: 36104717 PMCID: PMC9471064 DOI: 10.1186/s13045-022-01350-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/03/2022] [Indexed: 12/11/2022] Open
Abstract
Regulated cell death (RCD) is a critical and active process that is controlled by specific signal transduction pathways and can be regulated by genetic signals or drug interventions. Meanwhile, RCD is closely related to the occurrence and therapy of multiple human cancers. Generally, RCD subroutines are the key signals of tumorigenesis, which are contributed to our better understanding of cancer pathogenesis and therapeutics. Indole alkaloids derived from natural sources are well defined for their outstanding biological and pharmacological properties, like vincristine, vinblastine, staurosporine, indirubin, and 3,3′-diindolylmethane, which are currently used in the clinic or under clinical assessment. Moreover, such compounds play a significant role in discovering novel anticancer agents. Thus, here we systemically summarized recent advances in indole alkaloids as anticancer agents by targeting different RCD subroutines, including the classical apoptosis and autophagic cell death signaling pathways as well as the crucial signaling pathways of other RCD subroutines, such as ferroptosis, mitotic catastrophe, necroptosis, and anoikis, in cancer. Moreover, we further discussed the cross talk between different RCD subroutines mediated by indole alkaloids and the combined strategies of multiple agents (e.g., 3,10-dibromofascaplysin combined with olaparib) to exhibit therapeutic potential against various cancers by regulating RCD subroutines. In short, the information provided in this review on the regulation of cell death by indole alkaloids against different targets is expected to be beneficial for the design of novel molecules with greater targeting and biological properties, thereby facilitating the development of new strategies for cancer therapy.
Collapse
|